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ABSTRACT

Cascading blackouts on a bulk power transmission system are potentially catastrophic events

with a large impact on society characterized by a sequence ofline trips and load shed. One

spectacular example of a cascading blackout is the August 2003 blackout in North America

that affected 50 million people. We propose using branchingprocesses to model the line trip-

ping and load shed behavior of cascading blackouts. We use anestimator of the offspring

mean,λ, to fit simulated blackout data to the branching process model. The parameterλ is a

measure of cascade propagation, and helps us to estimate howlikely large blackouts are. We

compute distributions of blackout size and total number of line failures from the model and

match them against simulated data. The match with simulateddata suggests that the branching

process model captures important aspects of the cascade phenomenon. The line failures and

load shed in cascades are seen to have similarλ, meaning they propagate at the same rate. The

branching process model is an efficient way to estimate line failure and load shed probability

distributions.
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Chapter 1

Introduction

A cascading blackout is one in which a contingency or set of contingencies cause a cas-

cading series of further failures to propagate across a power grid. The “domino effect” is a

useful heuristic for this phenonemon. For an example of how devastating a cascading blackout

can be, look no further than the August 2003 blackout that affected Eastern Canada and the

Northeastern United States. This event resulted in about 50million people without electricity

and over $6 billion in financial losses [39, 19].

We focus on using a simple statistical mathematical model ofa cascade to predict how

likely a cascading blackout is for a given system. By performing statistical analysis on previous

blackout data, we can fit the prior data to a model and generatea probability density function

(pdf) of blackout sizes. Then it will be known how likely a cascading blackout of a certain size

will be in the future, if one would happen to start. Also, the model gives important information

about how “close” a power system is to a cascading regime evenif large cascades have not

happened recently.

It has been shown that a simple model of cascading failure canbe approximated well by

a particular mathematical model called a branching process[15]. This has motivated using

branching processes to model various aspects of a cascadingblackout. Branching processes

have been used to describe various “cascading” type events such as epidemics [2], and earth-

quakes [35], as well as more abstract cases such as perseverance of family names [26]. Their

mathematical properties have been widely studied, with thebest sources being [26, 1, 28].

Branching processes of some form can potentially be applied to any type of cascading phe-

nomenon, so it is natural to extend them to blackouts.
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For our purposes, we use branching processes to model both line outages and load shed

produced by a cascading blackout. Discrete state branchingprocesses are used for line failures,

with the mathematics presented in Section 2.1. Continuous state branching processes are used

for load shed, with the mathematics presented in Section 2.2. The model specifies a sequence of

failures at discrete stagesn, with failures at stagen causing further failures at stagen+ 1. The

most interesting aspect of the modeling is the propagation factorλ which captures the potential

of the cascade to either die out or grow, and thus governs the likely size of the cascade. When

λ < 1, the cascade is likely to die out, while whenλ > 1 it is likely to become large.λ is also

the mean of the offspring distribution, which is the distribution of failures at stagen+1 caused

by a single failure, or unit of failure, at stagen. Once the offspring distribution is specified, the

distribution of the total amount, or number of failures is produced. In the case of line failures,

this is total number of lines tripped (taken out of service) during the cascade. In the case of

load shed, this is the total amount of system load demand thatis removed as a result of the

cascade.

To fit the model to a particular power system simulation, all parameters needed by the

branching process model includingλmust be estimated from previous blackout data. A history

of blackout sizes and line failures must be available for previous blackouts. Moreover, they

must be available in sequential, time-ordered form. Section 3 shows the methods used to fit

both line failure and load shed data.

Constructing blackout and failure distributions by way of a branching process model is

much more efficient than simply constructing empirical distributions from historical data.λ

can be accurately estimated using a relatively small amountof data.

We test our methods on the OPA power system model [6], using the IEEE 118 bus test sys-

tem. The OPA model uses DC load flow and LP dispatch. Cascades are initiated by overloading

the system so that lines are tripped. This initiating event may cause further line failures, and

load shed as the system redispatches. The simulation is run multiple times for various loading

levels simulating a history of cascades. The procedures of Section 3 are used to gain estimates

of λ and other relevant parameters. The distributions are then plotted and compared to the
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empirical data to test the accuracy of the model. A description of OPA, as well as results for

line failures and load shed, are presented in Section 4.

1.1 Literature Review

This section is divided up into two parts. The first briefly describes the literature directly

related to this thesis. The second describes literature notdirectly related to this project but

related to cascading blackouts.

1.1.1 Branching Processes with Power Systems

Using branching processes to model cascading failures in power systems was first proposed

by Dobson et al in [15]. That work was an extension of the CASCADEmodel shown in

[18, 13]. CASCADE is a simple, abstracted model of cascading failures. It is shown in [15]

that under certain limiting conditions, CASCADE can be approximated by a branching process.

Applying branching processes to OPA power system simulation data was then done in [17] and

[47] as a part of this project.

1.1.2 Additional Cascading Blackout Research

Work on cascading blackouts can be divided into three categories: modeling, mitigation,

and miscellaneous. “Modeling” refers to any simple or complex abstraction of cascading fail-

ure to gain understanding of the phenomenon. This model can be used to predict behavior

of real power systems in cascading regimes. This project falls into this category. In [8], Q.

Chen and McCalley use a cluster model to construct probabilitydistributions of line failures.

Their use of a parameterα to represent the tendency of failures to “cluster” is similar to our

use ofλ to describe the tendency of failures to propagate. Carreras et al show in [7] show that

power-law tails are present in blackout data. They conjecture that the power-laws are due to

Self-Organized Criticality of the power system and explore this possibility through the OPA

power system model in [6]. The OPA model simulates the long-term dynamics of a power sys-

tem as generation and transmission lines are upgraded in response to cascading blackouts and
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growing demand. In [9], J. Chen et al use a hidden failure modelto estimate cascade blackout

sizes. The hidden failures refer to incorrect relay tripping which has been observed in real

systems. Roy et al develop generic network models in [34] thatrepresent large, interconnected

complex systems capable of cascading failure. They simulate random network growth, noting

the distribution of connections, and employ a Markov model of network failure.

“Mitigation” refers to techniques that can be used by power system operators to stop cas-

cades from spreading. In [43], Venkatasubramanian and Quintero suggest using Static-Var-

Compensator (SVC) control techniques to dampen growing oscillations in a power system.

Through central control, the SVCs would be able to quickly react to stop oscillations and re-

store the system to normal operation before cascading failures cripple the system. In [44] Vittal

and Wang use a forced islanding scheme to separate parts of a power system before a cascading

failure can grow. These mitigation methods have the property of being “on-line,” that is they

are used when a cascading failure is thought to be occurring.

“Miscellaneous” can be any cascading failure research thatdoes not fit into the above two

categories. For example, in [25], Hardiman et al describe their TRELSS simulation, used to

simulate power system response to a variety of contingencies. They also give a brief overview

of some recent cascading blackouts. Kirschen et al use variance reduction Monte Carlo tech-

niques in [29] to estimate stress on a power system.
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Chapter 2

Branching Processes

2.1 Discrete State Branching Process

This section explains discrete state branching processes to the detail necessary for this

project. See [26, 1] for more information.

In the discrete state branching process, a cascade starts with an initial number of failuresX0

and proceeds to produce a sequence of failuresX1, X2, . . . , at discrete stagesn = 0, 1, 2, . . ..

The failures at each stage are nonnegative integers soXn ∈ Z≥0 andXn can be seen as the

number of lines failed at stagen in a cascade. The offspring distributionP [X = x] is defined

to be the distribution function of failures at stagen + 1 resulting from one failure at stage

n, as well as the distribution of a random variableX with meanλ and probability generating

function

f(s) = E[sX ] =
∞
∑

i=0

P [X = i]si,

and whereP [X = 0] > 0. Combining these definitions gives

P [Xn+1 = x |Xn = 1] = P [X = x].

When the initial number of failuresX0 is given by a constant then the number of failuresX1 at

stage 1 is distributed as a sum ofX0 independent copies ofX:

X1
d
=

X0
∑

i=1

X.

In general,Xn+1 is distributed as a sum ofXn independent copies ofX:

Xn+1
d
=

Xn
∑

i=1

X.
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In terms of generating functions, this becomes

fn+1(s) = E[sXn+1 ] = E[E[sXn+1 |Xn]] = E[f(s)Xn ] = fn(f(s)), (2.1)

wherefn+1 is the generating function ofXn+1.

When the number of initial failuresX0 is a constant, then

f0(s) = E[sX0 ] = sX0 . (2.2)

(2.1) and (2.2) imply

fn(s) = (fn(s))X0 , (2.3)

wherefn is then-fold functional composition off .

As the cascade proceeds, the failures accumulate and the running total of the failures at

stagen is given by

Yn = X0 +X1 + . . .+Xn.

The average number of failures at each stage is

EXn = X0λ
n, (2.4)

while the average running number of failures is

EYn = X0

n
∑

i=1

λn. (2.5)

If λ < 1, the cascade shrinks on average and eventually dies out withprobability 1, andYn

converges to the total

Y = lim
n→∞

Yn.

Assuming the subcritical caseλ < 1, the distribution ofY can be computed from the offspring

distribution. LetF (s) stand for the generating function ofY whenX0 = 1. In this case,

F (s) = E[sY ]

= E[s1+X1+X2+...]

= E[sE[sX1+X2+...|X1]]

= E[sF (s)X1 ]

= sf(F (s)). (2.6)
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Equation (2.6) is then solved implicitly forF (s) using a Lagrange inversion method:

F (s) =
∞
∑

a=1

P [Y = a]sa =
∞
∑

a=1

(

1

a!

da−1

dza−1
(f(z))a

∣

∣

∣

∣

z=0

)

sa. (2.7)

See Section 7.1 for details of the Lagrange inversion method.

If the initial number failuresX0 is randomly chosen according to some distributionP [X0 =

x] with generating functionm(s), and meanθ, then (2.2) becomes

f0(s) = m(s)

and (2.3) becomes

fn(s) = E[sXn ]

= E[E[sXn|X0]]

= E[(fn(s))X0 ]

= m (fn(s)) .

Similarly, the generating function ofY becomesF(s) where

F(s) = m (F (s)) . (2.8)

Finally, (2.4) becomes

EXn = θλn.

2.2 Continuous State Branching Processes

This section explains the mathematics of continuous state branching processes that are used

in this project. See [28, 36] for more information.

As in the discrete case, continuous state branching processstarts with an initial number

of failuresX0 and proceeds to produce a sequence of failuresX1, X2, . . . , at discrete stages

n = 0, 1, 2, . . .. The failures at each stage are, this time, nonnegative realnumbers so that

Xn ∈ R≥0 andXn can be seen as the amount of load shed at stagen in a cascade. The offspring
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distributionH(x) is defined to be the distribution function of failures at stagen + 1 resulting

from one failure at stagen. H(x) is the probability density function of a nonnegative, infinitely

divisible continuous random variableX with meanλ, and cumulant generating function

h(s) = − ln E[e−sX ] = − ln

∫ ∞

0

e−sxH(x)dx.

When the initial number of failuresX0 is given by a constant then the number of failuresX1 at

stage 1 is distributed as a sum ofX0 independent copies ofX:

X1
d
=

X0
∑

i=1

X. (2.9)

In general,Xn+1 is distributed as a sum ofXn independent copies ofX:

Xn+1
d
=

Xn
∑

i=1

X. (2.10)

In terms of generating functions, this becomes

hn+1(s) = − ln E[e−sXn+1 ]

= − ln E[E[e−sXn+1 |Xn]]

= − ln E
[

(

E[e−sX ]
)Xn

]

= − ln E
[

e−(− ln Ee−sX)Xn

]

= hn(h(s)),

wherehn+1 is the generating function ofXn+1, hence

hn(s) = h0(h
(n)(s)),

whereh(n) is then-fold functional composition ofh.

When the initial failuresX0 is a constant, then

h0(s) = X0s

and

hn(s) = X0

(

h(n)(s)
)

. (2.11)
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In the continuous case, (2.9) and (2.10) usually describe nonintegral sums of random vari-

ables. The way around this conceptual (and mathematical) difficulty is to require the offspring

distributionH(x) to be infinitely divisible so that, by definition:

X
d
=

k
∑

i=1

T
(i)
k

for some i.i.d. random variablesT (i)
k and arbitrary integerk.(note: this is definition of infinite

divisibility ([22])) Then, (2.9) can be rewritten

X1
d
=

X0
∑

i=1

X(i)

d
= lim

k→∞

⌊kX0⌋
∑

i=1

T
(i)
k .

For example, in the caseX0 = 2.5,X1 becomes

X1
d
=

2.5
∑

i=1

X(i)

d
=

25
∑

i=1

T
(i)
10

The running total of load shed at stagen is again given by

Yn = X0 +X1 + . . .+Xn.

The average number of failures at each stage is again (2.4) while the average running number

of failures is (2.5). Ifλ < 1, the cascade shrinks on average and eventually dies out with

probability1, andYn converges to the total

Y = lim
n→∞

Yn.

Assuming the subcritical caseλ < 1, the distribution ofY can be computed from the offspring

distribution. Letk(s) stand for the cumulant generating function ofY whenX0 = 1. In this
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case,

k(s) = − ln E[e−sY ]

= − ln E[e−s(1+X1+X2+...)]

= − ln E[e−sE[e−s(X1+X2+...)|X1]]

= − ln E[e−se−k(s)X1 ]

= s+ h(k(s)). (2.12)

Equation (2.12) is then solved implicitly fork(s) using the Lagrange expansion (see Section

7.1)

k(s) = s+
∞
∑

a=1

1

a!

da−1

dsa−1
(h(s))a. (2.13)

If the initial number failuresX0 is randomly chosen according to some distributionM(x)

with cumulant generating functionm(s), and meanθ, then (2.11) becomes

hn(s) = m (hn(s)) .

Similarly, the generating function ofY becomesK(s) where

K(s) = m (k(s)) . (2.14)

Finally, equation (2.4) becomes

EXn = θλn.

OnceK(s) has been obtained, the pdfK(s) of the total load shedY is obtained as the

inverse Laplace transform ofe−K(s) using the Post-Widder method:

K(x) = lim
a→∞

(−1)a

a!

(a

x

)a+1
(

da

dsa
e−K(s)

∣

∣

∣

∣

s=a/x

)

. (2.15)

The cumulative distribution function is similarly obtained as the inverse Laplace transform of

e−K(s)/s. See Section 7.2 for details of the Post-Widder method.
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2.2.1 Saturation

In real power systems, the cascade size is limited by the total number of lines in the system.

There may also be effects present that tend to inhibit the size of the cascade. We refer to both

of these limitations as “saturation,” and are included whenapplying a discrete state branching

process to line outages. The simplest way to accomplish thisis to assume saturation can be

modeled by a single parameterS. Then the total number of line failures must not progress

beyond this number, or in other words,Y ≤ S. The distribution (2.8) must then have all

probability mass greater thanS transferred toY = S. We have not yet considered how to

model saturation effects for load shed.

In the case thatλ > 1, the cascade grows on average and there is a nonzero probability that

the cascade grows toY = ∞. In this case, a pdf cannot be defined forY unless the cascade

is forced to stop somewhere. Including saturation solves this problem. It is possible when

λ < 1 for a cascade to reachS as well, although ifS is sufficiently large, this happens with

low probability.

If the initial line failuresθ is large enough, it may be the case that cascades saturate at the

initial stage. If this is the case, the line failures initialdistributionP [X0 = x] would have to be

modified to include saturation.
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Chapter 3

Estimation of Branching Process Parameters

This section details how both blackout and line failure datacan be fit to branching processes.

Line failure data is fit to a discrete state branching process, while load shed data is fit to a con-

tinuous state branching process. The propagation parameter λ and the distribution of the total

cascade sizeY are estimated in each case.

3.1 Line Failures

A cascading failure simulation is assumed to produce a list of cascading blackouts and for

each blackout the number of line failures as well as the failures at each intermediate stage of

the blackout is recorded. Specifically there areJ separate cascades, andX i
n denotes the line

failures at stagen of cascadei. The accumulated data then looks like this:

stage0 stage1 stage2 · · ·
cascade1 X

(1)
0 X

(1)
1 X

(1)
2 · · ·

cascade2 X
(2)
0 X

(2)
1 X

(2)
2 · · ·

...
...

...
...

...

cascadeJ X
(J)
0 X

(J)
1 X

(J)
2 · · ·

. (3.1)

Likewise,Y (i)
n refers to the cumulative failures

Y (i)
n = X

(i)
0 +X

(i)
1 + . . .+X(i)

n

at stagen of cascadei.

The data must be handled in such a way that each cascade startswith a nonzero number

of failures. For example, cascades with no failures are discarded. One effect of this is that the
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computed distribution of failures is conditioned on the cascade starting. Each cascade will not

necessarily have the same number of stages.N(i) refers to the number of stages of cascadei,

withN(i) being determined either by the maximum number of simulated stages being reached,

or the cascade hitting the saturation sizeS. N(i) is thus given by

N(i) = max
{

n
∣

∣

∣
Y (i)

n < S andX(i)
n−1 > 0 andn ≤ Nmax

}

. (3.2)

Nmax is the maximum number of stages produced by the simulation.

3.1.1 Estimatingλ

The estimator for the propagationλ is

λ̂ =

J
∑

i=1

(

X
(i)
1 +X

(i)
2 + . . .+X

(i)
N(i)

)

J
∑

i=1

(

X
(i)
0 +X

(i)
1 + . . .+X

(i)
N(i)−1

)

(3.3)

=

J
∑

i=1

Y i
N(i) −X

(i)
0

J
∑

i=1

Y
(i)
N(i)−1

.

The estimator (3.4) is a variant of the maximum likelihood estimator

∑J
i=1 Y

i
N −X

(i)
0

∑J
i=1 Y

(i)
N−1

(3.4)

when each cascade has the same number of stagesN . (3.4) is consistent and asymptotically

unbiased asJ → ∞ [11, 24].
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The mean of̂λ is given by

E λ̂ = E

[
∑J

i=1 (Y
(i)
N(i) −X

(i)
0 )

∑J
i=1 Y

(i)
N(i)−1

]

=
∑

Ni,yi,xi

E

[
∑J

i=1 (Y
(i)
N(i) −X

(i)
0 )

∑i
i=1 Y

(i)
N(i)−1

A

]

P (A)

=
∑

Ni,yi,xi

E

[

∑J
i=1 (yi + xi +X

(i)
Ni

−X
(i)
0 )

∑J
i=1 (yi + xi)

A

]

P (A)

=
∑

Ni,yi,xi

(

1 +

∑J
i=1(λxi −X

(i)
0 )

∑J
i=1(yi + xi)

)

P (A)

= 1 + λE

[

1
J

∑J
i=1X

(i)
N(i)−1

1
J

∑J
i=1 Y

(i)
N(i)−1

]

− E

[

1
J

∑J
i=1X

(i)
0

1
J

∑J
i=1 Y

(i)
N(i)−1

]

whereA is the event

A =
J
⋂

i=1

{

N(i) = Ni, Y
(i)
Ni−2 = yi, X

(i)
Ni−1 = Xi.

}
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It is difficult to tell from the analytics whether or not̂λ is biased, but we demonstrate in the

Results section that̂λ underestimatesλ. The variance of̂λ is given by

Varλ̂ = Var

(
∑J

i=1 (Y
(i)
N(i) −X

(i)
0 )

∑J
i=1 Y

(i)
N(i)−1

)

= Var

(

1 +

∑J
i=1(X

(i)
N(i) −X

(i)
0 )

∑J
i=1(Y

(i)
N(i)−2 +X

(i)
N(i)−1)

)

= Var

(
∑J

i=1(X
(i)
N(i) −X

(i)
0 )

∑J
i=1(Y

(i)
N(i)−2 +X

(i)
N(i)−1)

)

= E

[

Var

(
∑J

i=1(X
(i)
N(i) −X

(i)
0 )

∑J
i=1(Y

(i)
N(i)−2 +X

(i)
N(i)−1)

B(i)

)]

+Var E

[
∑J

i=1(X
(i)
N(i) −X

(i)
0 )

∑J
i=1(Y

(i)
N(i)−2 +X

(i)
N(i)−1)

B(i)

]

=

σ2E







∑J
i=1X

(i)
N(i)−1

(

∑J
i=1 Y

(i)
N(i)−1

)2






+ Var

(
∑J

i=1(λX
(i)
N(i)−1 −X

(i)
0 )

∑J
i=1 Y

(i)
N(i)−1

)

=
σ2

J
E







1
J

∑J
i=1X

(i)
N(i)−1

(

1
J

∑J
i=1 Y

(i)
N(i)−1

)2







+Var

(

1
J

∑J
i=1(λX

(i)
N(i)−1 −X

(i)
0 )

1
J

∑J
i=1 Y

(i)
N(i)−1

)

(3.5)

where

B(i) =
(

N(i), Y
(i)
N(i)−2, X

(i)
N(i)−1

)

.

Asymptotically, as the number of runs goes to infinity, (3.5)becomes

Varλ̂ ∼ σ2

J
E

[

E
[

XN(i)−1

]

(

E
[

YN(i)−1

])2

]

+ Var

(

E
[

λXN(i)−1 −X0

]

E
[

YN(i)−1

]

)

∼ Cσ2

J
,

whereC is a constant. The standard deviation is thus proportional to 1√
J
.
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3.1.2 Estimating total failures distribution

The general procedure for estimating the total failures distributionP [Y = y] is

1. Assume a parameterized form for the initial failures distribution P [X0 = x] with gen-

erating functionm(s), and offspring distributionP [X = x] with generating function

f(s).

2. Estimate the parameters ofm(s) andf(s) from the data.

3. Compute the total failures distributionP [Y = y] from m(s) andf(s) using (2.7) and

(2.8)

The procedure estimates parameters of an explicit form ofm(s) andf(s) so that the computa-

tion of P [Y = y] can be done using computer algebra.

Previous work [15] has suggested that both initial line failuresP [X0 = x], and offspring

distributionP [X = x] should be Poisson distributed. The initial distribution has meanθ, and

has the form

P [X0 = x] =
e−θθx

x!
r = 0, 1, 2, . . .

and generating function

m(s) = eθ(s−1).

Since cascades with zero number of failures are ignored, theinitial Poisson distribution must

be conditioned on nonzero failures, so

P [X0 = x] =
e−θ

1 − e−θ

θx

x!
r = 1, 2, 3, . . . . (3.6)

Let the sample mean of the initial failures be

X0 =
1

J

J
∑

i=1

X
(i)
0 .

The parameterθ is then estimated bŷθ by equating means:

X0 =
θ̂

1 − e−θ̂
.
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If saturation effects are present in the initial stage, (3.6) may have to be altered (in some way)

to include saturation. See section (4.2.4.3) for more.

The Poisson offspring distribution has form

P [X0 = x] =
e−λλx

x!
r = 0, 1, 2, . . .

and generating function

f(s) = eλ(s−1).

Using (2.7) and (2.8),P [Y = y] is found to be a Generalized Poisson Distribution [10]. In-

cluding saturation effectsS results in:

P [Y = y] =



















θ (yλ+ θ)y−1 e
−yλ−θ

y!
; 0 ≤ y < S

1 −
S−1
∑

i=0

θ (iλ+ θ)i−1 e
−iλ−θ

i!
; y = S

(3.7)

When conditioned on nonzero initial failures, this becomes

P [Y = y] =



















θ (yλ+ θ)y−1 e−yλ−θ

y! (1 − e−θ)
; 0 ≤ y < S

1 −
S−1
∑

i=0

θ (iλ+ θ)i−1 e−iλ−θ

i! (1 − e−θ)
; y = S

(3.8)

We will also make use of the “mixed” distribution

P [Y = y] =























∞
∑

x=1

PE[X0 = x]
x

(y − x)!
yy−x−1λy−xe−λy; y < S

1 −
S−1
∑

j=0

( ∞
∑

x=1

PE[X0 = x]
x

(j − x)!
jj−x−1λj−xe−λj

)

; y = S

, (3.9)

where

PE[X0 = x] =

∑J
k=1 1Xk

0
=x(X

k
0 )

J

is the observed empirical initial distribution and

P [Y = y|X0 = x] =
x

(y − x)!
yy−x−1λy−xe−λy (3.10)

is the Borel-Tanner distribution. (3.10) is obtained from (2.6) whenf(s) is a Poisson distribu-

tion [10].
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3.2 Load shed

Load shed is gathered from the simulation or system in the same format as line failures. The

data must be handled in such a way that each cascade starts with a nonzero amount of shed. For

example, cascades with no load shed are discarded. Again, this means that the computed pdf

of load shed is conditioned on the cascade starting. Moreover, if the simulation produces some

cascades with no load shed in initial stages and load shed in subsequent stages, then we choose

to discard the initial stages with no load shed so that stage 0starts with a positive amount of

load shed. Then cascadei hasN(i) stages.N(i) is determined similarly to (3.2) by either

the maximum number of simulated stages being reached or the amount of load shed in a stage

being zero or negligible.

3.2.1 Estimatingλ and θ

λ is estimated in the same way as line failures, through use of (3.4). The mean initial load

shedθ is estimated by the sample mean

θ̂ =
1

J

J
∑

i=1

X i
0.

3.2.2 Estimating blackout size pdf

The general procedure for estimating the blackout size pdfK(x) is

1. Assume a parameterized form for the initial load shed cgfm(s) and offspring cgfh(s).

2. Estimate the parameters ofm(s) andh(s) from the data.

3. Compute the blackout size cgfK(s) fromm(s) andh(s) using (2.13) and (2.14)

4. Compute the inverse Laplace transform ofe−K(s) to obtain the blackout size pdfK(x)

using (2.15).

The procedure estimates parameters of an explicit form ofm(s) andh(s) so that the computa-

tion ofK(s) and the Laplace inversion can be done using computer algebra.
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We choose to assume gamma distributions for the initial loadshed and offspring distribu-

tions. Then the corresponding cgf’s are

m(s) =
θ2

σ2
init

ln

(

1 + s
σ2

init

θ

)

(3.11)

and

h(s) =
λ2

σ2
off

ln

(

1 + s
σ2

off

λ

)

. (3.12)

The parameters of the initial load shed cgf are the meanθ and the varianceσ2
init. The parameters

of the offspring cgf are the meanλ and the varianceσ2
off .

The meansλ andθ are estimated from the data as described in the previous subsection. The

variance of the initial load shedσ2
init is estimated using

σ̂2
init =

1

J

J
∑

i=1

(X
(i)
0 )2 − θ̂2.

The variance of the offspring distributionσ2
off is estimated by applying the method of moments

toX1. The second moment ofX1 is

EX2
1 =

d2

ds2
e−m(h(s))

∣

∣

s=0
= λ2

(

θ2 + σ2
init

)

+ θσ2
off

Then the estimator̂σ2
off may be found by solving:

1

J

J
∑

i=1

(X
(i)
1 )2 = λ̂2

init

(

θ̂2 + σ̂2
init

)

+ θ̂σ̂2
off (3.13)

where

λ̂init =
1

θ̂

(

1

J

J
∑

i=1

X
(i)
1

)

.

3.2.3 Note onσ2

off
estimation

With (3.13), we estimateσ2
off using only information from theX0 andX1 stages. This is

in contrast toλ estimation wherêλ uses information from multiple stages. Ideally, we would

like to find an offspring variance estimator that also uses information from all stages. One such

estimator, seen in [12], is

σ2
off =

1

N

N
∑

n=1

(

Xn

Xn−1

− λ̂

)2

, (3.14)
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Table 3.1 Comparison of̂σ2
off andσ2

off

loading factor σ̂2
off σ2

off

0.85 0.00431 0.116

0.9 0.00568 0.103

0.95 0.00995 0.130

1.0 0.01230 0.736

where

Xn =
J
∑

i=1

X i
n,

and

N = max{n|Xn > 0} .

However, when we applied (3.14) to the data, it resulted in a variance estimate that seemed

much too high. Also, whilêσ2
off tended to increase by a factor of about3 as the loading in-

creased fromL = 0.85 toL = 1.0, σ2
off tended to increase by a factor of about7. See Table 3.1

for a comparison. These results lead me to believe thatσ2
off is unsuitable for our purposes. It is

not clear why this is so but one explanation could be the following: if the underlying dataX i
n

does not quite describe a branching process with fixedλ, but rather a branching process with

stage dependentλ(n), then (3.14) will not work because
(

Xn

Xn−1
− λ̂
)2

→
(

λ(n− 1) − λ̂
)2

6→
0 asX0 → ∞ for at least onen. Thus (3.14) will tend towards infinity. This should be the case

even if the stage dependent fluctuations ofλ(n) are small.
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Chapter 4

Results

This section is divided up into two parts. The first deals withthe empirical statistical

accuracy of thêλ estimator. The second analyzes the results of applying the estimator on OPA

simulation data.

4.1 Performance ofλ̂ on Monte Carlo

The λ̂ was first tested on a sequence of discrete state branching processes, withX0 = 1

and Poisson offspring distribution, generated by Monte Carlo. The estimator meanµ(λ̂) and

standard deviationσ(λ̂) were recorded. First, various numbers10 ≤ J ≤ 1000 of cascades

were generated with saturationS = 20, and for various offspring means0 < λ < 2. The

simulation was run for10 stages.̂λ was found to underestimateλ with a bias of less that0.1:

−0.1 ≤ µ(λ̂) − λ < 0.

The bias tended to decrease as more cascadesJ are considered for statistics. As predicted, the

standard deviationσ(λ̂) was seen to decrease as roughly

σ(λ̂) ≤ 0.6√
J

asJ increases.

The process was repeated for saturationS = 100. Increasing the saturation had the effect

of improving the performance of̂λ as it allows more information to be included. Here

−.07 ≤ µ(λ̂) − λ < 0.
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and

σ(λ̂) ≤ 0.5√
J

λ̂ was also tested on continuous state branching processes, with X0 = 1 and Gamma off-

spring distribution. Various numbers10 ≤ J ≤ 1000 of cascades were generated for var-

ious offspring means0 < λ < 2. The offspring variance was varied throughout the range

0 < σ2
off < λ2, whereσ2

off = λ2 is the exponential distribution. Saturation was not considered.

The simulation was run for10 stages.̂λ was found to underestimateλ with a bias of less than

0.06:

−0.06 ≤ µ(λ̂) − λ < 0.

The bias tended to decrease as more cascadesJ are considered for statistics. The standard

deviationσ(λ̂) was seen to decrease as roughly

σ(λ̂) <
0.45√
J

asJ increases.

4.2 Estimating λ̂ and blackout distributions on OPA model

The estimated propagation̂λ and total cascade sizes are estimated on data produced by the

OPA power system using the methods described in Section 3.

4.2.1 OPA model operation

The OPA power system simulation produces cascading transmission line outages and load

shed in stages resulting from an initial disturbance. It accepts input files specifying the config-

uration of buses and lines, as well as system characteristics such as load profile, line ratings,

and generator capacity. The initial disturbance is produced either by forcing a random number

of lines to trip, by overloading the system to the point wheresome lines reach their MW limits,

or by a combination of the two. The initial disturbance causes the system to redispatch gen-

eration and/or shed load via a DC load flow optimal LP dispatchalgorithm. This may cause
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more lines to trip, and system redispatches again. This trip/dispatch procedure is allowed to

continue several times to represent a cascading blackout. The simulation outputs two sets of

numbers for each trial run: a sequence of line failures representing the line failure cascade and

a sequence of load shed representing the load shed cascade. The simulation is repeated until

sufficient cascades are produced for statistical analysis.[6] contains a detailed description of

OPA.

The input file we used was the IEEE 118 system, with load profileshown in Section 7.3.

The OPA parameters wereγ = 1.67, p0 = 0.0001, p1 = 1.0. The small probabilityp0 of forced

line trips signifies that the cascades we produced were mostly due to overloading. The loading

levelL is the multiplier applied to the base load profile that determines the initial loading of

the system. We variedL and inspected its effect on the statistics. The loadings we chose were

L = 0.85, 0.9, 0.95, 1.0, 1.3.

4.2.2 Data Preparation

In order to prepare the OPA cascades to match the form (3.1), anumber of preprocessing

steps needed to be taken. First, any stage of a cascade with load shed< 10−15 is set to zero.

This is because the OPA simplex solver sometimes erroneously gives a small negative load

shed instead of a small positive one for orders lower than this. I would suggest that this means

that load shed below this order is inaccurate. Load shed is measured as a fraction of total

system demand, meaning the maximum shed is1, or total blackout. In real systems, the load

shed will not be accurate to within the level of10−15, in fact it will probably only be measured

to a couple of significant figures. (Under these circumstances the mathematics of section (2.2)

may need to be altered to include conditioning onXn ≥ ρ, whereρ is the minimum level of

precision. )

The second preprocessing step is to discard any cascade of zero failures or zero load shed.

It should be noted that the line failures and load shed parts are decoupled so that discarding

any line failure cascade does not necesarily mean discarding the load shed cascade and vice

versa. Additionally any initial stages of zero load shed must be discarded so that each cascade
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begins with nonzero shed. The simulation produces10 stages including the initial stage, so

after preprocessing each cascade will have a length up toN(i) = 9.

The third step is to set saturation for line failures and to set aside line failure cascades that

saturate in the first two stages (Y1 ≥ S) when computing (3.4), since by the definition of (3.4)

these cannot be used.

We wished to apply our estimators to a set ofJ = 5000 nontrivial OPA cascades for each

loading levelL. So enough cascades were generated so that after preprocessing, J = 5000

cascades were used for both load shed and line outages. This is sufficent to ascertainλ to

within a reasonable accuracy as well as construct probability distribution functions of total

failures and load shed.

4.2.3 λ̂ results

Table 4.1 displays the estimated propagation at each load level, with line outages and load

shed displayed side by side. Saturation was set toS = 15 for line failures and ignored for load

shed. We assume that saturation effects for load shed are minimal for subcriticalλ. This may

or may not be the case, but we currently have no way of including saturation into the load shed

framework so it is a necessary assumption. There are no visible humps in the load shed pdfs

for subcritical cases that would suggest saturation. Results forL ≥ 1 are not available for load

shed because we are not yet able to deal with the saturation effects that seem to be present in

this regime. Also, another caveat is that theS = 15 setting for line failures is largely a guess.

λ̂ is seen to increase asL increases, which is intuitive since a higher stressed system should

have higher propagation. Also, the two sets ofλ̂ match up quite well. This match tends to

support the assertion that a singleλ determines the cascading process of both line failures and

load shed.

4.2.4 Cascade size distributions

Table 4.2 shows all the initial and offspring parameters estimated from the data that are

needed to construct the distributionsP [Y = y] for line failures andK(x) for load shed.
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Table 4.1 Estimated propagationλ̂ from load shed and line outage data

loading factor load shed̂λ line outageŝλ

0.85 0.128 0.115

0.9 0.159 0.188

0.95 0.264 0.288

1.0 0.429 0.430

4.2.4.1 Line failures distributions

After pdfs were constructed from the data set, we produced estimates of the pdfs using

the methods of Section 3. Figure 4.1 compares the estimated and empirical distributions of

total line failuresY for loading levelL = 0.85. This is repeated for loading levelsL = 1 and

L = 1.3 in Figures 4.2 and 4.3 respectively. The total failures are plotted on a log-log scale over

two decades, from a single line failure to100 line failures. (There are179 lines in the network

total.) The Generalized Poisson Distribution (3.8) is usedwith S = 15 for the estimated fit.

Additionally, the “mixed fit” of (3.9) is used withS = 15. The fits forL = 0.85 andL = 1

seem to work fairly well. Figure 4.3 (L = 1.3) is an interesting case, and is discussed in Section

4.2.4.3.

4.2.4.2 Note on Saturation

In figures 4.2 and 4.3, there are no empirical data points pastsaturationS = 15, because

we have modified the empirical distribution by moving all probability massY ≥ S to the

hypothesized saturation pointS = 15 as described in Section 2.2.1. To see the empirical pdfs

without this modification, see Figures 4.4, and 4.5. Figure 4.1 shows no change as there were

no cascades reachingS = 15 for L = 0.85.

4.2.4.3 Discussion of Figure 4.3

In Figure 4.3, the fit of (3.8) does not match up with the fit using an empirical initial

distribution. The mixed fit does not fit well either, and in fact fits worse than that of (3.8) which
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Table 4.2 Estimated initial line outages, initial load shedand load shed offspring distribution
parameters

loading factor load shed̂λ line outageŝλ load shed̂θ line outageŝθ σ̂2
init σ̂2

off

0.85 0.128 0.115 0.0520 0.985 0.00198 0.00431

0.9 0.159 0.188 0.0482 1.088 0.00195 0.00568

0.95 0.264 0.288 0.0445 1.325 0.00182 0.00995

1.0 0.429 0.430 0.0383 1.628 0.00160 0.01230

1.3 n/a 0.570 n/a 12.296 n/a n/a
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Figure 4.1 Probability distribution of total line failuresY on log-log scale. Empirical
distribution shown as dots, estimated distribution with (3.8) shown as dashed line, estimated

distribution with empirical initial failures (3.9) shown as solid line. Empirical pdf unmodified.
IEEE 118 bus system with loadingL = 0.85.
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Figure 4.2 Probability distribution of total line failuresY on log-log scale. Empirical
distribution shown as dots, estimated distribution with (3.8) shown as dashed line, estimated
distribution with empirical initial failures (3.9) shown as solid line. Empirical pdf modified.

IEEE 118 bus system with loadingL = 1.0.
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Figure 4.3 Probability distribution of total line failuresY on log-log scale. Empirical
distribution shown as dots, estimated distribution with (3.8) shown as dashed line, estimated
distribution with empirical initial failures (3.9) shown as solid line. Empirical pdf modified.

IEEE 118 bus system with loadingL = 1.3.
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Figure 4.4 Probability distribution of total line failuresY on log-log scale. Empirical
distribution shown as dots, estimated distribution with (3.8) shown as dashed line, estimated

distribution with empirical initial failures (3.9) shown as solid line. Empirical pdf unmodified.
IEEE 118 bus system with loadingL = 1.0.
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Figure 4.5 Probability distribution of total line failuresY on log-log scale. Empirical
distribution shown as dots, estimated distribution with (3.8) shown as dashed line, estimated

distribution with empirical initial failures (3.9) shown as solid line. Empirical pdf unmodified.
IEEE 118 bus system with loadingL = 1.3.
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is counterintuitive. I believe the poor fits are related the fact that, at this high loading level,

many of the cascades saturate immediately at the initial stage. This can be seen by looking at

the plot of the initial failures distribution (Figure 4.6).To properly deal with initial saturation,

(3.6) andθ estimation would have to be altered to include saturation effects, although it is not

yet clear how to do so. One idea is to remove runs for whichX0 ≥ S from θ estimation

and ignore these runs when performing estimation ofθ. The result in this case is the initial

distribution fit shown in Figure 4.7 and the total failures distribution shown in Figure 4.8. Two

effects can be observed: the initial fit in Figure 4.7 is better, and the mixed of Figure 4.8

matches up better with the fit using (3.8). However, the totalfailures empirical distribution still

does not match the fits.

5 10 15 20 25 30
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0.4

0.5

Figure 4.6 Probability distribution of initial line failuresX0 for L = 1.3. Empirical is dots,
Poisson is solid.̂θ = 12.206

4.2.4.4 Load shed distributions

Figure 4.9 compares the empirical and estimated pdfs for loading levelL = 0.85, and

Figure 4.11 compares the empirical and estimated pdfs for loading levelL = 1.0. The blackout

size is plotted on a log scale over two decades, from a small blackoutY = .01 (shedding of1%
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Figure 4.7 Probability distribution of initial line failuresX0 for L = 1.3. Empirical is dots,
Poisson is solid. OPA runs withX0 ≥ 15 removed.θ̂ = 8.039
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Figure 4.8 Probability distribution of total line failuresY on log-log scale forL = 1.3.
Empirical is dots, GPD is dashed, mixed is solid. OPA runs withX0 ≥ 15 removed.

Empirical pdf modified.
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Figure 4.9 Probability density function of blackout sizeY on log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE 118 bus system with loading

L = 0.85.
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Figure 4.10 Cumulative distribution function of blackout sizeY . Empirical cdf shown as
solid line, estimated cdf shown as dashed line. IEEE 118 bus system with loadingL = 0.85.
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of total load) toY = 1 (shedding of100% of total load and total blackout). The corresponding

cgfs are also plotted in Figure 4.10 and Figure 4.12 to give another view of how well the

empirical and estimated distributions match.
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Figure 4.11 Probability density function of blackout sizeY on log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE 118 bus system with loading

L = 1.0.

4.2.4.5 Initial load shed and offspring distribution

We discuss the choices of the forms of initial load shed and offspring distributions that are

assumed in the computations.

The initial load shed gamma distribution parametersθ̂ andσ̂2
init shown in Table 2 are rela-

tively insensitive to loading changes. For all these casesσ̂2
init ≈ θ̂2 and hence the initial load

shed is approximately exponentially distributed. Figure 4.13 shows estimated and empirical

initial failure distributions for loadingL = 1.0.

Figure 4.14 shows the estimated offspring distribution pdffor loadingL = 1.0. This is

a gamma distribution with mean 0.0383 and variance 0.00160 that is approximately a normal

distribution. However, the offspring pdf becomes more asymmetrical when the loadingL is
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Figure 4.12 Cumulative distribution function of blackout sizeY . Empirical cdf shown as
solid line, estimated cdf shown as dashed line. IEEE 118 bus system with loadingL = 1.0.
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decreased. Any parameterized nonnegative distribution that is infinitely divisible is a candidate

to describe the offspring distribution and we have not foundgeneral arguments supporting our

specific choice of the gamma distribution.
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Figure 4.13 Probability density function of initial load shedX1 on log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE 118 bus system with loading

L = 1.0.

4.2.5 Influencingλ

The main method we used to influenceλ̂ in OPA was to raise or lower the loading factor

L. As seen in Table 4.1, increasingL causedλ to increase. It can also be seen in Table 4.1

that we had a difficult time trying to push OPA to criticality,whereλ = 1. For line outages,

increasingL had a much more significant effect onθ. An approximate10-fold increase inθ

was accompanied by only an approximate doubling ofλ. (For load shed, a different effect

was observed;θ did not change appreciably asL was increased). We then tried a number of

alterations to the OPA model in hopes that we could obtain a critical or supercritical response.

The alterations were:

1. Decrease the loading factorL while increasingp0
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Figure 4.14 Probability density functionH(x) of offspring distribution that is a gamma
distribution with meanλ = .429 and varianceσ2

off = .0123. Parameters computed from data
on IEEE 118 bus system with loadingL = 1.0.
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2. Decrease load fluctuationsγ while increasingL

3. Increase the individual line limits.

None of these, however, had the effect of increasingλ̂ near 1.
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Chapter 5

Miscellaneous Topics

5.1 Correction in [24]

We found Theorem 2.2 in Guttorp’sStatistical Inference for Branching Processes to be

incorrect. The theorem reads:

For fixedn asz → ∞:

1. if m <∞, m̂n(z) → m a.s. andEm̂n(z) → m

2. if σ2 <∞, then
(

z

σ2

(m− 1)2

∑2n
0 mi − (2n+ 1)mn

)1/2

(m̂n(z) −m)
d→ N(0, 1),

where it should read

For fixedn asz → ∞:

1. if m <∞, m̂n(z) → m a.s. andEm̂n(z) → m

2. if σ2 <∞, then
(

z

σ2

m− 1

mn − 1

)1/2

(m̂n(z) −m)
d→ N(0, 1),

as shown in [48, 11]. This has been verified by Monte Carlo simulation.

5.2 Critical Infrastructure Paper

I contributed to the research and writing of [3], which demonstrated simple DC load flow

algorithms that can be used to analyze the effect of terrorist attacks on a power grid.
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5.3 Discrete Map Interpretation of Branching Processes

The stagewise cumulative offspring generating function,Fn, of a Galton Watson branching

process is definied iteratively:Fn+1(s) = sf(Fn(s)). Its most interesting feature is that when

certain conditions are met, this iterative procedure converges to a generating function with

power law expansion of index−3/2, independent of specific details off . I interpret this

iterative procedure as a two-dimensional discrete map, andshow that it contains a tangent

(saddle node) bifurcation. It then follows, from the work ofothers, that this map displays

scaling relations and power law sensitivity to initial conditions in certain regions. The resulting

scaling exponents are universal, independent of the specific form of f and an index of 3/2 can

even be recovered (although its relation to the power law expansion ofF is not clear)

5.3.1 Branching Process Recap

I’m assuming knowledge of branching processes so I will juststate some relevant results as

found in [26]. The offspring generating function isf(s) =
∑∞

n=0 pns
n and has meanf

′

(1) = λ.

The cumulative progeny generating function at stagen is Fn(s) =
∑∞

n=1 Pns
n and is defined

by

Fn+1(s) = sf(Fn(s)). (5.1)

As n→ ∞, Fn(s) converges to the total progeny generating functionF (s) as defined by

F (s) = sf(F (s)).

I will focus on the setF of f(s) whenf satisfies the conditionsλ = 1 ,p0 > 0, andp0+p1 < 1.

When these conditions hold, the expansion ofF (s) goes as [31]

Pn =







q
(

1
2πf ′′ (1)

)1/2

n−3/2 +O(n−5/2) n = 1 mod q;

0 n 6= 1 mod q
, (5.2)

whereq is the largest integer such thatpn 6= 0 implies thatq dividesn. The radius of conver-

gence of this power series is 1.

I will need a samplef(s) for examples; the Poisson generating functionfp(s) = eλ(s−1)

will be used for that purpose. It can be verified thatfp ∈ F .
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5.3.2 Discrete Map Formulation

I now introduce the two-dimensional discrete mapM :

xn+1 = xn (5.3)

yn+1 = xnf(yn), (5.4)

subject to the constraintsxn yn > 0. This puts the iterative nature ofF (s) on a dynamical

systems/discrete map footing.F can now be analyzed using discrete iterative map terminology

and techniques. The motivation is to find any scaling exponents of F and determine if any

any are equal to−3/2, the exponent of (5.2). So, looking atM , note first that the trajectories

only move in they direction. Note also that when the initial condition(x0, y0) is such that

x0 = y0, theyn component of the trajectory{(x0, y0), (x1, y1), (x1, y1), . . .} corresponds to the

sequence{F1(y0), F2(y0), F3(y0), . . .}. SoF (s) is the attracting set of all points that start on

the lines = x0 = y0. To further explore the properties ofM we must only notice that any

vertical “cross section” of fixedxn = c, leads to the reduced map

yn+1 = cf(yn),

so we can deduce the properties of the vertical strips by looking at graphs ofs vs cf(s). When

0 < c < 1, there are two fixed points, one stable and one unstable, where the stable point is

equal toF (c). Whenc > 1, There are no fixed points, and all trajectories diverge towards

y∞ = ∞. The most interesting behavior ofM is whenc = 1. Here

yn+1 = f(yn) (5.5)

describes a tangent bifurcation sincef
′

(1) = λ = 1. The fixed point is approached by points

on the vertical lineL = {1} × (0, 1). Also, this fixed point(1, 1), now calledztb, corresponds

to F (1) = 1.

To display other properties ofM , I generated the phase space plot Figure 5.4 using the

example offspring generating functionfP (s).

S denotes the attracting set of points whileU denotes the unstable set of fixed points. All

were found by running sample trajectories forwards and backwards in “time.” The pointztb
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Figure 5.1 Graph of1.2fp(s) displaying no fixed points

0.5 1 1.5 2

0.5

1

1.5

2

Figure 5.2 Graph of.8fp(s) displaying one stable and one unstable fixed points
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Figure 5.3 Graph offp(s) displaying the tangent bifurcation at(s, f(s)) = (1, 1)
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Figure 5.4 First quadrant phase space offp(s) displaying the set of stable fixed pointsS, set
of unstable fixed pointsU , critical pointztb, basin of attractionB, and critical regionL.
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joins both sets. Now that the attracting set has been found, convergence properties can be

explored. Sample paths are chosen close to the attractor andlyapunov exponents computed by

the method in [37]. Clearly there is exponential convergenceof nearby trajectories for initial

points chosen in(0, 1) × (0, u), whereu ∈ U . The interesting behavior is for trajectories

on L. These, which converge toztb have lyapnuov exponent of zero and thus display sub-

exponential convergence/divergence of nearby trajectories. It has been suggested [33] that there

is a power-law convergence of nearby trajectories (power-law insensitivity to initial conditions)

here which I explain later. The basin of attraction,B, is then described by all points in(0, 1)×
(0, u) whereu ∈ U , those that converge exponentially toS. The stripL = {1} × (0, 1) is

the set that converges, subexponentially to the point(1, 1). The setB
⋃

L
⋃

U is the set that

diverges to infinity. These qualitative properties are universal forf ∈ F .

The result of this is that investigation of scaling properties ofM reduces to investigation of

scaling properties of (5.5), the one dimensional discrete map at tangent bifurcation.
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Figure 5.5 Graph of lyapunov exponent versusxn coordinate for points inB. The lyapunov
exponent is zero atxn = 1
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5.3.3 Scaling Properties

I now restrict attention to the “interesting” part of the phase space: the sectionL = {1} ×
(0, 1) where trajectories converge toztb. Dropping thexn component and shifting the map so

thatztb is atyn = 0 results in the map:

yn+1 = g(yn), (5.6)

where

g(s) = f(s+ 1) − 1.

This defines a one-to-one correspondence between the setf ∈ F and a new setg ∈ G.
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Figure 5.6 Graph ofgp(s) displaying the tangent bifurcation at(s, g(s)) = (0, 0)

Now consider the setQ which is the subset ofG for whichg
′

(0) = 1, g ∈ G. q ∈ Q can be

written

q(s) = s+ usz +O(sz+1)

. It has been shown [27] thatq(s) converges under repeated applications of the rescaling oper-

ator

T [q(s)] = αq(q(
1

α
s))
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(in the region about the origin) to the map

q∗(s) = s
(

1 − (z − 1)us(z−1)
)−1/(z−1)

which displays the Feigenbaum scaling property [20],[21],[27]

q∗(q∗(s)) = q∗2(s) =
1

α
q∗(αs). (5.7)

The value ofα is given byα = 21/(z−1) wherez signifies the “universality class” of the map

and is the index of the second lowest order term in the expansion q(s) = s + usz + O(sz+1).

Note thatq∗(s) also has expansionq∗(s) = s+usz +O(sz+1) around zero. Also, whens0 < 0,

qn(s0) converges under functional iteration toq∗n(s).

The mapg(s) is, as shown in Section 5.3.6, always of universality classz = 2, soα = 2,

and thus the scaling relation for the fixed pointg∗(s) is

g∗(g∗(s)) = g∗2(s) =
1

2
g∗(2s).

Also, the exact solution of (5.7) is

g∗(s) =
s

1 − us
,

and wheny0 < 0,

gn(y0) → g∗n(y0). (5.8)

See Section 5.3.6 for convergence proofs.

5.3.4 Power Laws: Convergence and Sensitivity to Initial Conditions

A convenient approximation can be made after noticing (5.8)as well as the property

g∗n(y0) =
1

n
(g∗(ny0)) (5.9)

=
1

n

(

ny0

1 − uny0

)

=
y0

1 − uny0

,
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Figure 5.7 The mapgP (s) = fp(s+ 1)− 1 converges under rescalingT to g∗P (s) in the region
about the origin
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where (5.9) can be easily verified by induction. Now the discrete time map can be imagined,

as in [33], as a continuous time flow

gt(y0) =
y0

1 − uty0

. (5.10)

In fact, this is the solution to the vector field equation

.
x= ux2, (5.11)

so the study ofM and (5.6) has been further reduced to the study of a one-dimensional vector

field at a tangent bifurcation. The solution (5.10) shows that for large t, i.e. as the flow

approaches the origin,

gt(y0) ≈ (−ut)−1,

so the trajectory has a limiting power law form of exponent 1.Translating back tof should

result in

ft(y0) ≈ 1 + (−ut)−1,

and simulation appears to support it (below).

Also, a sensitivity to initial conditions can be computed from the continuous time flow by

considering (using notation from [33])

ξt(y0) =
dgt(y0)

dy0

=
1

(1 − uty0)2
. (5.12)

Whent is large, this takes the power law form

ξt(y0) ≈ (uty0)
−2,

with exponent−2. Again, simulation seems to support this result.

In [33], it is claimed that the exponent3/2 can be recovered by interpreting (5.12) in terms

of a “q-generalized” lyapunov exponentλq, where

ξt(y0) = expq(λqt) ≡ (1 − (q − 1)λqt)
−1/(q−1) . (5.13)

This function has interesting properties and plays a central role in Tsallis non-extensive sta-

tistical mechanics [41], a new theory of statistical mechanics that can be used to derive both
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Figure 5.8 Log-Log plot offn
P (.8) vs. iteration numbern (lower) and a power law of index

−1 (upper)
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Figure 5.9 Log-Log plot offn
P (.8) − fn

P (.80001) vs iteration numbern (lower) and a power
law of index−2 (upper)
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exponential distributions (as in traditional statisticalmechanics) and power law distributions.

However, it is a fairly contentious theory at the moment (see[23]), so I will merely state its

existence. Notice that (5.12) and (5.13) are equivalent when q = 3/2 andλq = 2uy0. It is not

clear how this may be connected to the−3/2 exponent of (5.2). I’ll also note that [40] recov-

ers a power law exponent of near3/2 using a box counting method. Again any connection is

unclear.

5.3.5 Conclusion

By recasting (5.1) as a mapM (5.3),(5.4), the total progeny generating functionF (s) can

be seen as the attractorS of M . Then any power law properties of (5.1) seem highly correlated

with power law properties of the convergence toS. This reduces to the study of scaling expo-

nents of a one-dimensional map (5.5) or flow (5.11) at a tangent bifurcation. The flow (5.11)

converges to its fixed point with exponent−1 and displays insensitivity to initial conditions

with exponent−2. Using the statistical mechanics concepts of [41], this insensitivity to ini-

tial conditions can be written as a q-exponential of index3/2. Further research would have to

investigate the nature of the q-exponential and any relationship to (5.2).

5.3.6 Appendix for Discrete Map Interpretation of Branching Process

5.3.6.1 A1: Equivalence class forG

I will show that an arbitraryg in G has expansiong(s) = s + us2 + O(s3). Any g is

equivalent to anf(s) in F shifted so that the point of tangency is at the origin:

g(s) = f(s+ 1) − 1

= −1 + p0 + p1(s+ 1) + p2(s+ 1)2 + p3(s+ 1)3 . . .

= −1 +
∞
∑

n=0

pn +
∞
∑

n=1

npns+
∞
∑

n=2





n

2



 pns
2 +O(s3)

= s+ us2 +O(s3),
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whereu =
∑∞

n=2





n

2



 pn. This result follows from the fact that
∑∞

n=0 p0 = f(1) = 1 and

∑∞
n=1 npn = f

′

(1) = λ = 1

5.3.6.2 A2: Demonstration of convergence tog∗(s)

Write g(s) as

g(s) = g∗(s) + h(s),

whereh(s) has leading term of ordersn, n > 2. Restrict attention to the region about the

origin. Now

g2(s) = g∗ ((g∗(s) + h(s)) + h (g∗(s) + h(s)) (5.14)

≈ g∗2(s) + g∗
′

(g∗(s))h(s) + h(g∗(s)) + h
′

(g∗(s))h(s) (5.15)

≈ 1

2
g∗(2s) + g∗

′

(g∗(s))h(s) + h(g∗(s)) + h
′

(g∗(s))h(s). (5.16)

To consider eigenfunctions, solutions of the form

g2(s) =
1

2
g∗(2s) +

λ

2
hλ(2s) (5.17)

are needed. Combining (5.16) and (5.17), the eigenfunction equation becomes

g∗
′

(g∗(s))hλ(s) + hλ(g
∗(s)) + h

′

λ(g
∗(s))hλ(s) =

λ

2
hλ(2s).

Expanding this and equating powers leads to the eigenvaluesλn = 4/2n whenhλ has leading

termsn, n > 2. The fact that|λn| < 1 shows that sinceg(s) andg∗(s) only differ in the terms

of order greater or equal tox3,

g2(s) =
1

2
g∗(2s) +

λ

2
hλ(2s)

g4(s) =
1

4
g∗(4s) +

λ2

4
hλ(4s)

g2m

(s) =
1

2m
g∗(2ms) +

λ2m−1

2m
hλ(2

ms),
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so it can be said that, using (5.9),

gm(s) → 1

m
g∗(ms) (5.18)

→ g∗m(s) (5.19)

and since

Tm(g(s)) = 2mg2m

(
1

2m
s),

it follows that

Tm(g(s)) → g∗(s)

by (5.19).
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Chapter 6

Conclusions and Future Work

In this thesis we have introduced a way to use branching processes to model simulated

power system cascades of failures. We can estimate the propagation parameterλ and con-

struct probability distributions for line failures and load shed. The parameterλ is the offspring

mean of the branching process model.λ < 1 means that the cascade dies out on average as

it progresses in time, whileλ > 1 means that the cascade grows on average. A power sys-

tem simulation ofλ > 1 would be expected to produce many cascading failures and a large

blackout.

We have tested our methods on the OPA power system simulation. Our results forλ show

that we have been operating OPA in a subcritical regime (λ < 1). Also, theλ estimates

for line failures match up well with theλ estimates for load shed, suggesting that a single

λ may be used to gauge both cascades in question. If this is the case, we can estimate the

propagation of load shed by monitoring the progagation of line outages and vice versa. This

would reduce the amount of data needed for estimation. Our estimated distributions show a

reasonable similarity to the empirical distributions generated by OPA. Future work would have

to quantify the similarity by way of Kolmogorov-Smirnov tests or similar methods. We have

shown that estimating distributions with branching processes is fairly efficient, since only tens

of cascades are needed to estimateλ to within 0.1.

Future work would apply these methods to other power system simulations, such as those

found in [25, 29]. Eventually, if the method becomes sufficiently established in simulated

blackouts, it may be applied to real blackout data. A number of issues would have to be
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addressed in the meantime, such as improving the modeling ofsaturation and applying it to

load shed. Also, more efficient estimators may be found such as an improved estimate forσ2
off .

Efficient estimation ofλ and blackout size distributions using limited data could beused

in a number of important ways. System planners could use our methods on model systems

to evaluate the risk of system upgrades. Extension of our methods to real power systems

would enable system operators to monitor blackout risk frommodest amounts of historical

data. In both cases the branching process approximation of cascading failure greatly simplifies

the modeling and reduces the amount of data needed to analyzerisk. Branching processes

also have served as a way of representing cascading failure of other complex interconnected

systems. Modeling power system blackouts this way draws helpful analogies to other fields.

This project is both a first step toward the goals of efficent blackout risk analysis and improving

the understanding of cascading blackouts of power transmission systems.



53

Chapter 7

Appendix

7.1 Lagrange Inversion

We use the Lagrange Inversion technique to to approximate the cumulant generating func-

tion for continuous state branching processes. It can also be used to solve for the probability

generating function for discrete state branching processes.

7.1.1 Lagrange Inversion Theorm

Let φ(z) be a function analytic on and inside the contourC surrounding a points, and lett

be such that the inequality

|tφ(z)| < |z − s| (7.1)

is satisfied at all pointsz on the perimeter ofC; then the equation

ζ = s+ tφ(ζ), (7.2)

regarded as an equation inζ, has one root in the interior ofC; and furtherζ can be expanded

as a power series

ζ = s+
∞
∑

a=1

ta

a!

da−1

dza−1
(φ(z)a)

∣

∣

∣

∣

z=s

. (7.3)

This method is called Lagrange Inversion. This uses the definition and language found in [45].
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7.1.2 Continuous State Branching Process

In Section 2.2, the total load shed cumulant generating function k(s) is given implicitly by

(2.12):

k(s) = s+ h(k(s)) (7.4)

for s ∈ {0,∞}. This is equivalent to (7.2) whent = 1 andh(z) ≡ φ(z). Thus (7.3) can be

used given that for eachs ∈ {0,∞}, a contourC in the positive half-plane surroundings can

be found that satisfies

|h(z)| < |z − s|

on the edge ofC. If we define the function

ψ(z) = |z − s| − |h(z)|, (7.5)

then condition (7.1) is equivalent to requiringψ(z) > 0 onC. Kallenburg [28] shows thath(z)

is analytic on the positive half-plane and concave onz ∈ {0,∞}. He [28] also shows that

whenλ < 1, thenh(z) < z on z ∈ {0,∞}. k − h(k) is then increasing onk ∈ {0,∞} and

vanishes fork = 0 so a unique solution can be found for anys ∈ {0,∞}. It remains to be

proven that the contourC exists for suitable ranges ofλ andσ2
off .

7.1.3 Discrete State Branching Process

The Lagrange inversion method can be used in a similar sense to solve for the generating

function for discrete state branching processes. The inversion method has been used previously

for this purpose in [26, 31, 10].

7.2 Laplace Inversion: Post-Widder method

Let g(x) be a smooth function defined onR≥0. The Laplace transform ofg(x) is

G(s) =

∫ ∞

0

e−sxg(x)dx.

The Post-Widder inversion method [46] givesg(x) as:

g(x) = lim
a→∞

(−1)a

a!

(a

s

)a+1

G(a)
(a

s

)

, (7.6)
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whereGa is theath derivative ofG(s). For this thesis, we evaluate (7.6) at finitea rather than

take the limit, to gain an approximation ofg(x). In [42] it is shown that wheng(x) ∈ L2

(

R≥0
)

is twice differentiable withx2 d2g(x)
dx2 ∈ L2

(

R≥0
)

, this approximation converges tog(x) at a rate

of orderO
(

1
a

)

:
∥

∥

∥

∥

(−1)a

a!

(a

s

)a+1

G(a)
(a

s

)

− g(x)

∥

∥

∥

∥

L2(R≥0)
≤ C

a
, (7.7)

where the constantC depends on the functiong(x). Examples below estimateC for relevant

distributions of meanλ and varianceσ2. C was estimated by numerically computing the left

hand side of (7.7) for variousa.

1. Approximation of exponential distribution withλ = .5, σ2 = 0.25 hasC ≈ 0.35

2. Approximation of gamma distribution withλ = .5, σ2 = .05 hasC ≈ 2.50

3. Approximation of gamma distribution withλ = .5, σ2 = .40 hasC ≈ 0.26

4. Approximation of gamma distribution withσ2 ≥ 2λ2 does not converge inL2 since

g(x) /∈ L2

(

R≥0
)

.

The accuracy of the Post Widder method is highly dependent onthe distribution used. It is

difficult to estimateC for a typical total load shed distributionK(x), (2.15), since an analytic

expression for the distribution is unavailable. I hypothesize that usinga = 15 terms gives “rea-

sonable” accuracy, and this seems to be true after visually comparing the results with Monte

Carlo generatedK(x). Also, since determination ofK(x) often requires use of a Lagrange

inversion approximation, it is possible that both these forms of approximation can interact to

produce error. Before fitting data to a pdfK(x) usinga1 term Lagrange approximation and

a a2 Laplace approximation, I think it’s a good idea to compareK(x) against a Monte Carlo

generated pdf to test accuracy. The accuracy will likely depend on the parametersλ, θ, σ2
off ,

andσ2
init.
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7.3 OPA load profile

Here is the OPA input file used in Section 4.2:

$1 -6810.48 0 0 a0 (80, 15) [1, 2]

$1 -2670.78 0 0 a1 (99, 31) [0, 11]

$1 -5208.01 0 0 a2 (72, 33) [0, 4, 11]

$3 -5208.01 0 26336.8 a3 (54, 63) [4, 10]

$1 -1602.47 0 0 a4 (64, 83) [2, 3, 5, 7, 10]

$1 -6944.02 0 0 a5 (79, 89) [4, 6]

$1 -2537.24 0 0 a6 (87, 99) [5, 11]

$3 -3739.08 0 26131.9 a7 (64, 91) [4, 8, 29]

$1 -1602.47 0 0 a8 (46, 163) [7, 9]

$2 0 0 5.85 a9 (22, 239) [8]

$1 -9347.73 0 0 a10 (88, 59) [3, 4, 11, 12]

$3 -6276.33 0 22120.8 a11 (120, 59) [1, 2, 6, 10, 13, 15, 116]

$1 -4540.32 0 0 a12 (143, 70) [10, 14]

$1 -1869.55 0 0 a13 (147, 74) [11, 14]

$1 -12018.5 0 0 a14 (166, 84) [12, 13, 16, 18, 32]

$1 -3338.47 0 0 a15 (134, 89) [11, 16]

$1 -1468.93 0 0 a16 (146, 110) [14, 15, 17, 29, 30, 112]

$1 -8012.33 0 0 a17 (170, 106) [16, 18]

$1 -6009.25 0 0 a18 (185, 101) [14, 17, 19, 33]

$1 -2403.7 0 0 a19 (176, 133) [18, 20]

$1 -1869.55 0 0 a20 (175, 163) [19, 21]

$1 -1335.39 0 0 a21 (188, 195) [20, 22]

$1 -934.773 0 0 a22 (184, 213) [21, 23, 24, 31]

$3 -1736.01 0 26538.6 a23 (227, 213) [22, 69, 71]

$2 0 0 23536.3 a24 (182, 251) [22, 25, 26]
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$2 0 0 23962.5 a25 (184, 265) [24, 29]

$3 -9481.29 23385.3 23385.3 a26 (95, 224) [24, 27, 31, 114]

$1 -2270.16 0 0 a27 (85, 191) [26, 28]

$1 -3204.93 0 0 a28 (92, 166) [27, 30]

$1 -1602.47 0 0 a29 (149, 126) [7, 16, 25, 37]

$3 -5742.17 0 23155.9 a30 (107, 169) [16, 28, 31]

$1 -7878.79 0 0 a31 (120, 192) [22, 26, 30, 112, 113]

$1 -3071.39 0 0 a32 (196, 92) [14, 36]

$1 -7878.79 0 0 a33 (218, 102) [18, 35, 36, 42]

$1 -4406.78 0 0 a34 (207, 128) [35, 36]

$1 -4139.7 0 0 a35 (224, 129) [33, 34]

$1 -1602.47 0 0 b36 (241, 94) [32, 33, 34, 37, 38, 39]

$1 -1602.47 0 0 b37 (241, 94) [29, 36, 64]

$1 -3605.55 0 0 a38 (256, 75) [36, 39]

$3 -8813.56 0 26654.6 b39 (269, 65) [36, 38, 40, 41]

$1 -4940.94 0 0 b40 (284, 65) [39, 41]

$3 -12819.8 0 24334.3 b41 (322, 65) [39, 40, 48]

$1 -2403.7 0 0 b42 (270, 119) [33, 43]

$1 -2136.62 0 0 b43 (305, 104) [42, 44]

$1 -7077.56 0 0 b44 (305, 124) [43, 45, 48]

$3 -3739.08 0 24262.1 b45 (285, 161) [44, 46, 47]

$1 -4540.32 0 0 b46 (319, 150) [45, 48, 68]

$1 -2670.78 0 0 b47 (337, 133) [45, 48]

$3 -11617.8 23841.6 23841.6 b48 (358, 144) [41, 44, 46, 47, 49, 50, 53, 65, 68]

$1 -2270.16 0 0 b49 (286, 124) [48, 56]

$1 -2270.16 0 0 b50 (395, 120) [48, 51, 57]

$1 -2403.7 0 0 b51 (352, 92) [50, 52]

$1 -3071.39 0 0 b52 (353, 69) [51, 53]
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$3 -15089.9 26200.7 26200.7 b53 (385, 68) [48, 52, 54, 55, 58]

$1 -8412.95 0 0 b54 (453, 59) [53, 55, 58]

$1 -11217.3 0 0 b55 (427, 68) [53, 54, 56, 57, 58]

$1 -1602.47 0 0 b56 (408, 94) [49, 55]

$1 -1602.47 0 0 b57 (411, 97) [50, 55]

$3 -36990.3 0 29704.1 b58 (521, 125) [53, 54, 55, 59, 60, 62]

$1 -10416 0 0 b59 (523, 171) [58, 60, 61]

$2 0 29554.8 29554.8 b60 (520, 188) [58, 59, 61, 63]

$1 -10282.5 0 0 b61 (512, 206) [59, 60, 65, 66]

$1 -1602.47 0 0 b62 (514, 128) [58, 63]

$1 -1602.47 0 0 b63 (512, 181) [60, 62, 64]

$2 0 32366.7 32366.7 b64 (383, 182) [37, 63, 65, 67]

$3 -5208.01 25086.6 25086.6 b65 (387, 169) [48, 61, 64, 66]

$1 -3739.08 0 0 b66 (429, 164) [61, 65]

$1 -1602.47 0 0 b67 (350, 207) [64, 68, 80, 115]

$2 0 29626.4 29626.4 b68 (335, 209) [46, 48, 67, 69, 74, 76]

$1 -8813.56 0 0 b69 (280, 233) [23, 68, 70, 73, 74]

$1 -1602.47 0 0 b70 (270, 225) [69, 71, 72]

$3 -1602.47 0 23957.9 b71 (260, 225) [23, 70]

$3 -801.233 0 945.269 b72 (264, 186) [70]

$1 -9080.62 0 0 b73 (300, 258) [69, 74]

$1 -6276.33 0 0 b74 (314, 265) [68, 69, 73, 76, 117]

$1 -9080.62 0 0 b75 (347, 262) [76, 117]

$1 -8145.87 0 0 b76 (372, 273) [68, 74, 75, 77, 79, 81]

$1 -9481.29 0 0 c77 (381, 253) [76, 78]

$1 -5208.01 0 0 c78 (397, 247) [77, 79]

$3 -17360.1 29043.6 29043.6 c79 (424, 268) [76, 78, 80, 95, 96, 97, 98]

$1 -1602.47 0 0 c80 (428, 253) [67, 79]
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$1 -7211.1 0 0 c81 (354, 303) [76, 82, 95]

$1 -2670.78 0 0 c82 (344, 323) [81, 83, 84]

$1 -1468.93 0 0 c83 (329, 331) [82, 84]

$1 -3204.93 0 0 c84 (330, 344) [82, 83, 85, 87, 88]

$1 -2804.32 0 0 c85 (320, 366) [84, 86]

$2 0 1.31034 1.31034 c86 (308, 394) [85]

$1 -6409.86 0 0 c87 (345, 347) [84, 88]

$2 0 23731.6 23731.6 c88 (370, 351) [84, 87, 89, 91]

$3 -21766.8 0 24523.4 c89 (388, 383) [88, 90]

$3 -1335.39 31028.5 31028.5 c90 (404, 370) [89, 91]

$1 -8680.03 0 0 c91 (411, 354) [88, 90, 92, 93, 99, 101]

$1 -1602.47 0 0 c92 (412, 339) [91, 93]

$1 -4006.16 0 0 c93 (428, 320) [91, 92, 94, 95, 99]

$1 -5608.63 0 0 c94 (413, 318) [93, 95]

$1 -5074.47 0 0 c95 (391, 308) [79, 81, 93, 94, 96]

$1 -2003.09 0 0 c96 (406, 290) [79, 95]

$1 -4540.32 0 0 c97 (437, 289) [79, 99]

$3 -5608.63 23898.2 27694.3 c98 (451, 297) [79, 99]

$3 -4940.94 19920.6 19920.6 c99 (465, 321) [91, 93, 97, 98, 100, 102, 103, 105]

$1 -2937.85 0 0 c100 (452, 356) [99, 101]

$1 -667.694 0 0 c101 (427, 360) [91, 100]

$3 -3071.39 25694.1 25694.1 c102 (496, 353) [99, 103, 104, 109]

$1 -5074.47 0 0 c103 (516, 323) [99, 102, 104]

$1 -4139.7 0 0 c104 (535, 321) [102, 103, 105, 106, 107]

$1 -5742.17 0 0 c105 (548, 310) [99, 104, 106]

$3 -6676.94 0 9760.98 c106 (575, 319) [104, 105]

$1 -267.078 0 0 c107 (539, 334) [104, 108]

$1 -1068.31 0 0 c108 (534, 349) [107, 109]
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$1 -5208.01 0 0 c109 (532, 363) [102, 108, 110, 111]

$2 0 1.3802 1.3802 c110 (531, 376) [109]

$3 -9080.62 13095.9 13095.9 c111 (558, 376) [109]

$3 -801.233 33263.4 33263.4 a112 (118, 148) [16, 31]

$1 -1068.31 0 0 a113 (112, 213) [31, 114]

$1 -2937.85 0 0 a114 (130, 213) [26, 113]

$3 -24571.2 28575.4 28575.4 b115 (333, 234) [67]

$1 -2670.78 0 0 a116 (152, 38) [11]

$1 -4406.78 0 0 b117 (333, 265) [74, 75]

// 0 1 0.0999 4667.71 1

0 2 0.0424 7713.04 1

1 11 0.0616 8744.93 1

2 4 0.108 13197.6 1

2 11 0.16 4445.26 1

3 4 0.00798 20323.6 1

3 10 0.0688 12745.3 1

4 5 0.054 15822 1

4 7 0.0267 47831.1 1

4 10 0.0682 12308.4 1

5 6 0.0208 5557 1

6 11 0.034 6169.97 1

7 8 0.0305 2675.34 1

7 29 0.0504 41143.2 1

8 9 0.0322 5.97851 1

10 11 0.0196 9845.9 1

10 12 0.0731 7553.31 1

11 13 0.0707 7876.19 1

11 15 0.0834 8042.71 1
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11 116 0.14 4445.27 1

12 14 0.2444 7713.04 1

13 14 0.195 8212.8 1

14 16 0.0437 28605.2 1

14 18 0.0394 7931.28 1

14 32 0.1244 17083.8 1

15 16 0.1801 13014.8 1

16 17 0.0505 18836.4 1

16 29 0.0388 30610.7 1

16 30 0.1563 19779 1

16 112 0.0301 40857.3 1

17 18 0.0493 10631.2 1

18 19 0.117 7659.43 1

18 33 0.247 16730.1 1

19 20 0.0849 9575.01 1

20 21 0.097 12394.5 1

21 22 0.159 14551.5 1

22 23 0.0492 44115.7 1

22 24 0.08 22098 1

22 31 0.1153 22740.2 1

23 69 0.4115 25782.4 1

23 71 0.196 23059.6 1

24 25 0.0382 23878.1 1

24 26 0.163 16486 1

25 29 0.086 39624.6 1

26 27 0.0855 8929.82 1

26 31 0.0755 10195.4 1

26 114 0.0741 7500.8 1
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27 28 0.0943 6169.96 1

28 30 0.0331 9182.54 1

29 37 0.054 74960.6 1

30 31 0.0985 9508.43 1

31 112 0.203 12053.5 1

31 113 0.0612 5794.52 1

32 36 0.142 16156.5 1

33 35 0.0268 7143.34 1

33 36 0.0094 23221 1

33 42 0.1681 16156.6 1

34 35 0.0102 2904.69 1

34 36 0.0497 7606.19 1

36 37 0.0375 34464.8 1

36 38 0.106 17814.1 1

36 39 0.168 18968.3 1

37 64 0.0986 68411.3 1

38 39 0.0605 22582.1 1

39 40 0.0487 18968.3 1

39 41 0.183 13383.1 1

40 41 0.135 13761.7 1

41 48 0.1615 27818 1

42 43 0.2454 12481.3 1

43 44 0.0901 13105.8 1

44 45 0.1356 13197.6 1

44 48 0.186 8867.78 1

45 46 0.127 10856 1

45 47 0.189 6995.41 1

46 48 0.0625 9642.08 1
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46 68 0.2778 12394.6 1

47 48 0.0505 6388.95 1

48 49 0.0752 12308.4 1

48 50 0.137 15173.5 1

48 53 0.145 18446.3 1

48 65 0.04595 33987.3 1

48 68 0.324 11399.3 1

49 56 0.134 8867.83 1

50 51 0.0588 6478.72 1

50 57 0.0719 5518.38 1

51 52 0.1635 2945.5 1

52 53 0.122 4476.38 1

53 54 0.0707 3920.73 1

53 55 0.00955 17938.8 1

53 58 0.2293 5480.02 1

54 55 0.0151 8992.36 1

54 58 0.2158 6300.45 1

55 56 0.0966 6755.63 1

55 57 0.0966 3975.81 1

55 58 0.12243 10557.3 1

58 59 0.145 9055.33 1

58 60 0.15 10780.5 1

58 62 0.0386 33818.2 1

59 60 0.0135 24535.5 1

59 61 0.0561 4700.39 1

60 61 0.0376 10780.5 1

60 63 0.0268 26884.4 1

61 65 0.218 8155.71 1
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61 66 0.117 5714.24 1

62 63 0.02 36009.4 1

63 64 0.0302 61186.6 1

64 65 0.037 37576.5 1

64 67 0.016 86786.5 1

65 66 0.1015 11163.2 1

67 68 0.037 26697.6 1

67 80 0.0202 74960.7 1

67 115 0.00405 38611 1

68 69 0.127 17814.1 1

68 74 0.122 17083.9 1

68 76 0.101 38639.7 1

69 70 0.0355 34080.2 1

69 73 0.1323 17938.7 1

69 74 0.141 18705.5 1

70 71 0.18 36036.2 1

70 72 0.0454 1240.23 1

73 74 0.0406 11886.5 1

74 76 0.1999 13571 1

74 117 0.0481 19101 1

75 76 0.148 16613.7 1

75 117 0.0544 13955 1

76 77 0.0124 21060.5 1

76 79 0.033176 26492.3 1

76 81 0.0853 32912.1 1

77 78 0.0244 7193.34 1

78 79 0.0704 10483.9 1

79 80 0.037 72391.2 1
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79 95 0.182 15822 1

79 96 0.0934 17445.2 1

79 97 0.108 18968.2 1

79 98 0.206 24898.7 1

81 82 0.03665 20914.1 1

81 95 0.053 12656.6 1

82 83 0.132 8155.72 1

82 84 0.148 11163.2 1

83 84 0.0641 8929.84 1

84 85 0.123 4635.26 1

84 87 0.102 11085.6 1

84 88 0.173 12924.3 1

85 86 0.2074 1.41869 1

87 88 0.0712 15810.3 1

88 89 0.06515 23529.8 1

88 91 0.038274 20283.2 1

89 90 0.0836 21506 1

90 91 0.1272 21208 1

91 92 0.0848 11559.4 1

91 93 0.158 11085.6 1

91 99 0.295 6524.07 1

91 101 0.0559 6755.63 1

92 93 0.0732 10705.6 1

93 94 0.0434 19779 1

93 95 0.0869 19917.5 1

93 99 0.058 27262.1 1

94 95 0.0547 16613.7 1

95 96 0.0885 14450.3 1
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97 99 0.179 18575.4 1

98 99 0.0813 27645.2 1

99 100 0.1262 8806.17 1

99 102 0.0525 24880.2 1

99 103 0.204 10195.4 1

99 105 0.229 10780.5 1

100 101 0.112 6388.96 1

102 103 0.1584 8684.14 1

102 104 0.1625 10266.8 1

102 109 0.1813 15386.6 1

103 104 0.0378 9777.46 1

104 105 0.0547 5794.52 1

104 106 0.183 5875.93 1

104 107 0.0703 8386.48 1

105 106 0.183 5075.25 1

107 108 0.0288 7931.28 1

108 109 0.0762 6344.55 1

109 110 0.0755 1.48968 1

109 111 0.064 13105.8 1

113 114 0.0104 4833.38 1
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