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Abstract Volatility clustering and leverage are two of the most prominent stylized
features of the dynamics of asset prices. In order to incorporate these features as
well as the typical fat-tails of the log return distributions, several types of exponential
Lévy models driven by random clocks have been proposed in the literature. These
models constitute a viable alternative to the classical stochastic volatility approach
based on SDEs driven by Wiener processes. This paper has two main objectives. First,
using threshold type estimators based on high-frequency discrete observations of the
process, we consider the recovery problem of the underlying random clock of the
process. We show consistency of our estimator in the mean-square sense, extending
former results in the literature for more general Lévy processes and for irregular
sampling schemes. Secondly, we illustrate empirically the estimation of the random
clock, the Blumenthal-Geetor index of jump activity, and the spectral Lévy measure
of the process using real intraday high-frequency data.

Keywords Time-changed Lévy models · stochastic volatility · random clocks ·
non-parametric estimation · parameter estimation based on high-frequency data
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1 Introduction

1.1 The model and some motivation

Accurate modeling of the stylized features of the stock prices has been a fundamental
problem in mathematical finance for a long time. In addition to the well-known lep-
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tokurtic properties of the distributions of log returns, volatility clustering and lever-
age are the other two most prominent features of the dynamics of asset prices (see,
e.g., Cont (2001) for a review of these and other stylized features). Indeed, typical
asset prices exhibit changes in the overall variability of the process through time.
This phenomenon can be perceived more clearly when looking at the the time series
of log returns, which often show high variability periods followed by low variability
periods. Roughly speaking, “high-volatility” events exhibit a tendency to cluster in
time. Leverage refers to the empirical observation of a volatility growth after a drop
in prices, suggesting that volatility is negatively correlated with returns.

One of the traditional approaches to incorporate volatility leverage and clustering
consists of treating the volatility parameter σ of the Black-Scholes model stochastic,
resulting in a model of the form:

dSt = St (bdt +σtdWt) , (1)

where {σt}t≥0 is an adapted stochastic process driven by another factor. For instance,
in the traditional Heston model, r(t) := σ2

t is given by the Cox-Ingersoll-Ross (CIR)
model

dr(t) = α(m− r(t))dt + γ
√

r(t)dBt , (2)

where E (dBt ·dWt) = ρdt and αm/γ2 > 1/2. The reader is referred to, e.g., the
monograph of Fouque et al. (2000) for the stochastic volatility approach using SDEs
driven by Wiener processes.

In this paper, we adopt an alternative approach where volatility clustering is as-
sumed to be a byproduct of changes in the business activity of the market: periods
of higher (resp. lower) trading activity results in higher (resp. lower) volatility. This
phenomenon can be incorporated into the model via a random clock

τ(t) :=
∫ t

0
r(u)du,

where {r(t)}t≥0, called the speed or rate process of the random clock, is a non-
negative process. Hence, in this paradigm, the stock price process is given by

St = S0 exp
{

Wτ(t)+bτ(t)
}
. (3)

The application of random clocks in asset price modeling can be traced back to the
work of Clark (1973), who proposed to link future prices of cotton to the variations in
volume during different trading periods (see also Ané & Geman (2000)). In fact, the
two models (1) and (3) are closely related in view of a fundamental result of Monroe
(1978), stating that any semimartingale can be written as a time-changed Wiener
process. For instance,

∫ t
0 σudWu can be written as Bτ(t), where B is certain Wiener

process and τ(t) has rate process r(t) = σ2
t (Karatzas & Shreve, 1988, Theorem 4.6).

The use of a Wiener process W in the model (3) is not essential. Indeed, during
the last decade, several subclasses of Lévy processes have been shown to describe
better the stylized features of log returns than the Wiener process. Among the better
known models are the double exponential model of Kou & Wang (2004) (see also
Ramezani & Zeng (2007) for its empirical performance), variance Gamma model
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of Carr et al. (1998), the CGMY model of Carr et al. (2002), and the generalized
hyperbolic motion of Barndorff-Nielsen (1998) and Eberlein & Keller (1995) (see
also Behr & Pötter (2009) for its empirical performance).While preserving the sim-
ple statistical properties of the increments of a Wiener process (namely, independent
and stationary increments), Lévy processes {Zt}t≥0 can exhibit flexible marginal dis-
tributions with heavy tails, high-kurtosis, and asymmetry. Hence, exponential Lévy
models of the form

St = S0 exp{Zt}, (4)

will yield time series of log returns with leptokurtic distributions when the Lévy pro-
cess Z is suitably chosen. Furthermore, given that a Lévy process is not constrained
to have continuous paths, the stock price dynamics under (4) can incorporate sudden
price shifts or jumps, which can account for major information news affecting the
market perspective about the company. At the same time, under certain conditions,
the Lévy processes Z can display infinite jump activity (infinite many jumps on any
finite time interval), which is a plausible model approximation to a random measure-
ment whose value is the result of a large-number of small “shocks” occurring through
time with high-frequency.

Summarizing, in this paper we combine the two previous approaches and consider
an exponential time-changed Lévy model of the form

(i) St := S0 exp{Xt} , (ii)Xt := Zτ(t), (iii) τ(t) :=
∫ t

0
r(u)du, (5)

(iv) Z is Lévy with triplet (b,σ2,ν), (v) r(t)≥ 0, independent of Z. (6)

As explained above, (5-6) is a natural stochastic volatility model with jumps, where
the speed process r(t) dictates the volatility of the process in the sense that when r(t)
takes a high value (relative to its overall mean), the clock τ will run faster, which in
turn results in a higher variability and more frequent jumps. Hence, a mean reverting
processes r(t) is an appealing model in order to incorporate the volatility clustering
phenomenon of real stock price dynamics. This crucial observation was first noticed
by Carr et al. (2003), who studied the performance of the model for option pricing
when Z is normal inverse Gaussian or CGMY, and r is a CIR model. It is important to
remark that the independence assumption between Z and r is an undesirable restric-
tion from a financial point of view in light of the leverage phenomenon present in real
stock prices. One could think of ad hoc treatments to incorporate certain degree of
dependence such as common driving factors for r and Z, but we will not explore this
direction in this work.

We finish this section with a digression about the connection between the stochas-
tic volatility models (1) and the time-changed Lévy model (5). To illustrate this point,
let us consider the particular Heston model (2) and its discrete-time approximations.
Using Euler’s method, the high-frequency log returns Ri := log{Sti/Sti−1} satisfy the
following approximations (when the time span dt := ti− ti−1 is small):

Ri ≈
Sti −Sti−1

Sti−1

≈ bdt +
√

dt r(ti−1)εi,

r(ti)≈ r(ti−1)+α(m− r(ti−1))dt + γ
√

dt r(ti−1)ε
′
i ,
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for i= 1, . . . ,n, where εi,ε
′
i are i.i.d. standard normal variables (assuming for simplic-

ity ρ = 0). On the other hand, using the well-known fact that Z can be decomposed
as

Zt = bt +σWt +Yt ,

where b ∈ R, σ ≥ 0, and Y is a pure-jump Lévy process, the model (5) admits the
following discrete-time approximations:

Ri = b(τ(ti)− τ(ti−1))+Wτ(ti)−Wτ(ti−1)+Yτ(ti)−Yτ(ti−1)

≈ br(ti−1)dt +
√

dt r(ti−1)εi + ε
′′
i ,

r(ti)≈ r(ti−1)+α(m− r(ti−1))dt + γ
√

dt r(ti−1)ε
′
i ,

where the random variables ε ′′1 , . . . ,ε
′′
n given r(t0), . . . ,r(tn−1) are independent with

respective distributions fr(t0)dt , . . . , fr(tn−1)dt , and where ft denotes the marginal distri-
bution of Yt . Two interesting points become apparent from these approximations. The
essential difference between the Heston model and the corresponding time changed-
Lévy model is that the later may have an extra non-Gaussian innovation ε ′′i . Com-
pared to the light-tail normal distributions of ε ′i , the additional innovations ε ′′i will
contribute weight to the tails of the log return distributions when the marginal dis-
tributions of the pure-jump component of Y exhibit heavy tails. Also, given that
Var(ε ′′i |{r(t)}t) = r(ti−1)dt Var(Y1) (when EY 2

1 < ∞), the rate process r will also
introduce a volatility clustering effect to the time series ε ′′1 , . . . ,ε

′′
n .

1.2 Background on Lévy processes

Before introducing the statistical problems we consider in this paper and our results,
let us briefly review a few well-known facts of Lévy processes (see, e.g., the mono-
graphs of Cont & Tankov (2004) and Sato (1999) or the review paper Figueroa-López
(2010b) for the necessary background on Lévy processes). By definition, a Lévy pro-
cess Z = {Zt}t≥0 is a process with independent and stationary increments, with right-
continuous with left limits paths, and with no fixed jump times. The law of the pro-
cess is determined uniquely by the distribution of Z1. Thus, for instance, when Z1 is
Normally distributed, Zt is necessarily a Brownian motion with drift, σWt +bt.

It is known that the distribution of a Lévy process is determined by three param-
eters (b,σ2,ν): a non-negative real σ2, a real b, and a measure ν on R\{0} such that∫
(x2∧1)ν(dx)< ∞. These parameters dictate the dynamics of the process according

to the decomposition
Zt = bt +σWt +Yt , (7)

where W is a Wiener process and Y is a pure-jump process such as a compound
Poisson process. The measure ν controls the jump dynamics of the process Z in that
for any A ∈B(R),

NA(t) := ∑
s≤t

χA (∆Z(s)) ,

is a Poisson process with intensity ν(A), and for any disjoint B, the two Poisson
processes NA and NB are independent (Sato, 1999, Section 19). In summary, ν(A)
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gives the average number of jumps (per unit time) whose magnitudes fall in the set
A. A common assumption in Lévy-based financial models is that ν is determined by
a function s : R\{0}→ [0,∞), called the Lévy density, as follows

ν(A) =
∫

A
s(x)dx, ∀A ∈B(R\{0}).

Intuitively, the value of s at x0 provides information on the frequency of jumps with
sizes “close” to x0. Note that the process Z will display infinite jump activity if and
only if ν(R\{0}) = ∞.

Another very useful characterization of ν that we will heavily use here has to do
with the short-term ergodic properties of the Lévy process Zt . Concretely, ν is such
that

lim
t→0

1
t
P(Zt ≥ a) = ν(x≥ a), (8)

for any point of continuity a of ν (e.g. Bertoin, 1996, Chapter 1).

1.3 Our results and related known results

Throughout this paper, we adopt the exponential time-changed Lévy model (5-6).
Statistical inference for this model is not a simple matter, not even under parametric
specifications of the model, due to the unobservable random clock τ . The likelihood
function is in general intractable, requiring simulation-based methods for obtaining
maximum likelihood estimates such as particle filters or Bayesian MCMC methods
(see, e.g., Johannes & Polson (2003) and Li (2009)). Our goal here is to take a “non-
parametric” approach, where we impose only “qualitative” constraints about the pa-
rameters of the model, and to perform parameter estimation based on high-frequency
data. The following statistical problems are of particular interest here:

(1) Estimation of the Lévy density s : R\{0}→ R+.
(2) Recovery of the random clock τ(t) =

∫ t
0 r(u)du;

(3) Estimation of the “jump-activity” intensity of the process (see below);

The estimation problem (1) above has been considered in some detail in Figueroa-
López (2009, 2010a), where consistent estimators for the integral parameters ϕ →∫

ϕ(x)s(x)dx are constructed and central limit theorems are also proved assuming
that r is an ergodic diffusion satisfying certain moment conditions. By appropriately
choosing the function ϕ (e.g. piece-polynomials or wavelet functions), one can con-
struct non-parametric estimators for s such as sieve or kernel estimators.

In this paper, our main focus is on problems (2) and (3) above. Motivated by a
procedure proposed by Winkel (2001), we use a threshold type estimator of the form

τ̂n(T ) :=
1

ν(|x| ≥ an)

n

∑
k=1

1{
|Xtnk
−Xtnk−1

|≥an

} (9)

to recover the random clock τ based on high-frequency discrete observations of the
log return process Xt = log(St/S0). We show consistency of our estimator when the



6

time mesh δn :=maxi(tn
i −tn

i−1) of our sampling times 0≤ tn
1 < · · ·< tn

n = T converges
to 0 fast enough compared to an, who is also made to converge to 0. We cover some
of the same modeling framework of previous works such as Woerner (2007) and Aı̈t-
Sahalia & Jacod (2009), but we obtain stronger statements in three directions: the
sampling times {ti} are allowed to be irregular, the convergence of the main estimator
is in the L2 sense, and the Lévy measure ν is less restrictive.

The key assumption for our results, common in many of the Lévy-based financial
models proposed in the literature, is that the Lévy density s(x) := ν(dx)/dx satisfies
the asymptotics

lim
x→0±

|x|β+1s(x) = c±, (10)

for a constant β ∈ (0,2) and c−,c+ ≥ 0 such that c−+ c+ > 0. The parameter β ,
called the Blumenthal-Geetor index or the jump-activity index, models the intensity
of small jumps present in the process. The larger β is, the faster the Lévy density s
diverges at the origin, and the more frequent small jumps are to occur. The property
(10) is a simplifying assumption that interestingly enough seems to be validated by
our empirical study presented in this paper.

It is relevant to point out that another popular estimation method, pioneered by
Barndorff-Nielsen and Shephard, is based on multipower variations such as

V (r,s)
n (X) :=

n−1

∑
k=1

∣∣∣Xtn
k
−Xtn

k−1

∣∣∣r ∣∣∣Xtn
k+1
−Xtn

k

∣∣∣s, (11)

(see, e.g., Barndorff-Nielsen & Shephard (2004, 2006), Woerner (2006)). In particu-
lar, under a slightly stronger assumption than (10), Woerner (2007) shows that

δ
1−(r+s)/β
n V (r,s)

n (X)
P−→ γβ ,r,s

(
c0

β

)(r+s)/β ∫ T

0
(r(u))(r+s)/β du, (12)

provided that max{r,s} < β , for certain computable constant γβ ,r,s, and where it is
assumed regular sampling times such that δn ≡ tn

k − tn
k−1 → 0. In particular, when

r = s = β/2, we recover τ(T ) =
∫ T

0 r(u)du, up to the constant c0. Lévy processes are
not the only models that benefit from statistical estimation based on high-frequency
data. Recently, power variations have been also applied to estimate the “memory
strenght” index H present in certain continuous-time long memory processes such as
fractional Brownian motion (see, e.g., Nourdin et al. (2007), and Chronopoulou et al.
(2010)).

The paper is organized as follows. In Section 2, we analyze the recovery problem
using the threshold estimator (9). We show the mean-square convergence of (9) to
τ(T ), under certain moment conditions on the random clock. The proof of this result
is deferred until Appendix A for the sake of clarity. Section 3 gives an application
of the consistency of τ̂n to devise estimators for the jump-activity index β appearing
in (10). In Section 4, the numerical performance of the estimation methodology is
illustrated using simulated data and also real data. We consider intraday stock prices
(at a 5-second frequency) of Intel (INTC) from January 2, 2003 to December 30,
2005. Our results complement the enlightening empirical study of Aı̈t-Sahalia & Ja-
cod (2009), where the same stock and frequency is considered for the year of 2006.
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We conduct an analysis of the behavior of the estimator (27), with an = αδ ω
n (as

suggested in Aı̈t-Sahalia & Jacod (2009)), on the parameters α and α ′, which shows
some interesting features.

2 Recovery of the random clock

In this part, we analyze the problem of recovering the random clock τ , under the
exponential time-changed Lévy model (5-6), based on discrete observations of the
process at times 0 ≤ tn

0 < · · · < tn
n = T < ∞. This problem is of great importance

in finance since τ plays the same role in this class of models as the integrated vari-
ance process σ̄t :=

∫ t
0 σ2

u du plays in stochastic volatility models driven by Wiener
processes.

Let us start by noticing that we have an identifiability issue. Concretely, the clock

τ(t) =
∫ t

0
r(u)du, t ≤ T,

cannot be recovered from observations of the process Xt = Zτ(t). This is clear since,
for any constant k > 0, one can always write

Xt = Z(k)
τ(k)(t)

, (13)

with τ(k)(t) := τ(t)/k and Z(k)
t := Zkt , which is still a Lévy process but with Lévy

triplet (kb,kσ2,ks(x)dx). Hence, one must impose additional restriction to the model
in order to uniquely identify the random clock τ . For instance, any of the constraints

r(0) = 1, or Eτ(T ) = T, (14)

will suffice to identify uniquely τ among the above parameterizations Z(k)
τ(k)(t)

. Also,
under the assumption that

s(x) = |x|−β−1 (c0 +o(1)) , as x→ 0,

for some c0 > 0, there exists a unique Z(k) process having Lévy density

ŝ(x) = x−β−1 (1+o(1)) , as x→ 0. (15)

The problem of clock recovery can be traced back to the work of Winkel (2001)
who, assuming that τ and Z are independent and that Z exhibits infinite-jump activity,
shows that

τ(T ) = lim
n→∞

1
n

n

∑
k=1

Mk, a.s., (16)

where Mk = #{t ≤ T : |∆Xt | ∈ [ak,ak−1)}, and {ak}k≥0 are such that a0 = ∞ and
k = ν(x : |x| ≥ ak), for k ≥ 1. The result (16) follows directly from the strong law of
large numbers since, conditional on {τ(t)}t≤T , the variables {Mk}k≥0 are indepen-
dent Poisson distributed with a common mean

λ = τ(T )ν(|x| ∈ [ak,ak−1)) = τ(T ){ν(|x| ≥ ak)−ν(|x| ≥ ak−1)}= τ(T ).



8

Winkel’s procedure is the key motivation behind our main estimators, who are
designed to overcome the two clear drawbacks of (16): inaccessibility of the Lévy
measure ν , and inaccessibility of the jumps ∆Xt :=Xt−Xt− (at least based on discrete
sampling). To solve the first issue we first note that the sequence {ak}k is superfluous
since

1
n

n

∑
k=1

Mk =
#{t ≤ T : |∆Xt | ≥ an}

ν(|x| ≥ an)
=

1
ν(|x| ≥ an)

∑
t≤T

1{|∆Xt |≥an},

suggesting the use of the statistics

τ̂
(a)(T ) :=

1
ν(|x| ≥ a) ∑

t≤T
1{|∆Xt |≥a}, (17)

to recover τ(T ) by making a→ 0. Still, ν(|x| ≥ a) is needed or, to be more precise, an
assumption about the behavior of ν(|x| ≥ a) as a→ 0 is needed. As it was explained
in the introduction, one of such assumptions appearing commonly in the literature is
to take a Lévy density s(x) := ν(dx)/dx such that

lim
x→0±

|x|β+1s(x) = c±, (18)

for constants β ∈ (0,2) and c−,c+ ≥ 0 such that c−+ c+ > 0. In that case, it follows
that

lim
a↓0

aβ
ν(x≥ a) =

c+
β
, and lim

a↓0
aβ

ν(x≤ −a) =
c−
β
. (19)

The previous limits motivate us to consider the statistics

τ̂
′(a)(T ) := aβ

∑
t≤T

1{|∆Xt |≥a}, (20)

who a priori should satisfy that

lim
a→0

τ̂
′(a)(T ) =

c++ c−

β
τ(T ). (21)

For the issue of jump inaccessibility, we use the natural approach of replacing the
jumps {∆Xt : t ≤ T} by the increments of the process

∆
n
k X := Xtn

k
−Xtn

k−1
, (22)

who are expected to be good proxies of the jumps under high-frequency sampling.
Concretely, the following statistics are the natural discrete-time-based proxies of (17)
and (20), respectively:

τ̂n(T ) :=
1

ν(|x| ≥ an)

n

∑
k=1

1{|∆ n
k X |≥an}, τ̂

′
n(T ) := aβ

n

n

∑
k=1

1{|∆ n
k X |≥an}, (23)

where again 0 = tn
0 < · · · < tn

n = T denote the sampling times and {an}n≥1 denotes
a sequence such that an → 0. We proceed to investigate the asymptotics of (23) as
an → 0, and δn := maxk{tn

k − tn
k−1} → 0. The following is our main result show-

ing the convergence of (23) towards τ(T ) in the mean square sense under certain
mild structural constraint on s near the origin and under certain conditions about the
asymptotic behavior of s(x) as x→ 0.
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Theorem 1 Consider the model (5-6) and suppose that the Lévy density s(x)= ν(dx)/dx
of Z exists and is differentiable decreasing on (0,x0), and differentiable increasing
on (−x0,0), for some x0 > 0. Also, assume that

limsup
x→0

|x|β+1s(x)< ∞, liminf
a→0

ν(|x| ≥ a)aβ > 0, (24)

for some β ∈ (0,2), and that E
(∫ T

0 r6(u)du
)
< ∞. Then, for any fixed T > 0, the

estimator τ̂n(T ) in (23) is such that

lim
n→0

E (τ̂n(T )− τ(T ))2 = 0, (25)

whenever δ n := max{tn
k − tn

k−1}→ 0 and an→ 0 such that aβ−4
n δ n = o(1) as n→ ∞.

If σ = 0, it suffices that a−β
n δ n = o(1) as n→ ∞.

Corollary 2 Suppose that the conditions of Theorem 1 are satisfied replacing (24)
by condition (18). Then, the estimator τ̂ ′n(T ) in (23) is such that

lim
n→0

E
(

τ̂
′
n(T )−

c++ c−

β
τ(T )

)2

= 0, (26)

whenever δ n and an converge to 0 as stated in Theorem 1.

For the proof of Theorem 1, we exploit heavily a new estimate for the rate of conver-
gence in (8). In order to motivate the connection between (8) and (25), consider for
simplicity the estimator τ̂+n (T ) := ∑

n
k=1 1{∆ n

k X≥an}/ν(x ≥ an). Conditioning on the
random clock {τ(t) : t ≤ T} and using the independence between τ and Z as well as
the independence and stationarity of the increments of Z, one can check that

E
(
τ̂
+
n (T )− τ(T )

)2
= E

(
1

ν(x≥ an)

n

∑
k=1
{P(Zt ≥ an)− tν(x≥ an)}|t=∆ n

k τ

)2

+
1

ν(x≥ an)2

n

∑
k=1

E
({

P(Zt ≥ an)−P(Zt ≥ an)
2}∣∣

t=∆ n
k τ

)
.

From the above expression, it is now clear why it is necessary to have precise bounds
on |P(Zt ≥ a)− tν(x ≥ a)| in order to obtain (25). For the sake of clarity, we defer
the details of the proof to the Appendix A.

Remark 3 Aı̈t-Sahalia & Jacod (2009) also considers the threshold estimator τ̂ ′n(T )
fixing an = αδ ω

n , for some α > 0 and ω ∈ (0,1/2). The motivation of their estimator
seems to come from the desire to filter away the continuous component of the process
X, while ours come from Winkel’s estimator (16). Aı̈t-Sahalia & Jacod (2009) are
able to consider the most general setting of an Itô semimartingale X = {Xt}t≥0, which
means that its characteristic triplet (B,C,η) are of the form:

Bt =
∫ t

0
bsds, Ct =

∫ t

0
σsds, η(dt,dx) = νt(dx)dt.
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It was also assumed in there that νt can be written as νt = ν ′t +ν ′′t for ν ′t and ν ′′t of
the form

ν
′
t (dx) =

1+ |x|γ f (t,x)
|x|1+β

(
a+t 1{0<z≤z+t }+a−t 1{−z−t ≤x<0}

)
,

ν
′′
t (dx)⊥ν

′
t (dx), and

∫
(|x|β ′ ∧1)ν ′′t (dx)≤ Lt .

Here, Lt ≥ 1 is a locally bounded predictable process, β ∈ (0,2), γ > 0, β ′ ∈ [0,β ),
and a+t ,a

−
t ,z

+
t ,z
−
t and f (ω, t,x) are predictable such that

1
Lt
≤ z±t ≤ 1, a+t +a−t ≤ Lt , 1+ |a| f (t,x)≥ 0, | f (t,x)| ≤ Lt .

Under the above structural assumption and under regular sampling (δ n := tn
k − tn

k−1),
it was shown that τ̂ ′n(T ) converges in probability to

Āt =

∫ t
0(a

+
s +a−s )ds

β
,

when an = αδ ω
n and α,ω > 0 satisfy certain relationship. Since our time-changed

Lévy model (5) is an Itô semimartingale with a+t = a−t = r(t), Aı̈t-Sahalia & Ja-
cod (2009)’s result can be applied. By specifically considering the time-change Lévy
framework, we are able to obtain convergence in the mean-square sense, to consider
non-regular sampling times, and weaken the constraints on the Lévy measure. Note
that, when taking an := α(δ n)ω̄ , the condition aβ−4

n δ n = o(1) of Theorem 1 is satis-
fied if 1+ ω̄(β −4) > 0, which in turn is satisfied whenever ω̄ ≤ 1/4 (regardless of
β ∈ (0,2)). If σ = 0, then a−β

n δ n = o(1) always that ω ≤ 1/2.

3 An application: estimation of the index of jump-intensity

Following closely ideas by Aı̈t-Sahalia & Jacod (2009), we now apply our main result
(Theorem 1) to devise an estimator for the parameter β appearing in (18). Estimating
β has great relevance in the whole theory since, once an estimate β̂ has been found,
we can plug it in the estimators for the random clock of equations (23) (or also (12)).
This approach will then allow us to estimate the random clock τ(t) at each fixed t up
to a constant (c0 in the case of (12) and c++ c− in the case of (23)).

The index β coincides with the Blumenthal-Geetor index defined by

β := inf
{

γ > 0 :
∫
{|x|≤1}

|x|γ ν(dx)< ∞

}
,

which is known to exist and being in [0,2] since always
∫
{|x|≤1} |x|2ν(dx) < ∞. The

parameter β serves as a summary measurement of the jump activity of the process:
the larger is β , the more frequent is the jump activity. Also, if p > β , the pth−power
realized variation of the process (namely, V (p,0)

n (X) using the notation (11)) converges
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to a non-trivial limit, while it does converge to 0 for any p < β (see Hudson & Mason
(1976)).

The main estimator for β is constructed by considering the ratio between τ̂ ′a(T )
and τ̂ ′

α ′a(T ). Concretely, let

β̂n,α ′ :=
1

lnα ′
· ln

(
∑

n
k=1 1{|∆ n

k X |≥an}

∑
n
k=1 1{|∆ n

k X |≥α ′an}

)
, (27)

where α ′ > 0 represent a fixed arbitrary parameter of the estimator. In light of (21),

β̂n,α ′
P−→ β ,

under the conditions of Theorem 1, regardless the value of α ′ (though we shall see
that the performance of the estimator for finite sample sizes varies greatly with the
choice of α ′). We remark that one does not need to assume the same degree of jump
activity for the positive and negative jumps. For instance, assuming that

lim
x→0+

xβ++1s(x) = c+, (28)

for some c+ > 0 and β+ ∈ (0,2), then it is expected that

β̂
+
n,α ′ :=

1
lnα ′

· ln

(
∑

n
k=1 1{∆ n

k X≥an}

∑
n
k=1 1{∆ n

k X≥α ′an}

)
→ β

+, (29)

with a similar result holding for the estimate β̂
−
n,α ′ .

4 Numerical and empirical performance

Our goal in this part is to study the performance of the estimator (23) for the ran-
dom clock, the estimator (27) for the Blumenthal-Geetor index β , and the estimators
for the spectral Lévy function a→ ν(|x| ≥ a) developed in Figueroa-López (2009).
We divide our study in two part: the finite-sample performance using simulations of
popular jump-diffusion models and the empirical study using 5-second log returns
of intel for the period of 2003 and 2005. Following Aı̈t-Sahalia & Jacod (2009) we
fix an = αδ ω

n in the case of the estimator (27). We are particularly interested in the
behavior of the later estimator as a function of the control parameter α and α ′.

Throughout this section, Xt stands for the log return process log{St/S0}, {Wt}t≥0
and {Bt}t≥0 stand for correlated Wiener processes with correlation ρ = E (dWt ·dBt),
and {Zt}t≥0 stands for a pure-jump Lévy process independent of W and B. All the
figures are presented in Appendix B.

4.1 Finite-sample performance using simulated data

In order to get a bettet idea of the performance of the estimator (27) for small sample
size, we consider several popular jump-diffusion models for the log return process.
We then compute the estimator (27) for the sample frequency and time horizon of our
empirical study presented below.
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4.1.1 A stochastic volatility model with stable jump in returns

The following model was studied in Aı̈t-Sahalia & Jacod (2009):

dXt = σtdWt +θdZt ,

dσ
2
t = κ(η−σ

2
t )dt + γσtdBt ,

where Z is a symmetric β -stable process with β = 1.5 and scale parameter 1. The
parameter setting is as follows:

β = 1.5; η
1/2 = .25; γ = .5; κ = 5; ρ =−.5; θ = .1.

As we can see, the overall volatility of the continuous component is 25%, and there is
a leverage effect. The stable process is consider to exhibit very heavy-tailed distribu-
tions with not even a finite second moment. The simulated 5-sec log returns of process
are shown in Figure 1, together with the graphs of the estimators α → β̂αδ ω

n ,α ′ , for
different value of α ′. The graph shows a relatively high variability of the estimate β̂

as function of α in a hump-liked shape. The estimate seems to settle down about the
true parameter of β for values of α around .06, but eventually the estimate start to
increase as α becomes larger. The value .06 seems to correspond to the average value
of σ2

t which is η = .0625.

4.1.2 Time-changed Normal Inverse Gaussian Lévy models

Normal inverse Gaussian (NIG) processes is one the most popular Lévy process for
modeling financial prices (see, e.g., Cont & Tankov (2004) for more information).
This process is defined as

Z(t) = σZWZ (U(t))+θZU(t)+bt, (30)

where σZ and θZ are constants, WZ is a Wiener process, and U is an Inverse Gaussian
subordinator such that EU(t) = vt, for v > 0. This model is an infinite-jump activity
process with jumps activity β = 1.

The increments of Z can be simulated by a rejection-type method (see Cont &
Tankov (2004), pp. 183). Figure 2 shows the 5-second log returns of the time-changed
Normal Inverse Gaussian (TCNIG) process:

Xt = Z(τ(t))+bt, τ(t) =
∫ t

0
r(u)du, (31)

dr(t) = α(m− r(t))dt +σr
√

r(t) dBr(t). (32)

The following settings were used:

θZ =−.080, σZ = .5, v = .210, E(dWZ (t)dBr(t)) = 0
b = .143, α = 1.763, m = 1, σr = 0.563.

The second display in Figure 2 shows the typical graphs of α→ β̂αδ ω
n ,α ′ , for different

value of α ′. We again observe relatively high variability of the estimate β̂ about the
true value β = 1, but in sharp contrast with the previous model, we don’t perceived
the hump-liked shape, and hence, we can conjecture that the continuous component
of the previous model is the reason of the hump.
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4.1.3 Time-changed of a Wiener process plus a NIG process

This model is similar to (31-32), but we assume that the Lévy process has a continu-
ous component. Concretely, the model takes the form

Xt = Z(τ(t))+σXW (τ(t))+bt, (33)

where Z is the NIG process (30), τ is given by (31-32), and W is independent of Z and
τ . Here, we take the same parameter setting for Z and τ as above, and also σX = .25.
Figure 3 shows the 5-second log returns of the model (33), together with the graphs
of α → β̂αδ ω

n ,α ′ , for different value of α ′. We again perceive the hump-liked shape,
confirming at least empirically our previous conjecture. We note that the estimate of
the β is much more stable than in the case of the stochastic volatility model with
stable jumps.

4.2 Empirical case study: INTC

In this part we apply our estimation methodology to the intraday stock prices of
Intel (INTC) from January 2, 2003 to December 30, 2005, which were obtained via
the NASDAQ TAQ database. Once all the transactions from 9:30 am until 4:00 pm
have been collected, we sampled the prices of the stock at intervals of 5 seconds and
subsequently computed the log returns, filtering out the overnight log returns. Figures
4 show the prices and log returns during the mentioned three year period. One can
clearly perceived the volatility clustering effect, in this case, higher variability during
the first year as opposed to the relatively low volatility at the end of the period.

4.2.1 Index of jump activity β

Figures 5 shows the estimated index of jump activity based in frequencies of 5 and
15 seconds. There are small differences between the two displays, but both of them
suggest an index of jump activity of about 1.5. Interestingly, this value is also consis-
tent with the findings in Aı̈t-Sahalia & Jacod (2009) for the year of 2006, suggesting
certain persistency of the underlying jump activity of the process. It is also worth
pointing out the hump-like shape of the graph of β̂n,α ′ , suggesting the presence of a
continuous component in the dynamics of the price process. We also apply the one
sided versions of β̂ (see (29)) to determine if there is a significant difference between
the indexes of positive and negative jump activity. We found that they are almost iden-
tical. The estimators were also applied to 1-min. log returns, but the results were not
good since the estimates happen to be greater than 2 almost all the time. This shows
how crucial high-frequency is for a reliable estimation of index of jump activity β .

4.2.2 Estimates for the rate process r of the random clock

Once an estimate for the jump activity index β has been found, it is natural to plug this
value in the estimators for the random clock of equations (23) and (12). This approach
will yield estimates for the random clock τ(t) at each fixed t up to a constant (c0 in the



14

case of (12) and c++ c− in the case of (23)). The recovery of the daily rate process
r(ti) for ti = iδ , where δ = 1/252 years and 1≤ i≤ T/δ , is interesting. We recover
these values using the natural approximation

r(ti)≈
1
δ

∫ ti+1

ti
r(u)du =

1
δ
(τ(ti+1)− τ(ti)) . (34)

In order to estimate τ(ti) on the right-hand side of the approximation (34), we used
our estimator τ̂n(ti) of (23), which in light of Theorem 1, converges in L2 to τ(ti)
for each 1 ≤ i ≤ T/δ . Due to the fact that this estimator is the discrete version of
Winkel’s estimator (17), we called it discrete-time Winkel estimator. For comparison
purposes, we also apply Woerner’s estimator appearing in (12). Figures 6 shows the
results of both methods taking a = .1δ w

n . Even though there are some differences
(mainly in terms of the level), the essential features are very similar. In particular,
both estimators point out to a high volatility period during the first 6 months of 2003,
followed by a decrease in volatility until the end of 2005. This is consistent with the
overall appearance of the log return time series of Figure 4.

4.2.3 Estimates for the spectral Lévy density ν(|x| ≥ a)

The last estimation problem (3) listed at the beginning of Section 1.3, namely the
non-parametric estimation of the Lévy density s, has been considered in detail in
Figueroa-López (2009, 2010a). Let us first note that this problem cannot be solved
on a finite-time horizon T < ∞. Indeed, the only information about the sample path
t ∈ [0,T ]→ Xt that is relevant to estimate the Lévy density s, on some region [c,d]⊂
R\{0}, are the jumps of X with size between [c,d]. However, for any finite time
horizon [0,T ], there will be finitely-many of such jumps and consistency would not
be achievable no matter how frequently the process is sampled.

In Figueroa-López (2009), we assume that the rate process r is ergodic, and, by
combining its long-run ergodic properties with the short-term ergodic properties of
Z, we attain consistent estimation of the integral parameters β (ϕ) :=

∫
ϕ(x)s(x)dx.

These integral parameters, with ϕ judiciously chosen, can subsequently be combined
with a numerical approximation method for the function s to yield a non-parametric
estimator for s. For instance, indicator functions ϕ will lead to histogram or kernel
type estimators for s, piece-wise polynomials ϕ will lead to spline type estimators,
etc. The estimators for β (ϕ) are given by the so-called realized ϕ-variations of X per
unit time:

β̂n(ϕ) :=
1
tn
n

n

∑
k=1

ϕ

(
Xtn

k
−Xtn

k−1

)
. (35)

Under certain moment conditions on r, β̂n(ϕ) converges to ζ̄ β (ϕ) when tn
n → ∞ and

δn = max{tn
k − tn

k−1}→ 0 such that tn
n δ 2

n → 0. Here, ζ̄ is defined as

ζ̄ := lim
T→∞

1
T

∫ T

0
r(u)du ∈ (0,∞), (36)

whose existence is assumed.
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We briefly analyze the performance of the estimators (35) with respect to the time
horizon T . Our goal is to illustrate the convergence of β̂n(1{|x|≥a}) as Tn := tn

n → ∞.
Figure 7 shows the graphs of β̂n(1{|x|≥a}) as a function of tn

n for different values of
a. As expected, the convergence is much faster when a is large, while for value of a
close to the origin, we would require a longer time horizon for reaching stability.

A Proof of the main Theorem 1

In order to obtain (25), we rely heavily on a new bound for |P(Zt ≥ a)/t− ν(x ≥ a)|. As it is often the
case with Lévy processes, our estimates use the well-known decomposition of the pure-jump component
of Z into a compound Poisson process and a process with small jump sizes. Concretely, suppose that Z has
Lévy-Itô decomposition

Zt = bt +σWt +
∫ t

0

∫
|x|≤1

x µ̄(dx,ds)+
∫ t

0

∫
|x|>1

x µ(dx,ds), (37)

where W is a standard Brownian motion and µ is an independent Poisson measure on R\{0}×R+ with
mean measure ν(dx)dt, and µ̄(dx,dt) := µ(dx,dt)−ν(dx)dt. Next, for a given fixed 0 < ε < 1, we set

Z̃ε
t :=

∫ t

0

∫
R

x1{|x|≥ε}µ(dx,ds), and Zε
t := Zt − Z̃ε

t ; (38)

hence, Z̃ε is a compound Poisson process with intensity λε := ν(|x| ≥ ε), and jumps {ξ ε
i }i with common

distribution 1|x|≥ε ν(dx)/λε , while the remaining process Zε is a Lévy process with triplet (σ2,bε ,1{|x|≤ε}ν(dx)),
where

bε := b−
∫
|x|≤1

x1{|x|≥ε}ν(dx).

The following estimate for the tails of Zε
t will be also useful in the sequel.

Lemma 4 For any a > 0, 0 < ε < 1, and t > 0 such that t(b−
∫

ε<|x|≤1 xν(dx))≤ a/2,

P(Zε
t ≥ a)≤

(
4eV 2

ε

εa

)a/4ε

ta/4ε +
4σt1/2

a
√

2π
e−

a2
16σt , (39)

where V 2
ε :=

∫
{|x|≤ε} x2ν(dx).

Proof Note that EZε
t = t(b−

∫
ε<|x|≤1 xν(dx)). Thus, if EZε

t < a/2,

P(Zε
t ≥ a) = P(Zε

t − EZε
t ≥ a− EZε

t )≤ P(Zε
t − EZε

t ≥ a/2) .

Also, denoting Ẑε
t := Zε

t −σWt , we have that

P(Zε
t ≥ a)≤ P

(
Ẑε

t − E Ẑε
t ≥ a/4

)
+P(σWt ≥ a/4) .

The estimate (39) will then follow from the standard tail estimate for Gaussian random variables Z (namely,
P(Z ≥ x)≤ exp(−x2/2)/(x

√
2π)) and a generic concentration inequality such as

P(Ẑε
t − E Ẑε

t ≥ x)≤ e
x
ε
−
(

x
ε
+

tV 2
ε

ε2

)
log
(

1+ εx
tV 2

ε

)
≤
(

eV 2
ε

εx

) x
ε

t
x
ε ,

see e.g. (Houdré, 2002, Corollary 1).
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Lemma 5 Let H+
t (a) := P(Zt ≥ a)− tν([a,∞)) and assume that ν admits a Lévy density s : R\{0} →

[0,∞) which is non-decreasing and differentiable on (0,x0) for some x0 > 0. Then, for any 0 < a < x0/2,
t > 0, and 0 < ε < a, ∣∣H+

t (a)
∣∣≤ P(Zε

t ≥ a)+2λε t ((λε t)∧1)

+ ts(a)|EZε
t |+ t

m(ε,a)+1
2

E
{
(Zε

t )
2
}

(40)

+ tP(|Zε
t | ≥ a− ε)(λε +a− ε +1) ,

where

m(ε,a) := sup
ε≤x<a,a<x≤2a−ε

s(x)− s(a)
a− x

∈ (0,∞). (41)

Proof In terms of the decomposition Z := Zε + Z̃ε in (38), by conditioning on the number of jumps of Z̃ε

during the interval [0, t], we get

H+
t (a) = λε tP(Zε

t +ξ1 ≥ a)− tν([a,∞)) (42)

+ e−λε tP(Zε
t ≥ a)+

(
e−λε t −1

)
λε tP(Zε

t +ξ1 ≥ a) (43)

+ e−λε t
∞

∑
k=2

(λε t)k

k!
P(Zε

t +
k

∑
i=1

ξi ≥ a). (44)

The last two terms on the right-hand side of the previous equation can be bounded as follows:

0≤
(

1− e−λε t
)

λε tP(Zε
t +ξ1 ≥ a)≤ λε t ((λε t)∧1) , (45)

0≤ e−λε t
∞

∑
k=2

(λε t)k

k!
P(Zε

t +
k

∑
i=1

ξi ≥ a)≤ (λε t)2 ∧1. (46)

Let us consider the first two terms on the right-hand side of (42). Conditioning on ξ1 and using that a≥ ε ,
the expression

At := λεP(Zε
t +ξ1 ≥ a)−ν([a,∞))

can be written as follows:∫
|x|≥ε

(P(Zε
t ≥ a− x)−1x≥a)s(x)dx =

∫ −ε

−∞

P(Zε
t ≥ a− x)s(x)dx

−
∫

∞

a
P(Zε

t < a− x)s(x)dx+
∫ a

ε

P(Zε
t ≥ a− x)s(x)dx

=
∫ −ε

−∞

P(Zε
t ≥ a− x)s(x)dx−

∫
∞

2a−ε

P(Zε
t < a− x)s(x)dx (47)

−
∫ 0

−(a−ε)
P(Zε

t < u)s(a−u)du+
∫ a−ε

0
P(Zε

t ≥ u)s(a−u)du, (48)

The two terms in line (47) can be bounded in absolute value by

P(|Zε
t | ≥ a− ε)

∫
|x|≥ε

s(x)dx.

To dealt with the two term in line (48), note first that, since s is assumed to be continuous and decreasing
on (0,x0), the supremum in (41) exists and also,

0≤ s(a−u)− s(a)≤ m(ε,a)u, for 0 < u≤ a− ε,

0≤ − (s(a−u)− s(a))≤−m(ε,a)u, for − (a− ε)≤ u < 0.
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Also, note that

A1
t :=

∫ a−ε

0
P(Zε

t ≥ u)du−
∫ 0

−(a−ε)
P(Zε

t < u)du

= E {Zε
t }− E

{
Zε

t 1{|Zε
t |≥a−ε}

}
+(a− ε){P(Zε

t ≥ (a− ε))−P(Zε
t <−(a− ε))} ,

A2
t :=

∫ a−ε

0
P(Zε

t ≥ u)udu−
∫ 0

−(a−ε)
P(Zε

t < u)udu≤ 1
2
E
{
(Zε

t )
2
}
.

In that case,

0≤
∫ a−ε

0
P(Zε

t ≥ u)s(a−u)du−
∫ 0

−(a−ε)
P(Zε

t < u)s(a−u)du− s(a)A1
t ≤ m(ε,a)A2

t .

Therefore,

|At | ≤ P(|Zε
t | ≥ a− ε)ν(|x| ≥ ε)+ s(a)|A1

t |+m(ε,a)A2
t

≤ s(a)|EZε
t |+

m(ε,a)+1
2

E
{
(Zε

t )
2
}

+P(|Zε
t | ≥ a− ε)(ν (|x| ≥ ε)+a− ε +1) ,

where we used that ∣∣∣E {Zε
t 1{|Zε

t |≥a−ε}

}∣∣∣≤ 1
2

(
E
{
(Zε

t )
2
}
+P(|Zε

t | ≥ a− ε)
)
.

Applying the above bound for At and (45-46) to (42), we obtain (40).

We are ready to show the consistency of the estimators (23).

Proof (Theorem 1) Let F̄+
t (a) := P(Zt ≥ a) and F̄−t (a) := P(Zt ≤ −a). Define also

E±n :=
1

ν(|x| ≥ an)2 E


(

n

∑
k=1

1{±∆n
k X≥an}−ν(±x≥ an)τ(T )

)2
 .

It is easy to check that
E (τ̂n(T )− τ(T ))2 ≤ 2E+

n +2E−n ,

hence, in order to obtain (25), it suffices to show that E+
n → 0 and E−n → 0. Let us prove this for E+

n (the
case E−n can be done analogously). By conditioning on F τ

T := σ(τ(t) : t ≤ T ) and using the independence
between τ and Z, it follows that

E+
n = E

(
1

ν(|x| ≥ an)

n

∑
k=1

(
F̄+

t (an)− tν(x≥ an)
)∣∣

t=∆n
k τ

)2

+
1

ν(|x| ≥ an)2

n

∑
k=1

E
((

F̄+
t (an)− (F̄+

t (an))
2)∣∣

t=∆n
k τ

)
.

Since ν(|x| ≥ an)→ ∞ as n→ ∞ and Eτ(T ) < ∞, the first term on the right-hand side above dominates
the second one, and thus, we only have to show that

lim
n→∞

E

(
1

ν(|x| ≥ an)

n

∑
k=1

(
F̄+

t (an)− tν(x≥ an)
)∣∣

t=∆n
k τ

)2

= 0. (49)
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Using (40) with ε = an/κ , for some κ ≥ 2 to be determined below, and since an→ 0, the following limits
will suffice for (49):

An := lim
n→∞

E

(
1

ν(|x| ≥ an)

n

∑
k=1

P(Zε
t ≥ an)|t=∆n

k τ

)2

= 0, (50)

Bn := lim
n→∞

E

(
ν(|x| ≥ an

κ
)

ν(|x| ≥ an)

n

∑
k=1

∆
n
k τ ((λε ∆

n
k τ)∧1)

)2

= 0, (51)

Cn := lim
n→∞

E

(
s(an)

ν(|x| ≥ an)

n

∑
k=1

∆
n
k τ|EZε

t |t=∆n
k τ

)2

= 0, (52)

Dn := lim
n→∞

E

(
m( an

κ
,an)

ν(|x| ≥ an)

n

∑
k=1

∆
n
k τ E

{
(Zε

t )
2
}∣∣∣

t=∆n
k τ

)2

= 0, (53)

En := lim
n→∞

E

(
ν(|x| ≥ an

κ
)

ν(|x| ≥ an)

n

∑
k=1

∆
n
k τ P

(
|Zε

t | ≥
an

2

)∣∣∣
t=∆n

k τ

)2

= 0. (54)

In light of (39), (50) will follow from the limits:

lim
n→∞

E


(∫
{|x|≤ an

κ
} x2ν(dx)

)κ/4

ν(|x| ≥ an)a
κ/2
n

n

∑
k=1

(∆ n
k τ)κ/4


2

= 0, (55)

lim
n→∞

E

(
1

ν(|x| ≥ an)a4
n

n

∑
k=1

(∆ n
k τ)2

)2

= 0, (56)

lim
n→∞

E

(
1

ν(|x| ≥ an)

n

∑
k=1

1{
∆n

k τ

(
b−
∫

an
κ <|x|≤1 xν(dx)

)
> an

2

})2

= 0, (57)

where we used that e−x ≤ Cx−3/2, for any x > 0 and some C < ∞. Fixing κ = 8, (56) will imply (55).

Using that
(∫ tn

k
tn
k−1

r(u)du
)2
≤ δ n ∫ tn

k
tn
k−1

r2(u)du and (19),

E

(
1

ν(|x| ≥ an)a4
n

n

∑
k=1

(∆ n
k τ)2

)2

≤

(
δnaβ−4

n

ν(|x| ≥ an)a
β
n

)2

E
(∫ T

0
r2(u)du

)2

;

hence, (56) will follows provided that

liminf
a→0

ν(|x| ≥ a)aβ > 0, and δ
naβ−4

n = o(1), as n→ ∞. (58)

For (57), it suffices that

lim
n→∞

E

(
1

ν(|x| ≥ an)

n

∑
k=1

1{b∆n
k τ> an

4 }

)2

= 0, lim
n→∞

E

(
1

ν(|x| ≥ an)

n

∑
k=1

1{
−
∫

an
κ <|x|≤1 xν(dx)∆n

k τ> an
4

})2

= 0.

To verify the second limit above (the first can be proved in a similar manner), we observe that the quantity
after the limit can be bounded, up to a constant, as follows:

E


(∫

an
κ
<|x|≤1 xν(dx)

)2

ν(|x| ≥ an)a2
n

n

∑
k=1

(∆ n
k τ)2


2

≤


(∫
|x|≤1 x2ν(dx)

)2
δn

ν(|x| ≥ an)a4
n


2

E
(∫ T

0
r2(u)du

)2

; (59)

hence, this quantity vanishes as n→ ∞ provided that (58) holds true. Note also that if one assumes that

limsup
x→0

|x|β+1s(x)< ∞, (60)
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there exists an 0 < x0 < 1 small enough and n large enough such that
∫

an
κ
<|x|≤1 |x|ν(dx) ≤ Ka−β+1

n , for
some constant 0 < K < ∞. Thus, up to a constant,

E


(∫

an
κ
<|x|≤1 xν(dx)

)2

ν(|x| ≥ an)a2
n

n

∑
k=1

(∆ n
k τ)2


2

≤

(
a−β

n δn

ν(|x| ≥ an)a
β
n

)2

E
(∫ T

0
r2(u)du

)2

, (61)

which converges to 0 provided that a−β
n δn = o(1), as n→ ∞. To show (54), we use the same arguments as

for (50).
Next, we use that limsupn→∞ ν(|x| ≥ an/κ)/ν(|x| ≥ an) < ∞, that (x∧ 1) ≤

√
x, for x > 0, and that

(∆ n
k τ)3/2 ≤ (δ n)1/2 ∫ tn

k
tn
k−1

r3/2(u)du to conclude that δ na−β
n = o(1), as n→ ∞ suffices for (51).

Using the formula EZε
t = t

(
b−

∫
an
κ
<|x|≤1 xν(dx)

)
and that limsupn→∞ ans(an)/ν(|x| ≥ an)< ∞, the

limit (52) will follows if a−β
n δ n = o(1), as n→ ∞. Similarly, using the identity

E(Zε
t )

2 = t
∫
|x|≤ an

κ

x2
ν(dx)+ tσ2 + t2

(
b−

∫
an
κ
<|x|≤1

xν(dx)
)2

,

and that limsupn→∞ a2
n|m(an/κ,an)|/ν(|x| ≥ an) < ∞, the limit (53) will hold if E(

∫ T
0 r3(u)du)2 < ∞

and a−β
n δ n = o(1), when σ = 0, or if a−2

n δ n = o(1), if σ 6= 0. Note that a−2
n δ n = o(1) is implied by

aβ−4
n δ n = o(1).
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Fig. 1 5-sec returns and estimation of β for a stochastic volatility model with stable jumps.
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Fig. 2 5-sec returns and estimation of β for the time-changed Normal Inverse Gaussian process.
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Fig. 3 5-sec returns of the time-changed Wiener process plus a Normal Inverse Gaussian process.
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Fig. 6 Daily rate process r(t) of the random clock using Woerner’s and Winkel’s method.
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