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ABSTRACT

This paper proposesto use quantile points of the cumulative distri-
bution function for power consumptionto providedetailed informa-
tion about the power distributioninacircuit. Thepaper also presents
two techniquesbased on population pruning and stratification to im-
provetheefficiency of estimation. Both population pruning and strat-
ification are based on alow cost predictor, such aszero-delay power
estimate. Experimental results show the effectiveness of the pro-
posed techniquesin providing detailed power distribution informa-
tion.

1 Introduction

In the past, average and peak power dissipations have been the pri-
mary focus of power estimation techniques and tools. It has how-
ever becomeimportant to estimate the power distribution of thecir-
cuit over alarge number of clock cycles. Thisinformation is espe-
cially useful for determining the circuit reliability, performing dc/ac
noiseanalysis, and choosing appropriate packagingand cooling tech-
niquesfor IC's.

The power consumption per clock cycle of acircuit is regarded
asarandom variable. Associated with this random variableis a cu-
mulative distribution function. Thus, thetasks of estimating the av-
erage and maximum power dissipation reduce to that of estimating
the mean and upper bound of the random variable.

A number of techniques have been proposed to estimate the av-
erage and maximum power consumption [1, 2, 3, 4, 5]. For esti-
mating the maximum power consumption, existing techniques can
be classified into two classes: statistical techniquesand determinis-
tic techniques. In statististical techniques [6], the maximum power
consumptionis estimated using order statistics derived from asim-
plerandom sample. Indeterministic techniques, the maximum power
is estimated either by solving the max-satisfiability problem [7] or
by using approximationtechniques[8, 7, 9] to obtain an upper bound
on the maximum power consumption. The disadvantage of the sta-
tistical techniqueisthat the size of the samplecan be high and there-
fore it may require large simulation times. The disadvantage of the
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deterministic techniques of [8, 9] is that the upper bound can be-
come very loose when the circuit level count is high or when the
circuitiscomprised of several circuit blocksand the correlations be-
tween theinputsto different circuit blocksaretoo complex to model.

The cumulative distribution function of power consumptionin
acircuit is difficult to predict. This is because probability density
functions of power dissipation of two different circuits can be very
different in shape. For instance, researchershavefound that the prob-
ability density function can be uni-modal or multi-modal and the
tails of thedistribution canbe either short or long[2]. Unfortunately,
these characteristics cannot be encapsulated by merely the average
and the maximum power dissipation values. The following ques-
tions are frequently asked by today’s chip designers:

Q1 What istheminimum power valuez suchthat iny percentage
of the time the circuit power dissipation is smaller than = ?

Q2 What isthe peak power dissipation in the circuit?

Q3 What percentageof time power dissipationinthecircuitisbe-
tween two known values z;, and z?

In this paper, we address the problem of estimating the quantile
point in the cumulative distribution function for power dissipation
(to answer Q1 and Q2 above) and deriving the cumulative distri-
bution function itself (to answer Q3). We assume that an input se-
guenceisgiven. Thegiven sequenceisfirst brokeninto consecutive
vector pairs and these consecutive vector pairs constitute the pop-
ulation for the estimation. The power consumption of each vector
pair is regarded as a random variable.

For a € (0,1), a-quantile point of a cumulative distribution
functionisthevaluewhere thecumulative distribution function eval-
uatesto «. For estimating a single quantile point in the cumulative
probability function, we can use order statistics of asimple random
sample. However, the efficiency of this approachis rather low. We
thus propose two techniques: population pruning and stratified ran-
dom sampling to improve the efficiency. The objective of popula-
tion pruning is to remove those units from the population that are
not in the quantile interval of interest. Stratified random sampling
partitions the population into two strata: one for those units which
arelikely to reside abovethe quantile point of interest, onefor those
which are likely to reside below the quantile point of interest. Both
of these techniquesusethe zero delay power estimate asa predictor.

The issue of estimating the cumulative probability function is
also addressed by simultaneously estimating a set of quantile points
inthe cumulative probability function. Theproposed techniqueuses
strata of equal weight and equal size sample allocation. We show
that the accuracy of this techniqueis no worse than that of simple
random sampling. Experimental results demonstrate that the pro-
posed technique provide detailed power distribution information ef-
ficiently.



The organization of this paper is as follows. Section 2 reviews
the basic concepts and background material. The problems of es-
timating a single quantile point and a set of quantile points in the
cumulative probability function are addressed in Sections 3 and 4,
respectively. Experimental results are presented in Section 5, fol-
lowed by the conclusion in Section 6.

2 Background

Wearegivenacollection (called population), U = {u1, uz,...,un}
of objects (called units) on which some property (called character-
istic) y; is defined for each ;. For power evaluation purpose, the
unit u; is avector pair and the characteristic y; is the power con-
sumption of a combinational circuit C under ;. In practice, if the
vector pairs is specified by afinite vector sequenceof length 2, we
can break the sequenceinto n — 1 consecutive vector pairs and the
collection of thesern — 1 consecutive vector pairs becomesthe pop-
ulation.

The characteristic (or power dissipation) associated with each
unit can be regarded as arandomvariable, denoted by X'. On this
random variable, a discrete probability density function (pdf) f(z)
and a discrete cumulative distribution function (cdf) F(z)" can be
defined. To simplify the presentation, we assume that these func-
tions can be approximated by continuous functions. Discrete pdfs
can be easily handled as well. When F'(«) is strictly increasing,
the inverse function F~'(«) is well defined. For o € (0,1), a-
quantile point of acdf F'(x) is defined as the value #(«) such that
F(2(a)) = a, 0r v(a) = F~'(«). In another words, there are ex-
act 100 x « percent of the population which have X values equal
to or smaller than «.

Let X1, X>,..., X,, beasample of n observationstaken from
the population. n is referred to as the sample size. An estimator
¢ is afunction of the random variable values on these . selected
units which is used to estimate the parameters (such as the mean
value and the quantile point, etc.) of the population. An estima-
tor is also a random variable and may take different values from
sample to sample. A confidenceinterval is an interval [b, c] where
the probability for the estimator value ¢ to fall into it is 4, that is,
Prob(b < 8 < ¢) = 4, where§ isreferred to as the confidence
level. Note that the larger the confidenceinterval, the higher the
confidencelevel.

If the X;’sare sorted and ordered from the smallest to the largest
valuesas X (1), X(2y, ..., X(n), then they are defined as the order
statistics of the sample. The:th elementinthissortedlist isreferred
to as the «th order statistic of the sample, and : is the rank of this
order statistic. Xz, ¥ = 1,2,...,n, isalso arandom variable
and itspdf gk (X(k)) is:

9 ( Xy = ur)
— n—' kE—1 _ n—k
If we defineanew function Z = F(z), Z gives the quantile
value associated with power value z. The domain of Z is [0, 1].
Throughout this paper we will use [3, v]¢ to denote an interval in
the quantile domain.

3 Quantile Estimation Techniques

In this section, we address the problem of estimating an «-quantile
point of cdf F(z). A straightforward approachisto usethe rth or-
der statistic from a simple random sample of sizen asthe estimator
¢ for the a-quantile point. It hasbeen shown, given afixedn value,
the optimal r value can be approximated as [10]:

r = [nal, 2

! In this paper, we use lower and upper case functionsto represent the pdf s and
cdf s, respectively.
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Figure 1: Scatter plot of circuit C1355.

where [] denotes the ceiling function.
Anempirical relation betweenn, e and « for achieving 0.99 con-
fidencelevel and 0.1 < o < 0.9 isderived in[11] as:

n 6.67(%)20z(1 —a). @)

Note that given afixed e value, n is greatest when o = 0.5 and
smallest when «v is closeto O or 1.

In the remainder of this section, we present two techniques to
improve the efficiency of quantile point estimation.

3.1 Population Pruning

Givenaconfidenceinterval [3,+]¢,b = F~'(8),andc = F~* (7).
If we remove as many units with X value greater than ¢ or smaller
than b as possible, we can improve the efficiency asexplained next.
Let Uy beasubsetof U suchthat all theunitsin Uz, have X values
greater than ¢, and U,,, beasubset of U suchthat all the unitsin U,
have X valuessmaller thanb. {7 = U — Up; — Um. Wecan derive
amore efficient estimator using the order statistics of asamplethat
is drawn from U/ as stated by the following Lemma.

Lemma 3.1 Let U bethe original population and || be the num-
ber of unitsin the population. Let X be a random variable defined
on U. Let [3, ~]? be the confidenceinterval and b, ¢, Uy, Uas, and
U be defined as above. Let the new quantile of b and ¢ on U7 be 3’
and ~’, respectively, then

_ BUL = |Un]

B =
U]

r_ 7|U| - |Um|
U]

)

and
_ ]
U]
For the sake of space, all proofsin this paper are omitted (see [11]
for proofs).
Sincethe new quantileinterval hasbeenincreased by % ,asam-

plewith fewer observationsis now neededto achieveagiven confi-
dencelevel(cf. (3)). Therequired sample sizeto achieve 99% con-
fidence level can be calculated by first computing the new « and e
valueson {7 and then plugging them into (3).

In practice, this “ population pruning” procedure can be accom-
plished using a predictor with predictable error bounds. L et thecon-
fidenceinterval be [3,+]%, ¢ = |nB],andj = [nv], where | |
is the flooring function. We sort the population based on predictor
values. Let the predictor values on the sth and jth units be d; and

v =g (v=8)
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Figure 2: Histogram of units with similar predictor values.

d;, respectively. In another word, they are the 3-quantile and ~-
quantile points on the predictor domain, respectively. If the error
bounds of the predictor is [—20%, 100%], al units with predictor
valuessmaller than0.8d; /2 or greater than 2d; /0.8 canberemoved
from the population.

The effectiveness of population pruning depends on how tight
theerror boundsare. However, asthe estimation procedureis statis-
tical in nature, we can never achieve 100% confidencelevel. While
this may seemto be adrawback, it actually relaxes the requirement
of of absolutely predictable error boundsto that of statistically pre-
dictable error bounds, which is amilder requirement.

We propose to use zero-delay power estimate as the predictor.
In the next subsection, we will investigate the relevant issues.

3.2 Zero-delay Power asa Predictors

The difference between zero-delay power and real-delay power is
dueto glitches. In most practical circuits, except those circuits that
are largely based on exclusive-or gates, the glitch power only ac-
counts for an average of 20 to 30% of the real-delay power. It is
therefore intuitive that the zero-delay power estimate is agood pre-
dictor.

To demonstratethisresult more clearly, we show the scatter plot
of real-delay power vs zero-delay power of a vector sequence of
40,000 cyclesin Figure 1. The vector sequenceconsistsof 100 sub-
seguencesin which the transition probabilities of each circuit input
are incrementally changed from 1/101 to 100/101 with 1/101 incre-
ment. This will ensure a better range coverage of power dissipa-
tion aswill be explainedin the section of experimental results. The
scatter plot shows an approximately linear correlation between the
two power estimates. That is, from the prospectiveof linear regres-
sionmodels, therelation between real-delay power, X, and the zero-
delay power P.4, is

X =kP.g+e 4

where k is the fitting constant and e is thefitting error. e isalso re-
ferred to asthe residue. Since & does not change the order relation
in the power dissipation, we need to only consider the impact of e.
In agood regression model, e will resemble a bell-shaped func-
tion with short tails. Indeed thisis the case when using zero-delay
power estimate as a predictor. In Figure 2, we plot the histogram
of real-delay power of all clock cyclesin which the predictor val-
ues, or zero-delay power, fallsin [8.6mW, 8.7mW]. The confidence
level of the residue can be formally analyzed asin [12] if standard
deviation o of e isknown. When o of e isnot available, our rule of
thumb is to set the lower and upper pruning boundsfor e = 0.01 to
0.6d; and 1.6d;, respectively. Thisis equivalent to a[-44%, -15%)]
error bound. When the required accuracy level is higher, these two
numbersare set to bewider. While thismay seemto beavery loose
boundfor Figure 2, we should note that unitswhose predictor values
are around d; or d; havethe largest effect on the estimation accu-
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Figure 3: An example of stratification.

racy. The farther the predictor values are from from d; or d;, the
less likely those units will affect the estimation accuracy. We also
found Figure 2 appliesto multipliers and adders as well except that
the curveis shifted to right dueto higher glitch activity in these cir-
cuits.

3.3 Stratified Sampling (STS)

Another technique to improve the efficiency is based on stratified
sampling [13]. In stratified sampling, the population is first parti-
tioned into a number of digjoint subpopulations, called strata, of
known weights (representing the percentage of units in the strata).
Then a predetermined number of units are drawn from each stra-
tum. These units collectively constitute asample. In [10], an esti-
mator for quantile points based on stratified sampling of two strata
isinvestigated, however, the author makesno commentsabout how
the strata should be designed. Thisis however the key problem that
must be addressed. In the following, we present amethod for strat-
ifying the population into two stratato obtain the optimal estimator
for a given quantile point using zero delay power estimate as the
predictor.

Given the confidenceinterval [« — ¢, o + €]4, the populationis
stratified into two stratawith weightsw; and w», andw; +w, = 1.
Theway we construct thesetwo strataisasfollows. Wefirst sort the
population according to the predictor values. All units on the left-
hand side of the rth unit, wherer = [na], are put in one stratum,
and remaining units in the other stratum. The reason of doing so
is that units on the left-hand side of the rth unit are likely to have
X valuessmaller than z. = F(«). Similarly, units on the right-
hand side are likely to have X values greater than z,. Therefore,
the unitsthat residein [a — e, o+ €] will be moved to either the up-
per quantiles of thefirst stratum or the lower quantilesof the second
stratum. From (3), this minimizes the required sample size.

Let the number of observationsin a sample drawn from each
stratum be n;, and n1 + no = n. Since n;’s and w;’s could be
different, the “importance” (or weight) of the observations drawn
from each stratum should reflect this difference. Therefore, all ob-
servationsfrom the sth stratum are assigned aweight of w; /n;. Af-
ter the sampleis sorted to form the order statistics, we sum from the
left (smallest) toright (largest) the weightsof the order statistics. As
soon asthis sum becomesgreater than «r, we stop and return the cor-
responding order statistic (which caused this) as the estimator. We



now give an example to show how the estimator is selected when
stratified sampling is applied.

Example:

Assumew; = 0.2, ws = 0.8, n1 = 4,n>, = 8, anda = 0.35.
L et the observationsdrawn from the each stratum be (1.2, 3.4, 2.7,
0.5),(0.7,2.3,1.4,0.9, 1.6, 24,15, 2.9). Theorder statistics from
this sample and their associated weights, when represented as a tu-
ple, are: (0.5, 0.05),(0.7, 0.1), (0.9,0.1), (1.2, 0.05), (1.4, 0.1), (1.5,
0.1), (1.6, 0.1), (2.3, 0.1), (2.4, 0.1), (2.7, 0.05), (2.9, 0.1), (3.4,
0.05). Thefirst order statistics with accumulated weight exceeding
a is1.4, therefore § = 1.4.

The main difference between thistechniqueand population prun-
ing is: 1) no units are removed from the population; they are just
moved to different strata, and 2) the rank of the order statistic that
isused asthe estimator cannot be determined in advance, that is, the
rank changesfrom one sampleto next.

[10] suggeststhat if n; is allocated such that

n; oc w,\/F,(xa)(l — Fi(za)), (5

one could obtain the optimal estimator, where F; () is the cdf of the
ith stratum, and =, = F~*(«). In practice, the difficulty of apply-
ing this criterion isthat £3(z) isnot known in advance. However,
as the population is partitioned at the a-quantile point on the pre-
dictor domain, we expect that \/F;(za)(1 — Fi(za)) is approxi-
mately the same for both strata. This reducesthe above criterion to
proportional alocation, i.e,, n1 = nw; andnz = nw,.

The merit of population pruning over stratification is that the
confidence level can be calculated before sampling. If the confi-
dencelevel needsto be accurately calculated, stratification may not
be agood choice. On the other hand, stratification does not require
the predictor to have predictable error bounds.

3.4 Efficiency Analysis

While population pruning and stratified sampling techniquescan re-

duce the sample size when compared with simple random sampling

and thus reduce the run time of power simulation (using PowerMill

for instance), thereis an overhead for these two techniquesto cal cu-

late the predictor. In the following, we derive the condition where
population pruning and stratified sampling techniquesimprove the
estimation efficiency. The relative efficiency of two sampling tech-

niques, denoted by 1, is defined asthe inverseratio of the required

sample sizesin these two techniqueswhen achieving the same con-

fidencelevel. Let the population size and the sample size required

by simple random sampling be N and n, respectively, and n, be the
relative efficiency of population pruning (or stratified sampling) over
simple random sampling. Therefore, the required sample size in

population pruning (or stratified sampling) is»/n. In addition, let

thecost of zero delay simulation and power simulation for oneclock

cyclebe C.q4, Cy., respectively. The population pruning (or strat-

ified sampling) technique becomes more efficient than simple ran-

dom sampling when:

nCps > NC.q+ nCp,/n,

1
_ NG~
1 nCps

n >

When using PowerMill to perform power simulation, g;j =

155+ If N = 40,000 and n = 4,000, n needsto be greater than
1.003.

4 Estimation of CDF F(x)

In this section, we addressthe problem of estimating the cdf of power
consumption. Our approachis to construct an empirical cdf F(x)

R
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Figure 4: The approximation of cdf f(x).

by simultaneously estimating a set of «;-quantile points that cover
the domain [0, 1]%, 9. a; = i/n,1 = 1,..,n — 1. If the sample
sizen isadequately large, the empirical 7 () will approachthetrue
F(z). One may also construct F(m) by estimating each quantile
point separately. Thisishowever very inefficient when the number
of quantile pointsislarge. Thereasonisthat the order statistics of a
samplethat is used to estimate a specific quantile point can be also
used to estimate other quantile points. This type of information is
lost when the quantile points are estimated separately.

Givenacdf F'(z), samplesizen, and aset of monotonically in-
creasing a; values,: = 1, ...,n — 1. For every a;-quantile points,
we want to use the :th and (: + 1)st order statistics as the confi-
denceinterval for »; = F~*(«;). Therefore, we need to maximize
the following probability?:

PTOb(X(l) < ¥ <X(2) < T2...< Tp_1 <X(n)). (6)
4.1 Simple Random Sampling (SRS)

In the case of simple random sampling, we show that the maximum
of (6) occurswhen «; = i/n, asstated in the following theorem.
Theorem 4.1 Let X (1), X(2), ..., X(n) betheorder statistics of a
simple random sample of size n from a population U on which a
randomvariable X is defined. Let ax,k = 1,2,...,n — 1 bea
seguence of monotonically increasing real number between 0 and
1. Assume that F_l(x) existsand x; = F_l(oz,'). Prob(X(l) <
1 < Xy < z2... < w1 < X(p) iIsmaximized whena; =
i/n. The maximumvalue of this probability is n!/n™.
The above theorem implies that the order statistics can be used to
estimate a set of «;-quantile points simultaneously and it is most
efficient when a; = i/n. In Figure 4, we show the F'(x) con-
structed by apiece-wiselinear function of the order statistics. Since
the actual quantile of X,y isbetween[(i —1)/n, ¢/n]?, weassume
that it is at the midpoint of [(z — 1)/n,i/n]?, thatis, F'(X(,)) =
i/n—1/2n.

Theefficiency of simplerandomsamplingisnot very high. More
specifically, using Sterling’s formula for n!, one can find that the
maximum value stated in the above theoremis:

!
Zox Vam(Gy = )
n € n €

where e is the base of natural logarithm.

One can increase sample size to improve the confidencelevel.
However, we have moreorder statisticsthan the quantile points. We
need to select asubset of those order statistics to bound the quantile
pointsin (6). Let the number of quantile points to be estimated be
n and the size of the samplebe k(n + 1), we can pick X (r) where
r=[k/2]+kr,k=1,...,n,asshowninFigure5.

In the following we present a technique based on stratified sam-
pling to improve the estimation efficiency.

2 Alternatively, one can also maximize the average of the confidence levels of all
quantile points. However, the analysis is more complicated. Empirically, we found
these two confidencelevels are related.
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Figure 6: Stratified random sampling for distribution estimation.
4.2 Stratified Sampling (STS)

To give anintuitive motivation for using stratified random sampling
for estimating a set of quantile points, let us assumethat we want to
take a sample of size 10 to estimate the «;-quantile pointsin incre-
ments of 1/10. In addition, let us assume that the population can
be perfectly partitioned into ten strata (using ideal predictor func-
tion) and each stratum contains all units in the population between
two consecutivequantile points (this case correspondsto the case of
perfect stratification). If we useequal allocation and take one obser-
vation from each stratum, the probability statedin (6) is1. It istrue
that thisistheideal case, and in practice, the maximum probability
of 1isnever achieved. However, we will show that the probability
obtained using STSis never less than what can be achieved using
SRS. First we give some definition on matrices.

Let A beann x n matrix and a; ; betheith row and j¢h column
entry in A. Thesum of all entriesin aparticular row s isreferred to
asrowsum and denoted by a;.. Similarly, the sum of all entriesin
a particular column is referred to as columnsum and denoted by
a.;. The permanent of A, denoted as per(A), is “the determinant
without the sign”, calculated as:

per(A) = Z Hai,p(i) ®

pEpermu =0

L et the sample size and number of strataben. A isan x n matrix.
Each entry a; ; in A representsthe portion of unitsin the ¢th stra-
tum that are located in jth quantileinterval [(5 —1)/n, 7/n]? inthe
original population. When drawing an observationfrom the:th stra-
tum, the probability that this observation is from quantile interval
[(j—1)/n,j/n]%isa; ;. Therefore, matrix A hasthefollowing two
properties: 1) all entries a; ; are non-negative, and 2) all column-
sums and rowsums are 1. The estimation is correct only when no
two observationsare from the same quantileinterval. Therefore (6)
calculates per(A).

Theorem 4.2 Let Abeann x n matrix with the following proper-
ties:

1.0<a;,; <1,

2. each columnsumand rowsumis 1,
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Figure 7: Typical power histogram of biased and random se-
quences.

then \
< per(A) <1 ©
n

While the upper bound s 1, the actual confidencelevel dependson
the correlation between the predictor and power value. If needed,
one can also increase the sample size to further improve the confi-
dence level asin SRS. In practice, we stratify the population into
k stratawith equal weights. The population is first sorted based on
predictor values. Thefirst 1/ of the units are put in the first stra-
tum, and the second 1/k of the units are put in the second stratum,
etc. Wethen draw equal number of observationsfrom each stratum.
Lastly, estimation of power distribution can be combined with av-
erage power estimation, that is, the same sample can be also used to
estimate the average power.

5 Experimental Results

The proposed techniques have been implemented in C and tested
on ISCAS85 benchmarks. We use a gate level simulator to calcu-
late the actual power and a bit-parallel zero delay power simulator
as the predictor. The main objective of the experiments presented
inthefollowing isto compare therelative efficiency (in terms of re-
quired sample size) of the proposed techniques vs. simple random
sampling.

Thecircuits are mapped to alibrary with NAND, NOR, inverter
and XOR gates. Wetest ontwo typesof populationsof size40, 000.
One is comprised of random vectors with 0.5 signal and transition
probabilities, and will bereferred to astherandom sequences. An-
other oneis amixture of random vectorswith 0.5 signal probability
but variabletransition probabilities (cf. Subsection3.2), andwill be
referred to as the biased sequences. Typical distributions of these
two types of sequencesare as shown in Figure 7. The distribution
under the random sequence has a narrower distribution as, under
the random condition, only a small range of input switching is ex-
ercised. For instance, for a 32-input circuit, 95% of the vectors has
input switching in the range of [11,21]. As aresult, the power dis-
sipation is more homogeneous.

Inthefirst set of experiments, we apply the proposed techniques
to estimate a-quantile points, where o € {0.1,0.5,0.9}, with ab-
solute error and confidence levels of 0.01, and 0.99, respectively.
More experimental results can be found in [11]. In all of our ex-
periments, the error levels (or confidence intervals) are defined on
the quantile domain. We perform 1000 experimentsfor each circuit
and quantile point combination. Table 1 lists the results using only
population pruning on the biased sequences. Therandom sequences
are not listed here, because only less than 2% of the population is
pruned. The pruning criterion is such that all units with zero de-
lay power estimates smaller than 0.6d;, or greater than 1.6d;, are
removed, except for C432 in which we set the values to be 0.6d;



Table 1: Results of population pruning on the biased sequences,
1000 experiments.
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C432|228|05)|26.0|10222|0.8]|1.6|4023|05|15
C880 (21308279 7784[1.7]21[3064[(09[19
C1355| 707 |05| 84|10462|1.6|16[3996)|06|15
C1908 41213144 | 9884 |1.0|16[3608| 10|17
C2670[273[0.7]21.8| 8963|0.7|18[3550|08]17
C3540 (179121333 9180|0.9|18[3627| 14|16
C5315[328[1.0]181| 9453|14|17[3801|08][16
C6288 | 79312 75|11858|0.9|14[4421|109[13
C7552[302[1.2]19.7| 8867|0.9|18[4013|/08[15
avg 19.7 17 1.6

Table 2: Results of combining population pruning and stratified
sampling on random sequences, 1000 experiments.

(a3

01 [ 05 [ 0.9

ckts njer[ 7] nler] o] nfer[ n
C432 | 4700 | 0.7 | 1.3 [ 12500 | 1.8 | 1.3 | 4400 | 22 | 1.3
C880 | 4100 | 0.3 | 1.5[ 12300 | 1.0 [ 1.3 [ 4200 22 | 1.3
C1355[ 4600 | 1.7 1.3 12800 1.2 1.3 4600| 09| 1.3
C1908 | 4600 | 1.1 | 1.3[ 12700 1.6 [ 1.3][4600| 25| 1.3
C2670 | 4700 [ 0.3 1.3[ 12800 09]13[4700] 0.7 ] 1.3
C3540 [ 4600 [ 1.1 | 1.3[ 12700 0813|4600 | 1.4 | 1.3
C5315| 4700 | 14| 13|12800|12|13|4700( 12|13
C6288 [ 4700 [ 05[] 1.3[ 12800 0.8 1.3[4700[ 1.0] 1.3
C7552 | 4700 [ 0.1 1.3 12800| 02| 13| 4700| 1.4 | 1.3

avg 1.3 1.3 1.3

and 2d;, respectively (cf. Subsection 3.1). The'err’ columns list
the percentage of the experimentsthat violate the error level. Some
of thoseerrorsare slightly greater than 1%, mainly becausethe error
bounds on the predictor are not tight. The required sample size for
simple random sampling can be found from (3). The'r;’ columns
list the relative efficiency of population pruning over simplerandom
sampling as defined in Subsection 3.4.

Next, we combine population pruning with stratified sampling.
Unlike population pruning technique, stratified sampling cannot pre-
dict the required sample size in advance. The way that we conduct
this set of experimentsisto try different n values until it achieves
approximately 0.99 confidencelevel. Then we compare the n val-
uesto get therelative efficiency. The results are summarized in Ta-
ble 2 and Table 3. It shows that stratified sampling can further re-
duce the required sample size. The reason for r; to be smaller on
random sequencesisthat the variances of the power dissipationson
this type of sequencesare not high. Therefore the correlations be-
tween actual power and the predictor is lower than those on the bi-
ased sequences.

For estimating the cdfs, we set the quantile incrementsto 1/50,
which correspond to an error level of 0.01. The confidencelevel is
0.99. Thisistheaverage confidencelevelsof al 50 quantile points.
The number of experiments and strata are set to 1000 and 500, re-
spectively. Sincewe cannot predict therequired samplesizein strat-

Table 3: Results of combining population pruning and stratified
sampling on biased sequences, 1000 experiments.

0.1 [ 05 [ 09

ckts nfer] n| nfer] n| nfer] n
C432|100| 03| 60| 7500 09|22|4000(10(15
C880 | 100 | 0.1 | 60 | 4500 04| 36| 2800|0621
C1355| 400 | 05| 15| 7500 | 0.3 | 2.2 | 3500 | 0.7 | 1.7
C1908 | 250 [ 0.9 | 24| 7200 | 1.0 | 23| 3600 | 1.2 | 1.7
C2670| 100 | 04 | 60 | 4000 | 0.2 | 42| 2400 | 1.0 | 25
C3540| 100 | 0.6 | 60 | 5000 | 1.0 | 3.3 | 3300 | 0.8 | 1.8
C5315| 150 | 1.0 | 40 | 4000 | 0.1 | 42| 3200 | 0.8 | 1.9
C6288 | 450 | 0.8 | 13| 6000 | 0.6 | 2.8 | 3600 | 1.2 | 1.7
C7552 | 100 | 0.8 | 60 | 4000 | 0.4 | 42| 3500 | 1.1 | 1.7

avg 44 32 1.8

Table 4: Results of 1,000 experiments on distribution estimation.
random sequence biased sequence
n n

circuit SRS STS n SRS | STS n
C432 || 13000 | 9500 | 1.37 || 13000 | 6000 | 2.16
C880 || 12500 | 7500 | 1.66 || 13000 | 4000 | 3.25
C1355 || 13000 | 10000 | 1.30 || 13000 | 6000 | 2.16
C1908 || 13000 | 10500 | 1.24 || 12500 | 6500 | 1.92
C2670 || 12500 | 7000 | 1.78 || 12500 | 2500 | 5.00
C3540 || 12500 | 8500 | 1.47 || 13000 | 4500 | 2.88
C5315 || 12500 | 9500 | 1.32 || 13000 | 3200 | 4.06
C6288 || 12500 | 9000 | 1.39 || 13000 | 4500 | 2.89
C7552 || 12500 | 6000 | 2.08 || 13000 | 3500 | 3.71
avg 1.66 311

ified samplingin advance, wetry different n valuesuntil it achieves
the confidencelevel, i.e. the average error violation rate is lessthan
0.01. Theresults are listed in Table 4. Again the improvement of
STSon biased sequencesis better than that on random sequences.

6 Conclusion

In this paper, we have proposed to use quantile points of the cumu-
lative distribution function for power consumptionto provideinfor-
mation about the power distribution. We proposed two technques:
population pruning and stratified sampling, both of which are based
on alow cost predictor. The experimental results showed that the
proposed techniques provide detailed power distribution informa-
tion efficiently.
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