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ABSTRACT

This paper proposes to use quantile points of the cumulative distri-
bution function for power consumption to provide detailed informa-
tion about the powerdistribution in a circuit. The paper also presents
two techniquesbased on population pruning and stratification to im-
prove the efficiency of estimation. Both population pruning and strat-
ification are based on a low cost predictor, such as zero-delay power
estimate. Experimental results show the effectiveness of the pro-
posed techniques in providing detailed power distribution informa-
tion.

1 Introduction

In the past, average and peak power dissipations have been the pri-
mary focus of power estimation techniques and tools. It has how-
ever become important to estimate the power distribution of the cir-
cuit over a large number of clock cycles. This information is espe-
cially useful for determining the circuit reliability, performing dc/ac
noise analysis, and choosingappropriate packagingand cooling tech-
niques for IC’s.

The power consumption per clock cycle of a circuit is regarded
as a random variable. Associated with this random variable is a cu-
mulative distribution function. Thus, the tasks of estimating the av-
erage and maximum power dissipation reduce to that of estimating
the mean and upper bound of the random variable.

A number of techniques have been proposed to estimate the av-
erage and maximum power consumption [1, 2, 3, 4, 5]. For esti-
mating the maximum power consumption, existing techniques can
be classified into two classes: statistical techniques and determinis-
tic techniques. In statististical techniques [6], the maximum power
consumption is estimated using order statistics derived from a sim-
ple random sample. In deterministic techniques, the maximum power
is estimated either by solving the max-satisfiability problem [7] or
by using approximation techniques [8, 7, 9] to obtain an upperbound
on the maximum power consumption. The disadvantage of the sta-
tistical technique is that the size of the sample can be high and there-
fore it may require large simulation times. The disadvantage of the
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deterministic techniques of [8, 9] is that the upper bound can be-
come very loose when the circuit level count is high or when the
circuit is comprised of several circuit blocks and the correlations be-
tween the inputs to different circuit blocks are too complex to model.

The cumulative distribution function of power consumption in
a circuit is difficult to predict. This is because probability density
functions of power dissipation of two different circuits can be very
different in shape. For instance, researchershave found that the prob-
ability density function can be uni-modal or multi-modal and the
tails of the distribution can be either short or long [2]. Unfortunately,
these characteristics cannot be encapsulated by merely the average
and the maximum power dissipation values. The following ques-
tions are frequently asked by today’s chip designers:

Q1 What is the minimum power valuex such that in y percentage
of the time the circuit power dissipation is smaller than x?

Q2 What is the peak power dissipation in the circuit?

Q3 What percentageof time powerdissipation in the circuit is be-
tween two known values x1 and x2?

In this paper, we address the problem of estimating the quantile
point in the cumulative distribution function for power dissipation
(to answer Q1 and Q2 above) and deriving the cumulative distri-
bution function itself (to answer Q3). We assume that an input se-
quence is given. The given sequenceis first broken into consecutive
vector pairs and these consecutive vector pairs constitute the pop-
ulation for the estimation. The power consumption of each vector
pair is regarded as a random variable.

For � 2 (0; 1), �-quantile point of a cumulative distribution
function is the value where the cumulative distribution function eval-
uates to �. For estimating a single quantile point in the cumulative
probability function, we can use order statistics of a simple random
sample. However, the efficiency of this approach is rather low. We
thus propose two techniques: population pruning and stratified ran-
dom sampling to improve the efficiency. The objective of popula-
tion pruning is to remove those units from the population that are
not in the quantile interval of interest. Stratified random sampling
partitions the population into two strata: one for those units which
are likely to reside above the quantile point of interest, one for those
which are likely to reside below the quantile point of interest. Both
of these techniques use the zero delay power estimate as a predictor.

The issue of estimating the cumulative probability function is
also addressed by simultaneously estimating a set of quantile points
in the cumulative probability function. The proposed techniqueuses
strata of equal weight and equal size sample allocation. We show
that the accuracy of this technique is no worse than that of simple
random sampling. Experimental results demonstrate that the pro-
posed technique provide detailed power distribution information ef-
ficiently.



The organization of this paper is as follows. Section 2 reviews
the basic concepts and background material. The problems of es-
timating a single quantile point and a set of quantile points in the
cumulative probability function are addressed in Sections 3 and 4,
respectively. Experimental results are presented in Section 5, fol-
lowed by the conclusion in Section 6.

2 Background

We are given a collection (called population),U = fu1; u2;: : : ;uNg
of objects (called units) on which some property (called character-
istic) yi is defined for each ui. For power evaluation purpose, the
unit ui is a vector pair and the characteristic yi is the power con-
sumption of a combinational circuit C under ui. In practice, if the
vector pairs is specified by a finite vector sequence of length n, we
can break the sequence into n� 1 consecutive vector pairs and the
collection of thesen�1 consecutive vector pairs becomes the pop-
ulation.

The characteristic (or power dissipation) associated with each
unit can be regarded as a random variable, denoted by X . On this
random variable, a discrete probability density function (pdf ) f(x)
and a discrete cumulative distribution function (cdf ) F (x)1 can be
defined. To simplify the presentation, we assume that these func-
tions can be approximated by continuous functions. Discrete pdfs
can be easily handled as well. When F (x) is strictly increasing,
the inverse function F

�1(x) is well defined. For � 2 (0; 1), �-
quantile point of a cdf F (x) is defined as the value x(�) such that
F (x(�)) = �, or x(�) = F

�1(�). In another words, there are ex-
act 100 � � percent of the population which have X values equal
to or smaller than �.

Let X1;X2; : : : ;Xn be a sample of n observations taken from
the population. n is referred to as the sample size. An estimator
� is a function of the random variable values on these n selected
units which is used to estimate the parameters (such as the mean
value and the quantile point, etc.) of the population. An estima-
tor is also a random variable and may take different values from
sample to sample. A confidence interval is an interval [b; c] where
the probability for the estimator value � to fall into it is �, that is,
Prob(b � � � c) = �, where � is referred to as the confidence
level. Note that the larger the confidence interval, the higher the
confidence level.

If theXi’s are sorted and ordered from the smallest to the largest
values as X(1);X(2); : : : ;X(n), then they are defined as the order
statistics of the sample. The ith element in this sorted list is referred
to as the ith order statistic of the sample, and i is the rank of this
order statistic. X(k), k = 1; 2; : : : ; n, is also a random variable
and its pdf gk(X(k)) is:

gk(X(k) = yk)

=
n!

(k� 1)!(n� k)!
[F (yk)]

k�1[1� F (yk)]
n�k

f(yk) (1)

If we define a new function Z = F (x), Z gives the quantile
value associated with power value x. The domain of Z is [0; 1].
Throughout this paper we will use [�; 
]q to denote an interval in
the quantile domain.

3 Quantile Estimation Techniques

In this section, we address the problem of estimating an �-quantile
point of cdfF (x). A straightforward approach is to use the rth or-
der statistic from a simple random sample of size n as the estimator
� for the �-quantile point. It has been shown, given a fixedn value,
the optimal r value can be approximated as [10]:

r � dn�e; (2)
1In this paper, we use lower and upper case functions to represent the pdfs and

cdfs, respectively.
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Figure 1: Scatter plot of circuit C1355.

where de denotes the ceiling function.
An empirical relation betweenn, � and� for achieving 0.99 con-

fidence level and 0:1 � � � 0:9 is derived in [11] as:

n � 6:67(
1

�
)2�(1� �): (3)

Note that given a fixed � value, n is greatest when � = 0:5 and
smallest when � is close to 0 or 1.

In the remainder of this section, we present two techniques to
improve the efficiency of quantile point estimation.

3.1 Population Pruning

Given a confidenceinterval [�;
]q , b = F
�1(�), and c = F

�1(
).
If we remove as many units with X value greater than c or smaller
than b as possible, we can improve the efficiency as explained next.
LetUM be a subsetof U such that all the units in UM haveX values
greater than c, andUm be a subset ofU such that all the units in Um
haveX values smaller than b. Û = U�UM�Um. We can derive
a more efficient estimator using the order statistics of a sample that
is drawn from Û as stated by the following Lemma.
Lemma 3.1 Let U be the original population and jU j be the num-
ber of units in the population. Let X be a random variable defined
on U. Let [�;
]q be the confidence interval and b, c, Um, UM , and
Û be defined as above. Let the new quantile of b and c on Û be �0

and 
0 , respectively, then

�
0 =

�jU j � jUmj
jÛ j

;



0 =


jU j � jUmj
jÛ j

;

and



0 � �

0 =
jU j
jÛ j

(
 � �)

For the sake of space, all proofs in this paper are omitted (see [11]
for proofs).

Since the new quantile interval has been increasedby jU j

jÛ j
, a sam-

ple with fewer observations is now needed to achieve a given confi-
dence level(cf. (3)). The required sample size to achieve 99% con-
fidence level can be calculated by first computing the new � and �
values on Û and then plugging them into (3).

In practice, this “population pruning” procedure can be accom-
plished using a predictor with predictable error bounds. Let the con-
fidence interval be [�;
]q , i = bn�c, and j = dn
e, where bc
is the flooring function. We sort the population based on predictor
values. Let the predictor values on the ith and jth units be di and
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Figure 2: Histogram of units with similar predictor values.

dj , respectively. In another word, they are the �-quantile and 
-
quantile points on the predictor domain, respectively. If the error
bounds of the predictor is [�20%; 100%], all units with predictor
values smaller than 0:8di=2 or greater than 2dj=0:8 can be removed
from the population.

The effectiveness of population pruning depends on how tight
the error bounds are. However, as the estimation procedure is statis-
tical in nature, we can never achieve 100% confidence level. While
this may seem to be a drawback, it actually relaxes the requirement
of of absolutely predictable error bounds to that of statistically pre-
dictable error bounds, which is a milder requirement.

We propose to use zero-delay power estimate as the predictor.
In the next subsection, we will investigate the relevant issues.

3.2 Zero-delay Power as a Predictors

The difference between zero-delay power and real-delay power is
due to glitches. In most practical circuits, except those circuits that
are largely based on exclusive-or gates, the glitch power only ac-
counts for an average of 20 to 30% of the real-delay power. It is
therefore intuitive that the zero-delay power estimate is a good pre-
dictor.

To demonstrate this result more clearly, we show the scatter plot
of real-delay power vs zero-delay power of a vector sequence of
40,000 cycles in Figure 1. The vector sequence consists of 100 sub-
sequences in which the transition probabilities of each circuit input
are incrementally changed from 1/101 to 100/101 with 1/101 incre-
ment. This will ensure a better range coverage of power dissipa-
tion as will be explained in the section of experimental results. The
scatter plot shows an approximately linear correlation between the
two power estimates. That is, from the prospective of linear regres-
sion models, the relation between real-delay power, X, and the zero-
delay power Pzd, is

X = kPzd + e (4)

where k is the fitting constant and e is the fitting error. e is also re-
ferred to as the residue. Since k does not change the order relation
in the power dissipation, we need to only consider the impact of e.

In a good regression model, e will resemble a bell-shaped func-
tion with short tails. Indeed this is the case when using zero-delay
power estimate as a predictor. In Figure 2, we plot the histogram
of real-delay power of all clock cycles in which the predictor val-
ues, or zero-delay power, falls in [8.6mW, 8.7mW]. The confidence
level of the residue can be formally analyzed as in [12] if standard
deviation � of e is known. When � of e is not available, our rule of
thumb is to set the lower and upper pruning bounds for � = 0:01 to
0:6di and 1:6dj , respectively. This is equivalent to a [-44%, -15%]
error bound. When the required accuracy level is higher, these two
numbers are set to be wider. While this may seem to be a very loose
bound for Figure 2, we should note that units whose predictor values
are around di or dj have the largest effect on the estimation accu-

(a) The original pdf f(x).

f(x)

xα

xα

f1(x)

(b) The pdfs of the strata.

xα

f2(x)

f1 is the pdf of the first stratum

f2 is the pdf of the second stratum

Figure 3: An example of stratification.

racy. The farther the predictor values are from from di or dj , the
less likely those units will affect the estimation accuracy. We also
found Figure 2 applies to multipliers and adders as well except that
the curve is shifted to right due to higher glitch activity in these cir-
cuits.

3.3 Stratified Sampling (STS)

Another technique to improve the efficiency is based on stratified
sampling [13]. In stratified sampling, the population is first parti-
tioned into a number of disjoint subpopulations, called strata, of
known weights (representing the percentage of units in the strata).
Then a predetermined number of units are drawn from each stra-
tum. These units collectively constitute a sample. In [10], an esti-
mator for quantile points based on stratified sampling of two strata
is investigated, however, the author makes no comments about how
the strata should be designed. This is however the key problem that
must be addressed. In the following, we present a method for strat-
ifying the population into two strata to obtain the optimal estimator
for a given quantile point using zero delay power estimate as the
predictor.

Given the confidence interval [�� �;�+ �]q , the population is
stratified into two strata with weightsw1 andw2, andw1+w2 = 1.
The way we construct these two strata is as follows. We first sort the
population according to the predictor values. All units on the left-
hand side of the rth unit, where r = dn�e, are put in one stratum,
and remaining units in the other stratum. The reason of doing so
is that units on the left-hand side of the rth unit are likely to have
X values smaller than x� = F (�). Similarly, units on the right-
hand side are likely to have X values greater than x�. Therefore,
the units that reside in [���; �+�]q will be moved to either the up-
per quantiles of the first stratum or the lower quantiles of the second
stratum. From (3), this minimizes the required sample size.

Let the number of observations in a sample drawn from each
stratum be ni , and n1 + n2 = n. Since ni’s and wi’s could be
different, the “importance” (or weight) of the observations drawn
from each stratum should reflect this difference. Therefore, all ob-
servations from the ith stratum are assigned a weight ofwi=ni. Af-
ter the sample is sorted to form the order statistics, we sum from the
left (smallest) to right (largest) the weights of the order statistics. As
soon as this sum becomes greater than�, we stop and return the cor-
responding order statistic (which caused this) as the estimator. We



now give an example to show how the estimator is selected when
stratified sampling is applied.
Example:
Assume w1 = 0:2, w2 = 0:8, n1 = 4, n2 = 8, and � = 0:35.
Let the observations drawn from the each stratum be (1.2, 3.4, 2.7,
0.5), (0.7, 2.3, 1.4, 0.9, 1.6, 2.4, 1.5, 2.9). The order statistics from
this sample and their associated weights, when represented as a tu-
ple, are: (0.5, 0.05),(0.7, 0.1), (0.9, 0.1), (1.2, 0.05), (1.4, 0.1), (1.5,
0.1), (1.6, 0.1), (2.3, 0.1), (2.4, 0.1), (2.7, 0.05), (2.9, 0.1), (3.4,
0.05). The first order statistics with accumulated weight exceeding
� is 1.4, therefore � = 1:4.

The main difference between this technique and population prun-
ing is: 1) no units are removed from the population; they are just
moved to different strata, and 2) the rank of the order statistic that
is used as the estimator cannot be determined in advance, that is, the
rank changes from one sample to next.

[10] suggests that if ni is allocated such that

ni / wi

p
Fi(x�)(1� Fi(x�)); (5)

one could obtain the optimal estimator, where Fi() is the cdf of the
ith stratum, and x� = F

�1(�). In practice, the difficulty of apply-
ing this criterion is thatFi(x�) is not known in advance. However,
as the population is partitioned at the �-quantile point on the pre-
dictor domain, we expect that

p
Fi(x�)(1� Fi(x�)) is approxi-

mately the same for both strata. This reduces the above criterion to
proportional allocation, i.e., n1 = nw1 and n2 = nw2.

The merit of population pruning over stratification is that the
confidence level can be calculated before sampling. If the confi-
dence level needs to be accurately calculated, stratification may not
be a good choice. On the other hand, stratification does not require
the predictor to have predictable error bounds.

3.4 Efficiency Analysis

While population pruning and stratified sampling techniquescan re-
duce the sample size when compared with simple random sampling
and thus reduce the run time of power simulation (using PowerMill
for instance), there is an overhead for these two techniques to calcu-
late the predictor. In the following, we derive the condition where
population pruning and stratified sampling techniques improve the
estimation efficiency. The relative efficiency of two sampling tech-
niques, denoted by �, is defined as the inverse ratio of the required
sample sizes in these two techniques when achieving the same con-
fidence level. Let the population size and the sample size required
by simple random sampling be N and n, respectively, and � be the
relative efficiency of population pruning (or stratified sampling) over
simple random sampling. Therefore, the required sample size in
population pruning (or stratified sampling) is n=�. In addition, let
the cost of zero delay simulation and power simulation for one clock
cycle be Czd , Cps, respectively. The population pruning (or strat-
ified sampling) technique becomes more efficient than simple ran-
dom sampling when:

nCps > NCzd + nCps=�;

� >
1

1� NCzd
nCps

:

When using PowerMill to perform power simulation, Czd
Cps

�=
1

4000
. If N = 40; 000 and n = 4; 000, � needs to be greater than

1:003.

4 Estimation of CDF F(x)

In this section, we address the problem of estimating the cdf of power
consumption. Our approach is to construct an empirical cdf F̂ (x)

F(x)

ppmax=q6pmin=q0 q1 q2 q4 q5q3

X(1) X(2) X(3)
X(4) X(5) X(6)

Figure 4: The approximation of cdf f(x).

by simultaneously estimating a set of �i-quantile points that cover
the domain [0; 1]q , e.g. �i = i=n; i = 1; ::; n � 1. If the sample
sizen is adequately large, the empirical F̂ (x)will approach the true
F (x). One may also construct F̂ (x) by estimating each quantile
point separately. This is however very inefficient when the number
of quantile points is large. The reason is that the order statistics of a
sample that is used to estimate a specific quantile point can be also
used to estimate other quantile points. This type of information is
lost when the quantile points are estimated separately.

Given a cdfF (x), sample size n, and a set of monotonically in-
creasing�i values, i = 1; : : : ; n�1. For every�i-quantile points,
we want to use the ith and (i + 1)st order statistics as the confi-
dence interval for xi = F

�1(�i). Therefore, we need to maximize
the following probability2:

Prob(X(1) < x1 < X(2) < x2 : : : < xn�1 < X(n)): (6)

4.1 Simple Random Sampling (SRS)

In the case of simple random sampling, we show that the maximum
of (6) occurs when �i = i=n, as stated in the following theorem.
Theorem 4.1 Let X(1);X(2); : : : ;X(n) be the order statistics of a
simple random sample of size n from a population U on which a
random variable X is defined. Let �k; k = 1; 2; : : : ; n � 1 be a
sequence of monotonically increasing real number between 0 and
1. Assume that F�1(x) exists and xi = F

�1(�i). Prob(X(1) <

x1 < X(2) < x2 : : : < wn�1 < X(n)) is maximized when �i =
i=n. The maximum value of this probability is n!=nn.
The above theorem implies that the order statistics can be used to
estimate a set of �i-quantile points simultaneously and it is most
efficient when �i = i=n. In Figure 4, we show the F̂ (x) con-
structed by a piece-wise linear function of the order statistics. Since
the actual quantile ofX(i) is between [(i�1)=n; i=n]q , we assume
that it is at the midpoint of [(i � 1)=n; i=n]q , that is, F (X(i)) =
i=n� 1=2n.

The efficiency of simple random sampling is not very high. More
specifically, using Sterling’s formula for n!, one can find that the
maximum value stated in the above theorem is:

n!

nn
�

p
2�n(

n

e
)n � 1

nn
=

p
2�n

en
(7)

where e is the base of natural logarithm.
One can increase sample size to improve the confidence level.

However, we have more order statistics than the quantile points. We
need to select a subset of those order statistics to bound the quantile
points in (6). Let the number of quantile points to be estimated be
n and the size of the sample be k(n+1), we can pick X(r) where
r = dk=2e+ kr; k = 1; : : : ; n, as shown in Figure 5.

In the following we present a technique based on stratified sam-
pling to improve the estimation efficiency.

2Alternatively, one can also maximize the average of the confidence levels of all
quantile points. However, the analysis is more complicated. Empirically, we found
these two confidence levels are related.
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Figure 5: Selecting order statistics for quantile bound.
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Figure 6: Stratified random sampling for distribution estimation.

4.2 Stratified Sampling (STS)

To give an intuitive motivation for using stratified random sampling
for estimating a set of quantile points, let us assume that we want to
take a sample of size 10 to estimate the �i-quantile points in incre-
ments of 1=10. In addition, let us assume that the population can
be perfectly partitioned into ten strata (using ideal predictor func-
tion) and each stratum contains all units in the population between
two consecutive quantile points (this case corresponds to the case of
perfect stratification). If we use equalallocation and take one obser-
vation from each stratum, the probability stated in (6) is 1. It is true
that this is the ideal case, and in practice, the maximum probability
of 1 is never achieved. However, we will show that the probability
obtained using STS is never less than what can be achieved using
SRS. First we give some definition on matrices.

LetA be an n�nmatrix and ai;j be the ith row and jth column
entry in A. The sum of all entries in a particular row i is referred to
as rowsum and denoted by ai� . Similarly, the sum of all entries in
a particular column is referred to as columnsum and denoted by
a�i . The permanent of A, denoted as per(A), is “the determinant
without the sign”, calculated as:

per(A) =
X

p2permu

nY

i=0

ai;p(i) (8)

Let the sample size and number of strata be n. A is a n�n matrix.
Each entry ai;j in A represents the portion of units in the ith stra-
tum that are located in jth quantile interval [(j�1)=n; j=n]q in the
original population. When drawing an observationfrom the ith stra-
tum, the probability that this observation is from quantile interval
[(j�1)=n; j=n]q is ai;j . Therefore, matrixA has the following two
properties: 1) all entries ai;j are non-negative, and 2) all column-
sums and rowsums are 1. The estimation is correct only when no
two observations are from the same quantile interval. Therefore (6)
calculates per(A).
Theorem 4.2 Let A be an n� n matrix with the following proper-
ties:

1. 0 � ai;j � 1,

2. each columnsum and rowsum is 1,
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then
n!

nn
� per(A) � 1 (9)

While the upper bound is 1, the actual confidence level depends on
the correlation between the predictor and power value. If needed,
one can also increase the sample size to further improve the confi-
dence level as in SRS. In practice, we stratify the population into
k strata with equal weights. The population is first sorted based on
predictor values. The first 1=k of the units are put in the first stra-
tum, and the second 1=k of the units are put in the second stratum,
etc. We then draw equal number of observations from each stratum.
Lastly, estimation of power distribution can be combined with av-
erage power estimation, that is, the same sample can be also used to
estimate the average power.

5 Experimental Results

The proposed techniques have been implemented in C and tested
on ISCAS85 benchmarks. We use a gate level simulator to calcu-
late the actual power and a bit-parallel zero delay power simulator
as the predictor. The main objective of the experiments presented
in the following is to compare the relative efficiency (in terms of re-
quired sample size) of the proposed techniques vs. simple random
sampling.

The circuits are mapped to a library with NAND, NOR, inverter
and XOR gates. We test on two types of populations of size 40; 000.
One is comprised of random vectors with 0.5 signal and transition
probabilities, and will be referred to as the random sequences. An-
other one is a mixture of random vectors with 0.5 signal probability
but variable transition probabilities (cf. Subsection 3.2), and will be
referred to as the biased sequences. Typical distributions of these
two types of sequences are as shown in Figure 7. The distribution
under the random sequence has a narrower distribution as, under
the random condition, only a small range of input switching is ex-
ercised. For instance, for a 32-input circuit, 95% of the vectors has
input switching in the range of [11,21]. As a result, the power dis-
sipation is more homogeneous.

In the first set of experiments, we apply the proposed techniques
to estimate �-quantile points, where � 2 f0:1;0:5;0:9g, with ab-
solute error and confidence levels of 0:01, and 0:99, respectively.
More experimental results can be found in [11]. In all of our ex-
periments, the error levels (or confidence intervals) are defined on
the quantile domain. We perform 1000 experiments for each circuit
and quantile point combination. Table 1 lists the results using only
population pruning on the biased sequences. The random sequences
are not listed here, because only less than 2% of the population is
pruned. The pruning criterion is such that all units with zero de-
lay power estimates smaller than 0:6di , or greater than 1:6dj , are
removed, except for C432 in which we set the values to be 0:6di



Table 1: Results of population pruning on the biased sequences,
1000 experiments.

�

0.1 0.5 0.9
ckts n err � n err � n err �

C432 228 0.5 26.0 10222 0.8 1.6 4023 0.5 1.5
C880 213 0.8 27.9 7784 1.7 2.1 3064 0.9 1.9

C1355 707 0.5 8.4 10462 1.6 1.6 3996 0.6 1.5
C1908 412 1.3 14.4 9884 1.0 1.6 3608 1.0 1.7
C2670 273 0.7 21.8 8963 0.7 1.8 3550 0.8 1.7
C3540 179 1.2 33.3 9180 0.9 1.8 3627 1.4 1.6
C5315 328 1.0 18.1 9453 1.4 1.7 3801 0.8 1.6
C6288 793 1.2 7.5 11858 0.9 1.4 4421 0.9 1.3
C7552 302 1.2 19.7 8867 0.9 1.8 4013 0.8 1.5

avg 19.7 1.7 1.6

Table 2: Results of combining population pruning and stratified
sampling on random sequences, 1000 experiments.

�

0.1 0.5 0.9
ckts n err � n err � n err �

C432 4700 0.7 1.3 12500 1.8 1.3 4400 2.2 1.3
C880 4100 0.3 1.5 12300 1.0 1.3 4200 2.2 1.3

C1355 4600 1.7 1.3 12800 1.2 1.3 4600 0.9 1.3
C1908 4600 1.1 1.3 12700 1.6 1.3 4600 2.5 1.3
C2670 4700 0.3 1.3 12800 0.9 1.3 4700 0.7 1.3
C3540 4600 1.1 1.3 12700 0.8 1.3 4600 1.4 1.3
C5315 4700 1.4 1.3 12800 1.2 1.3 4700 1.2 1.3
C6288 4700 0.5 1.3 12800 0.8 1.3 4700 1.0 1.3
C7552 4700 0.1 1.3 12800 0.2 1.3 4700 1.4 1.3

avg 1.3 1.3 1.3

and 2dj , respectively (cf. Subsection 3.1). The ’err’ columns list
the percentage of the experiments that violate the error level. Some
of those errors are slightly greater than 1%, mainly because the error
bounds on the predictor are not tight. The required sample size for
simple random sampling can be found from (3). The ’�’ columns
list the relative efficiency of population pruning over simple random
sampling as defined in Subsection 3.4.

Next, we combine population pruning with stratified sampling.
Unlike population pruning technique, stratified sampling cannotpre-
dict the required sample size in advance. The way that we conduct
this set of experiments is to try different n values until it achieves
approximately 0:99 confidence level. Then we compare the n val-
ues to get the relative efficiency. The results are summarized in Ta-
ble 2 and Table 3. It shows that stratified sampling can further re-
duce the required sample size. The reason for � to be smaller on
random sequences is that the variances of the power dissipations on
this type of sequences are not high. Therefore the correlations be-
tween actual power and the predictor is lower than those on the bi-
ased sequences.

For estimating the cdfs, we set the quantile increments to 1=50,
which correspond to an error level of 0:01. The confidence level is
0:99. This is the average confidence levels of all 50 quantile points.
The number of experiments and strata are set to 1000 and 500, re-
spectively. Since we cannotpredict the required sample size in strat-

Table 3: Results of combining population pruning and stratified
sampling on biased sequences, 1000 experiments.

�

0.1 0.5 0.9
ckts n err � n err � n err �

C432 100 0.3 60 7500 0.9 2.2 4000 1.0 1.5
C880 100 0.1 60 4500 0.4 3.6 2800 0.6 2.1

C1355 400 0.5 15 7500 0.3 2.2 3500 0.7 1.7
C1908 250 0.9 24 7200 1.0 2.3 3600 1.2 1.7
C2670 100 0.4 60 4000 0.2 4.2 2400 1.0 2.5
C3540 100 0.6 60 5000 1.0 3.3 3300 0.8 1.8
C5315 150 1.0 40 4000 0.1 4.2 3200 0.8 1.9
C6288 450 0.8 13 6000 0.6 2.8 3600 1.2 1.7
C7552 100 0.8 60 4000 0.4 4.2 3500 1.1 1.7

avg 44 3.2 1.8

Table 4: Results of 1,000 experiments on distribution estimation.
random sequence biased sequence

n n

circuit SRS STS � SRS STS �

C432 13000 9500 1.37 13000 6000 2.16
C880 12500 7500 1.66 13000 4000 3.25

C1355 13000 10000 1.30 13000 6000 2.16
C1908 13000 10500 1.24 12500 6500 1.92
C2670 12500 7000 1.78 12500 2500 5.00
C3540 12500 8500 1.47 13000 4500 2.88
C5315 12500 9500 1.32 13000 3200 4.06
C6288 12500 9000 1.39 13000 4500 2.89
C7552 12500 6000 2.08 13000 3500 3.71

avg 1.66 3.11

ified sampling in advance, we try different n values until it achieves
the confidence level, i.e. the average error violation rate is less than
0:01. The results are listed in Table 4. Again the improvement of
STS on biased sequences is better than that on random sequences.

6 Conclusion

In this paper, we have proposed to use quantile points of the cumu-
lative distribution function for power consumption to provide infor-
mation about the power distribution. We proposed two technques:
population pruning and stratified sampling, both of which are based
on a low cost predictor. The experimental results showed that the
proposed techniques provide detailed power distribution informa-
tion efficiently.
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