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The Need for Approximation in Relational
Databases

• Relational database technology not directly applicable to real-time or time-constrained
data processing environments

• Problems with traditional relational databases:

– cannot be fed real-time data because of monolithic nature

– software is very large with lots of components: concurrency control, optimization

– heavily utilizes secondary storage

• Possible solution: main memory databases

– need to fit all data in memory to avoid secondary storage altogether

– even with all data in memory exact query processing is still expensive
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Approximate Query Processing: Sampling
Approach

• Select a sample from the database

• Use the sample to construct a synthetic response to the requested query

– construct a statistical approximation of query responses

• Focus of the paper:

– use sampling to determine consistent and unbiased estimators for the query results

– focus only on queries of the form COUNT(E) with E an relational algebra expression

– E is allowed to contain on, ∩, ∪, −, σ and π

∗ All operators have set semantics (no duplicates)

• No knowledge about the distribution of the data is assumed
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Statistical Estimators

Notation:

• Ψ: parameter of interest – population mean

• Ψ̂: estimate of parameter Ψ computed from the sample – guess for the real Ψ

Unbiased Estimator:

• Ψ̂ is called an unbiased estimator of Ψ if E[Ψ̂] = Ψ for all values of Ψ

• If Ψ̂ is not unbiased,
bias(Ψ̂) = E[Ψ̂]−Ψ

• The Mean Square Error of estimator Ψ̂ is defined as:

MSE(Ψ̂) = E(Ψ̂−Ψ)2)

= Var(Ψ̂)+(bias(Ψ̂))2

= Var(Ψ̂) if Ψ̂ unbiased

Consistent Estimators: Ψ̂ is consistent if Ψ̂ → Ψ when the number of samples goes
to infinity (or all tuples in database here)
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Statistical Estimators (cont)

• All estimates have error – sample size is finite

– have to estimate the error of the estimator

– confidence bounds: interval around estimate in which the true value lies with high
(prescribed) probability

Determining Confidence Intervals:

• Idea: Ψ̂ is usually an average or sum of averages

– Central limit theorem ⇒ distribution of Ψ̂ is normal

– if Ψ̂ is unbiased and Var(Ψ̂) is known than the confidence interval is

E[Ψ̂]±z×
√

Var(Ψ̂)

where z is the value for N(0,1) that corresponds to the desired confident interval

• If Ψ̂ is not normally distributed

– can use Chebyshev’s theorem to give pessimistic, distribution independent bounds
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ESTIMATE COUNT(E) Algorithm

• Input: an arbitrary relational algebra expression E

• Output: an estimate of COUNT(E)

1. Push projection inside union. For term Ei

π (∪mEim) = ∪mπ(Eim)

π(Eim) considered a relation

2. Transform E into E1φ1. . . φn−1En with φi ∈ {∪,−} with Ei not containing these type
of operators.

3. Compute estimator Ĉj of COUNT(E) = ∑ j(±)COUNT(E′
j) using the inclusion exclusion

principle.

For each COUNT(E′
j) chose the appropriate estimator depending if E′

j contains or not
π

Return ∑ j(±)Ĉj
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Example 1: Overall Algorithm

Estimate:
COUNT(E) = COUNT(R1 on (R2−π(R3∪R4−R5)))

1.
R1 on (R2−π(R3∪R4−R5)) = R1 on (R2− ((π(R3−R5))∪ (π(R4−R5))))

2. Notation:

R∗3 = π(R3−R5)
R∗4 = π(R4−R5)

R1 on (R2−π(R3∪R4−R5)) = (R1 on R2)− ((R1 on R∗3)∪ (R1 on R∗4))

3.

COUNT(E) = COUNT(R1 on R2)−COUNT((R1 on R2)∩ ((R1 on R∗3)∪ (R1 on R∗4)))
= COUNT(R1 on R2)−COUNT(R1 on (R2∩R∗3))−COUNT(R1 on (R2∩R∗4))

+COUNT(R1 on (R2∩R∗3∩R∗4)
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Estimating COUNT(R1 on · · ·on Rn)

Idea:

• Relation R with k tuples can be mapped to a set of k points in one-dimensional space.

• Crossproducts R1×·· ·×Rn can be represented as a point in an n-dimensional space
with d1, . . . ,dn projections in each direction.

Call the mappings fi()̇

• Natural join and intersection (particular form or natural join) can be represented as a
subset of all the possible points in this space.

• Alternative: assign value 1 to each point p( f1(t1), . . . , fn(tn)) if (t1, . . . , tn)∈R1 on · · ·on
Rn and 0 otherwise.

COUNT(E) = number of 1s in the mapping

To solve this subproblem it is enough to estimate the number of 1s.
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Estimating number of 1s

Notation:

• Ni number of tuples in Ri

• N = N1×·· ·×Nn

• Assume points are numbered p1 . . . pN (any enumeration is fine)

• yi value 0 or 1 for point pi

• Y(E) = y1+ · · ·+yN is the total number of 1s – COUNT(E)

Estimator for Y(E): With S an uniform random sample of points in R1×·· ·×Rn

Ŷ(E) = N
∑pi∈Syi

|S|

Can show:

• Ŷ(E) is an unbiased estimator of Y(E)

•
Var(Ŷ(E)) = N2N−|S|

|S|2
∑pi∈S(yi −y)2

N−1
, y =

∑pi∈Syi

|S|
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Incorporating ∪,−,π

Operators ∪ and −: Use inclusion exclusion principle.
This can be achieved by applying transformation rules that push the operators ∩ and

− outside and then using properties of COUNT().

COUNT(R1−R2) = COUNT(R1)−COUNT(R1∩R2)

Operator π:

• Difficulty is in eliminating duplicates

• Must not count contribution of a tuple twice

• Goodman estimator: estimates number of distinct values (groups) in a relation

∑
i

Aixi

with xi the number of sample points with value i and

Ai = 1− (−1)i [N−|S|+ i−1](i)

|S|(i)

n(i) = n(n−1)(n− i +1) if i > 0, 1 otherwise
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Sampling For Aggregate Estimation

• Just need uniform samples from crossproduct spaces for the most part

• Can obtain such samples by picking random tuples in each of the participating relations

• Samples can be reused form multiple estimations

• Use nonuniform samples: make all combinations from samples from multiple relations

– Computation of variance more difficult since the samples are not iid

• Clustered sampling: sample blocks instead of tuples
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