Statistical Estimators for Relational Algebra Expressions

Wen-Chu Hou, Gultekin Ozsoyoglu and Baledo K Taneja
Presenter: Alin Dobra

January 26, 2004

The Need for Approximation in Relational Databases

- Relational database technology not directly applicable to real-time or time-constrained data processing environments
- Problems with traditional relational databases:
- cannot be fed real-time data because of monolithic nature
- software is very large with lots of components: concurrency control, optimization
- heavily utilizes secondary storage
- Possible solution: main memory databases
- need to fit all data in memory to avoid secondary storage altogether
- even with all data in memory exact query processing is still expensive

Approximate Query Processing: Sampling Approach

- Select a sample from the database
- Use the sample to construct a synthetic response to the requested query
- construct a statistical approximation of query responses
- Focus of the paper:
- use sampling to determine consistent and unbiased estimators for the query results
- focus only on queries of the form $\operatorname{COUNT}(E)$ with E an relational algebra expression
$-E$ is allowed to contain $\bowtie, \cap, \cup,-, \sigma$ and π
* All operators have set semantics (no duplicates)
- No knowledge about the distribution of the data is assumed

Statistical Estimators

Notation:

- Ψ : parameter of interest - population mean
- $\hat{\Psi}$: estimate of parameter Ψ computed from the sample - guess for the real Ψ

Unbiased Estimator:

- $\hat{\Psi}$ is called an unbiased estimator of Ψ if $E[\hat{\Psi}]=\Psi$ for all values of Ψ
- If $\hat{\Psi}$ is not unbiased,

$$
\operatorname{bias}(\hat{\Psi})=E[\hat{\Psi}]-\Psi
$$

- The Mean Square Error of estimator $\hat{\Psi}$ is defined as:

$$
\begin{aligned}
\operatorname{MSE}(\hat{\Psi}) & \left.=E(\hat{\Psi}-\Psi)^{2}\right) \\
& =\operatorname{Var}(\hat{\Psi})+(\operatorname{bias}(\hat{\Psi}))^{2} \\
& =\operatorname{Var}(\hat{\Psi}) \quad \text { if } \hat{\Psi} \text { unbiased }
\end{aligned}
$$

Consistent Estimators: $\hat{\Psi}$ is consistent if $\hat{\Psi} \rightarrow \Psi$ when the number of samples goes to infinity (or all tuples in database here)

Statistical Estimators (cont)

- All estimates have error - sample size is finite
- have to estimate the error of the estimator
- confidence bounds: interval around estimate in which the true value lies with high (prescribed) probability

Determining Confidence Intervals:

- Idea: $\hat{\Psi}$ is usually an average or sum of averages
- Central limit theorem \Rightarrow distribution of $\hat{\Psi}$ is normal
- if $\hat{\Psi}$ is unbiased and $\operatorname{Var}(\hat{\Psi})$ is known than the confidence interval is

$$
E[\hat{\Psi}] \pm z \times \sqrt{\operatorname{Var}(\hat{\Psi})}
$$

where z is the value for $N(0,1)$ that corresponds to the desired confident interval

- If $\hat{\Psi}$ is not normally distributed
- can use Chebyshev's theorem to give pessimistic, distribution independent bounds

ESTIMATE_COUNT(E) Algorithm

- Input: an arbitrary relational algebra expression E
- Output: an estimate of $\operatorname{COUNT}(E)$

1. Push projection inside union. For term E_{i}

$$
\pi\left(\cup_{m} E_{i m}\right)=\cup_{m} \pi\left(E_{i m}\right)
$$

$\pi\left(E_{i m}\right)$ considered a relation
2. Transform E into $E_{1} \phi_{1} \ldots \phi_{n-1} E_{n}$ with $\phi_{i} \in\{\cup,-\}$ with E_{i} not containing these type of operators.
3. Compute estimator \hat{C}_{j} of $\operatorname{COUNT}(E)=\sum_{j}(\pm) \operatorname{COUNT}\left(E_{j}^{\prime}\right)$ using the inclusion exclusion principle.
For each $\operatorname{COUNT}\left(E_{j}^{\prime}\right)$ chose the appropriate estimator depending if E_{j}^{\prime} contains or not π
Return $\sum_{j}(\pm) \hat{C}_{j}$

Example 1: Overall Algorithm

Estimate:

$$
\operatorname{COUNT}(E)=\operatorname{COUNT}\left(R_{1} \bowtie\left(R_{2}-\pi\left(R_{3} \cup R_{4}-R_{5}\right)\right)\right)
$$

1.

$$
R_{1} \bowtie\left(R_{2}-\pi\left(R_{3} \cup R_{4}-R_{5}\right)\right)=R_{1} \bowtie\left(R_{2}-\left(\left(\pi\left(R_{3}-R_{5}\right)\right) \cup\left(\pi\left(R_{4}-R_{5}\right)\right)\right)\right)
$$

2. Notation:

$$
\begin{aligned}
& R_{3}^{*}=\pi\left(R_{3}-R_{5}\right) \\
& R_{4}^{*}=\pi\left(R_{4}-R_{5}\right)
\end{aligned}
$$

$$
R_{1} \bowtie\left(R_{2}-\pi\left(R_{3} \cup R_{4}-R_{5}\right)\right)=\left(R_{1} \bowtie R_{2}\right)-\left(\left(R_{1} \bowtie R_{3}^{*}\right) \cup\left(R_{1} \bowtie R_{4}^{*}\right)\right)
$$

3.

$$
\begin{aligned}
\operatorname{COUNT}(E)= & \operatorname{COUNT}\left(R_{1} \bowtie R_{2}\right)-\operatorname{Count}\left(\left(R_{1} \bowtie R_{2}\right) \cap\left(\left(R_{1} \bowtie R_{3}^{*}\right) \cup\left(R_{1} \bowtie R_{4}^{*}\right)\right)\right) \\
= & \operatorname{CounT}\left(R_{1} \bowtie R_{2}\right)-\operatorname{COUNT}\left(R_{1} \bowtie\left(R_{2} \cap R_{3}^{*}\right)\right)-\operatorname{CounT}\left(R_{1} \bowtie\left(R_{2} \cap R_{4}^{*}\right)\right) \\
& +\operatorname{COUNT}\left(R_{1} \bowtie\left(R_{2} \cap R_{3}^{*} \cap R_{4}^{*}\right)\right.
\end{aligned}
$$

Estimating $\operatorname{COUNT}\left(R_{1} \bowtie \cdots \bowtie R_{n}\right)$

Idea:

- Relation R with k tuples can be mapped to a set of k points in one-dimensional space.
- Crossproducts $R_{1} \times \cdots \times R_{n}$ can be represented as a point in an n-dimensional space with d_{1}, \ldots, d_{n} projections in each direction.
Call the mappings $f_{i}(\dot{)}$
- Natural join and intersection (particular form or natural join) can be represented as a subset of all the possible points in this space.
- Alternative: assign value 1 to each point $p\left(f_{1}\left(t_{1}\right), \ldots, f_{n}\left(t_{n}\right)\right)$ if $\left(t_{1}, \ldots, t_{n}\right) \in R_{1} \bowtie \cdots \bowtie$ R_{n} and 0 otherwise.

$$
\operatorname{COUNT}(E)=\text { number of } 1 \mathrm{~s} \text { in the mapping }
$$

To solve this subproblem it is enough to estimate the number of 1 s .

Estimating number of 1 s

Notation:

- N_{i} number of tuples in R_{i}
- $N=N_{1} \times \cdots \times N_{n}$
- Assume points are numbered $p_{1} \ldots p_{N}$ (any enumeration is fine)
- y_{i} value 0 or 1 for point p_{i}
- $Y(E)=y_{1}+\cdots+y_{N}$ is the total number of $1 \mathrm{~s}-\operatorname{COUNT}(E)$

Estimator for $Y(E)$: With S an uniform random sample of points in $R_{1} \times \cdots \times R_{n}$

$$
\hat{Y}(E)=N \frac{\sum_{p_{i} \in S} y_{i}}{|S|}
$$

Can show:

- $\hat{Y}(E)$ is an unbiased estimator of $Y(E)$

$$
\operatorname{Var}(\hat{Y}(E))=N^{2} \frac{N-|S|}{|S|^{2}} \frac{\sum_{p_{i} \in S}\left(y_{i}-\bar{y}\right)^{2}}{N-1}, \quad \bar{y}=\frac{\sum_{p_{i} \in S} y_{i}}{|S|}
$$

Incorporating $\cup,-, \pi$

Operators \cup and -: Use inclusion exclusion principle.
This can be achieved by applying transformation rules that push the operators \cap and - outside and then using properties of $\operatorname{COUNT}()$.

$$
\operatorname{CounT}\left(R_{1}-R_{2}\right)=\operatorname{Count}\left(R_{1}\right)-\operatorname{Count}\left(R_{1} \cap R_{2}\right)
$$

Operator π :

- Difficulty is in eliminating duplicates
- Must not count contribution of a tuple twice
- Goodman estimator: estimates number of distinct values (groups) in a relation

$$
\sum_{i} A_{i} x_{i}
$$

with x_{i} the number of sample points with value i and

$$
A_{i}=1-(-1)^{i} \frac{[N-|S|+i-1]^{(i)}}{|S|^{(i)}}
$$

$$
n^{(i)}=n(n-1)(n-i+1) \text { if } i>0,1 \text { otherwise }
$$

Sampling For Aggregate Estimation

- Just need uniform samples from crossproduct spaces for the most part
- Can obtain such samples by picking random tuples in each of the participating relations
- Samples can be reused form multiple estimations
- Use nonuniform samples: make all combinations from samples from multiple relations
- Computation of variance more difficult since the samples are not iid
- Clustered sampling: sample blocks instead of tuples

