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Statistical evaluation of toxicological bioassays –
a review

Ludwig A. Hothorn

The basic conclusions in almost all reports on new drug applications and in all publications in toxicology

are based on statistical methods. However, serious contradictions exist in practice: designs with small

samples sizes but use of asymptotic methods (i.e. constructed for larger sample sizes), statistically signifi-

cant findings without biological relevance (and vice versa), proof of hazard vs. proof of safety, testing (e.g.

no observed effect level) vs. estimation (e.g. benchmark dose), available statistical theory vs. related user-

friendly software. In this review the biostatistical developments since about the year 2000 onwards are

discussed, mainly structured for repeated-dose studies, mutagenicity, carcinogenicity, reproductive and

ecotoxicological assays. A critical discussion is included on the unnecessarily conservative evaluation pro-

posed in guidelines, the inadequate but almost always used proof of hazard approach, and the limitation

of data-dependent decision-tree approaches.

1 Principles

Toxicology is a broad scientific field ranging from human
exposure to toxicogenomics. This review article describes only
the statistical evaluation of standardized in vitro and in vivo
bioassays in both regulatory and environmental toxicology.

Actually, these bioassays have the goal of proving the harmless-
ness of a test substance. Statistical significance tests are
mainly used, but also estimation methods, such as the bench-
mark dose concept. Both techniques are discussed here with
emphasis on the former. In bio-medical research, a distinction
should be made between tests of effectiveness and tests on
equivalence (two-sided alternative) or non-inferiority (one-
sided alternative) in general. The former proof of hazard is
mostly confined to common text books and statistical software,
while the latter, the proof of safety, is rare in the literature. In
this review, the first approach is discussed in regulatory toxico-
logy, the second in environmental toxicology. This review takes
into account publications from about 2000 onwards, only a few
(selected) older ones.

On the basis of a randomly selected recently-published
example,1 the main statistical problems are illustrated by five
questions. In their Fig. 4B the mean red fluorescence intensity
of different doses of 2,4-D (a common herbicide) are compared
with a negative and a positive control to demonstrate potential
lung toxicity in A549 and WI38 cell lines. Data are presented
as the means of at least three independent experiments (tripli-
cated within independent samples) with standard error of the
mean (SEM). Statistical analysis of data was done by one-way
analysis of variance (ANOVA), followed by Student Newman
Keuls (SNK) test using Sigma plot 11.0 software. A p value
<0.05 was considered to be statistically significant and gene-
rate a star in their figure.

Five questions arise here: (1) are the stars as signs of signifi-
cance appropriate?, (2) are the statistical tests (ANOVA, SNK-
test) appropriate for these data (variances, sample sizes, distri-
bution)?, (3) do these tests take the specific design into
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account (technical replicates within independent experiments,
negative and positive control)?, (4) are the tests appropriately
chosen for the experimental question?, and (5) is a proof of
hazard or a proof of safety appropriate?

Unfortunately, the raw data are not available and therefore
not all of these questions can be answered exhaustively.

(1) Although widely used, stars provide neither the magni-
tude of statistical significance nor any information concerning
biological relevance of the findings, but confidence intervals
do.2

(2) The SNK-test is a two-sided all-pairs multiple test assum-
ing normally distributed errors with homogeneous variances.
However, needed is a multiple test for decreasing trend against
negative control, e.g. Williams trend test3 (see more details in
section 3.2) and a non-inferiority test against the positive
control,4 but no global ANOVA pre-test.5

(3) The idea of independent experiments is to demonstrate
reproducibility and the randomized unit are the triplicated
samples. Both bar-charts and statistical test seems to be incor-
rect from this perspective. Moreover, the sample size of ni = 3
was arbitrarily chosen.

(4) They want to know whether there is a trend, which con-
centrations have significantly lower intensities, which is the
minimum effective concentration and whether this concen-
tration lowered relevantly the effect with respect to the positive
control.

(5) As with this experiment will be shown that these cell
lines have a specific effect related to lung toxicity, the approach
is correct and controlling the familywise error rate is appropri-
ate. Even with this small example, several statistical pitfalls
become apparent. Therefore, experimental design and evalu-
ation of toxicological studies should be carefully carried out,
since the aim is statistically significant and biologically rele-
vant results on toxicity or harmlessness.

In the following, the statistical methods are discussed,
structured for toxicological assays and methodological issues.

Following the evaluation of the most important books and
guideline, the five important types of assay are discussed in
detail, followed by some specific methods (kinetics, genomics,
behavioral tests, benchmark dose, Bayesian analysis, software).

2 Guidelines and textbooks

The conduct and evaluation of studies in regulatory toxicology
commonly follow specific recommendations of related guide-
lines. These guidelines contain lots of information, but only
few precise statements for statistical analysis and for the defi-
nition of positive, negative and equivocal results. The following
statements are common in the OECD, ICH, FDA-CDER guide-
lines: (i) When applicable, numerical results should be evaluated
by an appropriate and generally acceptable statistical method,6

(ii) The application of statistical methods can aid in data
interpretation; however, adequate biological interpretation is of
critical importance,7 (iii) … criteria for a positive result, such as
a dose-related increase …, or a clear increase in the mutant

frequency in a single dose group compared to the solvent/vehicle
control group,8 (iv) … use historical controls, e.g. for definition of
statistical significant but biologically no meaningful results (effect
… within the confidence intervals of the appropriate historical
control values),7 (v) The statistical unit of measure should be the
litter and not the pup,9 (vi) … nonparametric analysis should be
justified by considering nature of the data (transformed or not)
and their distribution,9 (vii) minimize false positive and false
negative errors,9 (viii) repeated measures should be analyzed
taking these dependencies into account,9 (ix) use survival adjust-
ments, if needed,10 (x) relevance criteria e.g. The effect occurs only
at the most toxic concentrations. In the MLA increases at 80%
reduction in RTG For in vitro cytogenetics assays when growth is
suppressed by 50%.7 Most details contains an OECD report on
statistical analysis of ecotoxicity data11 and the guidance on
statistical aspects of the design, analysis, and interpretation of
chronic rodent carcinogenicity studies.12 However, several
principles are not clear, e.g. contradiction between significance
and relevance, how to test a trend, which tests are appropriate,
test choice and data conditions.

Only a few text books on statistics in toxicology were pub-
lished in the last decade, e.g. ref. 13,14, where the latter is
focusing on the decision tree approach. Furthermore, some
chapter in toxicology textbooks on statistics are available15 (in
ref. 16).

A few interesting discussion papers on the role of statistics
in decision making from a toxicological perspective exist, e.g.
for neurotoxicity and teratogenicity,17 long-term carcinogeni-
city studies,18,19 genotoxicity,20 in vivo micronucleus assay,21

organ weights,22 repeated toxicity studies,23 and Comet
assay.24

3 Repeated-dose toxicity studies

Several types of repeated-dose toxicity studies are used,25 e.g.
the OECD-408 90 days oral study on rodents. All share a
common design (a negative control (NC) and 2–4 doses using
both sexes), different-scaled multiple endpoints (continuous …
hemoglobin; proportion … mortality rate, graded histopatho-
logical findings) and repeated measures (body weight). Gui-
dance can be found for their evaluation in the US-NPT
program,26 where the Dunnett and Williams procedure (and
their non-parametric counterparts) as well as arcsine-trans-
formation for proportions are recommended.

3.1 Dunnett or multiple t-tests?

OECD407 recommends Comparisons of the effect along a dose
range should avoid the use of multiple t-tests27 and the US-NTP26

recommends the Dunnett test. The difference between mul-
tiple t-tests against NC and Dunnett test is that the first con-
trols a comparisonwise error rate (i.e. each test at level α)
where the second controls a familywise error rate (FWER).
Both approaches represent a proof of hazard, but the first
reveals a smaller false negative rate, an important criterion in
risk assessment. From this perspective, multiple t-tests can be
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recommended, however the guidelines recommend
approaches with the control of the FWER with the conse-
quence of tolerating higher false negative rates. Both allows
the conclusion of a clear increase in any single dose group,8

but no conclusion on a dose-related trend. What is (simplified)
a Dunnett-test? As effect size it uses the difference of mean
values (hence a linear form), it focuses only on comparisons of
treatments vs. a control, the test statistics (exactly k test stat-
istics for k treatments) are similar to those of t-tests (i.e. it
assumes normally distributed errors) – with the main distinc-
tions: it uses a variance estimator over all groups (and hence
assumes variance homogeneity), it uses also a degree of
freedom from all groups (which is larger than for pairwise
comparisons, i.e. less conservative particularly for rather small
sample sizes e.g. ni = 3), it uses as critical value a quantile
from a k-variate t-distribution (instead of the uni-variate), it
allows either two-sided or one-sided tests (important for
directed pathological endpoints, such as increase of MN), and
it provides both multiplicity-adjusted p-values and simul-
taneous confidence limits.

3.2 Trend tests

Several guidelines highlight as an important criterion for a
positive result the demonstration of a dose-related trend. This
seems obvious and a simple task. But, a linear regression
model reveals reduced power for concave and convex curves;
this is the case for the widely-used Cochran–Armitage28 and
Jonckheere trend tests29 (e.g. recommended in ecotoxico-
logy11). Therefore, trend tests are needed which are sensitive to
any shapes of the dose–response relationships and take the
comparison against NC into account. The one-sided Williams
test30 fulfills these criteria. Moreover, in its generalized version
as multiple contrast test3 it provides simultaneous confidence
intervals (to claim biological relevance as an alternative to
p-values) and is available for several relevant data conditions,
namely variance heterogeneity,31 unbalanced designs,32 ratio-
to-NC comparisons,33 proportions,34,35 poly-3 estimates,36 sur-
vival functions,37 a nonparametric version,38 and multiple end-
points.39 Therefore, the Williams trend test can be seen as the
standard test in toxicology, accordingly recommended.11,26

Nevertheless, the Williams test is not a silver bullet, and
there are situations when it is suboptimal. First, the toxic
effect of some variables, e.g. liver weight, can lead either to an
increase or a decrease. Here a trend test is problematic and the
two-sided Dunnett test should be used instead.40 Second, the
Williams test allows statements about a global trend and its
pattern, but not about the effect of each particular dose com-
pared to NC.41 Again, the Dunnett’s test is suitable here.
Third, if downturn effects occur with high doses – and this is
possible due to the overdosing tendency in toxicology – the
Williams’ test may be problematic, i.e. it may not recognize a
global trend. A downturn-protected modification42 or
Dunnett’s test can be used instead – however, without the
statement of a trend.

What is a Williams-test (simplifying described)? Most argu-
ments of the Dunnett-test (see above) hold true – but it

assumes a monotone trend of arbitrary shape (i.e. it need not
be a linear trend) by weighted pooling of selected doses (see
the example in Table 1). Therefore it allows the claim for
trend, and it is more powerful when a trend exists. Generally,
power can be increased by restricting the alternative, e.g. one-
sided instead of two-sided hypothesis or order restricted
alternative instead of any-heterogeneity alternative hypothesis.
The power of the trend test is increased in comparison to an
heterogeneity test (F-test) by both restrictions one-sided and
ordered alternative hypothesis. But this restriction has a price: a
reduced robustness of the test if exactly these assumptions do
not apply. A compromise approach is the use of Dunnett,
Williams, and downturn-protected Williams tests simul-
taneously.5 At first glance, such a conservative approach seems
to be misplaced in toxicology. But the conservativity is indeed
bearable because of the high correlations between the individual
comparisons. This approach allows all statements of interest:
single comparisons with NC, global and local trends, as well as
trends only up to a certain peak dose. The complex technique of
multiple contrast tests is used, but easily available within the
R-packages multcomp43 and mratios.44 This is illustrated by an
example for the endpoint blood urea nitrogen (BUN) (in Table 1).

The smallest adjusted p-value is for the test Du2, indicating
that the outcome for the 500 mg dose is most significantly
increased over NC, but the next smallest p-value is for the test
Dt2, indicating a trend up to 500 mg (excluding 1000 mg!), i.e.
a monotone trend up to 500 mg occurs where the 250 and
125 mg dose contribute to this trend but to a lesser extent.
Notice, the p-value for comparison Du2 within Dunnett test is
marginally smaller only (7.3 × 10−07).

3.3 Decision tree approaches

In opposition to randomized clinical trials, where an a priori
defined per-protocol evaluation is common, in toxicology a

Table 1 Evaluating the blood urea nitrogen example (Data and R-Code,
see ref. 222)

Alternative Test Comparison
Adj.
p-value

Dose vs. NC Du1 1000-0 0.796
Du2 500-0 1.310−06

Du3 250-0 0.110
Du4 125-0 0.020
Du5 62.5-0 0.051

Trend vs. NC Wi1 = Du1 1000-0 See Du1
Wi2 (1000 + 500)/2-0 0.003
Wi3 (1000 + 500 + 250/3-0 0.006
Wi4 (1000 + 500 + 250 + 125)/4-0 0.004
Wi5 (1000 + 500 + 250 + 125 +

62.5)/5-0
0.004

Trend up to 500 Dt1 = Du2 500-0 See Du2
Dt2 (500 + 250)/2-0 1.110−04

Dt3 (500 + 250 + 125)/3-0 3.010−04

Dt4 (500 + 250 + 125 + 62.5)/4-0 6.510−04

Trend up to 250 Dt5 = Du3 250-0 See Du3
Dt6 (250 + 125)/2-0 0.023
Dt7 (250 + 125 + 62.5)/3-0 0.015

Trend up to 125 Dt8 = Du4 125-0 See Du4
Dt9 (125 + 62.5)/2-0 0.012

Trend up to 62.5 Dt10 = Du5 62.5-0 See Du5
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data-dependent analysis is used, commonly by decision trees.
As an example, the method description for Comet and MN
assay data analysis is used from a recently published study on
the genotoxicity of Styrene Acrylonitrile Trimer in brain, liver,
and blood cells of weanling F344 rats45: The Shapiro–Wilk test
… was used to assess normality of the vehicle control group. Data
that were normally distributed were analyzed using an indepen-
dent sample’s t-test to compare each dose level to the concurrent
control … normally distributed data were also tested for homogen-
eity of variances using the F test; for data of unequal variances,
the Welch’s approximation … was used. Data that were not nor-
mally distributed were analyzed by the Mann–Whitney test …. In
the case of equal variances, linear regression was used to test for a
dose-related trend, and Williams’ test was used to test for pairwise
differences between each treatment group and the vehicle control
group. In the case of unequal variances, Jonckheere’s test was used
to test for a linear trend and pairwise differences with the Dunn
test.

Decision trees may contain: (i) pre-test on normal distri-
bution and the use of either parametric or nonparametric
tests, (ii) pre-test on variance homogeneity and the use of
t-tests or Welch-tests or even strange parametric or nonpara-
metric tests, (iii) ANOVA pre-test before Dunnett-test, i.e. no
further testing when the ANOVA is not significant, (iv) outlier
test with conditional removing of extreme values before tests.
(Prior to statistical analysis, extreme values identified by the
outlier test of Dixon and Massey (1951) are examined by NTP per-
sonnel, and implausible values are eliminated from the ana-
lysis.26) The counterarguments are: (i) for the common small
sample sizes of ni = 3,…,10,…50 the power of Shapiro–Wilk-test
is so small that a clear decision for (it is a lack-of-fit test) or
against normal distribution is problematic,46 proposed the use
of non-parametric tests a-priori, (ii) preliminary tests of equal-
ity of variances used before a test does not control level α,47,48

and common non-parametric tests (Wilcoxon-test, Kruskal–
Wallis-test) are inappropriate for heterogeneous variances,49

see simulation results for Dunnett vs. Steel procedure,50 (iii)
conditional ANOVA-test before Dunnett-test is unnecessary,51

(iv) to eliminate extreme values by statistical arguments is an
inappropriate approach in safety risk assessment at all (this
extreme value could be the signal) and robust tests should be
used. In summary, the following can be recommended: use
always and exclusively the parametric Dunnett/Williams or the
non-parametric Steel/Shirley tests-modified for heterogeneous
variances31,38 and report that approach with the smallest
p-values (respective most distant confidence limits).

3.4 Repeated measures

Repeated measures occur commonly for body weights and
food consumptions, but in some studies hematological para-
meters were measure repeatedly at the same animal.52 To
model these dependencies within a subject correctly poses a
statistical problem. The mixed effect linear model with
random factor subject within repeated measures at the same
subject is a recent and appropriate approach.53 Body weight
growth data in repeated toxicity studies were analyzed accord-

ingly using the Dunnett procedure for the fixed effect factor
dose.54,55

3.5 Organ weights

Organ weights are used as a relevant biomarker56 and their
analysis is recommended as an important part of the risk
assessment.22,57 Common is the use of relative organ weights
as a transformed endpoint, either as ratio-to-body weight, or
conditionally as ratio-to-brain-weight, when a dose-dependent
body weight change is observed.58 However, for an unbiased
analysis of relative weights, the dependency between body and
organ weight must be linear and the linear regression fit must
go through the origin59 which is rarely the case and moreover
a time-dependency exists.60,61 Because the distribution of a
ratio-to-body endpoint is unknown, the (unadjusted) non-para-
metric confidence intervals for ratio-to-controls of relative
weights for all organ weights (and its rank sum) are compared
simultaneously.62 As an alternative the analysis of covariance
is proposed.21 However, the treatment effect can be caused by
the organ weight, the body weight or both. This violates the
independence assumption in the analysis of covariance.63,64 A
robust and easy-to-perform approach is still a challenge, i.e. be
rather careful when analyzing organ weights by either relative
weights or absolute weights or using the analysis of covariance.
The pattern of a possible dose-related change of organ weight
is of interest: either proportional to body weight or not. This
can be identified by simultaneous evaluation of absolute and
relative organ weights and a multivariate analysis.65

3.6 Pathological findings: proportions and severity-graded
findings

In some studies a basic contradiction exists between variables
which are measured precisely from a statistical perspective,
such as hemoglobin but reveal a limited predictive toxic rele-
vance, and proportions or graded histopathological findings,
with a rather small data content but a substantial predictive
value. The challenge exists to evaluate these proportions and
ordinal variables as well. Examples for proportions can be
found for mortality and tumor rates in section 5 and pro-
portions with extra-binomial variability in section 4. The par-
ticularly interesting severity-graded histopathological findings
can be analyzed by a non-parametric Williams-type procedure
allowing for tied values,38 or a generalized estimating
equations (GEE) approach for correlated ordinal multinomial
responses.66 Up to now a related application in toxicology is
missing, particularly nothing is known on the small sample
behavior of these approaches.

3.7 Using historical controls

Regulatory toxicology studies are performed routinely under
similar conditions. Therefore the information of the historical
controls can be compiled and used for statistical evaluation.67

Tumor incidence of long-term carcinogenicity studies are pri-
marily used. Establishing such a database is not trivial, even
tumor-specific heterogeneities must be considered.68 Related
reference values are used to interpret rare tumors and unex-
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pectedly high or low control group rates in a particular study.69

From a statistical perspective more interesting is the use of
both historical and concurrent control rates jointly within a
trend test, starting with a modification of the Cochran–Armi-
tage28 trend test,70,71 using a Bayesian approach,72 for poly-3
estimates73,74 and to estimate simultaneous confidence inter-
vals for Dunnett- and Williams-type tests.75 The impact of the
historical control rate on the test decision is larger when the
difference to the concurrent rate is large, the heterogeneity
between the historical studies is small, their sample sizes are
large and the number of historical studies is large.76 However,
the number of available historical studies depends on various
facts, not necessarily related to decision making. Therefore, a
simplified Williams-type approach taking only the mean of
historical controls into account was recently proposed.77 More-
over, the use of reference values for continuous endpoints
would be helpful as well.78

3.8 Comparison against positive control

Some guidelines, e.g. for transgenic rodent somatic and germ
cell gene mutation assays8 recommend the use of a positive
control (PC): Concurrent positive control animals should nor-
mally be used…. The doses of the positive control chemicals
should be selected so as to produce weak or moderate effects that
critically assess the performance and sensitivity of the assay. Stat-
istically assay sensitivity can be demonstrated by a superiority
test of PC vs. NC. A more important use of PC is seldom
addressed: the magnitude of a significant dose group can be
identified by a k-fold non-inferiority or even superiority claim
against PC. Just significant effects without any biological rele-
vance occur sometimes in toxicological assays, e.g. because of
variance underestimation or a negligible effect magnitude. As
an example the number of micronuclei of four doses of hydro-
quinone, a NC and as PC 25 mg kg−1 cyclophosphamide,79 see
the box-plots in Fig. 1. To keep the problem simple, we
assume normally distributed errors and use unadjusted lower
confidence limits for ratio-to-NC and ratio-to-PC (because an
increase of MN is a potential toxic effect).

In Table 2 the 95% confidence lower limits (ll) of k-fold
changes vs. NC and PC are provided. In the last row assay sen-

sitivity PC-to-NC is claimed (at least 592%). As long the ll > 1
the test against NC is significant. The question arises whether
the increase of at least 67% is already biologically relevant (see
also the box-plots in Fig. 1). Without an a-priori defined rele-
vance threshold, e.g. 2-fold rule, it is difficult to answer.
Because the 50 mg kg−1 dose reveals only at least 17% of the
effect of PC, it might be characterized as statistically signifi-
cant but biological not relevant. If a series of historical assays
under comparable conditions is available, the historical NC
and PC data can be used for a more robust estimate of the con-
current NC and PC.80

3.9 Power

In both clinical efficacy trials and toxicological assays hypo-
thesis tests are used to claim treatment effects. However, a
unfortunate situation exists: while in the ICH E9 guideline81

(in section 2.5), the a-priori choice of a sample size by a power
approach with maximum false positive rate of 5% and false
negative rate of 20% (i.e. a power of 80% to detect an effect of
a given magnitude) is explicitly formulated, such clear require-
ments are missing in related toxicology guidelines. This is par-
ticularly curious since in the commonly used proof of hazard
approach, some control of the false negative rate ( f−) is poss-
ible only via a particular choice of sample size. Notice power is
defined to π = 1 − f−. For most “regulatory” bioassays a
minimal sample size is defined in the guidelines, e.g. at least
triplicates in the Ames assay. To follow these recommended
sample sizes guarantees some comparability of the false nega-
tive rates, even when they are too high. No recent publications
were found where the choice of sample sizes is justified by a
statistical power approach even though it has been stated:
When confirming an effect of known size, it is considered best
practice to estimate before conducting the experiments what
sample size is needed to ensure statistical power of detection.82

On the other hand, the post-hoc power approach (i.e. power
estimated from the experimental means, standard deviation
and sample sizes) is used sometimes, e.g. for brain weights in
pesticide neurotoxicity testing83 or cynomolgus monkey as a
model in developmental toxicity.84 Particularly in studies with
multiple endpoints and the same false positive rate of 5%
rather different false negative rates for inherently equal sample
sizes occur because of different variances, scales, distri-
butions, spontaneous rates in tumor proportions, etc. A
sample size of ni = 10 can cause a rather small false negative
rate for body weight (continuous, normal distribution, small
variance), but an unacceptably one for graded histopathologi-

Table 2 k-fold change vs. NC and PC (Data and R-Code, see ref. 222)

Dose
ll k-fold
change NC

k-fold
change PC Conclusion

30 0.99 0.10 Not significant, not relevant
50 1.67 0.17 Significant, not relevant
75 3.68 0.37 Significant and relevant
100 5.48 0.55 Significant and relevant
PC 5.92 — Significant and relevant

Fig. 1 Boxplots for micronucleus assay.
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cal findings (ordered categorical data). It can be that body
weight changes may be much less predictive than an increase
in severity of a selected histopathological finding. Nowadays,
the challenge is to increase predictivity of a multi-tiered
approach while minimizing the number of animals within a
particular bioassay.85 A specific aspect of power is the determi-
nation of randomized units (e.g. animals) and technical repli-
cates (e.g. number of scored cells86).

One insufficiently solved issue is the appropriate choice of
the sample size with respect of the main goal of toxicology
be confident in negative results, especially in non-regulatory
toxicology. Notice, the commonly used p-value is not an appro-
priate measure of evidence in those studies with arbitrarily
chosen ni. To put it straight: the smaller ni, the more likely the
claim for “safety” (negative outcome) (when using the
common proof of hazard approach).

3.10 Multivariate analysis

The large number of multiple endpoints in some studies, such
as hematology in repeated-dose studies or tumors in carcino-
genicity studies, suggests a multivariate analysis instead of the
common separate per-endpoint analysis. However, multivariate
approaches are used in toxicology mainly over several chemi-
cals (e.g. their structural alerts) and over bioassays87 or in
gene-expression analysis88,89 for prediction purposes. A com-
monly used approach is the principal component analysis
(PCA) where the high dimensionality is reduced into a few
components by linear combinations of the raw variables.90

Several conditions should be fulfilled, see a recent overview91 –

difficult to verify on the basis of real data. Related robust solu-
tions for designs with small sample sizes, e.g. using sparse
PCA92,93 may be helpful. PCA analysis for multiple endpoints
within a single bioassay was described for immunotoxico-
logical endpoints,94 organ weights65 and a Dunnett-type
approach.95 Multivariate trend tests are available as well, an
extension of the Williams trend test (see section 3.2),39 or the
nonparametric test on multivariate stochastic order,96 or for
multivariate binary data (such as multiple tumors).97 Notice,
these tests represent max-tests over the multiple endpoints
and are consequently more conservative with higher dimen-
sionality, which may be counterintuitive in safety assess-
ment.98 To find appropriate multivariate tests for the small-
sample size designs, the high dimension and the different
scales (continuous, ordinal, binary) in more complex than one-
way layouts are is still a challenging problem.

4 In vivo and in vitro mutagenicity
assays

Both in vivo and in vitro mutagenicity assays are used in regu-
latory toxicology, such as micronucleus,99 local lymphnode,100

Ames salmonella,101 and Comet assay.24 What is specific in
the statistical evaluation of mutagenicity assays?

First, in almost all assays a single endpoint is used, e.g. the
number of micronuclei. Therefore, for specific assays relevance

thresholds can be defined more easily, e.g. the 2-fold rule102 or
1.5-fold for cellularity in BALB/c mice local lymph node
assay.103 The concept of a relevance threshold represents an
alternative to the usual p-value criterion as a measure for a
positive assay. The common use of p < 0.05 as a criterion leads
to the contradiction between statistical significance and bio-
logical relevance. On the other hand, the use of a relevance
threshold to classify single or mean values ignore their uncer-
tainty. Therefore, the combination of both concepts, i.e. rele-
vance threshold and statistical uncertainty is appropriate but
missing as a criterion for a positive assay.100 To some extent,
this concept is now available by the non-inferiority test with an
80% threshold in the significant toxicity approach104 for
selected aquatic assays. Decision making in regulatory toxico-
logy would be substantially improved if a consensus about
assay- and endpoint-specific thresholds were published.

Second, proportions and counts are almost always used as
endpoints. Based on the raw data a decision is needed
whether to analyze proportions or counts. In case the number
of polychromatic cells is constant (e.g. 1000 in ref. 105) the
number of micronuclei should be analyzed as counts. If they
vary (e.g. from 9776 to 15 154 in ref. 106), proportions should
be used. Furthermore, a decision is needed whether to analyze
the proportions summarized per treatment group, i.e. as 2 by k
table by CA-trend test for % transformed colonies in the SHE
cell transformation assay,107 or still individualized (i.e. pro-
portion for each animal) as overdispersed proportions.99 Most
endpoints represent a pathological process, such as the
number of micronuclei, and therefore zero or near-to-zero
counts or proportions in NC may occur.80 The choice between
a generalized linear model,100 a generalized linear mixed
model,108 and endpoint transformation methods77 depends
also on the extremely small sample sizes used, e.g. triplicates
in the Ames assay.

Third, the concentrations used in in vitro assays are com-
monly arbitrary in relation to human exposure to some extent
and therefore a tendency of overdosing with possible downturn
effects at high doses may occur. When claiming an increasing
trend this phenomenon should be considered, e.g. by a down-
turn-protected Williams trend test.42

Fourth, the use of positive and negative historical controls
is quite common. Their analysis is described in sections 3.1
and 3.8.

Fifth, in some assays hierarchical designs are used with
technical replicates. A particular example is the Comet assay,
where the compound is administered in commonly three
doses (plus a non-zero NC, plus a positive control) at com-
monly ni = 10 animals. From multiple organs, tissues are har-
vested into a cell suspension where commonly three samples
are used for a gel which are investigated together in runs for
electrophoresis, where several measurements (e.g. tail length
of a Comet-shaped structure, or tail intensity) are available for
commonly 50 cells per gel. This hierarchical design Dose ≻
Animal ≻ Organ ≻ Tissue ≻ Sample ≻ Run ≻ Gel ≻ Cells itself is
complicated. A simple transformed endpoint (mean across
replicate gels of the median of the log tail intensities) is pro-
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posed for evaluation in a pseudo one-way layout by the Wil-
liams procedure.24 Interesting is the shape of distribution
(namely rather right skewed), and its dose-dependency
(namely more higher values with higher doses), for all four
endpoints (particularly for % – tail length) (in Fig. 1 of the
original paper96), i.e. statistics using mean differences of
means are not sensitive because of the large proportion of
non-responders. Possible approaches are (i) non-parametric
tests on stochastic order (whereas ref. 96 did not take the hier-
archical design into account and propose a union-intersection
test on the four multiple endpoints which is obviously
counter-intuitive in safety assessment), (ii) using a character-
istic of the responder values, such as 75% quantile109–111 or
(iii) zero-inflated log-normal models.112 Suchlike evaluation is
prototypical for toxicology: tests on differences of means
assuming non-hierarchical designs (ignoring technical repli-
cates) are inappropriate. The interesting question arises
whether simplified methods, e.g. summarizing over sub-units
and transformed endpoints are acceptable for designs with
such small sample sizes. This should be subject of further
research in applied biostatistics. The above complex design is
sometimes even more complex by using repeated measures.
Related joint modeling for longitudinal continuous and time-
to-event outcomes can be used.113–115

5 Long-term carcinogenicity assays

What is specific in carcinogenicity assays? The complex
relationship between tumor development and mortality.
Firstly, an early mortality prevents the later expression of a
tumor, secondly premature mortality can make the existence
of tumors visible, thirdly longer living animals can develop
tumors more likely than those dying earlier. Therefore three
types of tumors were distinguished: fatal tumors (i.e. age-
adjusted tumor lethality), incidental tumors (i.e. age-adjusted
tumor prevalence) and mortality-independent tumors (e.g.
skin tumors). Because direct observation of the tumor onset
times is not possible for types (i) and (ii),116 the evaluation is
possible only under some strong assumptions. Consequently,
no optimal approach for a particular bioassay exists. In
addition to the analysis of mortality,37 the tumors are analyzed
with these cause-of-death information or without.12 Histori-
cally, the prevalence method, the death rate method, and the
onset rate method were proposed for analyzing incidental,
fatal, and mortality-independent tumors, respectively.117 These
methods are complicated, hard to interpret in terms of biologi-
cal relevance, the particular cause-of-death information may
be difficult to achieve, no unique versions for trend and pair-
wise comparisons against NC36,118 are available. A simpler
method without the need of cause-of-death information is the
poly-k test assuming a Weibull survival function. A Cochran–
Armitage trend test uses weighted proportions where animals
dying without a tumor get weights w = (t/tmax)

k (where t is
the time when a non-tumor-bearing animal drops out of the
experiment, tmax is the terminal sacrifice and k a particular

chosen parameter (e.g. k = 3, or empirically chosen119) and
animals dying with a tumor get the weight 1.120 Inherently
no best test can exist121 but in most cases the poly-k-test can
be used as a simple approach.122 The Cochran–Armitage
trend test is mainly sensitive to linear shapes and therefore
Williams-type modifications can be recommended
instead.36,123,124 The mere comparison between the crude and
mortality-adjusted tumor rate helps to interpret appropriately,
e.g. for the methyleugenol bioassay example36 (Table 3).

Commonly, the different tumor sites are analyzed indepen-
dently. However, they are usually correlated and therefore a
simultaneous analysis may be interesting, such as using a
random effect logistic model with a matrix of coefficients
representing log-odds ratios for tumors at different sites,125

copula-based multivariate distribution126 and Bayesian multi-
variate isotonic regression splines.127 Any test depends
seriously on the spontaneous tumor rate. Even slight under- or
overestimation of the tumor rate of the concurrent control may
have a substantial impact. Commonly in a laboratory several
long-term bioassays under similar conditions with the same
animal strain are available and therefore historical control
information can be used.67,68,74,75,128,129 To summarize, two
concepts can be recommended, the poly-3 test per tumor site
and the related use of historical control information. For the
first approach software is available,130,131 for the second
approach software is still not available.

6 Reproductive toxicity studies

What is specific in reproductive studies? The correlation
between pups within a litter, i.e. not the pup is the randomized
unit, but the pregnant female treated with the test compound.
Therefore, five problems have to be solved: (i) modeling the
sub-unit litter mates within the randomized experimental unit
female, the so-called per-litter analysis, e.g. recommended by
the ICH-guideline,132 (ii) modeling the multiple endpoints:
number of pre-implantation, implantation, dead pups, mal-
formations and their possible competition (e.g. between early
loss and malformation), (iii) combined analysis of continuous
and proportion endpoints (such as pup weight and malfor-
mation rate), (iv) taking possibly different litter sizes and
possible group-specific over-dispersions into account, and (v)
benchmark dose estimation for per-litter data.

Three decades after the pioneering paper by Williams133

the contradiction between the available high-sophisticated
statistical methods (see below) and the current practice of

Table 3 Crude vs. poly-3 tumor rates

Dose 0 37 75 150 mg kg−1

No. tumors/No. animal 1/50 9/50 8/50 5/50
Crude tumor rate 0.020 0.180 0.160 0.100
No. tumors/Poly-3 estimates 1/41.4 9/40.3 8/38.7 5/32.7
Poly-3 rate 0.024 0.223 0.207 0.153
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evaluation,134 the unspecific recommendations in the guide-
lines,132,135 the rather general description in recent text book16

and the lack of specific software is still evident. In the follow-
ing an attempt is made, to discuss the problems and their
solutions in a structured way.

First, the per-litter analysis differs for continuous endpoints
(such as pup weight) and proportions (such as number of mal-
formed pups to all pups) to some extent. Already the data
structure of a pup weight example136 makes the first problems
clear, see Table 4. Not only the endpoint weight and the factor
treatment are in the data, but also a litter identifier, a pup iden-
tifier and the covariate litter size. A relationship between litter
size and pup weight may exist, e.g. in groups with larger litter
size smaller pup weights may occur. Therefore, an adjustment
against the covariate litter size is highly recommended.137

Moreover, different litter sizes may be informative, i.e. treat-
ment-dependent.138 The correlation between litter mates can
be modeled by the random factor litter identifier within a
mixed model. This is the common approach for correlated con-
tinuous data, such as repeated measures, technical replicates,
or paired organs, see e.g. ref. 136,139. Using the estimates
from such a mixed model, the adjusted p-values for Dunnett
or Williams procedures can be calculated.140 Related Bayesian
approaches are available for joint modeling of pup weight and
the litter size using a shared latent variable model141 or its
extension to correlated random effects.142,143 Notice, when
inappropriately using the pup as randomized unit, the
p-values are spuriously small (simply because of using too
large pseudo sample sizes).

Second, the other relevant endpoints are proportions, such
as number of malformations, implantations or dead fetuses in
relation to all. These proportions are estimated per litter, i.e.
extra-binomial variation between litters within a treatment
group may occur, and these overdispersions may be group-
specific. Furthermore, litter sizes should be used as a covariate
(see above). Several approaches for modeling extra-binomial
variability are available, such as a quasi-binomial link-function
in the generalized linear model (GLM). The common variance
var( ) = pi(1 − pi) is extended by a dispersion parameter τ > 1
var( ) = τpi(1 − pi), called overdispersion. Therefore we can use

the GLM with quasibinomial link function to estimate the dis-
persion parameter. The historical approaches using beta-bi-
nomial model,133 correlated-binomial model,144 and
exchangeable binary data145 were extended for random cluster
sizes,146,147 an EM algorithm,148 a GLM using a sequence of
link functions149 or a cloglog link function,150 an exact uncon-
ditional procedure for exchangeable binary data with equal
cluster sizes,151 a weighted sign test for unequal cluster
sizes,152 a mixture of negative binomial distributions with
truncation,153 a generalized linear mixed model154,155 and a
trend with clustered binary data using the concept of stochas-
tic order.156 Moreover, Bayesian parametric hierarchical,141

semiparametric157,158 or nonparametric mixture models159

were proposed. Today no fair comparison between these
different approaches is available for real data scenarios, and
therefore a recommendation is difficult. Notice, the naive ana-
lysis by summarized 2-by-k table data, i.e. just a single sum-
marized proportion per group, ignores this between-litter
variability, and can not be recommended.

Third, for the complex task of joint modeling of fetal death,
fetal weight, and malformation regression models160 and
weighted potential outcomes using principal strata161 are
available.

Fourth, appropriate modeling of the complex dependencies
between the multiple endpoints (pup weight, fetal death and
malformation) and the factor dose, the covariate litter size and
the possibly heterogeneous variances within and between the
litters (i.e. group-specific overdispersion for the pro-
portions162,163) is still a challenge – at least appropriate soft-
ware is missing up to now, such as for modeling
polychotomous ordinal fetal malformation outcomes by
threshold models,164 and a bivariate random effects model.165

Fifth, benchmark dose models for per-litter data are avail-
able166 where threshold dose–response model with random
litter effects167–169 can be used.

7 Environmental toxicology

What is specific in ecotoxicological assays? First, dose–
response analysis focusing on potency measures, particularly
NOEL and benchmark dose (BMD). Second, a feasible proof of
safety approach proposed by an authority body (US-EPA). More-
over, a rather detailed guideline exists.11 The no or lowest
observed effect concentration (NOEL (or LOEC)170 is com-
monly identified by testing methods. It is the lowest dose for
which the mean response differs significantly from NC (and
the consecutive doses have at least the same or increasing
differences). This concept was criticized, e.g. because it
depends on the design and the sample size,171 roughly speak-
ing: the smaller the sample size, the larger the NOEL. More-
over, it doesn’t allow inter- or even extrapolation to non-
experimental concentrations. Some of the problems can be
overcome by using a maximum safe dose172 or a model selec-
tion concept.173 As an alternative the benchmark dose (BMD)

Table 4 Raw per-litter data example (a partial summary)

Pup. id Weight Sex Litter Litsize Treatment

1 1 6.60 Male 1 12 Control
2 2 7.40 Male 1 12 Control
3 3 7.15 Male 1 12 Control
4 4 7.24 Male 1 12 Control
5 5 7.10 Male 1 12 Control
6 6 6.04 Male 1 12 Control
7 7 6.98 Male 1 12 Control
8 8 7.05 Male 1 12 Control
9 9 6.95 Female 1 12 Control
10 10 6.29 Female 1 12 Control
11 11 6.77 Female 1 12 Control
12 12 6.57 Female 1 12 Control
13 13 6.37 Male 2 14 Control
14 14 6.37 Male 2 14 Control
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was proposed174 where methods for proportions and continu-
ous endpoints are available.175,176

A proof of safety approach, denoted as test of significant
toxicity104,177 uses one-sided ratio-to-control tests for non-
inferiority with a 75% tolerable threshold for inhibition end-
points in aquatic assays. Therefore, the more important false
negative decision rate is directly controlled. This approach is
important for statistics in toxicology in general, because a
proof of safety178,179 is proposed by an authority body with the
a-priori definition of a still tolerable inhibition. First time, the
misguided distinction between statistical significance (of a
point-zero null hypothesis) and biological relevance was over-
come and the more important false negative rate is directly
controlled: be confident in negative results.

7.1 Proof of safety vs. proof of hazard

The most convincing argument against widespread statistical
tests in toxicology is: they control the less important error rate,
namely the false positive rate, directly. While the more impor-
tant error rate, the false negative rate, is ignored (e.g. in case
studies whose sample sizes were neither planned nor defined
by guidelines) or at best is secondary. Notice, the gold stan-
dard test, the Dunnett’s test (after all, recommended by the
U.S. NTP and one of the most cited statistical tests, mostly in
toxicology180), controls the false positive rate so conservative
(compared with local α control against the multiple group
comparisons to the control), so that the false negative rate is
particularly high. The way out of this dilemma is the proof-of-
safety approach181 (see the recent significant toxicity approach
in aquatic bioassay in section 7 104).

8 Toxicokinetics

The term toxicokinetics covers most diverse methods of time-
dependence of absorption, distribution, metabolism, and
excretion of substances.182,183 Therefore, several different stat-
istical approaches are used. Here we focus on the estimation of
a kinetic parameter, such as area under the curve (AUC) par-
ticularly using incomplete sampling in small animals and the
comparison of such parameters between different conditions,
such as species, doses. Several publications for AUC estimation
for different incomplete designs are available,184–187 happily
also a related R-package PK for noncompartmental kinetics.188

Confidence intervals for ratios between AUCs in the case of
serial sampling can be used for testing group differences.189

9 Toxicogenomics

Toxicogenomics is a relatively new field and far less standar-
dized than e.g. mutagenicity assays. The aim is to select a few
biomarkers (in in vivo studies) or to derive prediction models
(in in vitro studies)190 from massively high-dimensional data.
What is specific in toxicogenomics compared to the many
recent genomics studies191,192? Especially, the use of a comple-

tely randomized design, continuous phenotypes and the focus
on dose–response relationships88,89 (or even dose-by-time
relationships) for high-dimensional endpoints. Related trend
tests,193,194 particularly Williams-type tests195 and benchmark-
dose approaches196 were used recently.

10 Behavioral tests

A specific problem is the analysis of behavioral patterns pre-
senting multiple endpoints with different scales (binary,
counts, time-to-event, etc.). Data from Morris water maze
experiments were analyzed according to rats spatial learn-
ing.197 The behavior of rats in Irwin’s toxicity method, i.e.
longitudinal measures of multiple endpoints (such as loco-
motor activity, or pupil size) of different scales (binary and
continuous) were analyzed by means of generalized linear
mixed model incorporating link functions and residual error
structures for the various outcomes and their complex
correlations.154

11 The benchmark dose concept

When analyzing dose–response relationships by trend tests
(such as the above-described Williams trend test) dose is
assumed as factor, i.e. ordinal only. Alternatively dose can be
assumed as a covariate, i.e. quantitative. Taking only the dose
levels (zero (NC), low, medium, high) into account seems to be
hopelessly inferior compared to full quantitative information
on the dose-metameters. But trend tests are rather robust, e.g.
assuming only monotonicity, particularly for designs with only
few dose levels and small sample sizes. Estimation of relevant
quantities such as LD50, relative potency or benchmark dose
(BMD), based on the quantitative covariate dose, needs the
a-priori choice of a particular non-linear model (remembering:
all models are wrong, but some are useful).198

In quantitative risk assessment compounds should be
ranked by their potency. The trend-test-based no-observed-
adverse effect level (NOAEL) concept was criticized.171 Notice
in the meantime compromises between testing and modeling
exist199 and a model selection approach using contrast tests is
available.173 BMD is an estimated dose in low-dose interp-
olation that corresponds to an a priori defined still acceptable
effect, a biologically motivated acceptable benchmark dose
risk (BMR). For risk assessment its lower confidence limit is
used reflecting most of uncertainty. It takes the complete
dose–response relationship into account and is less dependent
on the design. The BMR is the still acceptable probability of an
abnormal response with respect to the effect at NC. Additive or
extra risk definitions are used.200 For continuous endpoints
the risk can be defined relative to the control mean.201 The
lower confidence limit (BMDL) depends seriously on the
underlying non-linear model. Either model selection methods
or model averaging202,203 can reduced this dependency. Most
models assume normally distributed errors with homogeneous
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variances, but transformations,204 non-parametric
approaches205 and a mixed model extension for replicated
microarrays176 are available. The BMD concept is now pro-
posed by authority bodies206 and used routinely, e.g. in devel-
opment toxicity studies,207,208 mutagenicity ring-studies209 or
toxicogenomics.196 Different software is available.176,210,211

12 Bayesian analysis

The fact that some toxicological bioassays are highly standar-
dized allows the use of historical control data for decision
making. Their use as prior distribution with the Bayesian
inference framework would be obvious. Diverse applications,
especially for dose–response analysis have been proposed, e.g.,
the estimation of the no effect concentration (and its credi-
bility interval) using several priors for the three parameters in
a non-linear dose response model is used in aquatic assays.212

Bayesian model averaging is proposed for robust BMD esti-
mation using logistic, probit and quantal-linear model as well
integrating historical information.202,213 Using historical
control data for count data to estimate relative inhibition con-
centrations in aquatic assays was proposed.214 Especially in
reproductive studies Bayesian methods were used, e.g., a non-
parametric mixture modeling framework for replicated count
dose–response curves settings for categorical data (dead,
normal, malformed),159 the particular adjustment against
litter size by a Bayesian bootstrap approach215 and semipara-
metric Bayesian joint modeling of binary (malformation) and
continuous (pup weights) outcomes.216

13 Software: related R packages

Nowadays, biostatistics in toxicology is inconceivable without
accessible software. The following two sections focus on the
public-domain project R (http://www.r-project.org), itemizing
add-on packages that are useful to evaluate bioassays as well
as examples of raw data, rather important to understand the
complex approaches by non-statisticians.

13.1 Software to evaluate bioassays

• drfit: fitting dose–response curves (incl. hormesis)
• ETC: equivalence to control (proof of safety)98,179

• drc: analysis of dose–response curve data217

• CorrBin: nonparametrics with clustered binary and multi-
nomial data156

• coin: conditional inference procedures in a permutation test
framework218,219

• mratios: inferences for ratios of coefficients in the general
linear model33,220

• multcomp: inferences for differences in the general linear
model43

• nparcomp: perform multiple comparisons for nonpara-
metric relative contrast effects38,221

• PK: basic non-compartmental pharmacokinetics188

• bmd: benchmark dose analysis for dose–response data176

• medrc: mixed effect dose–response curves?

• goric: approaches using generalized order-restricted infor-
mation criterion173

• IsoGene dose–response studies in microarray experiments195

• EnvStat EnvStats, an R Package for Environmental Statistics

13.2 Toxicological data sets

• data(antifoul): IM1xIPC81 Dose–Response data for 1-methyl-
3-alkylimidazolium tetrafluoroborates in IPC-81 cells – in
package drfit

• data(ASAT): ASAT values of the serum of female Wistar rats
six months after application – in package mratios (and data
(asat) – in package coin)

• data(beetles): mortality of confused flour beetles – in package
binomTools

• data(BW): body weights measured in a toxicological study –

in package mratios
• data(bronch): rodent bronchial carcinoma data – in package
MCPAN

• data(cleft.palate): dose–response data on cleft palate – in
package bmd

• data(cta): cell transformation assay – in package mcprofile
• data(daphnids): Daphnia assay – in package drc
• data(dehp): developmental toxicology study of DEHP in mice
– in package CorrBin

• data(earthworms): earthworm toxicity test – in package drc
• data(egde): developmental toxicity experiment on the effect
of ethylene glycol diethyl ether on fetal development of New
Zealand white rabbits – in package CorrBin

• data(ethylene): developmental toxicity study of ethylene
glycol in mice – in package rmp

• data(ex2116): aflatoxicol and liver tumors in trout – in
package Sleuth2

• data(fishtoxin): toxicity effect on fish – in package gpk
• data(hydroquinone): Hydroquinone mutagenicity assay in
package gMCP

• data(impla): numbers of implantations – in package
nparcomp

• data(lirat): low-iron rat teratology data – in package VGAM
• data(liver): relative liver weight – in package nparcomp
• data(methyl): NTP bioassay data of methyleugenol on skin
fibroma – in package MCPAN

• data(mice): pregnant female mice experiment144 – in package
aods3

• data(Mutagenicity): mutagenicity assay for 4 doses of hydro-
quinone – in package mratios

• data(NoP): Ames test data of 4NoP – in package CAMAN
• data(nitrofen): toxicity of nitrofen in aquatic systems – in
package boot

• data(photocar): multiple dosing photococarcinogenicity
experiment – in package coin

• data(pyrithione): cytotoxicity data for different pyrithionates
and related species – in package drfit
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• data(rats): litter-matched time-to-response data – in package
TSHRC

• data(ratpub): birth weight of the rat pup – in package
WWGbook

• data(rat.weight): body weight of rats in a toxicity study – in
package mratios

• data(reaction): reaction times of mice – in package nparcomp
• data(salmonellaTA98): Salmonella reverse mutagenicity assay
– in package dispmod

• data(shelltox): developmental toxicology data set of pregnant
Dutch rabbits – in package CorrBin

14 Conclusions

Still today remarkable contradictions for statistics in toxicology
exist: (i) between missing details in most guidelines and the
need of appropriate statistical approaches to evaluate the com-
monly complex designs in various toxicological bioassays, (ii)
between those complex statistical approaches (e.g. per-litter
analysis for multiple endpoints) and the availability of related
software, (iii) between statistical significance and biological
relevance (mainly caused by the inappropriate use of point-
zero-null hypothesis tests and the dominance of p < 0.05 sig-
nificance criteria), (iv) between the commonly used proof-of-
hazard and the often more appropriate proof-of-safety (par-
ticularly the needed a-priori defined tolerable thresholds, such
as 2-fold rule or 70% rule in aquatic bioassays), (v) between
the oversimplifications (or even errors) in statistical methods
sections in various toxicological papers and the actual require-
ments from a statistical view, and (vi) between testing and
modeling approaches for dose–response relationships. and
(vii) between the unwillingness of editors of toxicological
papers to accept statistical publications and the high-sophisti-
cated publications in statistical journals – however hardly read
by toxicologists.

Statistics in toxicology is not at the end – it is in the middle.
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