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Statistical Exploratory Analysis of

Genetic Algorithms

G
enetic algorithms (GAs) have been extensively used and studied in com-

puter science, yet there is no generally accepted methodology for exploring

which parameters significantly affect performance, whether there is any interac-

tion between parameters and how performance varies with respect to changes in

parameters.

This thesis presents a rigorous yet practical statistical methodology for the ex-

ploratory study of GAs. This methodology addresses the issues of experimental

design, blocking, power and response curve analysis. It details how statistical anal-

ysis may assist the investigator along the exploratory pathway.

The statistical methodology is demonstrated in this thesis using a number of case

studies with a classical genetic algorithm with one-point crossover and bit-replacement

mutation. In doing so we answer a number of questions about the relationship

between the performance of the GA and the operators and encoding used. The

methodology is suitable, however, to be applied to other adaptive optimization

algorithms not treated in this thesis.

In the first instance, as an initial demonstration of our methodology, we describe

case studies using four standard test functions. It is found that the effect upon

performance of crossover is predominantly linear while the effect of mutation is

predominantly quadratic. Higher order effects are noted but contribute less to
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overall behaviour. In the case of crossover both positive and negative gradients

are found which suggests using rates as high as possible for some problems while

possibly excluding it for others. For mutation, optimal rates appear higher than

earlier recommendations while supporting more recent work. The significance of

interaction and the best values for crossover and mutation are problem specific.

Secondly, an original benchmark test function is developed, FNn, and it is demon-

strated that as the test function increases in modality the interaction between

crossover and mutation becomes statistically significant. The effect of interaction

is striking when examining response curves, which illustrate distinct inflection. It

is conjectured that for highly modal functions the possibility of interaction between

crossover and mutation must be considered. Moreover, the practical implication of

interaction is that when attempting to fine tune a GA on highly modal problems

the optimal rates for crossover and mutation cannot be obtained independently.

All combinations of crossover and mutation, within given starting ranges, must be

investigated in order to allow for the interaction effect.

Thirdly, an important issue in GAs is the relationship between the difficulty of a

problem and the choice of encoding. Two questions remain unanswered: is there

a statistically demonstrable relationship between the difficulty of a problem and

the choice of encoding, and, if so, what is the actual mechanism by which this

occurs. In this thesis we use components of the statistical methodology developed

to demonstrate that the choice of encoding has a real effect upon the difficulty of

a problem. This is illustrated by showing how the use of Gray codes impedes the

performance on a lower modality test function compared with a higher modality

test function. Computer animation is then used to illustrate the actual mechanism

by which this occurs.

Fourthly, the traditional concept of a GA is that of selection, crossover and muta-

tion. However, a limited amount of data from the literature has suggested that the

niche for the beneficial effect of crossover upon GA performance may be smaller than

has traditionally been held. Based upon previous results on not-linear-separable
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problems an exploration is made by comparing two test problem suites, one com-

prising non-rotated functions and the other comprising the same functions rotated

by 45 degrees in the solution space rendering them not-linear-separable.

It is shown that for the difficult rotated functions the crossover operator is detri-

mental to the performance of the GA. It is conjectured that what makes a problem

difficult for the GA is complex and involves factors such as the degree of opti-

mization at local minima due to crossover, the bias associated with the mutation

operator and the Hamming Distances present in the individual problems due to the

encoding.

Furthermore, the GA was tested on a real world landscape minimization problem

to see if the results obtained would match those from the difficult rotated functions.

It is demonstrated that they match and that the features which make certain of the

test functions difficult are also present in the real world problem.

Overall, the proposed methodology is found to be an effective tool for revealing

relationships between a randomized optimization algorithm and its encoding and

parameters that are difficult to establish from more ad-hoc experimental studies

alone.
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Chapter 1

Introduction

S
ince the era of ENIAC, the first successful high speed-computer developed in

the 1930s, an emerging component of computer science has been research into

artificial intelligence (AI). This encompasses areas such as natural language pro-

cessing, knowledge representation, automated reasoning, machine learning and evo-

lutionary computation.

A practical application of AI has been the use of computers to solve problems. In

order to formulate successful approaches researchers in artificial intelligence have

looked to processes found in nature, such as evolution, for assistance. As such the

development of this work has come under the heading of evolutionary computa-

tion, a general adaptable paradigm for problem solving especially well suited for

optimization problems [2].

Such adaptive algorithms are search algorithms which can be used to find solutions

to a variety of continuous and discrete problems. The general structure consists of

a population of candidate solutions which are adapted in parallel during successive

iterations with feedback obtained from an evaluation function [11]. Unlike algo-

rithms that operate on a single solution, adaptive algorithms make improvements

by combining the elements of good solutions to create better ones [34]. A classi-

cal example is genetic algorithms (GAs) [20]. While this thesis focusses on GAs

1



2 CHAPTER 1. INTRODUCTION

it should be noted that the methodology is readily applicable to other adaptive

algorithms.

1.1 Genetic Algorithms

GAs were originated by researchers including Holland who put forward the idea

of developing adaptive algorithms based upon processes seen in genetics [20]. The

relationship between genetics and GA terminology is illustrated in Table 1.

Table 1: Genetics and GA Terminology

Genetic Terminology Realisation in GAs
GA Implementation

Chromosome Bit-string
Gene Bit character
Allele Value 1 or 0
Locus Bit-string position

Genotype Structure
Phenotype Decoded structure (solution)
Epistasis Nonlinearity

The classic GA works by encoding potential solutions to a problem as a series of bits

or genes on a bit-string or chromosome. The mechanics of a GA are straightforward:

in its simplest form new solutions are generated using crossover, where genes are

swapped over between pairs of chromosomes, and mutation, where the binary value

of a gene is inverted.

While the mechanics of a baseline GA are simple to describe and understand, the

way in which a GA actually searches the solution space has been more complex to

describe [2]. In addition, previously accepted aspects of GAs are being debated. For

example, while it has been traditionally maintained that crossover is a necessary

inclusion, the conjecture of naive evolution, where a GA contains selection and

mutation only, places this in question [12, 39].

Such debates have been fuelled by the fact that little research has been done on how

to decide whether a parameter significantly affects performance, how performance
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varies with respect to changes in parameters, whether there is any interaction be-

tween parameters, and what ultimately are the best values or range of values for

the parameters which are implemented.

Given that there is no generally accepted methodology for exploring a GA in order

to address these important basic issues the present thesis comprises the following:

1. The formulation of a rigorous methodology for the statistical exploratory anal-

ysis of GAs with its application to a number of benchmark problems;

2. The application of this methodology to the issue of the importance of the

interaction between the crossover and mutation operators;

3. The application of this methodology to the issue of the relationship between

the encoding that is used and GA performance;

4. The application of this methodology to the issue of the detrimentality of

crossover for certain problems.

1.2 Thesis Structure

Expanding upon the above, the present thesis has the following structure:

Chapter 2 proposes a rigorous yet practical statistical methodology for the ex-

ploratory analysis of GAs. Section 2.1 of this chapter provides some background

to the problem of analyzing GA performance. This is followed in Section 2.2 by

a discussion of non-statistical exploratory work in this area. Section 2.3 exam-

ines work which has used a statistical construct, recognizing the appropriateness

of statistical analysis to this problem. However, a number of limitations are found

which include issues of experimental design, blocking, power calculations and re-

sponse curve analysis. In Section 2.4 the newly formulated statistical methodology

is described. Following this Section 2.5 illustrates the application of this method-

ology with case studies of benchmark problems from De Jong’s [9] and Schaffer’s
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[6] test suites. This includes some unexpected outcomes, particularly on the use of

crossover. A discussion in Section 2.6 concludes this chapter.

Chapter 3 examines the issue of whether, in a GA, crossover and mutation interact

or whether each exerts its effect independently. Section 3.1 discusses studies which

have suggested that interaction between crossover and mutation may exist. Sec-

tion 3.2 gives an overview of the way in which the statistical methodology presented

in this thesis has been applied to a new test function, FNn, which has been uti-

lized to demonstrate the existence of interaction between crossover and mutation.

Section 3.3 links the existence of interaction between crossover and mutation with

the difficulty of the function defined in terms of modality. Section 3.4 provides a

concluding discussion to this chapter.

The first section of Chapter 4, Section 4.1, looks at the issue of the choice of encod-

ing and its impact upon GA performance since GA practitioners report differing

performances by changing the representation which is used [6, 37]. Section 4.2

reviews the methods used to investigate this question, including a description of

computer animation. Section 4.3 demonstrates how the choice of Gray encoding

may have a statistically demonstrable effect upon the difficulty of a problem, uti-

lizing results from both statistical analysis and computer animation. Section 4.4

provides a concluding discussion to this chapter.

Chapter 5 examines the issue of the detrimentality of crossover. This came about

as a limited amount of data from the literature suggested that the niche for the

beneficial effect of crossover upon GA performance may be smaller than has tradi-

tionally been held. Based upon not-linear-separable problems from earlier compo-

nents of this thesis we decided to explore this by comparing two test problem suites,

one comprising non-rotated functions and the other comprising the same functions

rotated by 45 degrees rendering them not-linear-separable. Section 5.1 examines

the issue of the detrimentality of crossover from the literature. Section 5.2 reviews

work from the previous chapters of this thesis which prompted the present research.
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Section 5.3 briefly reviews the methods including any refinements to the statisti-

cal methodology. A discussion of the results obtained appears in Section 5.4 and

Section 5.6. Section 5.5 examines factors affecting the detrimentality of crossover.

Section 5.7 discusses the findings and suggests areas of future research.

Finally, Chapter 6 reviews general conclusions from this thesis. Limitations of the

thesis are discussed and areas for future research are suggested.
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Chapter 2

Statistical Methodology

Adaptive algorithms such as GAs work by iteratively adapting members of a

population of potential solutions [2]. The individuals interact either through

the adaptation operators themselves, or through competitive selection mechanisms

for determining subsequent generations. If the adaptation strategy is successful,

the population (or part thereof) will converge on an optimal (or at least “good”)

solution.1

While the mechanics of each individual adaptation are quite straightforward, the

way individual changes affect the success of the population as a whole is more

difficult to determine. This is also true of the parameters that are used to fine tune,

or improve the success of, adaptive algorithms. Examples include population size,

mutation and crossover rates. Values for these parameters are most commonly set

through a process of trial and error, or based on recommendations from related

problems in the literature, rather than through statistically sound analysis of their

affects on performance.

This chapter presents a methodology designed to assess the impact of these pa-

rameters on GA performance. The methodology addresses issues of experimental

design, blocking, power calculation and response curve analysis. The approach is

1Readers unfamiliar with genetic algorithms are referred to [6] for a thorough introduction to
GAs and examples of the range of applications to which they have been applied.

7
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demonstrated with case studies applying a baseline GA to benchmark problems

from De Jong’s [9] and Schaffer’s [6] test suites.

2.1 Background

GAs are used in search and optimization problems, such as finding the maximum or

minimum of a function in a given domain. The characteristics of GAs including bit-

string encodings, randomization and operator without domain knowledge [1], have

made the way in which a GA population converges on solutions has been more

complex to describe [2]. Holland put forward the idea of schemata [20]: similarity

templates describing a subset of strings with similarities at certain positions [17].

When the chromosome possesses these schemata its fitness improves. Operators

such as crossover and mutation work by altering chromosomes to contain more good

schemata. Goldberg elaborated by conceptualizing building blocks (highly-fit, short-

defining-length schemata) and implicit parallelism [17]. However, the increase in

sophistication and differences in implementations of GAs, such as quantum-inspired

GAs [31] and the use of transposition [40], has made it increasingly difficult to

propose newer models of convergence.

In addition, previously accepted aspects of GAs are being debated. For example,

while it has been traditionally maintained that crossover is a necessary inclusion,

the conjecture of naive evolution, a GA which contains selection and mutation only,

places this in question [12, 39]. Such debates have been fuelled by the fact that little

research has been done on how to decide whether a parameter significantly affects

performance and how performance varies with respect to changes in parameters.

There is currently no generally accepted methodology for exploring a GA in order

to address these issues.

The difficulty in developing such a methodology is illustrated by problems encoun-

tered in both working from theoretical models and real world data. In the first
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instance, trying to formally describe GAs has been attempted using various math-

ematical approaches such as Markov chains [8, 19]. These approaches have been

limited by the complexity of the calculations. Moreover, the assumptions made

in much of the theoretical work may simply not be applicable nor attainable in

practice. There has therefore been a realization that research involving real world

data will be necessary in order to provide guidelines that may come to be generally

accepted by GA practitioners.

Initial empirical work of this kind was carried out by De Jong [9] whose experiments

resulted in a set of recommendations that came to represent early guidelines [39].

Later recommendations by Grefensette [18] using a meta-level GA (meta-GA) pro-

duced results which did not wholly agree with De Jong. The meta-GA approach is

limited in that independent runs of the meta-GA can result in different best values.

Furthermore, it does not provide any information as to whether any interaction

occurs nor the trend of the performance behaviour over the range of values studied.

A limited number of studies have made use of statistical analysis, recognizing the

ability of statistics to address many of these issues. However, as discussed in Sec-

tion 2.3, these studies have been limited by failing to fully address important issues

such as blocking for seed, calculating power and thorough response curve analysis.

Thus, results and recommendations from these studies, though obtained from real

practical experience, are still subject to debate.

The next sections look more closely at the various studies in this area. In doing so

the inconsistency of the results and the limitations of the methodologies are noted.

2.2 Non-Statistical Exploratory Analysis

As stated above, there is currently no generally accepted methodology for analyz-

ing the relationship between parameters and performance of a GA. Attempting to

mathematically describe GAs is complex and has not resulted in practical guide-

lines. This has given rise to various empirical studies which attempt to provide such
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data. However, both the methodologies and results have varied.

Early work was provided by De Jong who altered the values of parameters such

as population size, crossover rate and mutation rate in order to assess the effect

on performance. This was defined in terms of online performance, the average

performance of all chromosomes tested during the search, and offline performance,

the current best chromosome value for each iteration [39]. Five test problems of

increasing difficulty were used which became known as the De Jong suite [9]. Table 2

lists De Jong’s recommendations for optimal performance for the parameters listed.

Table 2: Recommendations for basic parameter settings

De Jong Population size 50-100

Crossover rate 0.60

Mutation rate 0.001

Grefensette Population size 30 (online)

Population size 80 (offline)

Crossover rate 0.95 (online)

Crossover rate 0.45 (offline)

Mutation rate 0.01 (online)

Mutation rate 0.01 (offline)

Freisleben and Härtfelder Population size 100 (maximal)

Crossover rate 0.49

Mutation rate 0.8-0.93

At this stage there was little evidence to dispel the idea that such data could

serve as generic guidelines for different problem domains. Hence, these data came

to represent guidelines for GA practitioners. Subsequent work, however, was not

consistent with these recommendations.

This is illustrated in the results of Grefensette who pioneered the use of meta-GAs

[18] for finding optimal values for parameters. His results for the De Jong suite

are shown in Table 2. Other studies using the meta-GA approach also produced

differing results, as seen in the work by Freisleben and Härtfelder [16] in the domain
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of neural network weights optimization (see Table 2).

2.3 Statistical Exploratory Analysis

As the previous studies did not clarify the relationship between parameters and per-

formance statistical analysis has been used for this purpose. For example, Schaffer

et al [39] conducted a factorial design study using the analysis of variance (ANOVA).

This study used the De Jong suite plus an additional five problems. The recom-

mendations for best online performance from this study are shown in Table 3. Close

examination of the best online pools suggested a relative insensitivity to crossover

which in turn suggested that naive evolution may be a powerful search algorithm

in its own right when using bit-string encoding [12, 39]. Work by Yao, Liu and Lin

suggests that this may also be true when using real values [43]. These data challenge

the traditional assumption that the crossover operator is a necessary inclusion in a

GA [6].

Statistics was also used by Petrovski, Wilson and McCall [33] who carried out

fractional factorial experiments in the domain of anti-cancer chemotherapy. These

were combined with linear regression in order to pinpoint which parameters were

significant and estimate their best values. The outcome measure, Ψ, was the number

of generations required in order to reach the feasible region in the solution space.

The results are shown in Table 3.

Table 3: Recommendations for basic parameter settings using statistics.

Schaffer et al Population size 20-30 (online)

Crossover rate 0.75-0.95 (online)

Mutation rate 0.005-0.01 (online)

Petrovski, Wilson Crossover rate using Ψ 0.6146

and McCall Mutation rate using Ψ 0.1981

Crossover rate using log(Ψ) 0.7600

Mutation rate using log(Ψ) 0.1069
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In overview, it is clear from both the non-statistical and statistical approaches that

results have varied, notably for mutation where the more recent studies, including

those using statistics, suggest higher rates. This may indicate a more complex effect

for this parameter or alternatively that best values are problem specific. Moreover,

the influence of differing problem domains must also be considered [42].

Importantly, however, the variation seen in these studies may also be a result of the

differing methodologies that have been employed and therefore suggests the need to

develop a generally accepted methodology for carrying out such exploratory work.

While statistics is promising for this purpose, a number of limitations need to be

addressed.

First, little attention has been given to blocking for seed as a source of variation

or noise. As pointed out by Davis [7], finding good settings for parameters can be

difficult due to the fact that the same parameter settings on the same problems

can lead to different results. In practice these differences can be traced to different

pseudo-random number generator seeds in the initialization of populations and in

the implementation of selection, crossover and mutation. Blocking for seed by

grouping experimental units into homogenous blocks, so that each run of the GA

for differing levels of crossover and mutation occurs with the same seeds, limits

the cause of variation within blocks to the parameters under study. In this way

variation or noise is reduced and comparisons are sharpened [24].

Adding to this, issues dealing with the calculation of power and sample size have

been ignored. This has meant that it is uncertain whether the studies carried out

have had adequate power and thus sample size to detect differences that could be

considered noteworthy. Sample sizes which are too small will generally fail to result

in statistical significance. This is particularly important if blocking is not carried

out since the data-set is akin to a completely randomized design. In such a design

effects may not be detected due to the extent of background noise in the data-set

produced by seed. Thus, a much larger sample size is required to detect effects of

interest.
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A detailed analysis of response curves has also been limited. It is important to

undertake such an analysis as it allows one to study the behaviour of the parameter

over the range of values implemented. Such data are useful in the optimization

process. For example, knowing that a parameter has a linear relationship to perfor-

mance may suggest that either the value for the parameter is set as high as possible

or that the parameter is excluded.

In the next section the experimental set-up is defined and the statistical methodol-

ogy is described.

2.4 Methods

Before describing our methodology we briefly introduce the test functions and the

GA used to illustrate our approach.

2.4.1 Choice of Standard Test Functions

It was important to select test functions which are well known. Initially, the first

three problems from the De Jong [9] suite were tackled which are relatively easy

for a GA to solve. This provided a useful set of problems, widely referenced in

the literature, on which to demonstrate the initial applicability of the statistical

methodology. These were F1 known as the SPHERE, F3 known as the STEP

function and F2 known as ROSENBROCK’S SADDLE.

Next a more difficult problem, Schaffer’s F6 [6], was tackled. These were all im-

plemented as minimization problems and are displayed in Equation 1, Equation 2,

Equation 3 and Equation 4, respectively:

f1(x) =
3

∑

i=1

x2

i
,−5.12 ≤ xi ≤ 5.12, (1)

f3(x) =
5

∑

i=1

⌊xi⌋,−5.12 ≤ xi ≤ 5.12, (2)
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f2(x) = 100(x2 − x2

1)
2 + (1 − x1)

2,−2.048 ≤ xi ≤ 2.048, (3)

f6(x) = 0.5 +
(sin

√

x2
1 + x2

2)
2 − 0.5

(1.0 + 0.001(x2
1 + x2

2))
2
,−100.0 ≤ xi ≤ 100.0. (4)

2.4.2 Implementation of the GA

The GA was implemented as detailed in Table 4. The implementation of the GA

was deliberately simple so that a clear and concise demonstration of the proposed

methodology and results could be made.

In this regard parameters such as the population size and bits per variable were not

varied but kept at the values shown in Table 4 and only crossover and mutation were

investigated in the present Thesis. The same methodology can be straightforwardly

applied to the many other parameters suggested in the literature.

2.4.3 Experimental Design and Statistical Test

In order to decide upon the most appropriate type of experimental design and

statistical test it was necessary to address several items:

1. Blocking for variation or noise due to seed.

2. Choice of an appropriate statistical test.

3. Statistical testing of individual parameters and their interactions.

4. Response curve analysis. This should allow for an estimate to be made of the

best value for individual parameters with confidence intervals.

2Probabilistic selection used here is the random selection of parents with the probability of
selection being directly proportional to the fitness of a chromosome.

3Mutation is implemented as described by Davis [6]. That is, if the probability test is passed
the binary bit is replaced by another binary bit that is randomly generated. Approximately fifty
per cent of the time the new bit will be the same as the old bit. The bit-flipping mutation rate is
therefore half of the implemented mutation rate.



2.4. METHODS 15

Table 4: Details of the GA

Variable representation Bit-string

Bits per variable 22

Genes Binary value 1 or 0

Population size 50 chromosomes

Chromosome coding Gray coding

Selection Probabilistic selection 2

Experimental unit Blocks containing independent runs

of the GA for different

crossover and mutation rates

with the same seeds

Crossover Single point (randomly selected)

per variable

Mutation Randomly generated bit replacement 3

Performance measure Final epoch ie

epoch at which fitness of best

chromosome ≤ 10−10 of maximum fitness

for F1, F2 and F3

and

epoch at which fitness of best

chromosome ≤ 10−6 of maximum fitness

for F6

5. Calculation of power.

6. A methodology that is rigorous yet practical enough to be undertaken with

common statistical packages and available desktop computing power.

7. Statistical principles that can be generically applied to other adaptive algo-

rithms.

These are discussed in turn.

1. Blocking.
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The variation seen in GA runs is due to the differences in the starting

population and the probabilistic implementation of mutation and crossover.

This is in turn directly dependent on seed: the value used to generate the

pseudo-random sequences. In usual implementations of a GA the effect of

seed is not regulated and so the experimental design may be conceived as

being entirely randomized. In order to demonstrate statistically significant

effects a very large data-set is required in order to detect effects over and

above variation or noise due to seed.

To address this issue, it was necessary to control for the effect of seed via the

implementation of a randomized complete block design. In such a design every

combination of levels of parameters appears the same number of times in the

same block and in the present study the blocks are defined through seeds. For

example, if there are i levels of parameter A and j levels of parameter B then

each block contains all ij combinations.

Seed is used for blocking, thus ensuring that the seeds used to implement

items such as initialization of the starting population of chromosomes, selec-

tion, crossover and mutation are identical within each block. An increase in

sample size occurs by replicating blocks identical except for the seeds. This is

illustrated in Table 5. Replicates of this type are necessary to assess whether

the effects of parameters are significantly different from variation due to other

factors not controlled through seed.

Table 5: Creating a data-file from replicates of blocks.

Block Parameter A Parameter B Observations

Seed/s for block-replicate 1 i levels j levels ij

Seed/s for block-replicate 2 i levels j levels ij

Seed/s for block-replicate 3 i levels j levels ij
...

...
...

...

Seed/s for block-replicate n i levels j levels ij

Total observations = ijn where ij ≥ 2
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2. ANOVA.

In order to compare performances for 2 or more parameters using a ran-

domized complete block design the statistical test for the equality of means

known as the analysis of variance (ANOVA) was used. In ANOVA the null

hypothesis is that the means for different levels of a parameter are equal.

The alternative hypothesis is that the means for levels of a parameter are

not equal and thus we conclude that the parameter has an effect upon the

response variable. The effect of one parameter on this response variable may

depend on the level of the other parameters. This is known as interaction.

ANOVA also formally tests whether interaction is present or not.

ANOVA is so called as it essentially splits the total variation in the observa-

tions into variation contributed by the parameters (crossover and mutation),

their interaction, block and error. Error is conceptualized in terms of resid-

uals which are simply the individual deviations of the observations from the

expected values.

Testing to ascertain if a parameter such as crossover or mutation has a sta-

tistically significant effect is a straightforward process. Firstly, the variation

contributed by the parameter adjusted by the number of levels of the parame-

ter is divided by the variation contributed by error adjusted by the number of

levels of the parameters and the observations. This results in a ratio which is

called an F value. Secondly, the probability that one would observe an F value

as large as that which is calculated under the null hypothesis is determined.

This is the p-value associated with the F value or simply Pr(F).

If the p-value is equal to or less than a chosen level of significance (see

Section 2.4.4) this is taken to suggest that the parameter has an effect upon

the response variable. A typical output from ANOVA is shown in Table 7 (see

page 28). If we examine the p-values at the 1% level of statistical significance,

we see that both crossover and mutation are highly significant. On the other

hand, the interaction term, with a p-value of 0.61, is non-significant. This
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means that there is no interaction occurring among crossover and mutation.

In other words, crossover and mutation are acting independently of each other.

In ANOVA the values for Pr(F) (p-values) are only (exactly) valid if the

responses are normally distributed. Although even moderate departures from

normality do not necessarily imply a serious violation of the assumptions on

which ANOVA is based [30], particularly for large sample sizes, it is standard

procedure to use methods such as plotting a histogram of the residuals or

constructing a normal probability plot of the residuals to verify normality of

the sampling populations. In the present research, analysis of the residuals did

not provide any evidence suggesting that the assumptions on which ANOVA

calculations are made were compromised.

3. Testing individual parameters and interaction.

ANOVA allows for the testing of significance of individual parameters per-

mitting the effect of crossover and mutation to be statistically demonstrated.

For issues which have been raised in the literature such as naive evolution

[12, 39], ANOVA provides evidence which may or may not support the inclu-

sion of the crossover parameter.

In addition, ANOVA allows for the testing of interaction between parame-

ters. Interaction is simply the failure of one parameter to produce the same

effect on the response variable at different levels of another parameter [30].

Examining interaction is important because a significant interaction means

the effect of each parameter cannot be considered independently of the others.

The interaction parameter is created by multiplying the crossover parameter

by the mutation parameter and adding this parameter to the ANOVA model.

4. Response curve analysis.

In ANOVA once a parameter is demonstrated to be statistically signifi-

cant the effect of the parameter may be modelled through an appropriate
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polynomial. Statistical testing can be carried out to assess if the shape of the

response curve is predominantly linear or is comprised of higher order polyno-

mials by partitioning the total variation of each parameter into its orthogonal

polynomial contrast terms.

Once the shape of the response curve is established, polynomial regres-

sion can be carried out to obtain estimates of the coefficients of the various

parameters in the response curve equation. Importantly, if the interaction pa-

rameter is significant in the ANOVA model then the overall equation must be

found. If not, then the equations for crossover and mutation can be obtained

separately.

For fitted response curves which are comprised of quadratic or higher com-

ponents we can obtain the derivatives and find the values where the deriva-

tives equal zero which yield estimates of the best value for each parameter.

Additionally, confidence intervals can be calculated if of interest.

However, if the fitted response curve is linear then a negative coefficient

will correspond solely to a best rate of 100% while a positive coefficient will

correspond solely to a best rate of 0% since the minimum of a straight line

can only occur at either end.

5. Power.

The calculation of power for ANOVA can be made by using the effect size in-

dex, f, as described by Cohen [5]. Power is discussed in detail in Section 2.4.6.

6. Availability.

ANOVA and regression are standard statistical models available in virtually

all statistical software packages which are used on desktop computers.

7. Applicability.

Randomized complete block design can be applied to other adaptive algo-

rithms with little difficulty. It simply requires that the seeds, or any other
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sources of noise, are kept identical within each replicate so that the source

can be blocked.

The GA was implemented in Java [41]. Statistical analysis was carried out using

S-PLUS [21]. Power calculations were carried out using GPOWER [14].

A number of aspects of the analysis are discussed in more detail below.

2.4.4 Choice of Level of Significance

There are 2 types of errors associated with statistical testing. A type I error is the

rejection of the null hypothesis when it is true. A type II error is the non-rejection

of the null hypothesis when the alternative hypothesis is true. The probability

of making a type I error is denoted by α and the probability of a type II error is

denoted by β. Since the null hypothesis represents the most conservative proposal it

is considered that a type I error is more serious than a type II error [24]. Thus, α is

generally and arbitrarily set at a low level. This level of significance is traditionally

set at values such as 10%, 5% or 1%.

For published research a level of significance of 1% is often used [26]. P-values less

than 1% suggest that the null hypothesis is strongly rejected or that the result is

highly statistically significant [24]. In the present study we have employed 1% as

our level of significance and correspondingly calculated 99% confidence intervals.

2.4.5 Level of Significance for Orthogonal Simultaneous Mul-

tiple Comparisons

In a situation of orthogonal simultaneous multiple comparisons within a parameter

it is necessary to modify the level of significance. This is because the probability

of achieving one or more statistically significant results in n simultaneous multiple

comparisons will exceed the level of significance chosen (1% in the present study).
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This is illustrated in Equation 5.

P (at least one significant result in n independent tests ) = 1 − (1 − α)n. (5)

This occurs in ANOVA when the sum of squares for each parameter is partitioned

into orthogonal contrast terms. In order to ensure that the probability of achieving

one or more statistically significant results in n simultaneous multiple comparisons is

exactly 1%, a modified level of significance was used for testing each of n orthogonal

polynomial contrast terms calculated in accordance with Equation 6.

Modified level of significance = 1 − (1 − α)
1

n . (6)

Our approach is different from the Bonferroni method [21] which would simply

divide the overall level of significance by the number of simultaneous multiple com-

parisons. The Bonferroni method will ensure that the probability of achieving one

or more statistically significant results in n simultaneous multiple comparisons is no

greater than 1%. Thus, it yields an upper bound such that the actual probability

of achieving one or more statistically significant results in n simultaneous multiple

comparisons may be much smaller.

2.4.6 Power

As 1 − β is the probability of rejecting the null hypothesis when it is false, this is

known as the power of the test. A power of 80% (β = 0.2) when there is moderate

departure from the null hypothesis is considered desirable by convention [5]. The

value of β is related to sample size. A sample size that is too small will generally fail

to produce a significant result while a sample size that is too large may be difficult

to analyze (due to difficulties of handling large data sets) and wastes resources. It

is therefore necessary to have some means of calculating whether the size of the

sample chosen has sufficient power.

In order to calculate power it is necessary to specify the degree to which the null

hypothesis is false. This is quantifiable as a specific non-zero value using the unit-less
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effect size indices d and f as described by Cohen [5]. For ANOVA, by convention,

a small effect size is an f value of 0.10, a medium effect size is an f value of 0.25

and a large effect size is an f value of 0.40.

In this part of the present study differences in a specified number of epochs were

first converted to the effect size index, d, where:

d =
µmax − µmin

σ
, (7)

where µmax is the maximum mean over the levels of this parameter, µmin is the

smallest population mean over the levels of this parameter, and σ is the population

standard deviation.

This results in a unit-less number to index the degree of departure from the null

hypothesis of the alternative hypothesis, or more simply, the effect size one wishes

to detect [5].

Next, the conversion from d to f for ANOVA requires a knowledge of the pattern

of separation for all means for all k levels of the parameter. Patterns identified by

Cohen [5] are:
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1. Minimum variability: one mean at each end of d, the remaining k − 2 means

all at the midpoint.

2. Intermediate variability: the k means equally spaced over d.

3. Maximum variability: the means are all at the end points of d.

Tables are available for the conversion from d to f for each scenario. If the pattern

of separation is unknown an inspection of these tables illustrates that the most

conservative approach is to assume the minimum variability pattern which results

in f being at its smallest. In this case f is calculated as:

f = d

√

1

2k
. (8)

It should be noted that power may be calculated a priori or post hoc. If the

population standard deviation is known from prior research one can calculate a

priori the sample size required to confer a specified power. On the other hand, if

the population standard deviation is unknown but can be estimated once the study

is concluded then post hoc power calculations indicate the ability of the present

sample size to detect specified effect sizes, given by Equation 7.

As the present thesis was exploratory in nature and a priori assumptions about the

population standard deviation could not be made post hoc calculations were strictly

adhered to. Thus, while statistical significance had not been demonstrated in the

ANOVA analysis for the interaction parameter, we continued to increase sample

size by a factor of 5. This was enacted until at least 80% power was achieved

for detecting a difference of 5 epochs for the interaction between crossover and

mutation. This is because f is smallest for the interaction parameter since k is

greatest for this parameter.

As a final remark, in the present research the calculation of power was based upon

the ability to detect a difference of at least 5 epochs as noted above. This number

was chosen as it most closely approximated the difference in the number of epochs
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detectable for the simplest problem, F1, if one had calculated power using an f of

0.4 (large effect).

2.4.7 Simultaneous Confidence Intervals for the Plotted Re-

sponse Curve

Plotting mean performance against parameter levels provides an initial estimate of

the shape of the response curve. However, the shape of the curve may be com-

promised if the sample size is insufficient. To gauge the reliability of the trend

99% simultaneous confidence intervals about each mean can be calculated. The z

value for calculating simultaneous confidence intervals for n levels of an individual

parameter corresponds to the probability given by equation 9.

Pz value = 1 −





1 − 0.99
1

n

2



 . (9)

Note that while confidence intervals tighten as sample size increases, showing in-

creased confidence about the location of the population mean, there is still a great

deal of randomness in each individual run.

2.4.8 Pooled Analysis Design

If large data-sets are required these may not be able to be analyzed when a param-

eter has too many levels, as this results in the statistical software having to deal

with too many and too large matrices. In order to address this issue we devised a

pooled analysis design for the present study as follows:

1. For each individual experiment we calculated the mean of the performance

measure for each combination of crossover and mutation.

2. These data from individual experiments were concatenated into a new pooled

data file. The response variable was now the mean of the performance measure

averaged over the number of replicates in the individual experiment. This
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results in a smaller error variance, as the average of a number of observations

is expected to be closer than a single observation to the population mean.

Each individual experiment denoted one level of the block parameter.

3. Analysis was carried out in the same manner as for individual experiments.

2.4.9 Estimates of Best Values for Parameters

Once the coefficients are obtained from the polynomial regression model it is straight-

forward to obtain an estimate of the best value for the specified parameter by dif-

ferentiating and solving the response curve equation. 99% confidence intervals are

then calculated using Taylor’s Expansion (δ method) [36].

2.4.10 Workup Procedures to Ensure a Balanced ANOVA

Design

A balanced design for ANOVA occurs if no data are missing or censored. In our case

data is censored if that threshold is not reached and therefore stopping criterion not

satisfied for a run of the GA. A balanced design is desirable since it results in the

test statistic being more robust to small departures from the assumption of equal

variances for the number of treatments. In addition, the power of the ANOVA test

is maximized. This was achieved by two consecutive workup procedures which were

carried out for all four test functions.

Dot Diagrams

First, to minimize the occurrence of censoring in the present study a crude ex-

ploration of the parameter space was conducted. A data-set of an arbitrary 10

replicates was generated for all functions using an interval of 0 to 1 for both the

crossover (using an interval of 0.1) and mutation (using an interval of 0.01) param-

eters. If on at least one occasion the threshold was not reached for a particular
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crossover rate and mutation rate combination, this was shown as a dot on the

resultant dot diagram.

Figure 1: Dot diagram for F1. Each dot represents an instance of censoring.
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As illustrated in Figure 1, for F1 mutation rates of less than 0.15 and greater than

zero were not associated with censoring. In contrast, all crossover rates from 0 to

1 were valid. Thus, at this point for F1 the rates which could be considered to

be reasonably free from censoring, so that the threshold value would be reached

or exceeded on every run of the GA, were crossover rates of 0 to 1, and mutation

rates of 0.01 to 0.14. The dot diagrams were also found useful to give us an initial

pictorial overview of the difficulty of a function (see Chapter 4).

Finalizing ranges for exploratory statistical analysis

Second, to further ensure that no censored data would appear in the data-sets for

analysis, and so finalize the ranges for exploratory statistical analysis to begin, we

conducted the following exercise.

Using crossover and mutation rates not associated with censoring from the dot

diagrams, an arbitrary 10 data-sets of 100 replicates each were generated. Using

S-PLUS the combination of crossover rate and mutation rate resulting in the best

performance was found in each data-set. When these 10 combinations were collated

they demonstrated the lowest and highest rates of crossover and mutation associated

with best performance. For F1 crossover ranged from 0.8 to 1 and mutation ranged
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from 0.05 to 0.08.

However, to ensure that the ranges we would study could be considered robust we

allowed the ranges to widen one interval step on either side. Thus, as displayed in

Table 6, this made the finalized range for F1 for crossover 0.7 to 1 and for mutation

0.04 to 0.09.

As a result of these two consecutive workup procedures, a balanced ANOVA design

was achieved.

Table 6: Final ranges for crossover and mutation.

Test function Crossover final range Mutation final range

F1 0.7-1 0.04-0.09

F3 0.8-1 0.03-0.07

F2 0-0.7 0.18-0.24

F6 0-0.7 0.11-0.18

2.5 Results

2.5.1 Exploratory Analysis of Test Function F1

The results of analyzes of data-sets containing 100 replicates, 500 replicates and

pooled results from 5 data-sets of 500 replicates are described consecutively to

illustrate how statistics can be used to assist in exploratory analysis.

Results with 100 Replicates

Table 7 displays ANOVA of 100 replicates.

Crossover and mutation were both highly statistically significant while the inter-

action between crossover and mutation was not. Post hoc power calculations as

shown in Table A-1 show that while the power for detecting a difference of 5 epochs



28 CHAPTER 2. STATISTICAL METHODOLOGY

Table 7: F1-ANOVA of 100 replicates.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 12347 2057.826 8.47756 0.0000000

Mutation 10 58701 5870.091 24.18282 0.0000000

Interaction 60 13664 227.733 0.93818 0.6117951

Block 99 51956 524.813 2.16205 0.0000000

Residuals 7524 1826361 242.738 - -

Residual standard error: 15.58005, Estimated effects are balanced.

was greater than 97% for both crossover and mutation the power for the interac-

tion parameter was only 3.38%. Thus, the use of 100 replicates was too small to

demonstrate statistical significance for interaction.

The response curve plots for crossover and mutation are displayed in Figure 2a

and Figure 2b. While the response curve plot for mutation suggested a quadratic

trend, the response curve plot for crossover was less obvious. Since only 100 repli-

cates were used the width of the simultaneous confidence intervals was very wide so

that for crossover either a linear curve or a higher order polynomial such as a cubic

curve could conceivably have fitted between the simultaneous confidence intervals.
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Figure 2a: F1-Crossover response curve plot with 100 replicates.

This is illustrated in Figure 3a and Figure 3b. As it is preferable to formally

test for the shape of the response curve rather than relying on visual inspection,

better information was obtained from the sum of squares partitioned into terms
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Figure 2b: F1-Mutation response curve plot with 100 replicates.
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Figure 3a: F1-Linear curve fitted through simultaneous confidence intervals.

corresponding to orthogonal contrasts which represent polynomials. These data are

shown in Table A-9 and suggested a linear trend for crossover and a quadratic trend

for mutation.

However, given the lack of power associated with interaction it was necessary to

repeat the analysis using an increased sample size. Adhering to our protocol of

carrying out power calculations on a strictly post hoc basis we enacted a five fold

increase in the number of replicates.

Results with 500 Replicates

ANOVA of 500 replicates is shown in Table 8.
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Figure 3b: F1-Cubic curve fitted through simultaneous confidence intervals.

Table 8: F1-ANOVA of 500 replicates.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 82952 13825.38 56.20533 0.0000000

Mutation 10 208227 20822.75 84.65223 0.0000000

Interaction 60 12386 206.44 0.83925 0.8079445

Block 499 237465 475.88 1.93464 0.0000000

Residuals 37924 9328542 245.98 - -

Residual standard error: 15.68375, Estimated effects are balanced.

A similar pattern for the overall results was evident. That is, a highly significant

result for crossover and mutation while a non-significant result for the interaction

parameter.

Table A-3 illustrates the improvement in power obtained by increasing the sample

size though the power associated with the interaction parameter remained below

the study threshold. The effect of increasing the number of replicates upon the

width of the simultaneous confidence intervals for the response curves is shown in

Figure 4a and Figure 4b. The increase in the number of replicates reduced the

width of the simultaneous confidence intervals producing clearer linear behaviour

for crossover and quadratic behaviour for mutation. Both trends were affirmed in

the partitioned sum of squares displayed in Table A-10.

However, the continued lack of power associated with the interaction parameter
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Figure 4a: F1-Crossover response curve plot with 500 replicates.
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Figure 4b: F1-Mutation response curve plot with 500 replicates.

meant that a further increase in the sample size was again required. We opted

again for a five fold increase in the number of replicates to 2500. However, this

data-set could not be analyzed by S-PLUS due to the fact that the large number

of levels for the block variable meant that the calculations involved too many and

too large matrices. As such, the pooled analysis design was implemented.

Results of the Pooled Analysis

Table 9 shows ANOVA of the pooled data-set from 5 data-sets of 500 replicates.

Both crossover and mutation were again highly statistically significant. However,

the interaction between crossover and mutation was not with a p-value of 0.0377.

Post hoc power calculations are displayed in Table A-4. The increase in replicates
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Table 9: F1-Pooled ANOVA analysis.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 714.601 119.1002 256.1305 0.0000000

Mutation 10 2153.876 215.3876 463.2010 0.0000000

Interaction 60 38.977 0.6496 1.3970 0.0377493

Block 4 1.381 0.3453 0.7426 0.5635587

Residuals 304 141.359 0.4650 - -

Residual standard error: 0.6819076, Estimated effects are balanced.

now resulted in 100% power to detect a difference of 5 epochs for the interaction

parameter. As the power threshold of the study had been exceeded it was not

necessary to increase the sample size any further.

The response curve plots for crossover and mutation from the pooled analysis are

displayed in Figure 5a and Figure 5b. As can be seen the width of the simultaneous

confidence intervals has been further tightened. The partitioned sum of squares

shown in Table A-11 illustrated strong agreement with the plots. However, for

mutation a cubic effect was now significant though the quadratic effect remained

predominant as evidenced when comparing the magnitude of the respective sum of

squares.
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Figure 5a: F1-Crossover response curve plot from pooled analysis.
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Figure 5b: F1-Mutation response curve plot from pooled analysis.

In conclusion, these data suggested that both crossover and mutation are highly

important parameters in the GA for the F1 problem domain. The behaviour of

crossover is linear while the behaviour of mutation is predominantly quadratic with

some cubic component. The interaction observed between crossover and mutation

is not significant and therefore is of little practical importance.

Using polynomial regression separate fitted response curves for crossover and muta-

tion were obtained. These are illustrated in Figure 6a and Figure 6b and the equa-

tions are given in Table A-19. Using these equations the best values for crossover

and mutation were calculated and the overall results are displayed in Table 10.
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Figure 6a: Fitted response curve: F1-crossover.
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Figure 6b: Fitted response curve: F1-mutation.

Table 10: F1-Overall results for crossover and mutation.

Parameter Response curve shape Estimated best value 99% CI

Crossover Linear 100% -

Mutation Cubic 6.77% 6.60%-6.95%

2.5.2 Exploratory Analysis of Test Function F3

Table 11: F3-Pooled ANOVA analysis.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 4 251.835 62.9588 51.8074 0.0000000

Mutation 8 3460.606 432.5757 355.9567 0.0000000

Interaction 32 50.045 1.5639 1.2869 0.1550913

Block 4 12.390 3.0974 2.5488 0.0409906

Residuals 176 213.884 1.2152 - -

Residual standard error: 1.102383, Estimated effects are balanced.

ANOVA of the pooled data-set for F3 is shown in Table 11. Crossover and mu-

tation were highly statistically significant while the interaction between crossover

and mutation was not. Post hoc power calculations displayed in Table A-5 show

that the power for detecting a difference of 5 epochs for the interaction parameter

was 88.27%, exceeding the threshold for the present study. As such there was no

further need to increase the sample size.
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An examination of the partitioned sum of squares shown in Table A-12 confirmed

a linear trend for crossover and a quadratic trend for mutation. Using polynomial

regression the fitted response curves for crossover and mutation were obtained.

These are illustrated in Figure 7a and Figure 7b and the equations given in Table A-

19. Using these equations the best values for crossover and mutation were calculated

and the overall results are displayed in Table 12.
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Figure 7a: Fitted response curve: F3-crossover.
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Figure 7b: Fitted response curve: F3-mutation.

Table 12: F3-Overall results for crossover and mutation.

Parameter Response curve shape Estimated best value 99% CI

Crossover Linear 100% -

Mutation Quadratic 5.11% 5.07%-5.15%
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2.5.3 Exploratory Analysis of Test Function F2

Results of the pooled analysis

Table 13 shows ANOVA analysis of the pooled data-set for F2.

Table 13: F2-Pooled ANOVA analysis.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 14 29291.3 2092.235 46.1088 0.000000000

Mutation 12 103575.8 8631.317 190.2173 0.000000000

Interaction 168 10717.5 63.795 1.4059 0.001550061

Block 4 820.0 205.006 4.5179 0.001298162

Residuals 776 35211.8 45.376 - -

Residual standard error: 6.736177, Estimated effects are balanced.

Crossover and mutation were highly statistically significant as was the interaction

between crossover and mutation with a p-value of 0.00155. Since the interaction pa-

rameter demonstrated strong statistical significance no further increments in sample

size were necessary.

Examination of the sum of squares partitioned into orthogonal polynomial contrast

terms as shown in Table A-13 suggested a linear trend for crossover and a cubic trend

for mutation with the predominant effect for the latter arising from the quadratic

term. Partitioning of the sum of squares of the interaction parameter showed only

a statistically significant effect (p-value less than 0.01) for the linear:linear term

(that is, the linear component of crossover multiplied by the linear component of

mutation).

As the interaction parameter was found to be significant, in contrast to the results

for F1 and F3, polynomial regression incorporating the linear by linear interaction

effect was used to obtain the overall 3-dimensional equation for the response curve

and this is given in Table A-19. Figure 8a illustrates this overall 3-dimensional

response curve and Figure 8b and Figure 8c illustrate 2-dimensional slices corre-

sponding to crossover and mutation, respectively.
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Figure 8a: Fitted response curve: F2.
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Figure 8b: Fitted response curve: F2-crossover. The solid line corresponds to the
lower mutation rate of 0.18 and the top dotted line to the upper mutation rate of
0.24. This applies to all subsequent figures.

Figure 8b illustrates consistent positive slopes for the crossover curves indicating a

worsening of performance as the crossover rate increased. Additionally, it should

be noted that the top curve (the solid curve) and the second curve from the top

correspond to mutation values of 24% and 18%, respectively. As the other curves

fall inside these extremes this illustrates how this cross-section actually curves into

the page. In Figure 8c we see the curved trend of each mutation curve. In this

graph, the top curve corresponds to a crossover rate of 70% and the bottom curve

corresponds to a crossover rate of 0%. This suggests that mutation performs best

when the crossover rate is 0%.

Using the equation where the rate of crossover was 0% the best value for mutation
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Figure 8c: Fitted response curve: F2-mutation.

was calculated. The overall results of the analysis are shown in Table 14.

Table 14: F2-Overall results for crossover and mutation.

Parameter Response curve shape Estimated best value 99% CI

Crossover Linear 0% -

Mutation Cubic 21.15% 21.01%-21.30%

Interaction Linear:Linear - -

2.5.4 Exploratory Analysis of Test Function F6

Results of the pooled analysis

Table 15 shows ANOVA analysis of the pooled data-set for F6.

Table 15: F6-Pooled ANOVA analysis.

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 14 54420.8 3887.20 93.4536 0.0000000

Mutation 14 162014.1 11572.44 278.2172 0.0000000

Interaction 196 50461.5 257.46 6.1896 0.0000000

Block 4 77.3 19.31 0.4643 0.7619715

Residuals 896 37269.1 41.59 - -

Residual standard error: 6.449417, Estimated effects are balanced.
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Paralleling the results for F2, both crossover and mutation were highly statistically

significant together with the interaction. As before, strong statistical significance

for the interaction parameter meant that no further increments in sample size were

necessary.

Inspection of the sum of squares partitioned into orthogonal polynomial contrast

terms as shown in Table A-15 demonstrated up to quadratic behaviour for crossover

with the linear component being predominant while for mutation up to cubic be-

haviour with the quadratic effect being predominant. Interaction was more complex

than for F2 with significant interaction terms: linear:linear, quadratic:linear, lin-

ear:quadratic and linear:cubic.

Again using polynomial regression with appropriate interaction terms, the overall 3-

dimensional equation for the response curve was obtained and is given in Table A-19.

Figure 9a illustrates the overall 3-dimensional response curve and Figures 9b and 9c

illustrate 2-dimensional slices corresponding to crossover and mutation, respectively.
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Figure 9a: Fitted response curve: F6.

In Figure 9c we see the curved trend of each mutation curve. However, Figure 9d,

which displays mutation curves for crossover rates of 0% and 10% respectively

illustrates that performance was predicted to improve very slightly with the latter

crossover rate of 10%. This was also seen when examining mutation rates for

crossover rates of 5% and 15%. However, to assess in a practical fashion if these

differences would be apparent in a data-set focusing upon this range we generated
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Figure 9b: Fitted response curve: F6-crossover.
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Figure 9c: Fitted response curve: F6-mutation.

five 500 replicate data-sets keeping the mutation range the same but narrowing the

range of crossover from 0% to 15% inclusive.

As shown in Table A-18 ANOVA analysis illustrated that the differences in per-

formance due to crossover over this range were marginal with a p-value of 0.0208

despite the power being high at 91.63%. Moreover, the partitioned sum of squares

illustrated that the effect of crossover was solely linear with a p-value of 0.0003.

Regression analysis confirmed that the coefficient for the linear term was positive

indicating a worsening of performance as the crossover rate increased.

Thus, using the equation where the rate of crossover was 0% the best value for

mutation was calculated. The overall results of the analysis are shown in Table 16.
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Figure 9d: Fitted response curves for crossover 0% and 10%: F6-mutation.

Table 16: F6-Overall results for crossover and mutation.

Parameter Response curve shape Estimated best value 99% CI

Crossover Quadratic 0% -

Mutation Cubic 15.01% 14.80%-15.22%

Interaction Linear:Linear - -

Quadratic:Linear - -

Linear:Quadratic - -

Linear:Cubic - -

2.6 Discussion

Genetic algorithms have been studied in computer science and used in real world

applications to find solutions to difficult problems. However, there is no generally

accepted methodology to assess which parameters significantly affect performance,

whether these parameters interact and how performance varies with respect to

changes in parameters. This chapter describes a statistical methodology for the

exploratory study of genetic and other adaptive algorithms addressing these issues.

Generically, once the algorithm and the problem domain have been specified, the

steps in the analysis are:

1. Identify sources of variation and modify the algorithm to generate blocked

runs.
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2. Use a workup procedure to minimize the appearance of censored observations

and to finalize starting ranges for parameters.

3. Generate an initial data-set consisting of an arbitrary number of replicates.

Typically, we have found 100 replicates to be a useful starting point.

4. Calculate power post hoc based upon a chosen effect size. If at least 80%

power is not achieved and the experiment resulted in observing no interaction

increase the sample size.

5. Conduct (pooled) ANOVA analysis and determine which parameters are sta-

tistically significant.

6. For parameters which are statistically significant partition the sum of squares

into polynomial contrast terms. Determine which polynomial terms are sta-

tistically significant.

7. Use polynomial regression to obtain the coefficients for the overall response

curve (if the interaction parameter is statistically significant) or to obtain

the coefficients for the response curve for each parameter separately (if the

interaction parameter is not statistically significant).

8. Differentiate and solve the response curve for each parameter to obtain best

values and calculate confidence intervals.

Before discussing the specific results of our study it should be prefaced that the

present research aimed to provide a statistical methodology by demonstrating its

practical use in well known test functions. In this regard, the number of parameters

and the suite of problems is restricted. Further research using a statistical approach

with an expanded set of parameters, in both continuous and discrete problem do-

mains, will be necessary to expand upon these initial findings.

The analysis of F1 illustrates the way in which our methodology was used to make

informed decisions when exploring the relationship between crossover and mutation



2.6. DISCUSSION 43

on a specified problem. Initially, workup procedures yielded starting ranges for

crossover and mutation. ANOVA of an initial data-set of 100 replicates demon-

strated a statistically significant effect upon performance of both crossover and

mutation with non-significance for the interaction parameter. Attempting to gauge

the shape of the response curve plots was compromised by the small sample size.

As seen, the width of the simultaneous 99% confidence intervals made it unclear as

to whether the trend for crossover was linear or included higher order components.

In contrast, the sum of squares partitioned into terms corresponding to orthogonal

polynomial contrasts demonstrated predominantly linear and quadratic trends for

crossover and mutation, respectively. Although this dispelled the ambiguity asso-

ciated with the data obtained from visual inspection, the subsequent power cal-

culations clearly showed a lack of power for the interaction parameter. Therefore,

increases in sample size were required. This was carried out until the appropriate

power for the interaction parameter was achieved. At this point polynomial regres-

sion was used to obtain fitted response curves and best values with 99% confidence

intervals were calculated.

Looking at the results from the suite of test functions together, crossover appears to

have a predominantly linear effect upon performance. For F1 and F3 the positive

gradient suggests selecting a rate as high as possible, while for F2 and F6 the

negative gradient suggests its possible exclusion. As noted earlier, Schaffer et al [39]

documented a relative insensitivity to crossover for these same functions and our

research adds to evidence supporting the effectiveness of naive evolution for certain

problems. Indeed, as suggested earlier, naive evolution may be a powerful search

algorithm in its own right as subtly commented by Eshelman [12]. Given that our

study has controlled for the effect of seed we may be obtaining a clearer perspective

of the actual behaviour of crossover than has been seen previously. Whatever the

case, the observation in our work that crossover appears predominantly linear and

that the direction of its slope is problem specific is certainly of practical interest.

It may be possible to correlate this behaviour with particular classes of problems
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making it easier to decide how to make the best use of the crossover parameter.

This is discussed further in Chapter 5.

In contrast, mutation appears to have a consistent and predominantly quadratic

effect upon performance. Why the effect should be more complex than that of

crossover is another question of interest as it may lead to further insights into GA

dynamics. The best values of mutation range from 5.11% to 20.92% (corresponding

to a bit-flipping mutation rate of up to approximately 10%). These mutation rates

add to a growing body of evidence advocating the use of higher mutation rates than

have traditionally been used [2]. For example, Petrovski et al [33] who used frac-

tional factorial design followed by regression analysis in order to calculate optimal

parameter rates in the domain of cancer chemotherapy reported mutation rates in

the range of 10% to 20%. As with crossover, further statistical work of this kind

will assist in the use of the mutation parameter in various problem domains.

The use of statistics also enabled the issue of interaction to be addressed and we

found that whether interaction is significant is also problem specific. As to why

it is important for some problem domains and not others remains to be answered

and may lead to a greater understanding of the interplay between the baseline

parameters of crossover and mutation. The kinds of problems for which interaction

is significant is further characterized in subsequent chapters.

In conclusion, this chapter has demonstrated a statistical methodology that allows

the investigator to undertake exploratory analysis of genetic and other adaptive

algorithms. Given the many unique advantages offered by statistical analysis, such

as the ability to block for seed, calculation of power and sample size, and rigorous

study of response curves, further use of statistics in this exploratory way will assist

in the use of GAs as powerful search tools.



Chapter 3

The Importance of Interaction

A
s previously discussed, adaptive algorithms such as GAs [6] work by iteratively

adapting members of a population of potential solutions. Individuals are

adapted through competitive selection mechanisms combined with operators such

as crossover and mutation. Since GAs were first developed an important question

has been whether crossover and mutation interact or whether each exerts its effect

independently in the algorithm.

On the basis of work presented in Chapter 2, particularly for Schaffer’s F6, a study

was conducted which examined the relationship between the occurrence of interac-

tion between crossover and mutation and increasing modality of a problem. The

statistical methodology was applied for assessing the impact of parameter settings

and calculating their optimal rates. The results of this work allowed some insight

as to when interaction first becomes significant and how this impacts upon the

practical task of obtaining optimal rates for crossover and mutation.
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3.1 Background

The results of the limited number of studies touching upon the issue of interaction

have been conflicting. Petrovski and McCall [32], for example, carried out frac-

tional factorial experiments in the domain of cancer chemotherapy optimization

and found only weak interaction between parameters. On the other hand, Schaf-

fer et al [39] conducted a factorial design study which encompassed the De Jong

suite and Schaffer’s F6, and showed a statistically significant interaction between

crossover and mutation which appeared to be function independent.

The difference in the above results may be due to issues such as differing problem

domains and the different approaches undertaken. The previous chapter has ad-

dressed the limitations of the work of Schaffer et al. In a similar fashion the work of

Petrovski and McCall failed to control for the effect of seed, ignored issues dealing

with sample size and power, and a detailed analysis of response curves was not

considered.

In our own work it was demonstrated that the interaction between crossover and

mutation was significant for De Jong’s F2 and Schaffer’s F6 but not for De Jong’s

F1 nor De Jong’s F3. This led to two important questions.

1. What types of problems are likely to demonstrate statistical significance for

the interaction between crossover and mutation?

2. Where interaction between crossover and mutation is statistically significant,

what is the practical implication for obtaining optimal rates for these param-

eters?

In Section 3.2 a brief review is given of the statistical methodology as applied

to studying the test functions. The results of this research are then reported in

Section 3.3. A discussion in Section 3.4 concludes this chapter.
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3.2 Methods

The statistical methodology has already been described in Chapter 2. However,

aspects pertinent to this chapter are described below.

3.2.1 Test Functions

A generic test function was created, FNn, that increases in modality when the

integer variable, n, is incremented. That is, the function increases in the number of

local minima via an increase in peaks and troughs. We formulated this function to

elucidate if increasing modality was related to statistical significance for interaction.

This was of interest as, particularly for Schaffer’s F6 analyzed in Chapter 2, this was

a function that was both highly modal and exhibited strong statistical significance

for the interaction term. The generic test function, implemented as a minimization

problem, is described by Equation 10:

FNn(x1 , x2 ) =
2

∑

i=1

0.5(1 − cos(
nπxi

100
)e−| xi

1000
|),−100 ≤ xi ≤ 100. (10)

The test functions for n = 1 and n = 6 are shown in Figure 10a and Figure 10b,

respectively.
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Figure 10a: Test function FN1.

The research consisted of statistical analysis of test functions FN1 to FN6.
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Figure 10b: Test function FN6.

3.2.2 Power

Previous work in this thesis has been based on increasing the sample size by a

factor of 5 until at least 80% power is achieved for detecting a difference of at least

5 epochs. However, as f is related to the standard deviation, which may differ

considerably according to the problem under study, the previous methodology was

refined by calculating power based on an accepted standard value of f.

In the previous research the simplest benchmark problem was De Jong’s F1 [9]

which showed the smallest standard deviation. In reference to this problem a dif-

ference of at least 5 epochs was approximated by an f value of 0.4 which denotes

a large effect [5]. To obtain a power of at least 80% using this f value a pooled

ANOVA analysis was required (see below) using 5 by 500 replicate data-sets. There-

fore 5 by 500 replicate data-sets were used as a starting point in the current study

and the level of power achieved for each function was confirmed. The level of power

achieved for each function exceeded 80% except for FN2 where the power using 5

by 500 replicate data-sets was 75.3%. Thus, for FN2 the pooled ANOVA analysis

comprised 6 by 500 replicate data-sets where the power achieved was 88.2%.

As the present study was exploratory in nature and a priori assumptions about the

standard deviation could not be made we again strictly adhered to post hoc power

calculations.
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3.3 Results

3.3.1 ANOVA Analysis of Test Functions

The results of ANOVA analyzes of pooled results are shown in Table B-1, Table B-

2, Table B-3 and Table B-4. Analyzes are carried out around the region of best

performance in each case.

The effects of crossover and mutation were statistically significant for all test func-

tions. For test functions FN1 to FN4 there was no highly significant effect of

interaction between crossover and mutation testing at the 1% level of statistical

significance. However, FN3 with a p-value of 0.011 was marginally significant de-

spite the fact that the function above it in the series, being FN4 which is higher

in modality, was not statistically significant. This anomaly is explored further in

Chapter 4.

By test function FN5 high statistical significance for the interaction between crossover

and mutation had been demonstrated at the 1% level of significance. This continued

for FN6.

3.3.2 Polynomial Regression Analysis of Test Functions

The results of polynomial regression analyses of pooled results are shown in Table B-

6 and Table B-7.

For functions FN1 to FN4 and FN6 the response curve for crossover was linear. As

the coefficient calculated from polynomial regression for each of these was negative

this corresponded to an optimal rate of 100%.

In the case of FN5 the effect of crossover was quadratic. As seen in Figure 11 a

crossover rate of 100% appeared to yield the best performance. In keeping with

our previous methodology to verify this we generated 5 by 500 replicate data-sets

keeping the mutation range the same but narrowing the range of crossover from
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Figure 11: Fitted response curves: FN5 -crossover.

Table 17: ANOVA results of crossover 80% to 100% for FN5.

Test function FN5

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 20 127.67 6.383 0.8516 0.6501430

Mutation 8 18725.30 2340.663 312.2800 0.0000000

Interaction 160 1250.80 7.817 1.0430 0.3558088

Block 4 101.05 25.262 3.3703 0.0095623

Residuals 752 5636.54 7.495 - -

Residual standard error: 2.737773, Power = 99.96%.

80% to 100% inclusive. Table 17 shows that the p-value for crossover was 0.65

illustrating no statistical difference in performance from a crossover rate other than

100%. Therefore, 100% was accepted as the optimal crossover rate for FN5.

The optimal rates for mutation for functions FN1, FN2 and FN4 were in the range

of 8% to 9% (bit-flipping mutation rate in the range of 4% to 4.5%). For FN3,

FN5 and FN6 the rates appeared higher in the range of 14% to 20% (bit-flipping

mutation rate in the range of 7% to 10%). Thus, it also appeared that a relationship

existed between the difficulty of the problem and the optimal mutation rate for that

problem. That is, the more difficult the problem the higher the optimal mutation

rate. The rates themselves compared favourably to other published work that has
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used a statistical approach to calculate the optimal mutation rate, such as the work

of Petrovski et al [33] discussed earlier in Chapter 2.

3.3.3 Polynomial Regression Graphs of Test Functions FN5,

FN6

For FN5 and FN6, the interaction between crossover and mutation was statistically

significant and polynomial regression allowed response curves to be generated. The

overall response curves are shown in Figure 12a and Figure 12b.
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Figure 12a: Fitted response curve: FN5 -overall.
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Figure 12b: Fitted response curve: FN6 -overall.

The striking effect of interaction upon the relationship between crossover and mu-

tation is best illustrated when viewing the fitted response curves for mutation for
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individual levels of crossover as shown in Figure 13a and Figure 13b.
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Figure 13a: Fitted response curves FN5 -mutation.
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Figure 13b: Fitted response curves FN6 -mutation.

For FN5 the left hand side of the curves shows a minor degree of inflection just

beginning to occur. For FN6 inflection is well defined and occurs succinctly about

a mutation rate of approximately 18% (bit-flipping mutation rate of approximately

9%). The practical implication of these curves is that if attempting to find the

optimal rate for crossover and mutation independently, without regard for the effect

of interaction, it is uncertain whether the rates obtained will be optimal. For

example, optimizing for crossover first using a fixed nominal mutation rate will select

a particular curve. Subsequently optimizing mutation will only find a minimum on

that particular curve which may differ from the global minimum. In order to allow

for the effect of interaction between crossover and mutation each unique combination
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of these parameters, within given starting ranges, must be assessed. An interesting

observation from this component of the research was that some problems with lower

modality appeared more difficult to solve than problems with higher modality.
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Figure 14a: Fitted response curve: FN3 -overall.
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Figure 14b: Fitted response curve: FN4 -overall.

Specifically this is illustrated by examining the response curve for FN3 shown in

Figure 14a as opposed to FN4 shown in Figure 14b. As can be seen, FN3 proved

the more difficult problem to solve despite the fact that it is lower in modality.

Moreover, the optimal mutation rate for FN3 was 17.45% (bit flipping mutation rate

of 8.72%) while that for FN4 was 8.41% (bit flipping mutation rate of 4.20%). As a

high mutation rate appears to be a marker for the difficulty of a problem this added

to the evidence supporting the conjecture that FN3 was a more difficult problem

to solve than FN4. This observation is explored in greater detail in Chapter 4.
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3.4 Discussion

When GAs were first developed they represented a novel approach towards opti-

mization in both continuous and discrete problem domains based primarily on two

naturally inspired operations, crossover and mutation. However, a yet unanswered

question has been whether crossover and mutation interact or whether each pa-

rameter exerts its effect independently during the running of the algorithm. Given

the many unique advantages offered by statistical analysis, such as the ability to

block for seed, calculation of power and sample size, and rigorous study of response

curves, the use of statistical methodology is best suited for this exploratory work.

The limited number of statistical studies which have provided data on this topic

have been conflicting. However, if interaction does in fact exist between crossover

and mutation, this leads to two questions. First, what type of functions are likely

to demonstrate interaction between crossover and mutation, and, secondly, what is

the practical implication of interaction when attempting to obtain optimal rates for

these parameters. An initial attempt to provide answers to these two questions has

been made in this chapter by examining the relationship between the occurrence

of statistically significant interaction among crossover and mutation and increasing

modality of a problem.

Addressing the first question we find that within the class of test functions exam-

ined, functions with increased modality are more likely to demonstrate interaction

between crossover and mutation. As modality increased beyond FN4 the interac-

tion between crossover and mutation was statistically significant. It is conjectured

that when dealing with highly modal functions the possibility of interaction must be

considered. For simple functions, with low modality, the present research suggests

that crossover and mutation are exerting their respective effects independently.

Addressing the second question it has been shown that if interaction is occurring

between crossover and mutation attempting to optimize the rate of each parameter

independently may result in rates for crossover and mutation which are not optimal.
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In order to account for the effect of interaction all combinations of crossover and

mutation, within given starting ranges, must be trialed.

In conclusion, the research in this chapter has made an initial attempt to address

the importance of the interaction between crossover and mutation in GAs. Further

work of this kind, based on statistical methodology, will afford better insights into

the dynamics of GAs.
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Chapter 4

The Influence of Gray Encoding

4.1 Background

A
n integral part of a GA is the type of knowledge representation that is used.

Traditionally, this has been bit encoding with variations such as binary or

Gray encoding. Though the operators such as selection and mutation have been

studied in some detail, comparatively less formal research has been conducted into

the type of knowledge representation that has been implemented.

GA practitioners have reported that changing the representation which is used in

GAs affects their performance [6, 37]. The ability to better understand the influence

of intrinsic factors in a GA such as the type of encoding used to represent potential

solutions is therefore a major topic of interest.

In the previous chapters interesting results were observed. Firstly, it was noted that

for difficult problems (problems with higher modality) increased mutation rates are

required. Secondly, as a problem became more difficult, due to increased modality

(more local optima), it is generally more likely to demonstrate highly statistically

significant interaction between crossover and mutation.
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An unexpected result was that certain problems in our FNn test function series

appeared more difficult to solve despite the fact that they have lower modality.

Specifically, FN3 appeared a more difficult problem to solve than FN4. This is

in contrast to the trend of this test series of increasing difficulty with increasing

modality.

This finding led to two important questions which we sought to investigate, building

upon the work presented in the previous chapters:

1. Is there a demonstrable relationship between the difficulty of a problem and

the choice of encoding or could any observed change in performance be simply

due to the stochastic nature of the GA;

2. If the relationship between the difficulty of a problem and the choice of en-

coding is demonstrable and is thus a real effect, what is the actual mechanism

by which this occurs?

In this chapter we use components of our methodology to demonstrate that the type

of encoding used can have a real affect upon the difficulty of a problem. Animation

is then used to illustrate the actual mechanism by which this effect occurs. This is

illustrated using test functions FN3 and FN4 from Chapter 3.

In Section 4.2 a brief review is made of the test functions and methodology. The

results of the research are then reported in Section 4.3. A discussion in Section 4.4

concludes this chapter.

4.2 Methods

A detailed explanation of the statistical methodology can be found in Chapter 2.

Aspects most relevant to this chapter are described below.
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4.2.1 Test Functions

Again, use was made of the generic test function series, FNn, that increases in

modality as the integer variable, n, is incremented. That is, the functions in-

crease in the number of local optima. The test function was implemented as a two-

dimensional (two bit-string) minimization problem as described by Equation 10:

FNn(x1 , x2 ) =
2

∑

i=1

0.5(1 − cos(
nπxi

100
)e−| xi

1000
|),−100 ≤ xi ≤ 100. (10)

Test functions FN3 and FN4 are shown in Figures 15a and 15b, respectively. The

test function was deliberately formulated as a linear-separable problem to exploit

the fact that optimization of such problems by a GA is decomposable into two

independent one-dimensional (one bit-string) sub-problems [38].
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Figure 15a: Test Function: FN3.

4.2.2 Animation Analysis

In order to closely study the behaviour of FN3 and FN4 an animation of the GA

in solving each function in their one-dimensional (one bit-string) forms was imple-

mented. We were able to visualize the behaviour of the population of chromosomes

from epoch to epoch after the processes of selection, crossover and mutation. The

previous chapters have shown that the best rate of crossover for FN3 and FN4 is
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Figure 15b: Test Function: FN4.

100%. Thus, the study of the behaviour of the chromosomes was carried out by

setting crossover at 100% and varying the rates of mutation in accordance with the

results from dot diagram analysis.

4.3 Results

4.3.1 Response Curve Analysis of FN3 and FN4

As previously discussed in Chapter 3, the number of epochs required to solve the

problem, as shown in the response curves, demonstrated that FN3 was the more

difficult problem to solve despite it being lower in modality (see Figure 14a and

Figure 14b).

4.3.2 Dot Diagram Analysis of FN3 and FN4

Dot diagram analysis of FN3 and FN4 are shown in Figures 16a and 16b.

For FN3 mutation rates of 10% or less were associated with censoring. In contrast,

for FN4 low rates of mutation were not associated with censoring. This assess-

ment of the two functions suggested that despite being lower in modality, FN3 was

proving a more difficult function to solve than FN4.
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Figure 16a: Dot Diagram: FN3.
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Figure 16b: Dot Diagram: FN4.

4.3.3 Dot Diagram Analysis of One Dimensional Projec-

tions

In order to explain the above anomaly it was necessary to better understand the

interaction between the GA and the solution space. This was achieved by developing

a computer animation that allowed observation of the behaviour of individuals as

iterations were stepped through.

Visualization of the behaviour is simpler for a one-dimensional (one bit-string)

problem. Since our test function is linear separable, its optimization by a GA

can be envisaged as decomposable into two independent one-dimensional (one bit-

string) sub-problems. Providing those sub-problems exhibit the same phenomenon,
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we can confine our study to their one-dimensional (one bit-string) forms. These are

denoted as FN31D and FN41D .

Dot diagram analysis of FN31D and FN41D were undertaken and are shown in Fig-

ures 17a and 17b. As can be seen, low mutation rates were associated with censoring

for FN31D , while for FN41D there was an absence of censoring. As these results

paralleled those for the two-dimensional (two bit-string) functions we proceeded to

study the behaviour of FN31D and FN41D via animation.
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Figure 17a: Dot Diagram: FN31D .
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Figure 17b: Dot Diagram: FN41D .



4.3. RESULTS 63

4.3.4 Animation Analysis of FN31D and FN41D

The animation analysis of FN31D and FN41D revealed interesting insights into the

performance of the GA. Some illustrative examples are discussed below.

As shown in Figure 18a and Figure 18b, for FN31D , after applying a low muta-

tion rate a number of chromosomes would lie in the upper part of the “optimal

valley” (the valley containing the global optimum). However, after selection these

chromosomes would be culled and fail to survive into the next generation.

Figure 18a: FN31D : Chromosome population after applying a low mutation rate.

Figure 18b: FN31D : Chromosome population after selection.

In contrast, as illustrated in Figures 19a and 19b, high mutation rates were able to

produce chromosomes lying deep enough in the “optimal valley” to survive culling

and be selected into the next generation.

Thus, it appeared for FN31D that movement from the local optima to the global

optimum was a difficult task that could only be achieved with the use of high

mutation rates.

In contrast, for FN41D , again starting outside the global optimum, low mutation
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Figure 19a: FN31D : Chromosome population after applying a high mutation rate.

Figure 19b: FN31D : Chromosome population after selection.

rates were able to produce chromosomes lying deep enough in the optimal valley to

survive into the next generation. Thus, this movement appeared to be less difficult

than for FN31D . However, an additional interesting observation from FN41D , as

shown in Figure 20a, Figure 20b and Figure 20c, was that chromosomes appeared

to move with greater ease again from the outer-most local optima to the local

optima adjacent to the global optimum.

Figure 20a: FN41D : Chromosome population prior to applying mutation.

In overview, the animation revealed that there was a factor causing the chromosomes

to move with either greater or lesser difficulty from local optima to the global
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Figure 20b: FN41D : Chromosome population after applying a low mutation rate.

Figure 20c: FN41D : Chromosome population after selection.

optimum. It was this factor that was making FN31D more difficult for the GA than

FN41D .

It was conjectured that the difficulty of jumping between local optima was related to

the number of coincident mutations required to make that transition. The probabil-

ity of a successful jump would therefore reduce with the product of the probabilities

of each individual mutation required. To test this hypothesis examination was made

of the number of bit changes required to pass between local optima in FN31D and

FN41D .

4.3.5 Hamming Distances for FN31D and FN41D

The number of bit changes required to jump from one bit-string to another is the

Hamming Distance of the bit-strings. Gray coding has been proposed as a good

encoding for applications such as GAs because the Hamming Distance between any

two adjacent solution candidates is one, as compared to binary encoding where all
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bits may change in moving from one decimal integer to the next. The idea is that

this allows individuals to explore the solution space via small mutations.
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Figure 21a: FN31D (HD=Hamming Distance).
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Figure 21b: FN41D (HD=Hamming Distance).

To find the mutations actually required for the GA to make progress in solving the

multi-modal problems the Hamming Distances between local optima were calcu-

lated. For FN31D , as illustrated in Figure 21a, the Hamming Distance between the

local optima and the global optimum was 12. In contrast for FN41D the Hamming

Distance between the local optima adjacent to the global optimum and the global

optimum was only 7. Since mutation probabilities are multiplicative (for example,

0.17 versus 0.112), there existed a much lower probability of chromosomes moving

into a sufficiently fit part of the optimal valley to survive selection for FN31D as

opposed to FN41D . This explained why higher mutation rates were necessary for
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FN31D .

Furthermore, for FN41D the Hamming Distance between the outer-most local op-

tima and the local optima adjacent to the global optimum was only 2. Thus, it

proved easy for chromosomes to move into the local optima adjacent to the global

optimum. Hence, the fact that FN41D was more modal than FN31D was of little

consequence since the Hamming Distance between these local optima was compar-

atively small.

In overview, the results demonstrated by the dot diagram analysis, ANOVA, and

finally by animation analysis, all consistently demonstrated that FN3 was a more

difficult problem than FN4. By computing Hamming Distances it was found that,

despite FN31D being of lower modality than FN41D , these Hamming Distances were

significantly higher for FN31D making it a more difficult problem. This was a direct

result of the relationship between the encoding and the solution space.

4.4 Discussion

In respect of the intrinsic factors which may affect GA performance two important

questions have been whether there is a significant relationship between the difficulty

of a problem and the choice of encoding, and, if so, what is the actual mechanism

by which this occurs.

In this chapter the first question has been addressed by showing that a lower modal-

ity problem is more difficult to solve with a Gray encoding than a higher modality

problem. This is in contrast to the identified trend of problem difficulty increas-

ing with increasing modality. Specifically, response curve analysis and dot diagram

analysis suggested that FN3 is a more difficult problem than FN4, despite the

fact that FN4 is higher in modality. To investigate this further, since the original

functions are linear-separable, our test functions were decomposed into their one-

dimensional (one bit-string) forms. Subsequent dot diagram analysis confirmed the

ability to do so.
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To address the second question animations of the GA in solving each function in

their one-dimensional (one bit-string) form were created which clearly demonstrated

that the ability of chromosomes to move between local optima and avoid culling in

the two functions was significantly different. Movement towards the global optimum

was much more difficult in FN31D than for FN41D .

The probability of a successful jump is dependent on the Hamming Distance. Calcu-

lation was therefore made of the Hamming Distances between local optima present

in the two functions and it was found that movement within FN31D was more dif-

ficult because of the significantly higher Hamming Distances involved. Moreover,

even though FN41D is higher in modality the very small Hamming Distance between

the outer-most local optima and the local optima adjacent to the global optimum

counteracted the influence of its increased modality. These Hamming Distances are

a result of the relationship between the encoding and the shape of the functions.



Chapter 5

The Detrimentality of Crossover

I
t has been traditionally maintained that the crossover operator is an integral

component of a GA. This has been held to the extent that some GA researchers

believe that it is the inclusion of the crossover operator that distinguishes GAs from

all other optimization algorithms [6].

Despite this, work by Eshelman and Schaffer [13], entitled Crossover’s Niche, sug-

gested that there exists a unique niche for which crossover is advantageous, and

that it is smaller than has traditionally been held in the GA community. Saloman

[38] suggested that Crossover’s Niche is linear-separable problems. From his work

with Rastrigin-like functions he conjectured that crossover implicitly exploits the

decomposability property of the fitness function: the optimization is decomposable

into n independent one-dimensional (one bit-string) sub-problems. If such a conjec-

ture is true, it adds further to the debate concerning crossover since most problems

in the real world are not-linear-separable, but tend to be non-linear, chaotic and

stochastic [10].

We explored Salomon’s conjecture to see if linear-separability was indeed linked to

crossover’s niche or whether other factors came into play in rendering the crossover

operator detrimental upon GA performance.

In Section 5.1 the literature on the detrimentality of crossover is reviewed. This

69
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is followed in Section 5.2 by a review of the work in the present thesis on this

subject. Section 5.3 briefly reviews the statistical methodology. Next, Section 5.4

and Section 5.6 details the results of our experiments with the latter carrying over

to a more difficult practical optimization problem. Section 5.5 reviews the factors

affecting the detrimentality of crossover. Section 5.7 concludes this chapter.

5.1 Background

As discussed above, from a traditional perspective it has been maintained that

crossover is a necessary inclusion in a GA. Mutation, on the other hand, has been

traditionally seen as a background operator with the unique role, as described by

Holland, of ensuring that no allele or value of a bit character (0 or 1) permanently

disappears from the population [20]. However, there is considerable debate with

some suggesting that the crossover operator may not always make a useful contri-

bution to GA performance. As Eshelman [12] subtly conjectured, naive evolution

(a GA which is composed of selection and mutation only) is a much more powerful

algorithm than many people in the GA community have been willing to admit.

The results of research into the detrimentality of crossover have been inconclu-

sive. As discussed above, Eshelman and Schaffer conjectured the idea of crossover’s

niche. The authors argued that what distinguishes the GA among population-based

hillclimbers is pairwise mating and that problems can be devised where crossover

is given a competitive advantage. However, as discussed before, many problems

do not have these features and it remains an open question as to how important

crossover may be for real world problems. In addition, because GAs are susceptible

to premature convergence the niche for which crossover is beneficial to GA perfor-

mance may be smaller than most GA practitioners maintain [13]. Moreover, Reeves

and Wright [35] suggested that the amount of information in a sample can never

be sufficient to enable one to decide on the amount of epistasis in a problem. This

implies that the problems that Eshelman and Schaffer describe as being most apt



5.1. BACKGROUND 71

for the crossover operator may not be easily recognizable in practice.

Jones [25] added to this by showing that a macromutational hillclimber (one that

involves large scale mutations) easily outperforms a standard GA on Holland’s Royal

Road problem [29] which has the properties that Eshelman and Schaffer ascribe to

problems residing in crossover’s niche. Thus, the niche may be even smaller than

Eshelman and Schaffer had intended.

Further evidence on the usefulness of crossover was contributed by Fogel and Atmar

[15] who conducted several experiments that required solving systems of linear equa-

tions. They concluded that the crossover operator provided no significant benefit.

Jansen and Wegener [22], on the other hand, proved that the crossover operator can

be useful if the current population of strings has a certain diversity. They proved

that an evolutionary algorithm can produce enough diversity such that the use of

crossover can speed up the expected GA optimization time from superpolynomial

to a polynomial of small degree. This was shown only for small crossover proba-

bilities, however, and they remarked that it was an open question as to whether

similar results could be shown for more realistic crossover rates [23]. Moreover, they

proved [23] that for some explicitly defined fitness function, namely the Royal Road

functions, a GA with crossover can optimize in expected polynomial time while all

evolutionary strategies based only on mutation (and selection) required exponential

time.

Statistical analyses of GA performance have failed to clarify this situation. As

discussed previously, Schaffer et al [39] conducted a factorial study using ANOVA

to examine the De Jong suite plus an additional five problems. Close examination

of the best on-line pools suggested a relative insensitivity to the crossover operator

when using Gray encoding. However, again this work did not block for seed, ignored

power calculations and was limited in its analysis of response curves.

Thus, in reference to the above studies three important questions were raised:

1. Can the crossover operator be statistically demonstrated to be detrimental for a
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given problem in the first instance?

2. In reference to the work of Salomon, is not-linear-separability a sufficient deter-

minant of the detrimentality of crossover?

3. If not, what other factors are involved?

5.2 Observations from Earlier Work

Our previous work with ANOVA involved examination of four benchmark problems.

These are displayed again below:

f1(x) =
3

∑

i=1

x2

i
,−5.12 ≤ xi ≤ 5.12, (1)

f3(x) =
5

∑

i=1

⌊xi⌋,−5.12 ≤ xi ≤ 5.12, (2)

f2(x) = 100(x2 − x2

1)
2 + (1 − x1)

2,−2.048 ≤ xi ≤ 2.048, (3)

f6(x) = 0.5 +
(sin

√

x2
1 + x2

2)
2 − 0.5

(1.0 + 0.001(x2
1 + x2

2))
2
,−100.0 ≤ xi ≤ 100.0. (4)

It was found that for De Jong’s F1 and F3 the traditional GA, where crossover was

included, performed optimally when the crossover rate was 100%. In contrast for De

Jong’s F2 and Schaffers F6, the crossover operator was statistically demonstrated

to be having a detrimental effect upon performance. It was also found for these

latter two functions that the ANOVA interaction term between crossover and mu-

tation was significant and negative, which indicates an inverse relationship between

crossover and mutation. Moreover, the difficulty of a problem was associated with

the optimal mutation rate, with De Jong’s F2 and Schaffer’s F6 demonstrating

optimal mutation rates significantly higher that traditional recommendations.
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When considering the possible difference in these functions that could produce such

varied results a clear demarcation between them was that De Jong’s F1 and F3 are

linear-separable1, echoing the conjecture made by Salomon that linear-separable

problems are crossover’s niche. In contrast, De Jong’s F2 and Schaffer’s F6 are

not-linear-separable problems. However the functions are also quite different in

structure, allowing explanations other than linear-separability.

To address the second question therefore, we compared two test functions differing

only in that one test function series was linear-separable while the other was not-

linear-separable.

The two test functions we decided to compare comprised firstly of the test function

series, FNn, which was used in Chapter 3 to examine the importance of the ANOVA

interaction term between crossover and mutation. This is a linear-separable problem

which increases in modality as the value for n increases.

The second test function series consisted of the same functions rotated by 45 degrees

in the solution space. This rotation rendered the series of problems, which we call

FNnR45, not-linear-separable.

By comparing the linear-separable form of the problem to the not-linear-separable

form we expected to see a difference in the effect of the crossover operator. Given

the suggestions from the literature and previous experience with linear-separable

versus not-linear-separable functions, it was conjectured that we would observe a

largely beneficial effect of crossover for the linear-separable problems, FNn, but a

detrimental effect for the not-linear-separable problems, FNnR45. Furthermore, if

the latter turned out to be true, then an attempt would be made to explain the

reasons why crossover acts detrimentally for not-linear-separable problems.

Finally, given the conjecture by Eshelman and Schaffer that it remains an open

question as to how important crossover may be for real-world problems [13] the

1We define linear-separable problems as those where the objective function can be written as
a sum of univariate functions, which are allowed to be not-linear, where each of the functions can
take one component of the input vector as an argument.
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GA was trialed on a practical (but still highly multimodal) landscape minimization

problem to see if the results from the test functions would carry over to those

obtained on the real world landscape.

5.3 Methods

Our statistical methodolgy has been discussed in the previous chapters. Here we

focus on some aspects of the experimental setup for this particular chapter.

5.3.1 Motivation for our Test Functions

As discussed, to determine whether linear-separability is indeed a determining fac-

tor while minimizing other effects, we examined a series of functions of increasing

difficulty, while also examining the same functions in different orientations (that is,

the only difference was the frame of reference). We achieved this by rotating the

functions by 45 degrees rendering them not-linear-separable. We then tested the

algorithm on a newly devised benchmarking problem from the Huygens Suite [28].

These functions are detailed below:

1. Test functions FNn for n=1 to n=6, which are linear-separable equations, as

displayed in Equation 10 below:

FNn(x1 , x2 ) =
2

∑

i=1

0.5(1 − cos(
nπxi

100
)e−| xi

1000
|),−100 ≤ xi ≤ 100. (10)

2. Test function FNnR45 (R45 standing for the original test function FNn

having been rotated by 45 degrees in the solution space), being not-linear-

separable, for n=1 to n=6 as displayed in Equation 11 below:
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FNnR45 (x1 , x2 ) = 0.5(1 − cos(
nπ x1+x2√

2

100
)e−|

x1+x2
√

2

1000
|) +

0.5(1 − cos(
nπ x1−x2√

2

100
)e−|

x1−x2
√

2

1000
|),−100 ≤ xi ≤ 100. (11)

3. MacNish has devised a problem series for benchmarking, that based on fractal

landscapes, reflect the attributes of highly multimodal problems seen in real

world situations [27, 28]. We chose to run our GA on the first landscape in

MacNish’s 20 series for which a plot was provided, shown in Figure 22.

Figure 22: Landscape 20 101 from the Huygens Suite.

5.3.2 Power

As outlined previously it is imperative to have some means of calculating whether

the size of the sample chosen has sufficient power. In order to do so it is necessary

to specify the degree to which the null hypothesis is false. This can be done by

using the effect size index, f, as described by Cohen [5].
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As f is related to the standard deviation, which may differ considerably according to

the problem under study, we again refined our previous methodology by calculating

power based on an accepted standard value of f.

Given the previous experience in power calculations with GA analysis, a value of

0.4 was utilized as a standard for the effect size when attempting to analyze the

performance of a GA. It should also be noted that in using this approach it is

possible to calculate power a priori and thus ascertain if a given sample size will

confer a required level of power. However, in this chapter we continued to adhere

to post hoc power calculations in line with the work of the previous chapters.

5.3.3 Estimates of Optimal Values for Crossover and Mu-

tation

The aim of the present research was to explore the detrimentality of crossover. That

is, to statistically determine the optimal crossover rate for each test function with

detrimental crossover corresponding to an optimal crossover rate of 0%. Therefore,

use was made of previous described methodology which enlisted polynomial regres-

sion to obtain an estimate of the optimal rate for both crossover and the mutation

operators.

5.4 Results

5.4.1 Exploratory Analysis of Test Functions FN1 to FN6

Full ANOVA tables and regression analyses for test functions FN1 to FN6 are to

be found in Table B-1 to Table B-7. The results showed that the crossover operator

proved beneficial to the performance of the GA in every instance: Table B-6 and

Table B-7 show that the optimal value of crossover was 100% for each of the six

functions.
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5.4.2 Exploratory Analysis of test functions FN1R45 to

FN6R45

ANOVA tables and regression analyses for test functions FN1R45 to FN6R45 are

shown in Table C-1 to Table C-7. For the test function series, FNnR45, where the

test function FNn had been rotated by 45 degrees in the solution space, there was

a marked difference in the results obtained.

Firstly, crossover was detrimental for test functions FN2R45, FN4R45 and FN5R45,

where for these rotated forms the optimal crossover rate was 0%. This is in contrast

to the non-rotated form of these functions, as described above, where in each case

crossover proved to be beneficial. By contrast, crossover was beneficial for FN1R45,

FN3R45 and FN6R45. This shows that linear-separability alone is not a sufficient

indicator for the detrimentality of crossover.

Also, where crossover was shown to be detrimental the mutation rate was also

higher than in instances where crossover was having a beneficial effect. For example,

for FN2R45 the optimal mutation rate was 25.45% (bit flipping mutation rate of

12.72%), for FN4R45 the optimal mutation rate was 35.30% (bit flipping mutation

rate of 17.65%) and for FN5R45 the optimal mutation rate was 33.38% (bit flipping

mutation rate of 16.69%). In contrast, for FN1R45 the optimal mutation rate was

8.78% (bit flipping mutation rate of 4.39%), for FN3R45 the optimal mutation

rate was 12.36% (bit flipping mutation rate of 6.18%) and for FN6R45 the optimal

mutation rate was 12.97% (bit flipping mutation rate of 6.48%). Thus, in all cases

where crossover was detrimental the optimal mutation rate proved to be notably

greater than those instances where crossover was beneficial. These mutation rates

also reflected those obtained from the literature when a statistical approach was

adopted [33].

As noted above, as a high mutation rate is a conjectured marker for the difficulty

of a problem the above results indicate that the crossover operator proved to be

detrimental for the most difficult of the not-linear-separable rotated functions.
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5.5 Factors Affecting the Detrimentality of Crossover

In the preceding work it was demonstrated that crossover was detrimental for three

of the six not-linear-separable rotated functions analyzed. As indicated by the

optimal mutation rates, these proved to be the most difficult of the six functions

to solve. Thus, it is conjectured that crossover proves to have a detrimental effect

upon GA performance if the not-linear-separable problem is difficult for the GA to

solve.

What makes a GA hard to solve is a complex issue and involves factors such as the

degree of optimization occurring at local minima due to crossover, the bias of the

mutation operator and the Hamming Distances involved in the individual problems.

In the next sections each of these factors is discussed in turn.

5.5.1 Optimization Occurring at Local Minima due to Crossover

The first factor which influenced the difficulty of the problem for the GA was the

optimization occurring at local minima due to crossover. In order to discuss this

an investigation must firstly be carried out to determine what roles crossover, and

also mutation, are playing in the GA.

Figure 23a, Figure 23b, and Figure 23c show examples of chromosomes situated in

a heat map of function FN2R45. The heat map represents a view of the function

looking down from above with white areas denoting troughs and dark areas denoting

peaks. These heat maps show the location of the 50 chromosomes during iterations

of the GA to enable one to gain a pictorial understanding of their behaviour.

Figure 23a shows a population taken from a random epoch while solving FN2R45

(note that some chromosomes are occluded).

Figure 23b, shows the location of the chromosomes after crossover. The chromo-

somes have dissipated little, moving by only a small amount at the local minima

sites (denoted by the white areas). Crossover is performing its classical function of
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Figure 23a: FN2R45 Initial Chromosome Population before Reproduction.

exploitation within, or converging on, the local minima occupied by the chromo-

somes [20].

In contrast, in Figure 23c after mutation the chromosomes have dissipated more

widely over the solution space. In this sense, mutation is performing its classical

function of exploration of the solution space [20]. It is also important to note that

it is largely only with mutation that the chromosomes are able to move out of the

local optima that they are in and into newer regions of the solution space. This can

be seen visually by referring to the bottom right hand corner of Figure 23c where

several chromosomes have moved from the local optimum situated there into outer

lying regions of the solution space.

The heat maps shown are typical of all those reviewed. The maps showed that

while mutation was responsible for exploration of the solution space, crossover was

enacting exploitation at the sites of local minima.
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Figure 23b: FN2R45 Chromosome Population after Crossover.

That is, the heat maps showed that crossover was in effect responsible for optimiza-

tion taking place at the site of local minima thereby keeping chromosomes “stuck”

in those local minima. This meant that crossover was having the effect of hindering

the movement of chromosomes from local minima into the global minimum.

In order to quantify the degree of optimization at the local minima carried out by

crossover the relative proportion of times crossover and mutation improved the best

fitness obtained by the population was recorded and compared.

The results were that crossover improved fitness at sites of local minima 82% of the

time out of the total number of epochs (with a 99% confidence interval of 80% to

84%) compared to mutation with a value of only 30% (with a confidence interval of

29% to 31%). This lent support to what was visualized on the heat maps, namely,

that optimization of chromosomes at local minima due to the crossover operator

was hindering chromosomes moving out of these local minima into newer regions of

the solution space.
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Figure 23c: FN2R45 Chromosome Population after Mutation.

5.5.2 Bias Associated with the Mutation Operator

The mutation operator corrupts the reproduction of genotypes thereby introducing

the variety that fuels natural selection [4]. This being said, there is discussion in the

literature as to the possible biases inherent in various implementations of mutation

and the degree to which this makes a problem hard for a GA to solve [3, 4].

Thus, to ascertain in the present work if there was any bias associated with the

mutation operator which might make the problems harder for the GA to solve, ex-

periments were carried out where many copies of a single chromosome were mutated

and then plotted onto a heat map surface of the rotated function. The chromosome

comprised of two bit strings, which were initially placed in the center of the local

minimum located in the bottom right hand corner of the heat map of FN2R45.

Figure 24 shows an example of this for FN2R45 using the optimal mutation rate of

25.45% (bit flipping mutation rate of 12.72%) with 10000 samples.

As can be seen, after mutation the chromosomes landed in a grid-like pattern along

the x and y directions illustrating that it is biased in the axial directions. The

reason for this may be explained using a simple example as follows.
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Figure 24: Mutation Plot for Test function FN2R45.
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Figure 25: Probabilities associated with the movement of a single two bit chromo-
some after mutation.

Figure 25 illustrates the probabilities associated with moving in the x , y and di-

agonal directions for a single two bit chromosome. If we assume that a change in

a bit has a probability of 10%, then movement in either the x or y direction has

a probability of 9% (0.9 × 0.1). By contrast, movement in the diagonal direction

requires a change in both bit strings with a resultant probability of 1%. Also, the

probability of no change occurring to the chromosome, and hence no movement, is

81%.

Simplistically speaking, for the not-linear-separable problems investigated, the de-

gree to which this bias made the problem hard for the GA was related to the

percentage of the local minima which lay on the x and y axes, given that the global
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minimum was at the origin. In Figure 26a for FN2R45 none of the local minima

lay on the x or y axes compared with Figure 26b for FN3R45 where 4 of the 12

local minima lay on the x or y axes. Chromosomes in these local minima were more

likely to be shifted towards the global minimum due to the bias of the mutation

operator. Overviewing the results for all the rotated functions, it was observed that

if roughly 20% or more of the local minima lay along the x or y axes, as shown in

Table 18, the crossover operator proved to be beneficial for the function, otherwise

it was detrimental.

More generally speaking, this axial bias is a special case of the more general rela-

tionship between the problem encoding and the solution space, discussed below.

Figure 26a: Heat Map of FN2R45 illustrating location of local minima along X and
Y axes.

5.5.3 Relationship between Gray Encoding and the Solu-

tion Space

Figure 24 shows a bias not just in axial directions, but towards a grid-like pattern

with regions of higher density and others of much lower density. In general it is

much harder to make a “jump” to some areas of the space than others.
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Figure 26b: Heat Map of FN3R45 illustrating location of local minima along X and
Y axes.

The selection generator compounds the effect of this bias by eliminating candidates

that are part way towards a better local minimum but have low fitness.

An illustrative case for the rotated functions is that of FN2R45 and FN3R45. As

shown in the response curves depicted in Figure 27a and Figure 27b, FN2R45 was

the more difficult of the two functions for the GA. This is evidenced by the fact

that the number of epochs taken to reach the threshold was an order of magni-

tude greater. This is despite the fact that FN3R45 is the more modal of the two

functions.
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Figure 27a: Response curve for test function FN2R45.
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Table 18: Relationship between Local Minima and Detrimental Crossover

Test % Local Minima Detrimental Mean Epochs

Function on X and Y Axes Crossover to Threshold

FN1R45 Nil Local Minima No 63.63

FN2R45 0% Yes 1381

FN3R45 25% No 103.42

FN4R45 16.67% Yes 880.0

FN5R45 16.67% Yes 727.1

FN6R45 20% No 111.1

To illustrate why this is the case, we can examine the Hamming Distances of the

two functions. The Hamming Distance is a measure of the difference or distance be-

tween two binary sequences of equal length. Hamming Distances between the global

minimum and the surrounding local minima for functions FN2R45 and FN3R45 are

shown in Figure 28a and Figure 28b, respectively.

As can be seen, FN2R45 has the larger Hamming Distance of 12 from any of the

local optima to the global optimum for both the x bit string or the y bit string.

The probability of making this (exact) jump with a bit-flipping mutation rate of m

for 44-bit chromosomes is:

P1 = m24(1 − m)20. (12)

(Clearly a range of nearby jumps are possible, but we use the minima for illustration.

The probability will be higher if nearby jumps are taken into account).

In contrast, for FN3R45, the Hamming Distance from any of the local minima to

the global minimum is only 7 or 8. The probability of making the (exact) jump is

therefore of the order:

P2 = m15(1 − m)29. (13)
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Figure 27b: Response curve for test function FN3R45.

Figure 28a: Hamming Distances for FN2R45.

As can be seen in Figure 29, the probability of making the required jump is far

greater for FN3R45 for low mutation rates.

The larger Hamming Distances for the functions explained why the optimal muta-

tion rate for FN2R45 was higher (25.45% corresponding to a bit flipping rate of

12.72%) than for FN3R45D (12.36% corresponding to a bit flipping rate of 6.18%).
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Figure 28b: Hamming Distances for FN3R45.

This is because the greater Hamming Distances meant that a greater number of

bit flips are required in order to move chromosomes from any of the local optima

into the global optimum. These Hamming Distances are a direct consequence of

the relationship between the encoding and the solution space.

It is interesting to note that finding the optimal mutation rate appears to be a case

of finding a fixed point that is high enough up the Hamming Distance probability

curves for the space while at the same time minimizing the disruptive effect of

mutation on convergence.

5.6 Extending the Results to Difficult Practical

Problems

We have discussed a number of properties that make a problem difficult for a GA

to solve, such as high modality and local minima not artificially aligned within

the encoding to make the solution easier, and their impact on the performance of

crossover. However, these have only been tested on artificial sequences of problems
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Figure 29: Probability of jumping Hamming Gap versus Mutation rate.

that possess features such as symmetry and a regular repetition of local minima.

Before leaving this topic, we wanted to see if there was evidence the results would

carry over to real-world problems exhibiting the same properties for difficult prob-

lems. In order to extend the results to a difficult practical problem, we tested

our GA on Landscape 20 101 shown in Figure 22. The results are illustrated in

Table C-4, Table C-6 and Table C-7.

The same behaviour of the GA emerged as for the difficult rotated functions. That

is, crossover, mutation and their interaction had a statistically significant effect

upon GA performance. However, for crossover the effect was detrimental with an

optimal crossover rate of 0%.

For mutation the optimal rate was a high 18.93% (bit flipping mutation rate of

9.46%), comparable to the high mutation rates seen with the difficult not-linear-

separable problems discussed above. Again as noted above, a high mutation rate is

a conjectured marker for the difficulty of the problem.

It can be conjectured that this problem proved difficult for the GA for similar

reasons to the problems analyzed earlier. In the first case the random arrangement

of the local minima of this problem makes it unlikely that any of the local minima

are aligned in the axial directions. Thus, the bias of mutation means that it is less
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likely that the global minimum will be found by chromosomes moving in the x and

y directions.

In reference to crossover, the fact that the surface of the Landscape 20 101 has

a great number of local minima means that it is very likely that crossover was

enacting optimization at the local minima sites. This is supported by the fact that

the optimal mutation rate was high at 18.93% (bit flipping mutation rate of 9.46%),

suggesting that a high mutation rate was required to get chromosomes to jump out

of regions of local minima where they were “stuck” due to local optimization carried

out by crossover.

5.7 Discussion

The traditional concept of a GA, that of selection, crossover and mutation, is being

challenged as literature has emerged which suggests that the crossover operator may

not necessarily be essential in a GA. However, there has not as yet been a direct sta-

tistical attempt to prove the detrimentality of crossover nor an attempt to describe

the conditions under which such detrimentality may occur. This chapter used our

statistical methodology to explore the issue of the detrimentality of crossover. In

particular, we were interested in establishing whether not-linear-separability was

a sufficient determinant of the detrimentality of crossover and if not, what other

factors was it characterized by.

In the first instance the results from the linear-separable test function series, FNn,

show that crossover is beneficial for these linear-separable problems. This concurs

with the suggestion of Salomon that Crossover’s Niche is in fact linear-separable

problems [38].

On the other hand, results from the rotated not-linear-separable test function series

demonstrated several instances where crossover was statistically proven to be detri-

mental. This occurred for not-linear-separable problems which required the highest

mutation rates, which has been a marker for the difficulty of a problem. Thus, what
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makes a not-linear-separable problem hard for a GA to solve is linked to whether

crossover will be detrimental to the performance of the GA solving the problem.

In the course of the present research it was found that three factors were involved

in making a not-linear-separable problem hard for the GA to solve. These were

optimization carried out by crossover at the sites of local minima, the bias of the

mutation operator and the Hamming Distances for the individual problems.

In the first case, the difficulty of a problem was impacted by the degree of opti-

mization at local minima carried out by the crossover operator. That is, crossover

was carrying out optimization on chromosomes “stuck” in local minima resulting in

their moving deeper into the local minima sites. Our experiments on this showed

that at least 80% of the time crossover improved the fitness of chromosomes at sites

of local minima.

Secondly, it was found that the mutation operator was biased along the x and y axes.

If a function had at least some of the local minima and the global minimum aligned

in the axial directions this made the problem easier to solve as the chromosomes

from these minima would be shifted with a greater likelihood towards the global

minimum.

Thirdly, the relationship between the problem and the solution space resulted in

situations where a less modal problem was actually more difficult to solve because of

the greater Hamming Distance between its local minima and the global minimum.

This was illustrated for FN2R45 and FN3R45 where the latter was the more modal

function, yet proved easier to solve as the Hamming Distances between its local

minima and its global minimum were lower.

Finally, the detrimentality of crossover was demonstrated on a difficult practical

problem, namely, a problem from the Huygens suite. The results showed that

crossover can be detrimental on a real world problem. The reasons for this occurring

may be extrapolated from the reasons found for the difficult rotated FNn problem

series. These include the degree of local optimization attributable to the crossover
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operator and the bias of the mutation operator.

In conclusion, it has been demonstrated that crossover is statistically detrimental for

the difficult not-linear-separable problems and also the difficult real world problem

in the given configuration. Further research will be required to extend the class

of problems and illustrate if crossover can be demonstrated to be detrimental with

different encodings and in discrete problem domains. However, the results suggest

that crossover can prove to have a truly detrimental effect upon GA performance.

It should be noted that the results apply to specific (one-point) crossover operator

and mutation operator and further tests would be required to determine whether

other crossover operators (such as uniform crossover) and mutation give similar

results.
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Chapter 6

General Conclusions and Future

Research

G
enetic algorithms have been the focus of extensive study in computer science

and have been applied to both theoretical and real world problems. How-

ever, there has been no generally accepted methodology to assess which parameters

significantly affect performance of genetic algorithms, whether these parameters in-

teract and how performance varies with respect to changes in parameters. The focus

of this thesis has been to formulate a statistical methodology for the exploratory

study of genetic and other adaptive algorithms and to demonstrate the application

of the methodology through the investigation of properties of a GA.

6.1 Statistical Methodology

The first part of the present thesis dealt with the development of a statistical

methodology for the exploratory analysis of genetic and other adaptive algorithms.

To recap, once the algorithm and the problem domain have been specified, the steps

in the statistical methodology proceed as follows:

1. Identify sources of variation and modify the algorithm to generate blocked
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runs.

2. Use a workup procedure to minimize the appearance of censored observations

and to finalize starting ranges for parameters.

3. Generate an initial data-set consisting of an arbitrary number of replicates.

Typically, we have found 100 replicates to be a useful starting point.

4. Calculate power based upon a chosen effect size. We recommend an effect

size index of 0.4 (large effect). If at least 80% power is not achieved and the

experiment resulted in observing no interaction increase the sample size.

5. Conduct (pooled) ANOVA analysis and determine which parameters are sta-

tistically significant.

6. For parameters which are statistically significant partition the sum of squares

into polynomial contrast terms. Determine which polynomial terms are sta-

tistically significant.

7. Use polynomial regression to obtain the coefficients for the overall response

curve (if the interaction parameter is statistically significant) or to obtain

the coefficients for the response curve for each parameter separately (if the

interaction parameter is not statistically significant).

8. Differentiate and solve the response curve for each parameter to obtain best

values and calculate confidence intervals.

The statistical methodology developed was initially trialed on well known test func-

tions. Looking at the results from the suite of test functions together, we found that

crossover appears to have a predominantly linear effect and that the direction of its

slope is problem specific. In contrast, mutation appears to have a predominantly

quadratic effect upon performance. The mutation rates observed advocate the use

of higher mutation rates than have traditionally been used. The use of statistics
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also enabled the issue of interaction to be addressed and we found that whether

interaction is significant is also problem specific.

These initial trials enabled the identification of key features affecting GA perfor-

mance that deserved more detailed investigation. Our subsequent work demon-

strated how the statistical methodology can assist in guiding the GA practitioner

to explore such features.

6.2 The Importance of Interaction

The second part of this thesis examined the issue of whether crossover and mutation

interact or if each parameter exerts its effect independently. This led to two impor-

tant questions. First, what type of functions are likely to demonstrate interaction

between crossover and mutation, and, secondly, what is the practical implication of

interaction when attempting to obtain optimal rates for these parameters. These

questions were addressed by examining the relationship between the occurrence of

statistically significant interaction among crossover and mutation and increasing

modality of a problem.

Addressing the first question it was found that functions with increased modality

are more likely to demonstrate interaction between crossover and mutation. It is

conjectured that when dealing with highly modal functions the possibility of inter-

action must be considered. For simple functions, with little or no multi-modality,

it is conjectured that crossover and mutation are exerting their respective effects

independently.

Addressing the second question it has been shown that if interaction is occurring

attempting to optimize the rate of crossover and mutation independently may result

in rates which are not optimal. In order to account for the effect of interaction all

combinations of crossover and mutation, within given starting ranges, must be

trialed.
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6.3 The Influence of Gray Encoding

The third part of this thesis explored which factors may affect GA performance.

This led to two important questions, namely, whether there is a statistically signif-

icant relationship between the difficulty of a problem and the choice of encoding,

and, if so, what is the actual mechanism by which this occurs.

In addressing the first question, this chapter demonstrated that a lower modality

problem may be significantly more difficult to solve with a Gray encoding than a

higher modality problem. This contrasts with the usual trend of problem difficulty

increasing with increasing modality.

In addressing the second question, animations of the GA clearly showed the ability

of chromosomes to move between local optima and avoid culling in the functions

studied. The probability of a successful jump is dependent on the Hamming Dis-

tance. Calculation was therefore made of the Hamming Distances between local op-

tima present in the two functions and it was found that movement within the lower

modality function was more difficult because of the significantly higher Hamming

Distances involved. These Hamming Distances are a direct result of the encoding.

In conclusion, it has been demonstrated that there is a real relationship between the

difficulty of a problem and the choice of encoding, in this instance Gray codes. It

has further been conjectured that the mechanism by which this occurs is related to

the different Hamming Distances occurring at specific regions in the solution space.

6.4 The Detrimentality of Crossover

In the first part of the present thesis an interesting observation was that the optimal

crossover rate for De Jong’s F2 and Schaffer’s F6 was 0% in our experimental set-up.

This implied that crossover was acting detrimentally on these occasions. A limited

amount of work has conjectured that the niche for the beneficial effect of crossover

upon GA performance is related to linear-separability, and this was borne in these
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initial test functions. To explore this relationship in more detail, we compared two

problem suites, one of which was linear-separable and the other not-linear-separable

(the latter functions having been rotated by 45 degrees in the solution space).

Rather, we found that not-linear-separability was not, on its own, a sufficient deter-

minant for the detrimentality of crossover. It was shown that the crossover operator

was detrimental to the performance of the GA for difficult rotated functions. It is

conjectured that what makes a problem difficult for the GA involves factors such

as the degree of optimization at local minima due to crossover, the bias associated

with the mutation operator and the Hamming Distances present in the individual

problems due to the encoding.

Finally, the GA was tested on a real world landscape minimization problem to

ascertain if the results obtained would match those associated with the difficult

rotated functions. It was shown that they match and that the features which make

certain of the test functions difficult are also present in the real world problem.

6.5 Future Research

This thesis has demonstrated a statistical methodology that allows the investiga-

tor to undertake exploratory analysis of genetic and other adaptive algorithms.

This methodology has then been used to explore the issue of interaction between

crossover and mutation, the influence of the encoding used (in this thesis Gray en-

coding) and the detrimentality of crossover. Given the unique advantages offered

by statistical analysis, such as the ability to block for seed, calculation of power

and sample size, and rigorous study of response curves, further use of statistics will

assist in the development of GAs as powerful search tools.

This being said, there are a number of limitations in the present thesis which warrant

future research. In the first instance, the implementation of the GA was deliber-

ately simple so that a clear and concise demonstration of the proposed methodology

and results could be made. In this regard parameters such as the population size
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and bits per variable were not varied and only crossover and mutation were in-

vestigated in the present thesis. The methodology described in this thesis can be

straightforwardly applied to the many other parameters suggested in the literature

by including these as extra parameters.

Secondly, the functions examined in this thesis have been continuous functions.

There are, however, many other problem types to which this methodology may be

applied. Examples include constrained optimization problems, multi-objective opti-

mization problems and discrete combinatorial optimization problems. Application

of the statistical methodology presented in this thesis to these problem domains

and others would provide a greater understanding of the performance of genetic

algorithms.

Finally, this thesis has concerned itself solely with GAs. The methodology however

can be applied to other adaptive algorithms such as Particle Swarm Optimization

(PSO) and Differential Evolution in a similar fashion to that applied to GAs. Re-

search in this field would greatly increase our understanding about the comparative

performance of different types of adaptive algorithms and their sensitivity to the

parameters on which they are based.
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Appendix A

F1, F3, F2 and F6

A Results

ANOVA Tables

Table A-1: F1-Power with 100 replicates

Parameter Difference (epochs) Effect size index f Power

Crossover 10 0.17154 100%
Crossover 5 0.08578 99.99%
Crossover 3 0.05146 84.11%
Crossover 2 0.03431 35.36%
Crossover 1 0.01715 5.19%
Crossover Large 0.4 100%
Crossover Medium 0.25 100%
Crossover Small 0.1 100%

Mutation 10 0.13684 100%
Mutation 5 0.06842 97.84%
Mutation 3 0.04105 44.53%
Mutation 2 0.02737 13.03%
Mutation 1 0.01368 2.57%
Mutation Large 0.4 100%
Mutation Medium 0.25 100%
Mutation Small 0.1 100%

Mean square error = 15.58005 epochs.
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Table A-2: F1-Power with 100 replicates continued

Parameter Difference (epochs) Effect size index f Power

Interaction 10 0.05172 27.58%
Interaction 5 0.02586 3.38%

Interaction 3 0.01552 1.62%
Interaction 2 0.01034 1.25%
Interaction 1 0.00517 1.06%
Interaction Large 0.4 100%
Interaction Medium 0.25 100%
Interaction Small 0.1 99.52%

Mean square error = 15.58005 epochs.
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Table A-3: F1-Power with 500 replicates

Parameter Difference (epochs) Effect size index f Power

Crossover 10 0.17041 100%
Crossover 5 0.08520 100%
Crossover 3 0.05112 100%
Crossover 2 0.03408 >99.37%
Crossover 1 0.01704 >36.65%
Crossover Large 0.4 100%
Crossover Medium 0.25 100%
Crossover Small 0.1 100%

Mutation 10 0.13594 100%
Mutation 5 0.06797 100%
Mutation 3 0.04078 >99.94%
Mutation 2 0.02719 >83.66%
Mutation 1 0.01359 >13.55%
Mutation Large 0.4 100%
Mutation Medium 0.25 100%
Mutation Small 0.1 100%

Interaction 10 0.05138 >99.84%
Interaction 5 0.02569 >29.06%

Interaction 3 0.01541 >5.40%
Interaction 2 0.01028 >2.33%
Interaction 1 0.00514 >1.26%
Interaction Large 0.4 100%
Interaction Medium 0.25 100%
Interaction Small 0.1 100%

Mean square error = 15.68375 epochs.
Note: GPOWER can only accept sample sizes of up to 32000.

The sample size for 500 replicates was 38500.
Thus, where a > symbol is used power was calculated
using a sample size of 32000 while the actual power

would be marginally greater.
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Table A-4: F1-Power of the pooled analysis

Parameter Difference (epochs) Effect size index f Power

Crossover 10 3.9193 100%
Crossover 5 1.9597 100%
Crossover 3 1.1758 100%
Crossover 2 0.78386 100%
Crossover 1 0.39193 100%
Crossover Large 0.4 100%
Crossover Medium 0.25 90.39%
Crossover Small 0.1 9.83%

Mutation 10 3.1265 100%
Mutation 5 1.5633 100%
Mutation 3 0.93796 100%
Mutation 2 0.62531 100%
Mutation 1 0.31265 97.94%
Mutation Large 0.4 99.99%
Mutation Medium 0.25 82.55%
Mutation Small 0.1 6.96%

Interaction 10 1.1817 100%
Interaction 5 0.59086 100%

Interaction 3 0.35452 79.01%
Interaction 2 0.23634 23.79%
Interaction 1 0.11817 3.11%
Interaction Large 0.4 92.65%
Interaction Medium 0.25 29.05%
Interaction Small 0.1 2.33%

Mean square error = 0.6819076 epochs.
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Table A-5: F3-Power of the pooled analysis

Parameter Difference (epochs) Effect size index f Power

Crossover 10 2.6652 100%
Crossover 5 1.3326 100%
Crossover 3 0.79956 100%
Crossover 2 0.53304 100%
Crossover 1 0.26652 75.25%
Crossover Large 0.4 99.49%
Crossover Medium 0.25 67.45%
Crossover Small 0.1 6.26%

Mutation 10 1.9865 100%
Mutation 5 0.99327 100%
Mutation 3 0.59596 100%
Mutation 2 0.39731 97.74%
Mutation 1 0.19865 26.92%
Mutation Large 0.40 97.93%
Mutation Medium 0.25 51.41%
Mutation Small 0.1 4.12%

Interaction 10 0.88840 100%
Interaction 5 0.44420 88.27%

Interaction 3 0.26652 23.21%
Interaction 2 0.17768 6.34%
Interaction 1 0.08884 1.76%
Interaction Large 0.4 75.30%
Interaction Medium 0.25 18.64%
Interaction Small 0.1 2.02%

Mean square error = 1.1865 epochs.



110 APPENDIX A. F1, F3, F2 AND F6

Table A-6: F2-Power of the pooled analysis

Parameter Difference (epochs) Effect size index f Power

Crossover 10 0.27104 100%
Crossover 5 0.13552 56.28%
Crossover 3 0.08131 11.87%
Crossover 2 0.05421 4.05%
Crossover 1 0.02710 1.53%
Crossover Large 0.4 100%
Crossover Medium 0.25 99.96%
Crossover Small 0.1 22.88%

Mutation 10 0.29113 100%
Mutation 5 0.14557 70.38%
Mutation 3 0.08734 16.61%
Mutation 2 0.05823 5.24%
Mutation 1 0.02911 1.69%
Mutation Large 0.40 100%
Mutation Medium 0.25 99.98%
Mutation Small 0.1 25.48%

Interaction 10 0.07517 2.04%
Interaction 5 0.03759 1.21%

Interaction 3 0.02255 1.07%
Interaction 2 0.01503 1.03%
Interaction 1 0.00752 1.01%
Interaction Large 0.4 99.97%
Interaction Medium 0.25 62.57%
Interaction Small 0.1 3.32%

Mean square error = 6.736177 epochs.
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Table A-7: F6-Power of the pooled analysis

Parameter Difference (epochs) Effect size index f Power

Crossover 10 .28308 100%
Crossover 5 .14154 72.65%
Crossover 3 .08492 17.11%
Crossover 2 .05661 5.30%
Crossover 1 .02830 1.69%
Crossover Large .4 100%
Crossover Medium .25 99.99%
Crossover Small .1 28.86%

Mutation 10 .28308 100%
Mutation 5 .14154 72.65%
Mutation 3 .08492 17.11%
Mutation 2 .05661 5.30%
Mutation 1 .02830 1.69%
Mutation Large .4 100%
Mutation Medium .25 99.99%
Mutation Small .1 28.86%

Interaction 10 .07309 2.05%
Interaction 5 .03654 1.21%

Interaction 3 .02192 1.07%
Interaction 2 .01461 1.03%
Interaction 1 .00730 1.01%
Interaction Large 0.4 99.99%
Interaction Medium 0.25 69.01%
Interaction Small 0.1 3.56%

Mean square error = 6.449417 epochs.
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Table A-8: F6-Power of the pooled analysis for crossover 0% to 15%

Parameter Difference (epochs) Effect size index f Power

Crossover 10 .32905 100%
Crossover 5 .16452 91.63%

Crossover 3 .09871 29.32%
Crossover 2 .06581 8.24%
Crossover 1 .03290 2.02%
Crossover Large .4 100%
Crossover Medium .25 100%
Crossover Small .1 30.54%

Mean square error = 5.372283 epochs.
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Partitioned Sum of Squares

Table A-9: F1-Partitioned sum of squares with 100 replicates

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 12347 2057.83 8.4776 0.0000000

Crossover adjusted level of significance = 0.001673654
Power of 1 1 10330 10329.82 42.5554 0.0000000

Power of 2 1 38 38.13 0.1571 0.6918712
Power of 3 1 976 975.98 4.0207 0.0449809
Power of 4 1 681 680.92 2.8052 0.0940032
Power of 5 1 14 13.70 0.0564 0.8122398
Power of 6 1 308 308.41 1.2705 0.2597008

Mutation 10 58701 5870.09 24.1828 0.0000000

Mutation adjusted level of significance = 0.001004529
Power of 1 1 11389 11388.70 46.9176 0.0000000

Power of 2 1 44725 44724.56 184.2503 0.0000000

Power of 3 1 2 2.16 0.0089 0.9248439
Power of 4 1 1069 1068.68 4.4026 0.0359176
Power of 5 1 553 552.87 2.2776 0.1312950
Power of 6 1 452 451.55 1.8602 0.1726404
Power of 7 1 2 1.66 0.0068 0.9340925
Power of 8 1 487 486.78 2.0054 0.1567837
Power of 9 1 20 20.44 0.0842 0.7717104
Power of 10 1 4 3.52 0.0145 0.9041185
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Table A-10: F1-Partitioned sum of squares with 500 replicates

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 82952 13825.4 56.2053 0.0000000

Crossover adjusted level of significance = 0.001673654
Power of 1 1 82662 82661.9 336.0514 0.0000000

Power of 2 1 40 39.8 0.1619 0.6874415
Power of 3 1 31 31.2 0.1267 0.7219155
Power of 4 1 150 150.4 0.6116 0.4341996
Power of 5 1 17 16.5 0.0672 0.7954938
Power of 6 1 52 52.5 0.2132 0.6442386

Mutation 10 208227 20822.7 84.6522 0.0000000

Mutation adjusted level of significance = 0.001004529
Power of 1 1 32019 32018.7 130.1681 0.0000000

Power of 2 1 174262 174261.6 708.4383 0.0000000

Power of 3 1 959 959.3 3.9000 0.0482925
Power of 4 1 10 10.1 0.0409 0.8398032
Power of 5 1 108 107.8 0.4381 0.5080262
Power of 6 1 29 28.6 0.1162 0.7331794
Power of 7 1 350 349.8 1.4219 0.2330996
Power of 8 1 90 90.1 0.3663 0.5450536
Power of 9 1 344 344.1 1.3989 0.2369111
Power of 10 1 57 57.4 0.2335 0.6289593
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Table A-11: F1-Partitioned sum of squares of pooled analysis

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 6 714.601 119.100 256.130 0.0000000

Crossover adjusted level of significance = 0.001673654
Power of 1 1 708.852 708.852 1524.420 0.0000000

Power of 2 1 3.884 3.884 8.352 0.0041303
Power of 3 1 0.065 0.065 0.140 0.7082399
Power of 4 1 0.199 0.199 0.429 0.5131917
Power of 5 1 0.344 0.344 0.740 0.3904751
Power of 6 1 1.257 1.257 2.703 0.1011870

Mutation 10 2153.876 215.388 463.201 0.0000000

Mutation adjusted level of significance = 0.001004529
Power of 1 1 473.173 473.173 1017.581 0.0000000

Power of 2 1 1665.259 1665.259 3581.217 0.0000000

Power of 3 1 6.476 6.476 13.926 0.0002269

Power of 4 1 3.828 3.828 8.232 0.0044039
Power of 5 1 2.830 2.830 6.087 0.0141682
Power of 6 1 0.397 0.397 0.854 0.3560224
Power of 7 1 0.984 0.984 2.116 0.1467925
Power of 8 1 0.760 0.760 1.634 0.2021186
Power of 9 1 0.154 0.154 0.330 0.5658050
Power of 10 1 0.015 0.015 0.031 0.8595995
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Table A-12: F3-Partitioned sum of squares of pooled analysis

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 4 196.365 49.091 34.871 0.0000000

Crossover adjusted level of significance = 0.00250943
Power of 1 1 191.806 191.806 136.247 0.0000000

Power of 2 1 0.773 0.773 0.549 0.4596335
Power of 3 1 1.118 1.118 0.794 0.3740606
Power of 4 1 2.668 2.668 1.895 0.1703326

Mutation 8 3520.036 440.004 312.551 0.0000000

Mutation adjusted level of significance = 0.001255503
Power of 1 1 127.126 127.126 90.302 0.0000000

Power of 2 1 3377.901 3377.901 2399.447 0.0000000

Power of 3 1 6.795 6.795 4.827 0.0293291
Power of 4 1 4.257 4.257 3.024 0.0837819
Power of 5 1 2.047 2.047 1.454 0.2294650
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Table A-13: F2-Partitioned sum of squares of pooled analysis

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 14 29291.3 2092.24 46.109 0.0000000

Crossover adjusted level of significance = 0.0007176235
Power of 1 1 28663.0 28662.98 631.676 0.0000000

Power of 2 1 149.4 149.43 3.293 0.0699523
Power of 3 1 60.2 60.24 1.328 0.2495765
Power of 4 1 62.7 62.66 1.381 0.2403146
Power of 5 1 0.1 0.07 0.002 0.9677584
Power of 6 1 96.2 96.19 2.120 0.1458023
Power of 7 1 5.3 5.33 0.118 0.7318478
Power of 8 1 64.0 64.01 1.411 0.2353115
Power of 9 1 30.2 30.15 0.665 0.4152246
Power of 10 1 73.4 73.37 1.617 0.2039037
Power of 11 1 27.2 27.20 0.599 0.4390594
Power of 12 1 12.3 12.28 0.271 0.6030844
Power of 13 1 43.8 43.83 0.966 0.3259990
Power of 14 1 3.5 3.54 0.078 0.7799435

Mutation 12 103575.8 8631.32 190.217 0.0000000

Mutation adjusted level of significance = 0.0008371774
Power of 1 1 3878.8 3878.80 85.481 0.0000000

Power of 2 1 96213.2 96213.19 2120.350 0.0000000

Power of 3 1 2662.8 2662.77 58.682 0.0000000

Power of 4 1 20.8 20.84 0.459 0.4982083
Power of 5 1 13.5 13.46 0.297 0.5862050
Power of 6 1 172.7 172.68 3.805 0.0514453
Power of 7 1 5.3 5.31 0.117 0.7323648
Power of 8 1 72.0 72.03 1.587 0.2080834
Power of 9 1 116.6 116.57 2.569 0.1093895
Power of 10 1 57.4 57.37 1.264 0.2611975
Power of 11 1 343.5 343.54 7.571 0.0060701
Power of 12 1 19.3 19.26 0.424 0.5149314
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Table A-14: F2-Partitioned sum of squares of pooled analysis continued

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Interaction 168 10717.5 63.79 1.406 0.0015501

Interaction adjusted level of significance = 0.00005982164.
Only significant results shown.

Power of 1:
Power of 1 1 2924.0 2923.96 64.438 0.0000000
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Table A-15: F6-Partitioned sum of squares of pooled analysis

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 14 54420.8 3887.2 93.454 0.0000000

Crossover adjusted level of significance = 0.0007176235
Power of 1 1 51558.8 51558.8 1239.544 0.0000000

Power of 2 1 2723.0 2723.0 65.465 0.0000000

Power of 3 1 0.1 0.1 0.002 0.9672032
Power of 4 1 0.2 0.2 0.005 0.9438726
Power of 5 1 14.2 14.2 0.340 0.5597281
Power of 6 1 10.2 10.2 0.246 0.6203542
Power of 7 1 5.0 5.0 0.121 0.7282759
Power of 8 1 17.3 17.3 0.417 0.5187929
Power of 9 1 59.5 59.5 1.430 0.2321141
Power of 10 1 1.7 1.7 0.040 0.8419240
Power of 11 1 0.0 0.0 0.000 0.9855772
Power of 12 1 0.1 0.1 0.002 0.9613900
Power of 13 1 30.7 30.7 0.739 0.3901418
Power of 14 1 0.0 0.0 0.000 0.9893777
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Table A-16: F6-Partitioned sum of squares of pooled analysis continued

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Mutation 14 162014.1 11572.4 278.217 0.0000000

Mutation adjusted level of significance = 0.0007176235
Power of 1 1 49729.9 49729.9 1195.574 0.0000000

Power of 2 1 111146.3 111146.3 2672.109 0.0000000

Power of 3 1 485.9 485.9 11.681 0.0006599

Power of 4 1 209.9 209.9 5.047 0.0249066
Power of 5 1 42.7 42.7 1.027 0.3112273
Power of 6 1 26.7 26.7 0.641 0.4233990
Power of 7 1 245.7 245.7 5.908 0.0152684
Power of 8 1 52.5 52.5 1.263 0.2613394
Power of 9 1 35.8 35.8 0.861 0.3538391
Power of 10 1 31.1 31.1 0.749 0.3871409
Power of 11 1 4.8 4.8 0.116 0.7339592
Power of 12 1 0.1 0.1 0.003 0.9595070
Power of 13 1 1.8 1.8 0.043 0.8351457
Power of 14 1 0.8 0.8 0.019 0.8895168
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Table A-17: F6-Partitioned sum of squares of pooled analysis continued

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Interaction 196 50461.5 257.5 6.190 0.0000000

Interaction adjusted level of significance = 0.00005127591.
Only significant results shown.

Power of 1:
Power of 1 1 34688.8 34688.8 833.966 0.0000000

Power of 2:
Power of 1 1 1464.2 1464.2 35.200 0.0000000

Power of 1:
Power of 2 1 5426.3 5426.3 130.457 0.0000000

Power of 1:
Power of 3 1 925.8 925.8 22.257 0.0000028
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Table A-18: F6-Partitioned sum of squares of pooled analysis for crossover

Parameter Df Sum of Sq Mean Sq F Value Pr(F)

Crossover 15 818.36 54.56 1.890 0.0207598
Crossover adjusted level of significance = 0.000669798

Power of 1 1 381.88 381.88 13.232 0.0002900

Power of 2 1 7.33 7.33 0.254 0.6143782
Power of 3 1 0.68 0.68 0.024 0.8778748
Power of 4 1 54.75 54.75 1.897 0.1687276
Power of 5 1 37.90 37.90 1.313 0.2520953
Power of 6 1 35.89 35.89 1.243 0.2650954
Power of 7 1 1.05 1.05 0.037 0.8484232
Power of 8 1 23.91 23.91 0.828 0.3629396
Power of 9 1 3.03 3.03 0.105 0.7461390
Power of 10 1 0.10 0.10 0.003 0.9528493
Power of 11 1 18.28 18.28 0.634 0.4262661
Power of 12 1 50.86 50.86 1.762 0.1846610
Power of 13 1 193.18 193.18 6.693 0.0098245
Power of 14 1 4.52 4.52 0.156 0.6925059
Power of 15 1 4.99 4.99 0.173 0.6776497
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Fitted response curves

Table A-19: Equations of fitted response curves

F1 Crossover Final epoch =
82.35894 − 13.56899Cr

Mutation Final epoch =
123.5819 − 1830.0797Mu
+17956.7153Mu2 − 43781.1078Mu3

F3 Crossover Final epoch =
77.99059 − 13.05733Cr

Mutation Final epoch =
130.9682 − 2707.566Mu + 26493.42Mu2

F2 Overall Final epoch =
−1415.7329 + 115.0829Cr + 30548.5413Mu
−177255.5477Mu2 + 332182.6263Mu3

−428.4953(Cr ∗ Mu)

F6 Overall Final epoch =
163.3295 + 2143.9363Cr + 222.2216Cr2

+2095.7379Mu − 30367.4855Mu2 + 105193.7584Mu3

−41244.8444(Cr ∗ Mu) − 1273.7673(Cr2 ∗ Mu)
+260999.0679(Cr ∗ Mu2) − 543626.2156(Cr ∗ Mu3)

Crossover parameter level (Cr), Mutation parameter level (Mu).



124 APPENDIX A. F1, F3, F2 AND F6



Appendix B

FN1 to FN6

B Results

ANOVA Tables

Table B-1: ANOVA results of FN1

Test function FN1

Crossover: 0.7 to 1 with an interval of 0.05

Mutation: 0.07 to 0.11 with interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 6 211.3841 35.23068 102.8543 0.0000000

Mutation 8 195.0530 24.38163 71.1810 0.0000000

Interaction 48 12.5655 0.26178 0.7643 0.8678564

Block 4 5.7498 1.43745 4.1966 0.0026330

Residuals 248 84.9475 0.34253 - -

Residual standard error: 0.5852608, Power = 87.03%.
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Table B-2: ANOVA results of FN2 and FN3

Test function FN2

Crossover: 0.8 to 1 with an interval of 0.05

Mutation: 0.07 to 0.11 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 4 79.23721 19.80930 66.65568 0.0000000

Mutation 8 91.09235 11.38654 38.31421 0.0000000

Interaction 32 9.95044 0.31095 1.04631 0.4066007

Block 5 1.74695 0.34939 1.17565 0.3220536

Residuals 220 65.38147 0.29719 - -

Residual standard error: 0.54515, Power = 88.24%.

Test function FN3

Crossover: 0.4 to 1 with an interval of 0.05

Mutation: 0.16 to 0.19 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 12 14002.2 1166.85 3.9242 0.00001088

Mutation 6 313701.8 52283.64 175.8325 0.00000000

Interaction 72 31744.0 440.89 1.4827 0.01105187

Block 4 5179.7 1294.94 4.3549 0.00188308

Residuals 360 107045.7 297.35 - -

Residual standard error: 17.24381, Power = 95.96%.
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Table B-3: ANOVA results of FN4 and FN5

Test function FN4

Crossover: 0.7 to 1 with an interval of 0.05

Mutation: 0.06 to 0.1 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 6 169.0313 28.17188 93.23987 0.0000000

Mutation 8 131.1151 16.38938 54.24359 0.0000000

Interaction 48 10.1115 0.21066 0.69720 0.9329824

Block 4 4.9472 1.23681 4.09345 0.0031292

Residuals 248 74.9318 0.30214 - -

Residual standard error: 0.5496764, Power = 87.03%.

Test function FN5

Crossover: 0.1 to 1 with an interval of 0.05

Mutation: 0.12 to 0.16 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 18 5566.06 309.225 46.8718 0.00000000

Mutation 8 18131.18 2266.398 343.5364 0.00000000

Interaction 144 1558.08 10.820 1.6401 0.00002663

Block 4 54.90 13.724 2.0802 0.08175970

Residuals 680 4486.13 6.597 - -

Residual standard error: 2.568512, Power = 99.90%.
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Table B-4: ANOVA results of FN6

Test function FN6

Crossover: 0.1 to 1 with an interval of 0.05

Mutation: 0.17 to 0.21 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 18 207154 11509 4.0106 0.000000057

Mutation 8 16671466 2083933 726.2203 0.000000000

Interaction 144 736294 5113 1.7819 0.000001008

Block 4 41181 10295 3.5878 0.006617639

Residuals 680 1951301 2870 - -

Residual standard error: 53.56828, Power = 99.90%.
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Fitted response curves

Table B-5: Equations of fitted response curves for FN1 to FN6

FN1 Crossover Final epoch =
56.97715 − 8.15829Cr

Mutation Final epoch =
81.23346 − 745.06687Mu
+4338.52814Mu2

FN2 Crossover Final epoch =
56.9028000 − 7.6368889Cr

Mutation Final epoch =
7.877x101 − 6.652x102Mu
+3.765x103Mu2

FN3 Crossover Final epoch =
454.9500 − 26.0478Cr

Mutation Final epoch =
9.540x103 − 1.047x105Mu
+2.999x105Mu2

FN4 Crossover Final epoch =
51.395690 − 7.307079Cr

Mutation Final epoch =
6.958x101 − 5.954x102Mu
+3.539x103Mu2

FN5 Overall Final epoch =
−218.5247 + 16.10332Cr + 8.586955Cr2

+11631.9485Mu − 113700.7892Mu2

+344700.9038Mu3 − 246.3479(Cr ∗ Mu)

FN6 Overall Final epoch =
−3731.3012 + 892.2784Cr + 237189.8786Mu
−2052110.9896Mu2 + 4964206.9821Mu3

−4941.4196(Cr ∗ Mu)
Crossover parameter level (Cr), Mutation parameter level (Mu).
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Polynomial Regression Tables

Table B-6: Polynomial regression of FN1 to FN4

Test function FN1

Parameter Response curve shape Estimated best rate 99% CI

Crossover Linear 100% -

Mutation Quadratic 8.59% 8.43%-8.75%

Interaction Nil - -

Test function FN2

Parameter Response curve shape Estimated best rate 99% CI

Crossover Linear 100% -

Mutation Quadratic 8.83% 8.70%-8.96%

Interaction Nil - -

Test function FN3

Parameter Response curve shape Estimated best rate 99% CI

Crossover Linear 100% -

Mutation Quadratic 17.45% 17.41%-17.49%

Interaction Nil - -

Test function FN4

Parameter Response curve shape Estimated best rate 99% CI

Crossover Linear 100% -

Mutation Quadratic 8.41% 8.23%-8.59%

Interaction Nil - -
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Table B-7: Polynomial regression of FN5 and FN6

Test function FN5

Parameter Response curve shape Estimated best rate 99% CI

Crossover Quadratic 100% -

Mutation Cubic 14.11% 14.01%-14.21%

Interaction Linear:Linear - -

Test function FN6

Parameter Response curve shape Estimated best rate 99% CI

Crossover Linear 100% -

Mutation Cubic 19.47% 19.42%-19.53%

Interaction Linear:Linear - -
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Appendix C

FN1R45 to FN6R45 and

Landscape 20 101

C Results

ANOVA Tables

Table C-1: ANOVA results of FN1R45

Test function FN1R45

Crossover: 0.6 to 1 with an interval of 0.05

Mutation: 0.07 to 0.12 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 8 596.70 74.59 101.9350 <2x10−16

Mutation 10 1551.30 155.13 212.0105 <2x10−16

Interaction 80 54.96 0.69 0.9389 0.6263

Block 4 2.12 0.53 0.7242 0.5758

Residuals 392 286.83 0.73 - -

Residual standard error=0.8554008, Power=97.02%, Threshold=7.
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Table C-2: ANOVA results of FN1R45 and FN2R45

Test function FN2R45

Crossover: 0 to 0.4 with an interval of 0.05

Mutation: 0.23 to 0.28 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 8 691359 86420 30.6658 <2.2x10−16

Mutation 10 7590923 759092 269.3608 <2.2x10−16

Interaction 80 422004 5275 1.8718 4.963x10−05

Block 4 12955 3239 1.1493 0.3329

Residuals 392 1104705 2818 - -

Residual standard error=53.08601, Power=97.02%, Threshold=6.

Test function FN3R45

Crossover: 0 to 1 with an interval of 0.05

Mutation: 0.11 to 0.14 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 20 942.53 47.13 11.0612 <2.2x10−16

Mutation 6 2235.96 372.66 87.4686 <2.2x10−16

Interaction 120 844.28 7.04 1.6514 8.505x10−05

Block 4 69.94 17.48 4.1039 0.002742

Residuals 584 2488.14 4.26 - -

Residual standard error=2.064100, Power=99.71%, Threshold=7.
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Table C-3: ANOVA results of FN4R45 and FN5R45

Test function FN4R45

Crossover: 0 to 0.8 with an interval of 0.05

Mutation: 0.33 to 0.37 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 16 1159371 72461 61.5758 <2.2x10−16

Mutation 8 1968603 246075 209.1107 <2.2x10−16

Interaction 128 402189 3142 2.6701 1.458x10−15

Block 4 6601 1650 1.4022 0.2317

Residuals 608 715477 1177 - -

Residual standard error=34.30410, Power=99.76%, Threshold=5.

Test function FN5R45

Crossover: 0 to 0.5 with an interval of 0.05

Mutation: 0.3 to 0.35 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 10 756983 75698 84.9871 <2.2x10−16

Mutation 10 3162538 316254 355.0607 <2.2x10−16

Interaction 100 186328 1863 2.0919 1.301x10−07

Block 4 710 178 0.1994 0.9386

Residuals 480 427538 891 - -

Residual standard error=29.84466, Power=98.86%, Threshold=5.
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Table C-4: ANOVA results of FN6R45 and Landscape 20 101

Test function FN6R45

Crossover: 0 to 1 with an interval of 0.05

Mutation: 0.09 to 0.15 with an interval of 0.005

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 20 12649 632 52.6177 <2x10−16

Mutation 12 269824 22485 1870.6825 <2x10−16

Interaction 240 25698 107 8.9080 <2x10−16

Block 4 111 28 2.3052 0.05652

Residuals 1088 13078 12 - -

Residual standard error=3.466965, Power=100%, Threshold=7.

Test function Landscape 20 101

Crossover: 0 to 1 with an interval of 0.1

Mutation: 0.15 to 0.21 with an interval of 0.01

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 10 897763 89776 21.2996 <2x10−16

Mutation 6 11679219 1946536 461.8201 <2x10−16

Interaction 60 1059207 17653 4.1883 <2x10−16

Block 4 33611 8403 1.9936 0.09541

Residuals 304 1281337 4215 - -

Residual standard error=64.92244, Power=92.65%, Threshold=5.
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Fitted response curves

Table C-5: Equations of fitted response curves for FN1R45 to FN6R45

FN1R45 Crossover Final epoch =
70.410317 − 8.471164Cr

Mutation Final epoch =
1.048x102 − 9.756x102Mu
+5.556x103Mu2

FN2R45 Overall Final epoch =
3.666x104 + 3.283x103Cr − 2.811x105Mu
+5.569x105Mu2 − 1.174x104(Cr ∗ Mu)

FN3R45 Overall Final epoch =
1.228x104 + 2.619x101Cr + 9.058Cr2

−3.854x105Mu + 4.577x106Mu2

−2.419x107Mu3 + 4.801x107Mu4

−2.605x102(Cr ∗ Mu)

FN4R45 Overall Final epoch =
−1.260x105 + 2.234x103Cr + 1.203x106Mu
−3.768x106Mu2 + 3.906x106Mu3

−5.934x103(Cr ∗ Mu)

FN5R45 Overall Final epoch =
−6.428x104 + 1.858x103Cr + 6.774x105Mu
−2.316x106Mu2 + 2.602x106Mu3

−5.032x103(Cr ∗ Mu)

FN6R45 Overall Final epoch =
1.177x103 + 7.129x102Cr + 5.974x101Cr2

−3.074x104Mu + 3.463x105Mu2

−1.835x106Mu3 + 3.845x106Mu4

−1.633x104(Cr ∗ Mu) − 4.103x102(Cr2 ∗ Mu)
+1.232x105(Cr ∗ Mu2) − 3.084x105(Cr ∗ Mu3)

Crossover parameter level (Cr), Mutation parameter level (Mu).



138 APPENDIX C. FN1R45 TO FN6R45 AND LANDSCAPE 20 101

Table C-6: Equations of fitted response curve for Landscape 20 101

Landscape 20 101 Overall Final epoch =
2.214x104 + 5.246x103Cr − 3.141x105Mu
+1.485x106Mu2 − 2.285x106Mu3

−5.009x104(Cr ∗ Mu) + 1.196x105(Cr ∗ Mu2)
Crossover parameter level (Cr), Mutation parameter level (Mu).
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Polynomial Regression Tables

Table C-7: Polynomial Regression Tables for FN1R45 to FN6R45 and Land-

scape 20 101

FN1R45 Crossover 100%

Mutation 8.78%

FN2R45 Crossover 0%

Mutation 25.45%

FN3R45 Crossover 33.23%

Mutation 12.36%

FN4R45 Crossover 0%

Mutation 35.30%

FN5R45 Crossover 0%

Mutation 33.38%

FN6R45 Crossover 39.17%

Mutation 12.97%

Landscape 20 101 Crossover 0%

Mutation 18.93%


