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Abstract. Since the first demonstration of fault attacks by Boneh et al.
on RSA, a multitude of fault attack techniques on various cryptosystems
have been proposed. Most of these techniques, like Differential Fault
Analysis, Safe Error Attacks, and Collision Fault Analysis, have the
requirement to process two inputs that are either identical or related,
in order to generate pairs of correct/faulty ciphertexts. However, when
targeting authenticated encryption schemes, this is in practice usually
precluded by the unique nonce required by most of these schemes.
In this work, we present the first practical fault attacks on several nonce-
based authenticated encryption modes for AES. This includes attacks
on the ISO/IEC standards GCM, CCM, EAX, and OCB, as well as
several second-round candidates of the ongoing CAESAR competition.
All attacks are based on the Statistical Fault Attacks by Fuhr et al.,
which use a biased fault model and just operate on collections of faulty
ciphertexts. Hereby, we put effort in reducing the assumptions made
regarding the capabilities of an attacker as much as possible. In the
attacks, we only assume that we are able to influence some byte (or a
larger structure) of the internal AES state before the last application of
MixColumns, so that the value of this byte is afterwards non-uniformly
distributed.
In order to show the practical relevance of Statistical Fault Attacks and
for evaluating our assumptions on the capabilities of an attacker, we
perform several fault-injection experiments targeting real hardware. For
instance, laser fault injections targeting an AES co-processor of a smart-
card microcontroller, which is used to implement modes like GCM or
CCM, show that 4 bytes (resp. all 16 bytes) of the last round key can be
revealed with a small number of faulty ciphertexts.

Keywords: fault attacks · authenticated encryption · CAESAR · Dif-
ferential Fault Attacks (DFA) · Statistical Fault Attacks (SFA)

1 Introduction

Fault attacks pose a serious threat for cryptographic implementations. For this
kind of attacks, the analyzed device is operated outside its defined operating



conditions, which can lead to erroneous outputs. By analyzing the erroneous
output data, secret information can be revealed. In the worst case, a single fault
can reveal the entire secret key of a block cipher like AES, which has been shown
to be feasible by many researchers in the last decade [7,33]. Popular techniques to
inject faults include modifications of the power supply [50] or the clock source [6]
by injecting glitches. Other methods, such as laser fault injection [45], have been
proven even more powerful, because they additionally allow a precise localization
of the fault injection.

While fault attacks on block ciphers and stream ciphers have received a
great deal of attention from the scientific community, authenticated ciphers have
been arguably less popular targets among researchers. At the same time, they
describe an important class of cryptographic algorithms with many applications
in information security. Authenticated encryption provides both confidentiality
and authentication of data to two parties communicating via an insecure channel.
This is essential for many applications such as SSL/TLS, IPSEC, SSH, or hard-
disk encryption. In most applications, there is not much value in keeping the
data secret without ensuring that it has not been intentionally or unintentionally
modified. For this reason, in practical applications, block ciphers like AES are
typically used mainly as a building block for an authenticated encryption scheme.

An authenticated encryption scheme is usually modeled as a function with
four inputs: a unique nonce N , associated data A, plaintext P , and secret key
K. It generates two outputs: the ciphertext C, and the authentication tag T :

E(K,N,A, P ) = (C, T ).

The corresponding decryption algorithm takes the secret key K, nonce N , au-
thenticated data A, ciphertext C, and tag T , and either outputs the plaintext
P if the verification tag is correct, or ⊥ if the verification of the tag failed:

D(K,N,A,C, T ) ∈ {P,⊥}.

It is usually assumed (and typically essential for the security of the authenticated
encryption scheme) that nonces never repeat for encryptions E under the same
keyK. We refer to such schemes as nonce-based authenticated encryption. While
some schemes claim a certain level of robustness even in misuse settings (such as
repeated nonces, or release of unverified plaintext), this does not mean that they
are intended to be intentionally misused in practical implementations: repeating
nonces always incurs a certain loss of security.

An interesting consequence of the unique nonce in the encryption proce-
dure is the implicitly provided protection against several classes of fault at-
tacks [11,12,49]. In particular, Differential Fault Analysis (DFA) [11] is rendered
almost impossible, since an attacker is unable to observe both the correct and
the faulty output for the same input, if the attacker cannot fix the value of the
nonce. Moreover, in contrast to nonce-based (but unauthenticated) encryption
schemes (such as CBC, CTR, etc.), where the decryption procedure (with a fixed
nonce) is still susceptible to DFA, this is not the case for nonce-based authen-
ticated encryption schemes that only return the plaintext if the tag is correct.
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For this reason, all published fault attacks on authenticated encryption schemes
so far are in settings where either the nonce is repeated, or unverified plaintext
is released [42,43].

These observations might lead to the impression that nonce-based authen-
ticated encryption schemes are not susceptible to fault attacks and thus, no
dedicated fault attack countermeasures might be necessary to protect the im-
plemented scheme against these attacks. However, in this work, we show that
this assumption is not true, and present the first fault attacks on authenticated
encryption schemes that are not performed in some kind of misuse scenario. We
show that countermeasures against fault attacks are essential for implementa-
tions of authenticated encryption schemes operating in hostile environments.

Our Contribution. We present fault attacks for a wide range of authenticated
encryption schemes. Our attacks do not require any misuse scenario, such as
nonce reuse or release of unverified plaintext. We focus our discussion on various
AES-based schemes, including the ISO/IEC standards CCM [48], GCM [32],
EAX [9], and OCB [40], as well as several second-round CAESAR [46] candidates.
However, our analysis is applicable to a broader range of constructions and is
not limited to AES-based schemes.

All our attacks are based on an enhancement of the Statistical Fault Attack
(SFA) presented by Fuhr et al. [18], which requires only very limited assumptions
about the attacker’s capabilities: the ability to induce a fault that leads to a
biased (non-uniform) distribution in certain bytes. In case of AES, we assume
that the attacker is able to influence some byte (or a larger structure) of the
internal state of AES before the last application of MixColumns, so that the
value of this byte is non-uniformly distributed. Particularly, we do not have to
rely on the exact position of a fault, the number of faults injected during a single
encryption, or even the knowledge that a certain fault has happened at all in an
individual encryption. All we need to do is to collect ciphertexts and estimate
the distribution of a single byte for various key guesses.

In order to evaluate the assumptions on the capabilities of an attacker, we also
perform fault-injection experiments targeting three different hardware platforms.
In the first setting, clock glitch attacks on a GCM software implementation
executed on an 8-bit microcontroller are performed. In addition, we evaluate
implementations using AES co-processors on a smartcard chip and a general-
purpose microcontroller by means of laser fault injection and clock tampering,
respectively. In all three settings, 4 bytes of the last round key of AES could be
successfully recovered with 30, 16, and 1 200 faulty ciphertexts, respectively. In
all practical scenarios, the attack has to be repeated three more times to recover
the full last round key (in case of AES-128).

Outline. The remainder of the paper is organized as follows. In Sect. 2, we
give some background on fault attacks in general, recapitulate the work of
Fuhr et al. [18] on SFA, and introduce our attack model. In Sect. 3, we show how
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SFA can be applied to various AES-based authenticated encryption schemes. Fi-
nally, we present practical experiments and verify the practicality of SFA on
three different hardware platforms in Sect. 4.

2 Background

In this section, we revisit the Statistical Fault Attacks on AES underlying our
attacks. We start with a general overview of different types of fault attacks, and
briefly describe the biased fault model in the attack of Fuhr et al. [18]. Finally,
we discuss the modified, much more general biased fault model we use in this
paper, and how to identify the best key candidates.

2.1 Fault Attacks

Since the seminal work of Boneh et al. [13], it has been shown that many cryp-
tographic algorithms are susceptible to Fault Attacks (FA). Indeed, numerous
papers have proposed FA on most cryptographic primitives, including symmet-
ric ciphers (DES [11], AES [37], etc.) as well as asymmetric schemes (RSA [13],
Elliptic Curve Cryptography [10], etc.).

Fault attacks induce a logical error by physical means in one of the inter-
mediate variables of a cryptographic primitive, and exploit the erroneous result
to get information on the secret key. The means to inject a logical error can
consist in over- or under-powering the device during a short time period, tam-
pering its clock, or injecting a light beam or an electro-magnetic field inside the
device [7, 31, 45].

Several cryptanalytic methods have been developed to exploit erroneous re-
sults in order to retrieve the key. In Differential Fault Analysis (DFA) [11], the
attacker runs a cryptographic function twice on the same input and introduces
a fault near the end of one of the computations. Then, information on the key
can be retrieved from the differences between the correct and the faulty out-
put. The Safe Error Attack (SEA) [49] fixes part of the cryptographic secret to
a known value. Then, the observation of a collision on the result of a correct
and faulted computation for identical inputs leaks information on the secret. In
Collision Fault Analysis [12], one runs a cryptographic operation on two related
inputs, and introduces a fault near the beginning of one of the computations.
The adversary then exploits cases where a collision on the outputs occurs.

A common requirement of all these fault attacks is the necessity of process-
ing two inputs that are either identical or related, in order to generate pairs of
correct/faulty ciphertexts. Therefore, the attacker needs to be able to control
the input of a cryptographic operation, which classifies them as chosen-plaintext
attacks. Some of these FA require only one pair of correct/faulty outputs ob-
tained from the same input, whereas others require several pairs to retrieve the
secret key.
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2.2 Statistical Fault Attacks

In 2013, Fuhr et al. proposed a new type of fault attack, called Statistical Fault
Attack (SFA) [18]. In contrast to most previous attacks, the adversary only
requires a collection of faulty ciphertexts encrypted with the same key. Hence,
SFA works with random and unknown plaintexts.

Fault Model. Unlike most traditional fault attacks, SFA requires a slightly
different fault model. Assuming that intermediate variables get uniformly dis-
tributed towards the last rounds for secure cryptographic primitives like AES,
an attacker has to be able to induce faults which change the distribution of some
intermediate values to be non-uniform. In particular, Fuhr et al. considered the
following three fault models:

(a) the stuck-at-0 fault model with probability 1,
(b) the stuck-at-0 fault model with probability 1/2,
(c) the stuck-at model to an unknown and random value e with probability 1.

Using these non-uniform fault models, Fuhr et al. were able to show several
attacks on AES based on simulations. Their attacks target the last 4 rounds
with a small number of faulty ciphertexts and practical complexity.

Description of the AES. AES is a byte-oriented block cipher following the
wide-trail design strategy. It operates on a state of 4 × 4 bytes and updates
it in 10, 12, or 14 rounds, depending on the key size of 128, 192, or 256 bits.
In each round (except the last one with no MixColumns), the following four
transformations are applied.

SubBytes (SB): This step is the only non-linear transformation of the cipher. It
is a permutation consisting of an S-box S applied to each byte of the state.

ShiftRows (SR): This step is a byte transposition that cyclically shifts each row
of the state by different offsets. Row j is shifted right by j byte positions.

MixColumns (MC): This step is a permutation operating on the state column
by column. To be more precise, it is a left-multiplication by a 4× 4 circular
MDS matrix M over F28 .

AddRoundKey (AK): In this transformation, the state is modified by combining
it with a round key with a bitwise xor operation.

Attack Procedure and Complexity. While Fuhr et al. proposed several at-
tack variants, we will focus only on the attack that targets the 9th round of AES.
When changing the distribution of one byte of AES before the last MixColumns,
they showed that with these fault models, 4 bytes of the last round key could be
recovered with high probability using the Squared Euclidean Imbalance (SEI)
distinguisher with only 6, 14, and 80 faulty ciphertexts, respectively. We briefly
recount the attack below, but refer to [18] for a more detailed description.
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If we denote our target state before the last MixColumns in the encryption to
the ith ciphertext by S̃i

9, we can express one byte of this state as a function of
the ciphertext C̃i, 4 bytes of the last round key K10, and one byte of MC−1(K9),
as follows. Our target state is

S̃i
9 = MC−1(SB−1 ◦ SR−1(C̃i ⊕K10)⊕K9)

= MC−1(SB−1 ◦ SR−1(C̃i ⊕K10))⊕MC−1(K9).

Each byte of S̃i
9 can therefore be deduced using one hypothesis on 4 bytes of

K10 and on one particular byte of MC−1(K9). As shown by Fuhr et al., the xor
with MC−1(K9) does not modify the distance of the biased distribution from
uniform. Hence, it can be omitted in the attack. In other words, this allows to
mount the attack on a modified S̃i

9
′:

S̃i
9
′ = MC−1 ◦ SB−1 ◦ SR−1(C̃i ⊕K10).

This allows us to recover 4 bytes of the last round key K10 by making 232

hypotheses on their value and predicting one byte of S̃i
9
′. By repeating the attack

4 times, one can recover the complete last round key K10.

2.3 A Generalized Fault Model

In this work, we want to go beyond specific fault models like in Sect. 2.2. The
only assumption we make is that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns

such that this value becomes clearly non-uniformly distributed. We make no
assumptions about the details of this non-uniformity, nor do we require that the
attacker knows the new distribution. To exploit this type of fault, the attacker
will collect faulty (biased) ciphertexts, compute backwards to the target byte
for different key guesses, and try to reject wrong key guesses that would result
in an approximately uniform measured distribution of the biased target byte.
In the remainder of this section, we discuss how to identify the non-uniform
distribution for the wrong key guesses.

We do not consider the distribution on bit-level, but for example on byte-
level. Exploiting such non-uniform distributions of multi-bit values (more specif-
ically, distributions of several sums of single bits) has already been investigated
in the context of multidimensional linear cryptanalysis [21]. However, the distri-
butions in this context are typically very close to uniform, unlike the distribu-
tions we expect in the case of SFA. Unfortunately, as noted by Samajder and
Sarkar [44], the state-of-the-art framework for multidimensional linear cryptanal-
ysis is not suitable for handling distributions which are significantly different
from uniform. On the positive side, testing the closeness of discrete distribu-
tions [41] is a well-established field of research. Here, the central challenge is
to determine whether two discrete distributions are the same (or close to each
other) with the help of as few samples as possible. In our case, we want to
determine whether our given samples are distributed uniformly or not.
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The algorithms needing the fewest samples to perform this task are based
on an idea of Goldreich and Ron [19]. Their algorithm makes use of collisions
between sampled values to test for uniformity, since the expected number of
collisions is lowest for uniformly distributed samples. Hence, the further a dis-
tribution deviates from the uniform distribution, the more collisions and multi-
collisions we expect.

Of course, it is possible to directly base the testing of the key hypothesis
on uniformity testing. For instance, Batu et al. [8] present a test which requires
O
(

ǫ−4 ·
√
2s · log(1/γ)

)

samples for distributions over 2s-element sets. Their test
accepts with probability 1− γ if the samples come from a distribution with ℓ1-
norm distance smaller than ǫ/

√
3 · 2s to the uniform distribution. It rejects with

probability 1 − γ if the samples come from a distribution which is more than ǫ
away from the uniform distribution.

However, for our use-case, an approach that ranks keys according to some
metric, like the number of collisions, is more suitable than a binary decision
whether the measured distribution is uniform or not. Significantly more samples
are needed to clearly separate the distribution for the right key hypothesis from
the wrong ones to enforce a binary decision, whereas for the ranking, it is usually
sufficient if the right key is ranked somewhere among the top candidates. Since
the uniformity tests of Batu et al. [8] and Paninski [36] are actually based on
counting collisions, they also provide us with a starting point for a ranking
algorithm. This algorithm ranks the key hypothesis according to the number of
collisions, and gives multi-collisions a higher weight. In our experiments, this
ranking algorithm performs as good as ranking based on the SEI.

Interestingly, the key ranking mechanism based on the SEI used in [18, 38]
can also be linked to counting collisions. Let s be the bitsize of our biased
intermediate value Si = f−1(K̂, C̃i), computed from the faulty ciphertext C̃i

under the key hypothesis K̂. Assuming that we have N faulty ciphertexts, the
SEI d is calculated as

d(K̂) =

2s−1
∑

δ=0

(

#{i | f−1(K̂, C̃i) = δ}
N

− 1

2s

)2

.

This distinguisher assigns high values to key hypotheses K̂ that lead to distri-
butions of intermediate values Si with many collisions. For instance, consider a
sample size of N = 2s samples. Then, the SEI is essentially counting collisions,
since only events that occur exactly once do not increase d. Moreover, since
the deviation from uniform is squared, a greater deviation, or in our sense a
multi-collision, contributes more to d.

To sum up, it turned out that the SEI cannot be outperformed in practice by
a new ranking algorithm based on counting collisions, since the SEI is actually
doing that. Hence, we decided to stick to the more common SEI to measure if
the distribution of one byte value becomes clearly non-uniformly distributed. So
for AES, the 4-byte key guesses of the last round key are ranked according to
the resulting SEI of one byte before the last MixColums when decrypting faulty
ciphertexts for one round. To be able to observe non-uniformness and to evaluate
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the SEI, we require the input to the block cipher to be different for each fault
and the block cipher output to be known.

3 Statistical Fault Attacks on Authenticated Encryption

In this section, we evaluate the applicability of the Statistical Fault Attack to
several authenticated encryption modes for AES. This includes the widely-used
ISO/IEC-standardized modes like CCM [48], EAX [9], GCM [32] and OCB [40],
as well as new authenticated encryption modes proposed in the CAESAR ini-
tiative [46]. For evaluating the applicability of the fault attacks to these authen-
ticated encryption schemes, we only need very limited assumptions. As already
stated in Sect. 2, we assume that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns

operation in a way that this value becomes clearly non-uniformly distributed.
We classify the investigated authenticated encryption modes into three cat-

egories, as illustrated in Fig. 1:

rand

Ek

C

(a) Basic Construction

rand

∆k ⊕

Ek

∆k ⊕

C

(b) XEX-like Construction

rand

Et
k

C

(c) Tweakable Block Cipher

Fig. 1. Classification of AES-based authenticated encryption schemes.

Basic Construction. The schemes in this category allow to directly observe
the output of the block cipher. This includes schemes based on classical
encryption schemes such as CTR [15], CBC [17], CFB [17], etc., but also
schemes based on the XE construction [39], which masks the input of the
block cipher using secret masks∆k. More generally, we assume that the input
to the block cipher is a secret random value, but the output is observable to
the attacker.

XEX-like Construction. This construction is similar to XE, but unlike XE,
both the input and the output of the block cipher are masked using se-
cret, nonce-dependent masks ∆k. Constructions following the XEX con-
struction [39] include for instance IAPM [28], OCB [40], and several of the
CAESAR candidates.

Tweakable Block Cipher. The third category covers schemes that use a de-
dicated tweakable block cipher, which depends on a (typically nonce-depend-
ent) tweak in addition to the secret key. Since the focus of this work is on
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AES-based modes, we will restrict ourselves to constructions using the AES
round function and following the TWEAKEY framework [27], such as for
instance the CAESAR candidates KIASU [26] and Deoxys [24].

In the remainder of this section, we will discuss the applicability of Statistical
Fault Attacks to schemes of these three categories in turn.

3.1 Application to the Basic Construction

In this construction, the output of the block cipher is directly known to the
attacker, or can trivially be recovered by, say, xoring observable values with
public values or constants. It is easy to see that in this case, the Statistical Fault
Attack described in Sect. 2 can be applied in a straight-forward way to recover
the secret key k. As an example, we discuss the application of Statistical Fault
Attacks on AES in counter (CTR) modes as used in GCM, CCM and EAX (all
standardized by ISO/IEC).

Statistical Fault Attack on CCM, EAX and GCM. As a representative
example for the three modes, we will discuss the attack on CCM, which is shown
in Fig. 2. As its name implies, the CTR-with-CBC-MAC mode (CCM) can be
split into an encryption part using AES in counter mode to encrypt the plaintext
P and an authentication part using CBC-MAC to authenticate the nonce N ,
associated data A, and plaintext P , which generates the tag T . For clarity, we
have substituted the first part of the CBC-MAC, where the associated data is
processed, with its outcome V in Fig. 2. Since the fault attack is solely performed
on the encryption part, the following observations also hold for EAX and GCM
that both use AES in CTR mode for encryption.

N‖CTR0 ⊞ CTR1 · · · ⊞ CTRd

1 1
Ek Ek Ek

S P1 ⊕ · · · Pd ⊕

C1 · · · Cd S

V ⊕ · · · ⊕ ⊕

Ek Ek
trunc

T

Fig. 2. The counter with CBC-MAC mode.
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For the sake of simplicity, we restrict our fault attack to the encryption Ek

of the first plaintext block (marked by the dashed rectangle in Fig. 2). Let us
recall the conditions of Sect. 2 that are necessary for the Statistical Fault Attack
to work:

1. The inputs of the block cipher need to be different for each fault.
2. The block cipher output needs to be known.

Condition 1 is always fulfilled, since it is required that the nonce N changes
for each encryption and thus, the input to Ek changes as well. Condition 2
is fulfilled assuming a known plaintext attack, where the plaintext block P1 is
known to the attacker. Then, one can compute the keystream part for encrypting
this plaintext block by xoring it with C1. The resulting keystream is the output
of the block cipher Ek. To sum up, we are able to observe outputs of the block
cipher Ek for various inputs. Thus, we have the same preconditions as for the
fault attack on plain AES described in Sect. 2. Hence, the attack can be applied
to CCM (and any other scheme based on CTR mode) in a straight-forward
way. We want to stress that the attacker does not require to know the input of
the block cipher, it is just necessary that it changes. Therefore, the attack also
applies to modes where the value of the counter is unknown, such as EAX.

Statistical Fault Attack on OCB. Although ISO/IEC-standard OCB is
based on the XEX construction, we show that it is also vulnerable to the attack
on the basic construction. The reason for this is that if the last plaintext block
is incomplete, it is instead processed using the XE construction, as shown in
Fig. 3. Therefore, the knowledge of this incomplete last plaintext and ciphertext
block allows an attacker to compute the output of the block cipher Ek and thus,
the Statistical Fault Attack is again applicable.

P1

∆1 ⊕

Ek

∆1 ⊕

C1

P2

∆2 ⊕

Ek

∆2 ⊕

C2

Pd−1

∆d−1 ⊕

Ek

∆d−1 ⊕

Cd−1

. . .

. . .

. . .

Pd‖0
∗

∆∗

Ek

⊕

Cd

∑
Mj

∆$ ⊕

Ek

V ⊕

T

Fig. 3. Encryption in OCB.

Application to Other Modes. Besides CCM, EAX, GCM, and OCB, the fault
attack discussed in this section also applies to several other authenticated en-
cryption modes. For instance, to the CAESAR candidates Cloc [22] and Silc [23],

10



which are based on cipher-feed-back mode (CFB), where the ciphertext is the
xor of the output of a block cipher Ek and the plaintext blocks. Another ex-
ample is AES-OTR [34], which uses a balanced two-round Feistel network for
encryption. The round function of this network is AES in an XE mode. Since
the balanced Feistel network has only two rounds, knowledge of the plaintext
and ciphertext implies knowledge of the block cipher output. Thus, again, the
Statistical Fault Attack is directly applicable.

3.2 Application to XEX-like Constructions

In this construction, the output of the block cipher is masked with a secret value
∆k, which prevents a straightforward application of the basic attack. However,
depending on how ∆k is computed, the Statistical Fault Attack may nevertheless
be applicable. In the simplest case, ∆k is not nonce-dependent. This allows to
repeatedly observe ciphertexts masked with a secret, but constant value ∆k.
We demonstrate how to exploit this in an attack on the CAESAR candidate
AES-COPA [4].

Statistical Fault Attack on AES-COPA. AES-COPA uses an XEX-like
construction for encrypting the plaintext, which is shown in Fig. 4. The input
V of the plaintext processing is the result of a PMAC-like processing of the
associated data A and the nonce N . Thus, V will change for different nonce
values. Each processed ciphertext block requires two invocations of the block
cipher Ek. AES-COPA masks both the input of the block cipher processing the
plaintext blocks Pj , and the output of the block cipher that generate ciphertext
blocks Cj . The masks are based on a secret value L = Ek(0). We focus our
attack on the block cipher call that generates C1, as marked in Fig. 4.

P1 P2 Pd

∑
Pj

3L ⊕ 2 · 3L ⊕ 2d−13L ⊕ 2d−132L ⊕

Ek Ek Ek Ek

V ⊕ ⊕ · · · ⊕ ⊕

L
Ek Ek Ek Ek

2L ⊕ 22L ⊕ 2dL ⊕ 2d7L ⊕

C1 C2 Cd T

Fig. 4. Plaintext processing of AES-COPA, L = Ek(0).
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So far, only one of our two prerequisites for the SFA from Sect. 2 is fulfilled.
We can vary the input of the block cipher calls by changing, for example, the
nonce, associated data, or plaintext. However, the output of the block cipher
is unknown, since it is masked with the secret value ∆k = 2 · Ek(0) to get C1.
To overcome this obstacle and since ∆k solely depends on the secret key k, we
consider ∆k as a part of the key schedule to compute the last round key. Thus,
instead of the last round key K10 of AES, we get K ′

10 := K10 ⊕ (2 · Ek(0)) as
the last round key.

Hence, instead of recovering the last round key K10 of AES as in the attacks
before, we now can recover K ′

10 by using SFA as described in Sect. 2. For re-
covering K ′

10, the complexity and the needed numbers of faults are the same as
for the attack on AES itself. However, the knowledge of K ′

10 does not directly
lead to a key recovery attack of the master key k. Therefore, we need to perform
the Statistical Fault Attack a second time. One option is to target again the
first plaintext block and use our knowledge of K ′

10 to now target the AES round
key K9. Alternatively, we repeat the attack for the second plaintext block to
recover K10⊕ (4 ·Ek(0)) and thus get K10 by solving the resulting linear system.
In both cases, the master key can then easily be recovered from K9 and K10,
respectively.

Application to Other Modes. Besides COPA, other schemes that use a
nonce-independent ∆k and allow the Statistical Fault Attack include ELmD [14]
and Shell [47]. In contrast, some schemes, such as IAPM, OCB, or some CAESAR
candidates, also include the nonce in the computation of ∆k. All these schemes
have in common that ∆k changes unpredictably for each block cipher call, which
prevents a straight-forward application of Statistical Fault Attacks.

Instead of relying on misuse settings like repeated nonces, we will have a
closer look at how these schemes typically compute ∆k. In many cases, ∆k

can be decomposed into two values: a known, nonce-dependent part δN , and a
secret, key-dependent part δk, which are then for example combined with a linear
function to produce ∆k. In this case, we can adapt our attack as follows, similar
to the COPA case. First, we recover the modified last round key K ′

10 = K10⊕δk.
Depending on the key schedule and the function δk, this may already be sufficient
to recover the master key (e.g., if δk and the key schedule are linear). Otherwise,
we repeat the attack a second time to the round before to recoverK9 as described
before.

3.3 Application to Modes Based on Tweakable Block Ciphers

In this construction, the authenticated encryption scheme uses a tweakable block
cipher Et

k instead of a regular block cipher as basic building block. In this case,
the Statistical Fault Attack is not generally applicable. However, for some tweak-
able block ciphers such as the ones presented within the TWEAKEY frame-
work [27], we can adapt our attack. In particular, this is possible if the last
subkeys of the tweakable block cipher can be described by the composition of
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two values, δt ⊕ δk. We illustrate the working principle of the attack for the
CAESAR candidate Deoxys [24], but the same attack is also applicable to KI-
ASU [26], where the tweak t is only xored to each round-key.

Statistical Fault Attack on Deoxys. Deoxys offers two modes of operation,
both using two variants of the underlying tweakable block cipher Deoxys-BC.
We focus on Deoxys 6=-128-128, which uses Deoxys-BC-256 as underlying tweak-
able block cipher. As shown in Fig. 5, Deoxys 6= encrypts the individual plaintext
blocks Pj in an ΘCB3-like [30] way. This ensures both the variation of the tweak-
able block cipher inputs, and knowledge of the outputs. However, since the tweak
is partly defined by the nonce, we have to determine the influence of this nonce
on the last round key that we want to recover using SFA. Thus, we have to have
a closer look at the definition of the tweakable block cipher Deoxys-BC-256.

P1 P2 Pd

∑
Pj

E
0,N,0

k E
0,N,1

k
· · · E

0,N,d−1

k E
1,N,d−1

k

⊕ V

C1 C2 Cd T

Fig. 5. Plaintext processing for Deoxys 6=.

Fig. 6 shows how Deoxys-BC-256 uses the round function f of the AES, but
computes different round keys Ki based on the master key k and tweak t. Here,
Ki is the xor sum of three values: a key-dependent round key Kk

i , a tweak-
dependent round tweak Kt

i , and a round constant ci. The values are updated
using a simple byte permutation h. For instance, Kk

0 = k, Kt
0 = t, Kk

1 = 2h(k),
Kt

1 = h(t), Kk
r = 2h(2h(. . . 2h(k) . . . )), and Kt

r = h(h(. . . h(t) . . . )).

Kk
0 Kk

1 Kk
13 Kk

14
k h 2 h · · · h 2

t h h · · · h

Kt
0 ⊕ c0 Kt

1 ⊕ c1 Kt
13 ⊕ c13 Kt

14 ⊕ c14

K0 K1 K13 K14

P ⊕ f ⊕ f · · · ⊕ f ⊕ C

Fig. 6. Block cipher Deoxys-BC-256.
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Since the value of the tweak used for encryption is publicly known, the varying
part Kt

i of the round keys Ki can be easily calculated. The unknown parts Kk
i

of the round key are constant for multiple calls of the block cipher under the
same key k. Hence, the last round key Kk

14 can be recovered with the SFA on
AES described in Sect. 2.

3.4 Summary and Discussion of Results

We demonstrated in the previous sections that several authenticated encryption
modes for AES are susceptible to Statistical Fault Attacks. A summary of the
results is given in Table 1. However, Statistical Fault Attacks are applicable to a
broader range of authenticated encryption schemes, and are not limited to AES-
based modes. Natural targets for the attack include, for instance, the CAESAR
candidates Joltik [25] and Scream [20], which also follow the TWEAKEY frame-
work [27], or Prøst [29], which applies the modes of COPA [5] and OTR [35] to
an Even-Mansour block cipher.

Moreover, the attack is not limited to block cipher based constructions. For
instance, the APE construction [3] uses a secret key in the finalization for tag
generation, making it a natural target for the attack. Also the sponge-based
CAESAR candidates Ascon [16] and PRIMATEs [2] both employ a keyed final-
ization, with similar effects. However, the fact that large parts of the internal
state are truncated to generate the authentication tag might complicate the
attack.

Table 1. Statistical fault attacks on AES-based authenticated encryption modes in
the nonce-respecting setting.

Primitive Classification Comments Reference

CCM basic CTR 3.1
GCM basic CTR 3.1
EAX basic CTR 3.1
OCB basic XE (incomplete blocks) 3.1
Cloc/Silc∗ basic CFB 3.1
OTR∗ basic XE 3.1

COPA∗ XEX 3.2
ELmD∗ XEX 3.2
SHELL∗ XEX 3.2

KIASU∗ TBC TWEAKEY 3.3
Deoxys∗ TBC TWEAKEY 3.3
∗ CAESAR candidates
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4 Practical Verification/Implementation of the Attacks

In order to demonstrate the practical relevance of Statistical Fault Attacks and
to validate the assumptions from previous sections, we performed three fault-
injection experiments targeting real hardware.

An AES-GCM implementation executed on an off-the-shelf microcontroller
served as target for the first experiment. In this context we used the ASM AES
version from [1] to realize the block cipher. Due to the lack of embedded plat-
forms implementing GCM or CCM completely in hardware, we put the focus
of the following analysis on hardware AES co-processors available on a smart-
card microcontroller and on a general-purpose microcontroller, respectively. The
remaining parts for realizing the authenticated encryption modes are then im-
plemented in software.

In all settings, the fault injections aim to induce a bias on at least one byte
of the AES state before the last MixColumns transformation, and allow to reveal
32 bits of the last AES round key. For full key recovery, the attack has to be
repeated three more times. The following list provides an overview of the fault-
injection methods and the attack results for the three settings:

1. Clock tampering has been used to disturb the execution of the AES software
implementation running on an ATxmega 256A3 general-purpose microcon-
troller. This setting allowed to reveal 4 bytes of the last round key with less
than 30 faulted ciphertexts.

2. Laser fault injections on an AES co-processor on a smartcard microcon-
troller. Our experiments show that less than 16 faulty ciphertexts are suffi-
cient to reveal 4 bytes of the last round key.

3. Clock tampering on a hardware AES co-processor implemented on a general-
purpose microcontroller. In this setting, we need approximately 1 200 faulted
ciphertexts for recovering 4 bytes of the last round key.

For all attacks, 4 bytes of the last round key can be recovered out of the
faulted ciphertexts in less than one hour using an Intel Core i7 3770K. In the
following, we give a detailed description and summary of the practical fault-
injection attacks.

4.1 AES Software Implementation on an 8-bit Microcontroller

In the following setting, we used clock glitches to provoke faults during an AES
computation implemented in software on an 8-bit microcontroller. In particular,
we used the ASM AES version from [1] for realizing the GCM AE mode.

For the clock-glitch experiments, we used a nominal clock frequency of 24MHz
(Tclk = 41.7 ns). According to [1], one 128-bit encryption requires 2 555 clock cy-
cles. For simplicity, we used one general-purpose I/O pin of the microcontroller
for indicating the start of the AES encryption. This trigger pin together with
the knowledge of the length of the AES encryption procedure allows to find
the correct time interval for inserting the clock glitch. Next to that, our results
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show that faults in consecutive clock cycles also lead to successful key recovery.
As a consequence, this behavior allows to relax the precision prerequisite of the
trigger information.

With the found parameters, we collected two sets, each containing 80 faulty
ciphertexts. For the first set, a single clock glitch was inserted. For the second
set, clock glitches in 50 consecutive clock cycles were inserted. Next, we per-
formed SFA attacks using an increasing number of faulty ciphertexts on both
sets individually. The results containing the set size N , the SEI value for the
correct subkey (SEIc), and the maximum SEI value of the wrong subkey guesses
(SEIw) were stored in two separate lists (one list for each set) in the format
[N, SEIc,max(SEIw)]. For this attack scenario, we started with N = 4 and in-
creased N in every iteration by 4.

Fig. 7 displays the evolution of the SEI values for increasing number of ci-
phertexts in the single clock glitch setting. Values corresponding to the correct
subkey are plotted in red, the maximum SEI values of the wrong subkey guesses
are plotted in blue. With 30 faulty ciphertexts, SEIc exceeds max(SEIw), which
allows to reveal the correct subkey value.

10 20 30 40 50 60 70 80
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2−3

2−2

2−1

number of faulty encryptions

S
E
I

correct key

wrong keys

Fig. 7. SEI values for correct key (SEIc) plotted against best SEI for a wrong key
(max(SEIw)) for increasing number of faulty encryptions. Setup: AES software imple-
mentation, single clock glitch.

Fig. 8 displays the evolution of the SEI values for an increasing number of
ciphertexts for the setting with 50 consecutive clock glitches. In this setting, 24
ciphertexts are sufficient for SEIc to exceed max(SEIw), which allows to reveal
the correct subkey value.

Results of the fault attacks targeting the AES software implementations using
clock glitches show that with 30 faulty ciphertexts, it is possible to reveal the
32-bit subkey if a single clock glitch is inserted. Furthermore, if the clock glitch
is inserted in 50 consecutive clock cycles, approximately 25 faulty ciphertexts
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are sufficient for subkey recovery. We did not further investigate the approach
of inserting the clock glitch in consecutive clock cycles because this is out of
scope of the current work. Nevertheless, by carefully trimming the fault injection
parameters, the number of faulty ciphertexts for successful subkey recovery could
probably be further decreased.
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I
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wrong keys

Fig. 8. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES software implementation, multiple clock glitches.

4.2 AES Hardware Co-Processor of a Smartcard Microcontroller

In this experiment, we used a laser fault injection system to induce faults during
encryptions of an AES Hardware co-processor of a smartcard microcontroller.
This co-processor can easily be used as building block for realizing authenticated
encryption modes like GCM or CCM on the smartcard.

The laser fault injection system consists of an infrared laser diode module
and a microscope allowing to focus the laser spot depending on the microscope
objective used. Here an objective with a 10× magnification is used. The whole
system is mounted on a motorized X-Y-Z stage.

As the smartcard microcontroller runs its own operating system, the only
signal available for triggering the laser injection system is the sending of the
encryption command through APDU command. Therefore, a temporal delay
is added to postpone the laser injection during the AES encryption thanks to
a remotely controllable pulse generator. Furthermore, as the smartcard micro-
controller runs on its own internal clock network, an inherent temporal jitter
is present due to the asynchronism between the laser injection system and the
smartcard microcontroller clock network. These experimental conditions are very
close to the ones present in real world scenarios.

By applying a spatial fault injection cartography, we have been able to find
a spatial position where only one byte of the AES state is faulted. Furthermore,
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by trying different delays, we found a spatio-temporal setting where only 4 bytes
of the ciphertext were faulted with a high reliability. By studying the indices of
the faulted ciphertext bytes, we concluded that we successfully induced a fault
on one byte of the AES state just before the last MixColumns. The fact that the
hardware AES module can also be used outside of the context of authenticated
encryption, i.e., for encrypting single plaintext blocks, simplified this profiling.
However, if the stand-alone usage of the AES co-processor is not possible on the
attacked platform, the search for the right fault injection parameters becomes
more complicated, but is still feasible.

With the found parameters, we collected again 80 faulty ciphertexts. With
the collected faulty ciphertexts, the same evaluation as in the previous section
was conducted. We started again with an initial attack set size N = 4 and
increased the size of the attack set by 4 in every iteration. The evolution of the
SEI values with increasing set size is depicted in Fig. 9. Values corresponding
to the correct subkey are plotted in red, the maximum SEI values of the wrong
subkey guesses are plotted in blue.

As depicted on Fig. 9, SEIc already exceeds max(SEIw) with only N = 16
ciphertexts. Therefore, this number of ciphertexts allows to retrieve 4 bytes of
the correct last round key. This result validates the practicability of the fault
model and even shows that laser-based fault injection systems are well suitable
for this kind of attacks.
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Fig. 9. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES hardware co-processor of a smartcard microcontroller, laser.

4.3 AES Co-Processor on a General-Purpose Microcontroller

In this setting, we use clock glitches to inject faults during the encryption pro-
cedure of an AES co-processor integrated on a general-purpose microcontroller.
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This co-processor can on the one hand be used as stand-alone block cipher to
encrypt plaintext blocks, on the other hand it can be used in the context of AE
for realizing a mode of operation like GCM or CCM. The co-processor in stand-
alone mode allows profiling the hardware in order to find suitable fault-injection
parameters. The target of the fault injection is the output of the byte substi-
tution (SubBytes) in the 9th AES round. The AES co-processor implements the
SubBytes function with pure combinational logic. Since one column of the state
is processed in a single clock cycle, this allows to create faults in 4 bytes of the
state with a single clock glitch.

We define with Tglitch the time interval between two subsequent positive clock
edges in case of a clock glitch. This value is smaller compared to the nominal
clock period Tclk, as illustrated in Fig. 10. If Tglitch is smaller than the path
delay of the combinational SubBytes block, the output value of this block has
not settled to its correct, stable value. As a result, a wrong value is sampled by
the registers at the output of the block, which leads to faults in the ciphertext.

clk Tglitch

Tclk

Fig. 10. Clock signal with intentionally inserted additional positive clock edge.

For the clock glitch experiments, we used a nominal clock frequency of
10MHz (Tclk = 100 ns). Preliminary fault experiments allowed to find the cor-
rect clock cycle (i.e., the delay between the start of the encryption and the
targeted instruction) to disturb the SubBytes operation in the 9th round before
the MixColumns step. With Tglitch = 10.2 ns, we achieved a fault probability of
99.5%.

With these parameters, we executed the AES encryption to receive 2 000
faulty ciphertexts. The increased number of ciphertexts was required because
preliminary experiments revealed that the bias introduced with the clock glitch
was significantly smaller compared to the bias introduced by the laser attack.
With the collected faulty ciphertexts, the same evaluation as in the previous
section was conducted. Due to a smaller bias, we started with an initial attack set
size N = 32 and increased the size of the attack set by 32 in every iteration. The
evolution of the SEI values with increasing set size is depicted in Fig. 11. Values
corresponding to the correct subkey are again plotted in red, the maximum SEI
values of the wrong subkey guesses are plotted in blue.

As depicted on Fig. 11, starting at 1 200 ciphertexts, SEIc exceeds max(SEIw).
This allows to reveal the correct subkey in an attack setting. Compared to the
results presented in the previous section, the number of required ciphertexts is
nearly 100 times higher, but the number is still practical and this amount of
ciphertexts can be collected within minutes. However, the effort for performing
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clock-glitch attacks compared to laser fault attacks (e.g., preparing the fault-
injection environment, finding good fault-injection parameters) is significantly
smaller, which has to be taken into account.
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Fig. 11. Evolution of the SEI values with increasing number of faulty encryptions.
Setup: AES co-processor on a general-purpose microcontroller, clock glitch.

4.4 Discussion and Remarks

The goal of the attacks presented in this section is a feasibility study proving
that the assumed biased fault model is indeed valid on different platforms using
different fault-injection mechanisms.

For the software implementation, a general-purpose I/O pin indicating the
start of the AES encryption has been used, which allowed a precise fault injection
using clock glitches. Real-world scenarios, like the second experiment targeting
the smartcard microcontroller, typically do not allow the usage of a trigger pin.
In such scenarios, other sources for synchronizing the fault-injection procedure
can be applied, like spying the communication or the power profile. This can
decrease the precision of the fault injections.

But it is important to note that the outcome of the SFA attack does not
strictly rely on a precise fault injection. If only a subset of the received ciphertexts
are affected by the expected fault pattern, the remaining ciphertexts (fault-free
or fault hitting another location during the cipher rounds) are treated as noise.
A more reliable fault injection process however minimizes the number of required
ciphertexts for successful key recovery.

Furthermore, when the attacked platform allows the usage of the AES co-
processor for stand-alone encryption (e.g., as in the previous experiments), one
can easily perform a profiling step which simplifies the search for appropriate
fault injection parameters. Nevertheless, if the AES co-processor can only be
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used in the context of the authenticated encryption mode, it is still possible
to find the appropriate fault injection parameters. Of course, the number of
attempts and the search space for the parameters increase, resulting in a more
time-consuming setup phase for the fault injection.

With the practical results presented in this section, we showed that imple-
mentations of AES-based authenticated encryption modes on different hardware
platforms are vulnerable to the proposed fault attacks introduced in this work.

5 Conclusion

In this work, we demonstrate for the first time that a wide range of nonce-based
authenticated encryption schemes, including the widely used ISO/IEC standards
CCM, GCM, EAX, and OCB, are susceptible to fault attacks. All our attacks
need only very limited assumptions about the attacker’s capabilities. To confirm
these assumptions and to show the practical relevance of the attacks, we perform
several fault-injection experiments targeting real hardware. This highlights the
need for dedicated fault attack countermeasures for authenticated encryption
schemes. Although our analysis focus only on AES-based constructions, we want
to note that it is applicable to a broader range of authenticated encryption
schemes. This is part of future work.
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A Data of Practical Verification/Implementation

Table 2. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES software im-
plementation, single clock glitch (left) and multiple clock glitches (right).

N SEIc max(SEIw)

4 0.25 1.00
8 0.12 0.43

12 0.13 0.30
16 0.11 0.22
20 0.09 0.16
24 0.09 0.12
28 0.10 0.09
32 0.10 0.09
36 0.09 0.07
40 0.08 0.06
44 0.09 0.05
48 0.08 0.05
52 0.08 0.05
56 0.09 0.04
60 0.09 0.04
64 0.08 0.04
68 0.08 0.03
72 0.08 0.03
76 0.08 0.03
80 0.09 0.03

N SEIc max(SEIw)

4 0.25 1.00
8 0.18 0.46

12 0.15 0.29
16 0.14 0.18
20 0.14 0.15
24 0.16 0.12
28 0.13 0.09
32 0.13 0.08
36 0.13 0.07
40 0.13 0.06
44 0.13 0.05
48 0.13 0.05
52 0.14 0.04
56 0.13 0.04
60 0.14 0.04
64 0.14 0.03
68 0.14 0.03
72 0.15 0.03
76 0.14 0.03
80 0.14 0.02
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Table 3. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES hardware
co-processor of a smartcard microcontroller, laser.

N SEIc max(SEIw)

4 0.62 1.00
8 0.31 0.46

12 0.29 0.29
16 0.22 0.18
20 0.23 0.14
24 0.19 0.11
28 0.17 0.09
32 0.18 0.08
36 0.19 0.07
40 0.17 0.07
44 0.20 0.06
48 0.19 0.05
52 0.16 0.04
56 0.17 0.04
60 0.17 0.03
64 0.17 0.03
68 0.19 0.03
72 0.19 0.03
76 0.21 0.03
80 0.21 0.02
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Table 4. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES co-processor
on a general-purpose microcontroller, clock glitch.

N SEIc max(SEIw)

32 0.02930 0.08203
64 0.01514 0.03369
96 0.01020 0.02040

128 0.00769 0.01489
160 0.00625 0.01125
192 0.00521 0.00971
224 0.00474 0.00817
256 0.00430 0.00693
288 0.00398 0.00620
320 0.00355 0.00535
352 0.00341 0.00492
384 0.00304 0.00448
416 0.00284 0.00416
448 0.00271 0.00388
480 0.00266 0.00359
512 0.00247 0.00330
544 0.00241 0.00315
576 0.00240 0.00297
608 0.00233 0.00280
640 0.00231 0.00264
672 0.00229 0.00250
704 0.00213 0.00238
736 0.00206 0.00227
768 0.00195 0.00219
800 0.00188 0.00215
832 0.00182 0.00202
864 0.00180 0.00195
896 0.00181 0.00190
928 0.00178 0.00180
960 0.00171 0.00173
992 0.00168 0.00172

N SEIc max(SEIw)

1 024 0.00165 0.00164
1 056 0.00162 0.00162
1 088 0.00155 0.00154
1 120 0.00150 0.00151
1 152 0.00147 0.00145
1 184 0.00145 0.00140
1 216 0.00143 0.00136
1 248 0.00138 0.00137
1 280 0.00135 0.00130
1 312 0.00131 0.00128
1 344 0.00131 0.00125
1 376 0.00130 0.00122
1 408 0.00129 0.00120
1 440 0.00127 0.00117
1 472 0.00122 0.00113
1 504 0.00124 0.00111
1 536 0.00125 0.00107
1 568 0.00126 0.00106
1 600 0.00124 0.00104
1 632 0.00123 0.00103
1 664 0.00123 0.00101
1 696 0.00123 0.00100
1 728 0.00123 0.00098
1 760 0.00119 0.00097
1 792 0.00120 0.00095
1 824 0.00117 0.00093
1 856 0.00116 0.00089
1 888 0.00114 0.00087
1 920 0.00113 0.00088
1 952 0.00113 0.00087
1 984 0.00113 0.00084
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