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To facilitate gene finding and for the investigation of
human molecular genetics on a genome scale, we
present a comprehensive survey on various statistical
features of human exons. We first show that human
exons with flanking genomic DNA sequences can be
classified into 12 mutually exclusive categories. This
classification could serve as a standard for future
studies so that direct comparisons of results can be
made. A database for eight categories (related to
human genes in which coding regions are split by
introns) was built from GenBank release 87.0 and
analyzed by a number of methods to characterize stat-
istical features of these sequences that may serve as
controls or regulatory signals for gene expression. The
statistical information compiled includes profiles of
signals for transcription, splicing and translation, vari-
ous compositional statistics and size distributions.
Further analyses reveal novel correlations and con-
straints among different splicing features across an in-
ternal exon that are consistent with the Exon Definition
model. This information is fundamental for a quantitat-
ive view of human gene organization, and should be in-
valuable for individual scientists to design human mol-
ecular genetics experiments.

INTRODUCTION

Almost all the nuclear genes coding for proteins in eukaryotes are
split into exon and intron sequences. Thus questions such as ‘what
makes an exon an exon?’ and ‘how is an exon recognized by the
gene expression machinery?’ are of major importance to the
understanding of gene expression and regulation. The task of
delineating exon–intron organization is even more challenging in
vertebrates than in lower eukaryotes because an average verte-
brate gene consists of multiple small exons separated by introns
that are 10 or 100 times larger. As the Human Genome Project
enters a large-scale sequencing phase, identifying exons has also
become a bottle-neck in genome annotation. In the early 1980s,
the splicing site consensus (1) and the weight matrix method (2)
were developed by DNA sequence comparisons. Senapathy et al.

(3) later compiled more comprehensive sequence statistics on
major categories of GenBank release 57.0. The statistical features
of promoters (4) and exon/intron size distributions (5,6) have also
been studied carefully for vertebrates. There have been many
good reviews on important aspects of gene recognition methods
(7–9) and on assessment of different protein-coding measures
(10).

To take advantage of a much larger set of human-specific
sequence data available today, to facilitate experiments on human
molecular genetics and to meet the need for developing better
human exon recognition methods, we have extended our
statistical analysis of fission yeast genes (11) to human exons and
their flanking regions. Recently, accumulating experimental
evidence has led to the Exon Definition model (12), which argues
that, in vertebrate pre-mRNAs with large introns, the initial
recognition unit of splicing is an exon defined by the interactions
of splicing factors across the exon. This implies that splicing
signals may be correlated across an exon and they cannot be
recognized as independent sequence features. In this survey, we
report our results on systematic analyses of many individual
features, and we demonstrate the existence of some novel
correlations and constraints among different features that may be
relevant to human exon recognition and to understanding of gene
expression and regulation. As the central theme in molecular
biology is the structure–function relationship, distinct statistical
sequence structures can often suggest, or ought to be explained
by, their functions. Putting various gene sequence information in
one place will help to speed up this functional interpretation.

EXON CLASSIFICATION

Exons are classified into the following 12 categories (Fig. 1),
according mainly to what transcriptional or translational bound-
aries an exon contains [we shall refer to the poly(A) site as the end
of the last exon]: (1) a 5uexon is the 5′-terminal untranslated exon
in a gene; (2) a 3uexon is the 3′-terminal untranslated exon; (3)
a 5utexon is the 5′-terminal exon having a 5′-untranslated region
(5′UTR) followed by a coding sequence (CDS); (4) a 3tuexon is
the 3′-terminal exon having a 3′UTR following a CDS; (5) an
iutexon is an internal exon having a 3′ portion of the 5′UTR
followed by a CDS; (6) an ituexon is an internal exon having a 5′
portion of 3′UTR following a CDS; (7) an iuexon is an internal
untranslated exon; (8) an itexon is an internal translated exon. An
exon in categories 9 and 10 has to contain the complete CDS: (9)
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Figure 1. Exon classification. All exons can be classified into these 12 mutually
exclusive classes. On the top, a schematic gene model is depicted which
indicates how some types of exons may be organized in a gene.

a 5utuexon does not contain the transcriptional end; (10) a
3utuexon does not contain the transcriptional start; (11) a
5–3utuexon contains both; and (12) an iutuexon contains neither.
Because of annotational ambiguities in distinguishing between
truly intronless CDSs and mRNAs, all the analyses reported in
this study were done for the first eight categories, which consist
of 271 5uexons, 38 3uexons, 482 5utexons, 553 3tuexons, 174
iutexons, 69 ituexons, 34 iuexons and 3440 itexons. Up until now,
the focus of study has been mainly itexons, for obvious reasons.
As the human genome will be completely sequenced, it is time to
address issues related to all types of exons. This is the first
systematic classification of exons which could serve as a standard
for future studies so that direct comparison of results can be made.

STATISTICAL CHARACTERIZATION OF INDIVIDUAL
SEQUENCE FEATURES

Size and compositional characteristics

Exon size distributions. The size distributions of exons that have
a definite size (no ‘>’or ‘<’ in their annotation) in the different
categories as well as the corresponding quantile statistics are
plotted in Figure 2. These results indicate that, in general,
5utexons or iuexons are relatively short (mostly <100 nt) and

3tuexons and 3uexons are relatively long (mostly –300–500 nt).
While itexon sizes have a tight log-normal distribution centered
around log10 (130 nt), the sizes of 3uexons are extremely
heterogeneous (all >100 nt). There also seems to be a sharp
drop-off for iutexon sizes >200 nt and for 3uexon sizes <100 nt.
The extreme values, although somewhat dependent upon the data
set, do give some idea about possible size constraints. There
seems to be no minimum constraint on the size of an itexon: we
found the smallest (4 nt) was the exon 3 of the human TNNI1 gene
in the initial human exon data set, although, after the data cleaning
process, the minimum in our final itexon collection was 15 nt.
These distributions are very useful, for example in comparative
studies or in exon-trapping experimental designs.

Coding fraction and UTR distributions. The coding fraction is
defined as the ratio of the CDS size over the exon size. The
histograms of the coding fractions of the exons in four categories
are plotted in Figure 3. These data clearly suggest that (i)
translation is equally likely to start anywhere in the first exon, but
it is more likely to start near the beginning of an internal exon; (ii)
translation is more likely to stop near the beginning of the last exon,
but it is more likely to stop near the end of an internal exon. At this
point, one could only speculate on the biological implications. For
example, why do most ituexons terminate translation near their
ends? It is known that premature termination codons (PTCs)
upstream of the distal third of penultimate exons trigger transcript
degradation while more 3′ PTCs fail to signal transcript targeting
(13). Could this be a mechanism to prevent bona fide termination
codons from being recognized as ‘premature’?

A total of 410 5′UTRs and 432 3′UTRs (these numbers are
different from those in exon size distributions because no definite
boundary at the CDS end of the exon is required) were extracted
in full length from 5utexons and 3tuexons, respectively. Their
distributions and the quantile statistics are also plotted in Figure
3. In the human GLA gene for α-D-galactosidase A (X14448), the
minimum 3′UTR (–2 nt in our definition) results from the fact that
the CDS (including the stop codon) ends at 11 268 and the
poly(A) site is at 11 266. UTR size distributions are useful, for
example, when analyzing human expressed sequence tags (ESTs)
and cDNA clones.

Mono- and dinucleotide compositions. Because compositional
measures depend on the G+C content of the isochore (14) in
which a gene is residing, for convenience, we compiled the
statistics separately for data from low GC (<0.5) and high GC
(≥0.5) genomic loci. The average G+C content of our data set is
0.53, but the average G+C content of all genomic loci from which
our data set was extracted is only 0.49. The fundamental mono-
and dinucleotide compositions in Table 1 are for the following
groups of sequences: upstream flanks (216 nt), upstream UTRs,
upstream introns (54 nt), CDS in each frame, downstream introns
(54 nt), downstream UTRs and downstream flanks (216 nt). The
values are represented as the percentage difference relative to the
average of the total data set.

In contrast to the averages, some of the salient features are
given below. At low GC loci, the average G+C contents of the
various genomic regions have the following order: uutr>uflk>
average cds>din>dflk>dutr>uin (see Table 1 for the notations). A
codon has a consensus of RWY (in IUPAC ambiguity codes). At
high GC loci, the average G+C contents of intron elements are
boosted in such a way that the new order becomes:
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Figure 2. Exon size distributions for the first eight categories (4731 exons from GenBank: 87.0). The quantile statistics were calculated in log10 (bp) scale and converted
back into units of nucleotides for ease of comparison.

uutr>uflk>din> average cds>uin>dflk>dutr (notice the dramatic
increase of G in din and of C in uin both at the expense of T); a
codon has a different consensus of SWS. At the dinucleotide
level, the lack of self-complementary pairs is quite obvious. At
low GC loci, they are CG and GC (CG is especially scarce
because of the methylation decay); at high GC loci, they are TA
and AT. However, they are relatively enriched at the 5′ (for CG

and GC) and the 3′ end (for TA and AT) of a gene where they may
play some role in the control signals of transcription (e.g. the CpG
islands are often found near the 5′ end of a housekeeping gene,
and the AATAAA motifs are often found near the polyadenyla-
tion site at the 3′ end of a gene. In uins, the richness of
dipyrimidines is clearly caused by the poly(Y) splicing signal
near the 3′ splice site (3′ss), and the C content is controlled by the
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Figure 3. Coding fraction (top two panels) and UTR distributions (bottom panel). The coding fraction is defined by the ratio of the size of the coding portion over
the total size of an exon. The quantile statistics for the UTRs were calculated in log10 (bp) scale and converted back into units of nucleotide.

G+C level of the genomic loci. Also, the poorness of AG in uin
may be caused by avoiding the confusion of the true 3′ss.
Unexpectedly, the richness of GG in din (which is related to the
G-string excess, see later discussions) is only associated with high
GC loci. Because of the coding constraints, the dinucleotide bias

in CDS is strongly correlated with the codon bias below (see also
15).

Codon usage. The trinucleotide statistics are presented as in the
human codon usage table (Table 2). The most abundant codons



923

Nucleic Acids Research, 1994, Vol. 22, No. 1Human Molecular Genetics, 1998, Vol. 7, No. 5923

Table 1. Mono- and dinucleotide compostions for low/high G+C loci expressed as percentage
difference from the average (of the entire category 1–8 data set)

uflk/dflk, up-/downstream flanking region (216 nt); uutr/dutr, up-/downstream untranslated region; uin/
din, 5′/3′ splice site intron region (54 nt); cds1–3: coding sequence in frame 1–3.

(CUG, GAR and AAG) are related to dominant dinucleotides in
the first coding frame (GA, AA for genes at low GC loci, and CU,
GA for genes at high GC loci). The least abundant codons (NUA
and NCG) are related to the rare dinucleotide at the second
position (CG for genes at low GC loci and UA for genes at high
GC loci). There are other examples, such as the GCC codon for
alanine and the CAG codon for glutamine, that have strong
isochore bias. The most abundant amino acids (leucine and
serine) are the ones that have most codons and have no rare
dinucleotide at the first position. Stop codon UAA is particularly
avoided for genes at high GC loci, although all three stop codons
are used equally for genes at low GC loci.

Hexamer (6-tuple) statistics. Hexamer frequency has been used
widely as a major discriminant factor in exon/intron identification
(10,16). We have calculated hexamer frequencies fexon (from all

the CDSs in all frames) and fintron (from the introns of 43
complete sequenced genes). The ratio fexon/fintron for human is
less discriminating than in the fission yeast (11) because the
human splice sites are more degenerate (see the splicing signals
later). In Figure 4, the dot charts of some extreme ranking
frequency differences are depicted separately for low and high
G+C loci. Most of the intron characteristics can be explained by
the run of Ts or As. However, at high GC loci, the presence of CA
repeats and G-strings is apparent, especially the complementary
pair GGGAGG/CCTCCC, which occurs much more often in
introns. In the coding regions, the information is dominated by the
hexamers consisting of frequent codons (especially in tandem
repeat) that are also highly biased by the G+C content. Both
codon usage and hexamer statistics are very useful, for example,
when choosing appropriate restriction enzymes or designing
various probes.
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Table 2. Human codon usage table for low/high G+C loci (in percent)

Total number of codons: 98 392/136 953 from low/high G+C sequences.

Signal profiles

All the signal profiles reported below are essential in delineating
human gene organization. They also provide information about
factor-binding energies around recognition sites (17).

Promoter signals. Human promoter sequences are difficult to
identify and are poorly annotated in the public databases. We used
a refining procedure to obtain the various promoter signal profiles
(Table 3), where the vertebrate scores of Bucher (4) were used as
the initial approximate matrices (their positional coordinates
were also adopted). The windows and the number of sequences
used in the search are shown, together with the mean distance of
the signals from the transcriptional start (CAAT and GC boxes
were searched on both strands). This simple refining procedure
was able to produce reasonable promoter signal profiles consist-
ent with the well-known consensus (4). Of course, genes that have
no TATA or CAAT box would have contributed ‘noise’ to the
profile frequencies (such noise could be reduced by imposing a
minimum score requirement, as was done for the branch site
profile below). As mentioned in (4), we also found a 1 nt shift in
the human Cap-site annotations. Measuring from the end of a box,
the TATA box is found ∼25 nt and the CAAT box ∼100 nt (with
larger deviations) upstream from the transcriptional start site.

Pre-mRNA 3′ end processing signals. The AATAAA box and the
poly(A) site profiles are shown in Table 4. The first AATAAA box
profile was obtained by aligning all of the annotated poly(A)
signals. The second was obtained from a subset of the signals that
occur within a 50 nt window upstream of the poly(A) site. The
second profile allowed us to estimate the mean distance (16 nt)
between the T in the box to the poly(A) site. The first poly(A) site
profile was also obtained simply from aligning all of the
annotated poly(A) sites. Due to the uncertainty in identifying a
precise poly(A) site, we do not see the CA consensus from this

profile. In an attempt to correct some possible errors, we
re-aligned the sequences if there was a CA within a ±2 nt distance
from the annotated poly(A) site. We believe this poly(A) site
profile (shown at the bottom of the table) may be closer to the
truth.

Translational signals. Both the translational start and stop profiles
were obtained by aligning the corresponding sequences accord-
ing to the annotations (to avoid possible errors, only the consensus
sequences starting with ATG or ending with one of the three stop
codons were compiled; Table 5). The human translational start
profile is consistent with the general consensus for all vertebrates:
GCCGCCRCCATGG (18). From 531 sequences, we also found
that start codons occurred as the first, second, third or fourth ATG
in the open reading frame (ORF) 474, 51, five and one times,
respectively [which would be in favor of the ‘first ATG rule’ and
is very similar to our previous finding for the fission yeast (11)].
The translational stop profile shows the ratio among different stop
codons as TAA:TAG:TGA ∼1:1:2 (obtained from TAA+TAG
∼TGA and TAA+TGA ∼3 TAG according to the matrix at
positions –2 and –1), which may also be seen from Table 2.

Splicing signals. The 5′ and 3′ splice site profiles were obtained
by aligning annotated sequences obeying the GT–AG rule (Table
6). We also did separate profiles for the splice sites adjacent to
UTR and those adjacent to CDS; we did not find any substantial
differences (data not shown). From the general mononucleotide
compositional analysis above, it was shown that the composi-
tional property in the flanking intron regions depends strongly on
the G+C content. One could get more insight by comparing
splicing signal profiles for low and high G+C content; Table 6 is
such a comparison calculated from itexons. Although the human
splice site consensus more or less agrees with the general
consensus for most vertebrates, AG|GTRAGT for the 5′ss and
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Figure 4. Major differences in 6-tuple frequency between coding sequences (in all frames) fcds and introns fintron. Only the top and the bottom 20 6-tuples are displayed.

(Y)nNCAG|G for the 3′ss, the G+C content greatly affects the
nature of purine or pyrimidine constituents. At low G+C loci, the
5′ss consensus may be better described as AG|GTAAGT and the
3′ss consensus as (Y)nNYAG|G.

The branch site profile was again obtained by the refining
method above, where the vertebrate scores (19) were used as the
initial approximate matrix. We took a window (of size 41 nt) 10
nt upstream of the 3′ss end where most reported branch points
were found (20). To reduce the noise created by genes that have
their branch point located outside of the window, we imposed a
minimum score of 3, corresponding to the 1st quantile of the
maximum score distribution (the absolute conservation of A at
the branch point was obtained automatically as a consequence).
The average distance of the branch point from the 3′ss end was
found to be 26 nt. Again the profile is biased by the G+C content.
In contrast to the vertebrate consensus CTRAY, YTVAY for the
low G+C content and CTSAY for the high G+C content may be
more specific to the human sequence.

In addition to these conventional measures, we also examined
many other statistics that may play a role in mRNA splicing.
Some of these are plotted in Figure 5a–f (all the maximum values
were limited by the searching window size used).

We plotted the distribution of the distance from the branch point
to the 3′ss end (Fig. 5a); its quantile statistics are: Min. = 10, 1st
Qu. = 20, Median = 25, Mean = 26, 3rd Qu. = 32 and Max. = 46.
Most branch points are located 15–30 bp upstream of the 3′ss end.
Branch points outside this region are suboptimal; this happens in
many alternatively spliced introns (21).

We plotted the distribution of the distance from the 5′ss end to
the closest (with respect to the CDS) downstream in-frame stop
codon (Fig. 5b); its quantile statistics are: Min. = –2, 1st Qu. = 1,
Median = 11, Mean = 16, 3rd Qu. = 27 and Max. = 51 (–2 occurs
when the 5′ss looks like TA|GT where TAG is the first stop
‘masked’ by the 5′ ss boundary). The expected number of the first
downstream stop codons found by chance in random sequences
at each position is indicated by a dotted line. This is three times
the expected number of the first in-frame downstream stop
codons found by chance. The striking peak at 1 gives rise to the
5′ss consensus G|GTRAG, and there is a second peak at position
5 which may also correspond to a functional role in splicing. The
fact that most significant stops are very close to the 5′ss supports
the idea that the 5′ss may be there originally to mask the
downstream nonsense codons (22) and to allow longer (and hence
more complex) gene products to be coded. Many non-functional
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Table 3. Promoter signal profiles (in percent)

All these matrices were obtained by using the corresponding Bucher’s ma-
trices as the initial start in the refining procedure (see Database and Methods).

excess stops would have long ago been washed out by mutations
in evolution.

We plotted the distance from the closest upstream AG to the
3′ss AG (Fig. 5c); its quantile statistics are: Min. = 2, 1st Qu. =
22, Median = 29, Mean = 30, 3nd Qu. = 37 and Max. = 52. We
can see a sharp drop-off at short distances (<18 nt). Compared
with Figure 5a, it is clear that the first AG downstream of the
branch site is most likely to be used as the 3′ss. This rule works
much better for the fission yeast (11).

To study more flanking intron features quantitatively, we
looked at the Y-string in polypyrimidine [poly(Y)] tracts of the 3′
intron region and the possible G-string excess in the 5′ intron
region. 

The polypyrimidine tract is known to play an important role in
human pre-mRNA splicing (23). A Y-string is a tandem stretch
of pyrimidines. We extracted the maximum Y-string (closest to
the 3′ss end) from the 54 nt upstream flanking intron region of
4417 exons and plotted the size and distance distributions in
Figure 5d and e. The quantile statistics for the sizes are: Min. 2,
1st Qu. = 6, Median = 8, Mean = 9, 3rd Qu. = 11, Max. = 32; and
for the distances are: Min. = 2, 1st Qu. = 4, Median = 9, Mean =
14, 3rd Qu. = 21, Max. = 50. Compared with the same statistics
from random sequences having the same nucleotide composition
(also shown in the figure), we see that the maximum Y-strings
have a much longer length and occur very close to the 3′ss end in
real introns (a t-test, df = 7899, showed the true mean 9.19 is
outside of the 95% confidence interval of the random sample
mean 6.62 ± 2.45). [A non parametric test (Wilcoxon rank sum)
test (24) was also performed that definitely ruled out the null
hypothesis that the medians of the two sample distributions are

Table 4. Pre-mRNA terminational processing signal profiles (in percent)

The second and fourth matrices were obtained from the first and the third, respectively, by
the refining procedures as described in the text.
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Table 5. Translational signal profiles (in percent)

Only sequences with the annotated start site ATG and the annotated
stop site TAA, TAG or TGA were counted.

Table 6. Splicing signal profiles (in percent)

For 5′ss and 3′ss matrices, only sequences that obey the standard GT–AG rule
were counted. The banch site matrix was obtained via a refining procedure
(see Database and Methods) using the Harris–Senapathy branch site matrix
for vertebrates as the initial start.

the same which had a P-value <10–10.] We expect the size effect
would be larger if approximate Y-strings were used (allowing one
mismatch, for example).

The G-string excess was hinted at in the above discussion of
mono- and dinucleotide distributions. It was first reported by
Solovyev et al. (25). We measured this feature in a more
quantitative way as follows. Using itexons, for each minimum
G-string size i (i = 1, 2, 3, 4, 5), we counted the number of tandem
G runs of size i and larger in a 54 nt window on each side of the

5′ss boundary. Let the difference of the number on the intron side
to the exon side be D and d = 1, 0 or –1 depending on whether D
is >, = or < 0. The average D (unshaded) and d (shaded) are plotted
in Figure 5f. One can see both measures peaked at 3, indicating
that G triplets are the most over-represented G-strings on the
intron side on average. Recent experiments indicated the G
triplets located throughout a class of small vertebrate introns
enforce intron borders and regulate splice site selection (26). It is
possible that such G triplets may be related to hnRNP sites [such
as hnRNP A1 sites which have a consensus of UAGGGU (27)].

CORRELATIONS AND CONSTRAINTS AMONG
DIFFERENT SEQUENCE FEATURES

To explore possible relationships among different features across
an exon, we used itexons that have complete flanking intron
information. (For convenience of statistical tests, all variables in
Figure 6a–d were normalized—subtracted the mean and divided
by the standard deviation.)

Strong compensatory constraint between the two splice sites
across a short exon. In Figure 6a, we have plotted the upstream
3′ss score against the downstream 5′ss score for each exon (we
chose 0 as the minimum score cut-off, because the few splice sites
with negative scores were mostly annotation errors). There
appears to be no correlation for the whole data set at first sight.
However, if we highlighted the exons that have a short size (< 61
nt) and have a relatively long upstream intron (>200 nt), there
appeared to be a constraint (represented by the dotted line) that
restricted these exons into the upper-right corner. To test the
significance of the constraint, we found that the P-value (see
Database and Methods) was 0.029 (N = 77, the constraint is y =
–2.8x – 3.5). Therefore, this constraint is statistically significant
at the 95% confidence level. Such a constraint is consistent with
the Exon Definition model: both splice sites have to be consensual
for a short exon not to be skipped and, when the 3′ss is weak in
a long intron, a stronger downstream 5′ss is needed to compensate
for exon definition. Experimentally, it was observed that mutation
of a 5′ss depressed the removal of the upstream intron 20-fold
(28). Strengthening a naturally weak 5′ss of an internal exon by
making it a better fit to the consensus increased in vitro splicing
of the upstream intron (29,30). In vivo, mutant 5′ splice sites
usually were suppressed by second mutations that improved the
3′ss across the exon (31,32).

Correlation between the splice sites and exon size.To see how
the minimum quality of splice sites depends on exon size, we
made a box plot of the total splice site score (i.e. the sum of the
5′ss score and 3′ss score across an exon) as a function of the
internal exon size (Fig. 6b, in log10). We observed that when the
exon size is near the mean or larger, there appears to be no
restriction on the splice site scores (except the absolute mini-
mum); however, when the exon size decreases, the splice site
scores tend to go up systematically. This is also consistent with
Exon Definition in the sense that the interacting splicing factors
across an exon may require an optimal interaction range.
Experimentally, in addition to exon skipping, the other major
phenotype resulting from mutation of a splice site in a human
gene is activation of a cryptic site with the right polarity (33).
When a constitutively recognized internal exon was internally
deleted below 50 nt, it was skipped by the in vivo splicing



 

Human Molecular Genetics, 1998, Vol. 7, No. 5928

Figure 5. Novel splice site features. (a) The distance from the branch point to the 3′ss is mostly between 15 and 30 bp. (b) The distance from the 5′ss to the first
downstream in-frame nonsense codon is mostly 1 bp. The dotted line indicates the expected number of the first downstream nonsense codon which is three times the
expected number of the first in-frame downstream nonsense codon. (c) The distance from the 3′ss to the first upstream AG is mostly between 18 and 35 bp. (d) The
poly(Y) tract in the 3′ sequence of real introns is larger than would be found by random chance. (The histogram for the random model with the same nucleotide
composition is cross-hatched.) (e) The distance from the poly(Y) tract to the 3′ss is much shorter than would be found by chance. (The histogram for the random model
is cross-hatched.) (f) G-string excess in the 5′ss intron region is mostly G-triplets. D and d are two different statistical measures (see text). The peak at 3 bp indicates
that G-triplets are more enriched in the 5′ss intron region relative to the adjacent upstream exon region.
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Figure 6. Correlations and constraints among different sequence features. (a) Scatter plot of 5′ss scores versus 3′ss scores (both normalized, see text). The highlighted
dots represent the short exons (<61 bp and flanked by an upstream intron >200 bp). That fact that these highlighted dots are bounded by the dotted line indicates the
compensatory constraint between minimum qualities of upstream 3′ss and downstream 5′ss across these short exons. (b) Correlation between the splice site quality
(measured by the sum of the flanking splice site scores) and the exon size (normalized in log10 scale) is apparent for short exons. (c) The constraint on minimum
upstream intron size for large exons is indicated by the dotted line. (d) The constraint between the upstream poly(Y) (measured by the normalized ratio of YYY
frequency to Y frequency) and downstream G-strings (measured by the normalized ratio of GGG frequency to G frequency) is indicated by the dotted line. (e) A 3-tuple
clustering tendency correlation is indicated by the diagonal stripe in the scatter-plot of the 3-tuple clustering tendency (which measures how likely it is that one would
find mononucleotide runs) in the upstream flanking intron region versus the downstream flanking intron region. (f) Scatter-plots of A+T contents for the upstream
flanking intron region versus the downstream flanking intron region, for the exon region versus the whole genomic region and for the total flanking intron region versus
the whole genomic region are displayed. The A+T content correlations are indicated by the diagonal stripes.
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machinery (34). Increasing the strength of the splice sites could
revert the mutant (35).

Constraint between the upstream intron size and exon size. To
prevent steric hindrance between splicing factors, a minimum
intron size is generally expected. This is the case, as may be seen
in Figure 6c where the upstream intron size is plotted against the
exon size (both in log10). With our data set, this minimum was
24 nt (for the two introns in the human parvalbumin gene); the
others were 60 nt or larger. Unexpectedly, our data also show a
restriction at the upper-right corner. Namely, a long exon is often
accompanied by a short upstream intron. A significance test
arrived at P = 0.025 (N = 1228, the constraint is y = –x + 3.88),
implying that the constraint is significant at the 95% level.
According to the Exon Definition, when the exon size becomes
very large, the upstream intron may only be recognized through
the Intron Definition mode (33), which would require a shorter
intron size (see also ref. 36).

Constraint between the poly(Y) tract and the downstream
G-strings. To demonstrate that the G-string feature mentioned
above is also correlated with the poly(Y) tract, we designed a
simple measure as follows: for a G-string measure, we counted
the total size of G-strings (G runs of 3 nt or more) in a 54 nt
window downstream of a 5′ss and normalized it by dividing the
total number of G residues; we constructed a similar measure for
the poly(Y) tract by counting the total size of Y-strings
(pyrimidine runs of 3 nt or more) in a 30 nt window upstream of
the 3′ss and by dividing the total number of pyrimidine residues.
As shown by the dotted line in Figure 6d, the relationship
manifests itself again as a constraint: when the G-string content
downstream of an itexon is too high (>1 on the normalized scale),
the poly(Y) tract upstream has to be of better quality (more
Y-triplets clustering). Again the features on the opposite sides of
an itexon appear to be ‘talking’ to each other. The P-value for the
constraint is 0.019 (N = 1586 and the line is y = 1.7x – 5.58), again
significant at the 95% level. It is possible that the G-strings bind
the Y-strings across an itexon transiently to help initial exon
recognition during RNA splicing.

Correlation of 3-tuple clusterings in the flanking introns. Due to
runs of As or Ts (as shown, for example, in Fig. 4), most introns
have less complexity than exons (37). We wanted to see if there
are any correlations between clusterings in different regions. We
use x = Ρk Nk(Nk – 1)/L – 2 as our 3-tuple clustering measure (this
measure has been used by Roman Tatusov in his low complexity
filtering software—dust) where Nk is the number of a 3-tuple k,
L is the window length and the sum is over all possible (64)
3-tuples. The larger this number is, the stronger is the 3-tuple
clustering. We had calculated x for each side of the 3′ or 5′ splice
site with a window of length 54 nt; we observed that most of the
introns have lower clustering tendency than the exons, and there
were no correlations between different exon regions or between
an exon region and an intron region (data not shown). However,
there was a strong correlation between the upstream intron region
and the downstream intron region for a subset of itexon data (as
indicated by the diagonal stripe in Fig. 6e). The correlation
coefficient was cor = 0.84 with a 90% confidence interval of
(0.825,0.846) (defined in Database and Methods).

Correlation between flanking A+T contents across an itexon.
Finally, we show a correlation between mononucleotide com-
positions in the two flanking intron regions (54 nt each) across an
itexon. We have calculated A+T content in each of the following
regions: upstream flanking intron, itexon and downstream
flanking intron, and compared them with the A+T content of their
genomic locus. We found that the correlation between flanking
introns across an itexon was the strongest, with cor = 0.78 and a
90% confidence interval of (0.758,0.802) (as seen in Fig. 6f).
Presumably this correlation is caused mainly by the isochore
effect (14), as may be seen from the subplots in Figure 5f, which
shows that genomic A+T content is clustered into islands and the
flanking intron A+T content correlates with the genomic more
positively than the exon A+T content (the straight lines are the
equal A+T content lines). This correlation is remarkably strong
because only very short (54 nt) flanking intron sequences were
used and the poly(Y) or the G-string in these regions would have
to adjust its composition to accommodate the correlation. In fact,
all the signal profiles are GC content-dependent as shown earlier.
That is why exon identification in a low GC locus is very difficult
as the exon GC content is constrained to be almost as low as
introns and intergenic regions.

CONCLUSIONS

In summary, we have analyzed statistical characteristics of many
sequence features in human exons and their flanking regions,
including some very subtle and complex ones. We have begun to
reveal several novel correlations and constraints among different
features. Some of these are in accord with recent experimental
observations; others are still a mystery awaiting functional
interpretation. We should emphasize that most correlations are
between extreme values (mathematically, the relationships can
only be expressed as inequality constraints). For features that are
close to their consensus, they are quite free to vary and the exon
will still be defined (recognized). This type of degeneracy is quite
typical for biological systems (e.g. non-lethal mutations of
protein sequences are often tolerated because the resulting change
of a structure is not critical to the function). However, under
special conditions where the general constraints are violated, the
exons have to be defined by a delicate balance of multiple features
and/or a requirement for additional new features [such as the
secondary structures (38), purine-rich enhancers (39), etc.].
These have been observed often in alternatively spliced genes
(40). All correlations related to gene structures are likely to be
complex, because they resulted from dynamic interactions of
many macromolecules during evolution. However, these inter-
dependencies among different features are just as important as
each individual feature. This is analogous to the fact that protein
function cannot be worked out by structure characterization alone
without considering interactions between subcomponents or with
substrates. More rigorously characterizing existing features,
further discovering new features, and quantitatively exploring
novel feature relationships will be the keys for understanding
gene structures and for improving exon discrimination methods.
Many statistical findings reported here have already been utilized
in a new gene-finding method (41) which has substantially
improved the accuracy in human exon prediction. Better under-
standing of the architecture of genes will become the prerequisite
for innovative experimental designs in functional studies.
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DATABASE AND METHODS

Human exons (in nuclear protein-coding genes) were extracted
from GenBank release 87.0, and the data set was processed to
remove redundant copies and checked for data integrity. Starting
with 31 202 human sequences extracted out of gbpri.seq, we
filtered out viruses, mitochondria, RNAs, pseudogenes, Ig genes,
MHC genes, redundant large family genes and identical copies.
Only 6152 sequences remained. Of these, 780 contained com-
plete CDSs which belong to the last four categories (see Fig. 1).
We sorted the rest in ascending order according to their size, and
extracted all the exons that had no >90% maximum similarity to
other larger exons. Many errors were removed or corrected during
the entire analysis by comparison against the original publica-
tions. The final data set consisted of 5061 exons (representing
2705 intron-containing genes) belonging to the first eight
categories (see Fig. 1). These exons and their flanking regions
(54 nt into introns or 210 nt into intergenic regions) have been
deposited in FASTA format at the anonymous ftp site
phage.cshl.org in the directory pub/science/human�_exons. The
accession number and the coding frame information are also
retained in each exon record.

All profiles were defined by positional dependent frequency
matrices (17)

f�x � n�x�N, with N��
�

n�x,

where nαx is the counts of a k-tuple α at position x. The scores
were defined by

sαx = log2 (Pαx/P0),

where P0 = (1/4)k (if α is a k-tuple) and Pαx isthe Bayesian
posterior probability (42) given by

P�x � (n�x� a�)�(N� A), with A ��
�

a�

We chose the pseudocount aα to be N�  multiplied by the
background frequency of α. The counts were obtained either from
the known alignments or by the following refining procedure.
Starting with an approximate matrix (we took the corresponding
vertebrate matrix; one may also take a matrix resulting from a
known alignment of subset data), align the signals (within a
specified window) that have the maximum score and calculate the
new matrix. One then iterates this procedure until it converges.

To assess a straight line constraint in a plan, we used the normal
approximation (with a mean of zero and standard deviation of
unity) by normalizing (subtracting the mean and dividing by the
standard deviation) the two sample variables xi  and yi . (The
variables may need to be transformed, such as by taking the
logarithm of exon sizes, so that their distribution can be
approximated by the normal distribution.) Assuming x, y are
independent, the null hypothesis is that the observed N points are
not restricted by a straight line (generalization to an arbitrary
curve is straight forward) y = ax + b. The probability f of finding
one point in the restricted region is given by F(d), where F is the

cumulative distribution function and |b|� 1� a2�  is the distance
of the constraint line from the origin. The P-value for finding all
N points on one side of the constraint is fN.

The definition of the correlation coefficient cor of two vectors
of sample data X,Y, is the standard:

cor � Ave.
(X� �1)(Y� �2)

�1�2
,

where µ1, µ2 and σ1, σ2 are the means and standard deviations,
respectively, of X and Y. The confidence interval for cor is
obtained by the procedure described in (43).

Most of the analysis and graphics were done with SPLUS (44).
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