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Abstract— Variability in the chip design process has been relatively
increasing with technology scaling to smaller dimensions. Using worst
case analysis for circuit optimization severely over-constrains the system
and results in solutions with excessive penalties. Statistical timing analysis
and optimization have consequently emerged as a refinement of the
traditional static timing approach for circuit design optimization.

In this paper, we propose a statistical gate sizing methodology for
timing yield improvement. We build statistical models for gate delays
from library characterizations at multiple process corners and operating
conditions. Statistical timing analysis is performed, which drives gate
sizing for timing yield optimization. Experimental results are reported
for the ISCAS and MCNC benchmarks. In addition, we provide insight
into statistical properties of gate delays for a given technology library
which intuitively explains when and why statistical optimization improves
over static timing optimization.

I. INTRODUCTION

Increasing significance of variability in the IC design process with
shrinking feature sizes make timing verification and optimization
extremely difficult. Uncertainties are attributed to the manufacturing
process, environmental factors like Vdd and temperature, and device
fatigue phenomenon. We term all factors that contribute to delay
variations as parameters and refer to the range in which they can
collectively vary as the parameter space. Nominally sub-critical
paths may become critical in some regions due to sensitivity to
the sources of variation. This can cause circuits to fail in meeting
timing constraints. Consequently, it becomes imperative to improve
the timing yield of a circuit, which denotes the probability that
the circuit will meet its timing constraints under variations. This
motivates development of robust design methodologies for circuit
optimization.

Statistical timing analysis and optimization have emerged as a
refinement of the existing methodology of static timing optimization.
Sources of variability are considered as random variables. Gate delays
are modeled as functions of these variables with a known distribution
(typically a Gaussian). This allows for an analytical evaluation of
the circuit delay as a probability density function (PDF). From the
PDF, the probability that the circuit delay exceeds a required value
is computed as the area under the PDF to the right of the required
value. For sake of simplicity, we assume that circuit failure is from
late arriving signals only (setup condition). The extension to include
failures due to early arriving signals (hold condition) is similar.
Statistical optimization provides an additional degree of freedom in
the solution space where the optimizer tunes the PDFs of circuit
delays instead of worst case values. This makes statistical timing
optimization an attractive design approach.

Analytical approaches to statistical static timing analysis [1]–
[4] and optimization [5]–[7] have emerged as an active research
topic. Agarwal et al. present a statistical timing analysis approach
which focuses on handling spatial correlations [1]. Recent literature
considers gate delays as Gaussian random variables, since it facilitates
fast analytical evaluation. Chang et al. propose a statistical timing
analysis approach under this assumption which considers spatial
correlations [2]. A first order incremental block based statistical

timing analyzer is presented by Visweswariah et al. in [3]. We build a
SSTA engine based on this work. In our experience, node criticalities
introduced in [3] can only be estimated in closed form to be within
20% of the true values obtained from Monte Carlo simulations. We
find these to be inadequate for guiding optimization. A statistical
gate sizing methodology for timing yield improvement is proposed
by Raj et al. in [5]. They use the notion of path disutilities for
optimization. Another gate sizing method using a statistical delay
model is proposed by Jacobs et al. in [6]. They ignore correlations
among the gate delays and use an analytical gate delay model based
on the cell speed factor. In addition, their method attains to optimize
only the mean of the output arrival time PDF. Using a simple gate
delay model, Agarwal et al. propose a coordinate descent based
gate sizing algorithm for statistical timing optimization [7]. Their
sensitivity metric for any gate is a function of a given percentile point
of its delay distribution and size. Intra-die variability is considered,
and the resultant gate delay variation is assumed to be a fixed value
(10% of the nominal).

In this paper, we present a statistical gate sizing methodology
for timing yield optimization. We build statistical models for gates
based on industrial data from a technology library characterized at
different points in the parameter space. We perform statistical timing
analysis which accounts for correlations and also incorporates random
gate delay components. This serves as a backbone for our gate
sizing algorithm, which attains to maximize the timing yield of a
circuit and not merely improve values for a single given percentile
point in the circuit’s delay distribution. We focus on combinational
circuits in this paper. Experimental results on the ISCAS and MCNC
benchmarks demonstrate significant improvements in timing yield.
Static timing optimization is performed using an industrial synthesis
tool and is used for benchmarking our statistical timing optimizer.
We also present insight into statistical properties of gate delays from
a real technology library which intuitively explains when and why
statistical timing optimization gains over static timing optimization.

II. STATISTICAL MODELING AND TIMING ANALYSIS

A. Statistical Modeling

Statistical gate modeling involves expressing a gate delay as a
function of the parameters of variation, which are modeled as random
variables. Based on the work in [3], we assume that gate delays are
approximated by a linear function of the parameters. In addition, we
assume that these parameters are independent, since a dependent set
of parameters are transformed into an equivalent set of independent
parameters using PCA [2].

Each gate from a technology library is characterized at different
process corners which span the entire parameter space. A least-
squares fit is then employed to express the gate delay as a linear
function of these parameters. The parameters are finally modeled as
random variables having a Gaussian distribution. This makes gate
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delays a weighted sum of Gaussians, and are expressed as

a0 +

n
∑

i=1

ai∆Xi + an+1∆Ra (1)

where, a0 is the mean or nominal value of the delay, ∆Xi

(∀i = 1, 2, . . . , n) represents the variation of n global parame-
ters (Xi, ∀i = 1, 2, . . . , n) from their nominal values, and ai

(∀i = 1, 2, . . . , n) are the sensitivities to their corresponding sources
of variation. ∆Ra denotes the variation from the nominal of an
independent random variable Ra associated with each gate. an+1

represents the sensitivity of the gate delay to Ra. Statistical gate
modeling is performed for all gates in the circuit before statistical
timing analysis and can be done incrementally.

B. Statistical Timing Analysis

Statistical timing analysis involves propagating delay distributions
through the circuit. Since we express gate delays as a first order
sum of random variables, the sum operation is performed easily. The
max operation, on the other hand, is an intricate operation. Under the
assumption that gate delays are linear functions of Gaussian random
variables, we use the method by Clark [8] to obtain the moments of
the max of two Gaussian distributions. The distribution of the max
of two Gaussians is then approximated to a Gaussian distribution by
matching the first and second order moments as in [2], [3], [8]. We
use (a0, σA) and (b0, σB) to represent the (mean, standard deviation)
of two timing quantities A and B respectively. ai and bi for i =
{1, 2, . . . n + 1} represent the sensitivity of these timing quantities
to the given parameters of variation as described earlier. ρ is used to
represent their correlation coefficient. We define

φ(x)
∆

=
1√
2π

exp(−x2

2
) (2)

Φ(y)
∆

=

∫ y

−∞

φ(x)dx (3)

θ
∆

= (σ2
A + σ2

B − 2ρσAσB)1/2 (4)

α
∆

=
a0 − b0

θ
(5)

The mean µ and variance var of max(A,B) can be expressed
analytically (from [8]) as

µ = a0Φ(α) + b0Φ(−α) + θφ(α) (6)

var = (σ2
A + a2

0)Φ(α) + (σ2
B + b2

0)Φ(−α) + (7)

(a0 + b0)θφ(α) − µ2

We wish to express the max(A,B) as a Gaussian distribution in the
canonical form

C = c0 +

n
∑

i=1

ci∆Xi + cn+1∆Rc, where (8)

c0 = µ (9)

ci = aiΦ(α) + biΦ(−α) ∀i ∈ 1, 2, . . . , n (10)

cn+1 = (var −
n

∑

i=1

c2
i )

1/2 (11)

We prove in Appendix I that (var−
∑n

i=1
c2
i ) is always non-negative.

The required time estimation during timing analysis is performed by
a backward propagation and involves the subtract and min operations.
When a gate has more than two fanins (fanouts), the max (min)
operation for the arrival (required) time PDF calculation is done one
pair a time. Care is taken to determine an ordering on these operations

to minimize the loss in accuracy due to approximations. For example,
multiple identical Gaussians in a set on which a max (min) operation
is to be performed, are always reduced to a single Gaussian. Statistical
timing analysis can be performed in an incremental manner like a
standard incremental static timer. It can incorporate separate PDFs
for the rise and fall delays. Slack estimation during timing analysis
involves subtract operations which can be performed on the canonical
forms of the timing distributions. A min operation on the slack
distributions at the primary outputs gives the circuit slack, the PDF
of which is evaluated to obtain the probability of the circuit meeting
its timing requirements.

III. STATISTICAL GATE SIZING

Gate sizing has been an active and a proven timing optimization
methodology over the decades. We consider extending static gate
sizing that focuses on improving the slack of a circuit to statistical
gate sizing that considers improving the probability that the circuit
slack is non-negative. Given the circuit slack (after statistical timing
analysis) in the form of a Gaussian distribution with mean µS and
standard deviation σS , the timing yield of the circuit denotes the
probability that the slack is non-negative. Formally, timing yield is
defined as the following.

P
∆

=
1√

2πσS

∫

∞

0

exp[− (x− µS)2

2σ2
S

]dx (12)

We attain to maximize P , which we next show is equivalent to
maximizing µS

σS
.

Theorem 1:

max
1√

2πσS

∫

∞

0

exp[− (x− µS)2

2σ2
S

]dx ≡ max
µS

σS

Proof: We define y
∆

= (µS − x)/σS .
Under variable transformation,

1√
2πσS

∫

∞

0

exp[− (x− µS)2

2σ2
S

]dx

=
1√
2π

−
∫

−∞

µS/σS

exp[−y2

2
]dy =

1√
2π

∫ µS/σS

−∞

exp[−y2

2
]dy,

which is strictly increasing with µS

σS
. This proves our claim.

Our statistical gate sizing approach thus attains to maximize µS

σS
.

An alternative objective function that intuitively optimizes timing
yield is expressed in the form of maximizing µS−3σS . This objective
function focuses on pushing the slack distribution to the right, that
is, attains to improve the worst case slack.

We present a Statistical Global Gate Sizing (SGGS) algorithm
for timing yield optimization. The global sizing algorithm is a
mix of a multi-dimensional descent based optimization, a perturbed
propagation based heuristic that avoids gradient re-computations, and
a global perturbation technique to get out of local minimums. Our
choice of the global sizing algorithm is motivated by results obtained
by Coudert et al. in [9], which show that this algorithm is the best
for sizing optimizations in terms of performance and power/delay
curves.

The proposed algorithm considers the circuit as a network N and
a global cost function Cost that it attains to maximize. The pseudo
code of the SGGS algorithm is given in Fig.1. A set update maintains
a list of nodes whose costs (gradients) are to be computed. This set
is initialized with all nodes in N . Another set moves maintains a
list of nodes that can potentially be resized, that is, can be mapped
to a different gate from the given technology library. This set is
kept empty initially. For every node n in update, a local network
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• Algorithm: SGGS(N , Cost)
• Output: Optimized circuit with improved timing yield
• begin

1) update = N ;
2) moves = ∅;
3) do
4) old cost = Cost(N);
5) foreach n ∈ update
6) Extract local network N ′ around n;
7) Find best-gate g for n wrt Cost(N ′);
8) if g 6= gate(n)
9) n.move = g;

10) moves = moves ∪ {n};
11) moved = MultiMove(N, Cost, moves);
12) update = PerturbedNodes(moved);
13) until (Converge(old cost, Cost(N), moved))

• end

Fig. 1. Statistical global gate sizing algorithm

around it is extracted and statistical timing analysis is performed on
the extracted network. For each alternative gate in the given library
that can be mapped to the same node, statistical delay modeling is
carried out. A run of statistical timing analysis determines if the
new gate improves the local timing yield, that is, the timing yield at
the output of the local network. The steps of incremental statistical
modeling and timing analysis are performed during the evaluation
of the Cost function. If alternate gates are found that improve the
timing yield, the node-gate pairs are stored in the moves set. Next
the MultiMove routine picks a sub-set of gates from the set moves
that provides the maximum cumulative improvement in the original
circuit’s timing yield and updates those nodes with the new gates.
This routine determines the sub-set for the move based on the descent
direction or by a conjugation of directions of the node costs [9].
The new set of nodes whose costs need to be recomputed are now
derived based on the nodes that are resized. This process is repeated
till convergence, wherein future iterations do not improve the global
timing yield further.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The statistical modeling, timing analysis and optimization method-
ologies presented in the previous sections are implemented in an
industrial tools environment. Experiments are performed on combina-
tional ISCAS and MCNC benchmarks mapped to a 0.13µ technology
library from a foundry.

Statistical modeling involves obtaining delay equations for gates
in the circuit as a function of parameters under consideration. For
our experiments, we choose Vdd and temperature as parameters.
This is because our industrial library characterizations are available
only for various corners in the parameter space of Vdd and tem-
perature. However, our approach is not limited to the use of any
particular parameters of variation and can handle variations from
other parameters like Le and VT similarly. Gates are characterized
at different temperature and Vdd values. The sources of variation
are then normalized by subtracting their corresponding typical values
and dividing by their standard-deviations respectively. For example, if
gates are characterized for Vdd values ranging from 1.08V to 1.32V ,
with typical value set to 1.2V , the standard deviation is set as

3σV = 1.32V − 1.20V

TABLE I
STATISTICAL TIMING ANALYSIS RESULTS

Circuit AT µ (ns) AT σ (ns) Run Times (s)
SSTA MC SSTA MC SSTA MC

C432 2.194 2.197 0.165 0.172 0.1 6.5
C499 1.316 1.311 0.095 0.095 1.2 14.6
C880 1.973 1.968 0.143 0.143 0.4 14.0

C1355 1.829 1.831 0.141 0.139 0.8 20.4
C1908 2.208 2.214 0.161 0.160 0.7 14.3
C2670 1.950 1.957 0.177 0.174 1.5 24.7
C3540 3.242 3.234 0.261 0.260 0.8 37.7
C5315 3.029 3.024 0.246 0.242 7.3 63.0
C6288 9.996 9.968 0.779 0.789 0.7 85.1
C7552 3.313 3.305 0.261 0.254 5.1 71.9
cm85a 0.425 0.423 0.029 0.029 0.0 1.6

sct 0.485 0.484 0.030 0.030 0.1 2.8
alu2 2.584 2.590 0.211 0.213 0.2 12.9

too large 1.048 1.047 0.071 0.073 0.1 13.6
frg2 1.486 1.490 0.097 0.098 1.3 29.3

Similarly gates are characterized for temperature variations from 0oC
to 125oC. For any characterization point X the delay equation is set
up as

DX = D0 + D1

TX − T0

σT
+ D2

VX − V0

σV

where T0, V0 represent typical or mean values of the temperature
and Vdd respectively. D0 represents the typical delay obtained by
characterizing the gate at T0 and V0. This formulation is scalable to
any number of parameters. A least squares fit procedure is employed
to obtain the coefficients Dis. The accuracy of this approach is
dependent on the number of characterization points. Our modeling
is constrained to the available pre-characterizations of different gates
in the given technology library. This procedure is followed to model
all rise and fall gate delay arcs in the circuit.

After statistical modeling is performed, arrival times and required
times are set at the primary inputs and primary outputs of the circuit
respectively. Statistical timing analysis is performed to obtain the
arrival and required time PDFs for all nodes in the circuit. A min
operation is performed on the obtained slack PDFs at the primary
outputs to determine the global circuit slack PDF S, with mean µS

and variance σ2
S . Timing yield of the circuit is obtained from (12).

Table I presents statistical timing analysis results (arrival time
mean and sigma values) for the ISCAS and MCNC benchmarks with
comparisons to those obtained from Monte Carlo simulations. Figures
reported are for 10000 random samples of Monte Carlo simulations,
which give a standard error of less than 1%. Benchmark sizes ranged
from about 100 to 2000 gates. The results demonstrate the accuracy
and run-time efficiency of SSTA.

The proposed statistical global gate sizing algorithm is imple-
mented for timing yield optimization. The local network extraction
around a node involves creation of a network that includes the node
and its fanin nodes as internal nodes. Fanins and fanouts of these
internal nodes are set as primary inputs and primary outputs of the
local network respectively. The arrival and required time PDFs on
the primary inputs and outputs are set to the values as in the original
circuit. Alternative gates from the same class are mapped on the node
and the timing yield of the local network is used as the metric for
obtaining the best gate within the given constraints. Once the alternate
node and best-gate pairs are evaluated, the timing yield improvement
on slack S of the original circuit is used as a metric to determine the
nodes that are resized. We attain to maximize the metric µS/σS in
our approach since it is equivalent to maximizing the timing yield.
The process is repeated until convergence. The complexity of this
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Fig. 2. Pre and post optimization slack PDFs for a test circuit

TABLE II
STATISTICAL TIMING YIELD OPTIMIZATION RESULTS

Circuit Statistical Timing Yield Improvement
Optimizing (µS − 3σS) Optimizing (µS/σS)

C432 0.0105 0.0122
C499 0.3032 0.3158
C880 0.0037 0.0037
C1355 0.4939 0.4963
C1908 0.1319 0.1584
C2670 0.1730 0.2153
C3540 0.4949 0.4977
C5315 0.4923 0.4925
C7552 0.4998 0.4995
cm85a 0.0569 0.2037

sct 0.1821 0.4342
alu2 -0.0570 0.1240

too large 0.4269 0.4580
frg2 0.4516 0.3774

algorithm using best-fit polynomial is N1.2, where N denotes the
number of internal nodes [9]. Experiments are also performed with
µS −3σS as the metric for optimization. Results for both metrics are
presented. Fig.2 shows the circuit slack PDFs for a test circuit. The
three PDFs denote the slack distributions for the unoptimized circuit
(Init), static timing optimized circuit (Static) and statistical timing
optimized circuit (SSTO). The reduced variance of the SSTO slack
PDF improves the timing yield (from 0.87 to 0.89) even though it
has a smaller mean as compared to Static slack PDF.

Monte Carlo simulations are performed to determine the accuracy
of the developed statistical timer. It is observed that the loss in
accuracy due to approximations in the max and min operations do not
affect the output PDF’s mean and variance significantly. Additional
experiments are performed on inverter chains, results from which
match identically to those from Monte Carlo simulations. Results
from static gate sizing using an industrial synthesis tool are used
as references to evaluate improvements due to statistical gate sizing
on the timing yield. Circuits are initially optimized with the static
timing optimizer. Statistical timing analysis is then performed. We
set the required time of the circuit to be the mean of the arrival
time. The circuit slack is therefore a distribution with 0 mean.
The timing yield of the circuit after static timing optimization is
consequently 0.5. Statistical timing optimization is then performed
on the circuit under area constraints and a new slack PDF is obtained
post optimization. We now obtain the new timing yield after statistical
optimization, and the value by which it exceeds the timing yield
after static optimization is called the timing yield improvement.
Table II shows timing yield improvement values for both µS − 3σS

and µS/σS as optimization objective functions. We observe that the
proposed µS/σS metric guides better optimization. This is because
the other objective function attempts to maximize the worst case
slack, instead of the timing yield. The proposed gate sizing algorithm
took between 1 to < 480 mins for all benchmarks on a 400 Mhz Sun
Ultra 4 machine with 4 GB RAM. Results demonstrate timing yield
improvements by up to 0.49 and on an average by 0.3.

V. ANALYSIS OF STATISTICAL PROPERTIES OF GATE DELAYS

Static gate sizing picks faster gates to map on nodes to meet the
timing constraints of a circuit. It does not consider the statistical
properties of gate delays. Consider the output arrival time PDF of a
given gate in a circuit. If a smaller mean of the arrival time implied
smaller variance in the arrival time distribution monotonically, static
gate sizing would theoretically leave no room for statistical optimiza-
tion. For any gate, the arrival time at its output can be considered to
be a function of its size. It is known that the arrival time decreases
with increase in size initially as the larger gate has better driving
capability. However, due to increasing effective loading capacitance
as seen by its driving gates, the arrival time starts increasing with
further increase in size. It is also known that larger gates have lesser
variability. A larger gate might yield a greater mean arrival time
than one the static timing optimizer picks, but lesser variability could
eventually help improve the overall timing yield.

We perform analysis of statistical properties of gate delays on some
gate classes from a 0.13µ technology library. We present sigma versus
mean plots of the arrival time PDFs for various gates in a class. Fig.3
presents plots for a class of inverters. Dots on the plot represent gates
which are sorted on their mean output arrival times when mapped to
a given node and not in any order of their sizes. A node can be
mapped by any of these gates and the optimizer selects the best gate
for mapping. Though most gates of a class make the plots monotonic,
there exist exceptions. While the static timing optimizer chooses a
gate with a smaller mean arrival time ignoring the fact that it may
have larger variability, the statistical timing optimizer is found to
make a smarter choice by picking gates which help increase the
overall timing yield. These gates give statistical timing optimization
an edge over static timing optimization. Similar plots are observed
for other gate-classes in the library.

Fig. 3. Arrival means and sigmas for a class of inverters
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VI. CONCLUSIONS

We present a statistical gate sizing approach for timing yield
optimization in this paper. Experimental results show improvements
in timing yield by up to 0.49 and on an average by 0.3. In addition,
we provide insight into statistical properties of gate delays from a
given technology library which intuitively explains when and why
statistical optimization improves over traditional timing optimization.
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APPENDIX I

We prove that the variance matching method in (11) never involves
computing the root of a negative quantity. Using the notations defined
earlier, we show (ξ

∆

= var −
∑n

i=1
c2
i ) ≥ 0.

µ = a0Φ(α) + b0Φ(−α) + θφ(α)

var = (σ2
A + a2

0)Φ(α) + (σ2
B + b2

0)Φ(−α) + (a0 + b0)θφ(α)

− µ2

n
∑

i=1

c2
i =

n
∑

i=1

[

aiΦ(α) + biΦ(−α)
]2

ξ = var −
n

∑

i=1

c2
i

= (σ2
A + a2

0)Φ(α) + (σ2
B + b2

0)Φ(−α) + (a0 + b0)θφ(α)

− a2
0Φ(α)2 − b2

0Φ(−α)2 − θ2φ(α)2 − 2a0Φ(α)θφ(α)

− 2b0Φ(−α)θφ(α) − 2a0b0Φ(α)Φ(−α)

− Φ(α)2
n

∑

i=1

a2
i − Φ(−α)2

n
∑

i=1

b2
i − 2Φ(α)Φ(−α)

n
∑

i=1

aibi

= σ2
AΦ(α) + a2

0Φ(α) + σ2
BΦ(−α) + b2

0Φ(−α)

+ (a0 + b0)θφ(α) − a2
0Φ(α)2 − b2

0Φ(−α)2

− 2a0Φ(α)θφ(α) − 2b0Φ(−α)θφ(α) − θ2φ(α)2

− 2a0b0Φ(α)Φ(−α) − σ2
AΦ(α)2 + a2

n+1Φ(α)2

−σ2
BΦ(−α)2 + b2

n+1Φ(−α)2

− 2Φ(α)Φ(−α)

n
∑

i=1

aibi

= (σ2
A + σ2

B + a2
0 + b2

0)Φ(α)Φ(−α) + (a0 + b0)θφ(α)

− θ2φ(α)2 − 2a0Φ(α)θφ(α) − 2b0Φ(−α)θφ(α)

− 2a0b0Φ(α)Φ(−α) + a2
n+1Φ(α)2 + b2

n+1Φ(−α)2

− 2Φ(α)Φ(−α)

n
∑

i=1

aibi

= Φ(α)Φ(−α)
[

(σ2
A + σ2

B − 2

n
∑

i=1

aibi) + (a0 − b0)
2
]

+ θφ(α)
[

a0(1 − 2Φ(α)) + b0(1 − 2 + 2Φ(α))
]

− θ2φ(α)2 + a2
n+1Φ(α)2 + b2

n+1Φ(−α)2

To show ξ ≥ 0, it is sufficient to show that

ξ1

∆

= ξ − a2
n+1Φ(α)2 − b2

n+1Φ(−α)2 ≥ 0

Fig. 4. Plot of ξ2 against α

ξ1 = Φ(α)Φ(−α)
[

(σ2
A + σ2

B − 2

n
∑

i=1

aibi) + (a0 − b0)
2
]

+ θφ(α)
[

a0(1 − 2Φ(α)) + b0(−1 + 2Φ(α))
]

− θ2φ(α)2

= Φ(α)Φ(−α)
[

θ2 + (a0 − b0)
2
]

− θ2φ(α)2

+ θ(a0 − b0)(1 − 2Φ(α))φ(α)

= θ2
[

Φ(α)Φ(−α) − φ(α)2
]

+ θ(a0 − b0)(1 − 2Φ(α))φ(α)

+ Φ(α)Φ(−α)(a0 − b0)
2

If θ = 0, ξ1 = Φ(α)Φ(−α)(a0 − b0)
2 ≥ 0. For positive θ (since

θ ≥ 0), it is sufficient to show

ξ2

∆

= ξ1/θ2 ≥ 0

ξ2 = Φ(α)Φ(−α) − φ(α)2 +
a0 − b0

θ
(1 − 2Φ(α))φ(α)

+ Φ(α)Φ(−α)
(a0 − b0)

2

θ2

= Φ(α)Φ(−α) − φ(α)2 + α(1 − 2Φ(α))φ(α) + Φ(α)Φ(−α)α2

ξ2(α) is symmetric and is found to be non-negative for all real values
of α. For values of |α| ≥ 3, ξ2 approaches 0 with both φ(α) and
Φ(α) tending to 0. Fig. 4 shows the plot of ξ2 as a function of α.
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