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Abstract

This paper presents a new method for modelling and locating objects in

images for applications such as Printed Circuit Board (PCB) inspection.

Objects of interest are assumed to exhibit little variation in size or shape

from one example to the next, but may vary considerably in grey-level ap-

pearance. Simple correlation based approaches perform poorly on such

examples. We demonstrate how a statistical model based approach com-

bined with a multi-resolution search can accurately locate objects and re-

liably distinguish between good and bad components. We describe a 'boot-

strap' approach to training and a method of automatically refining the final

model to improve its performance. We demonstrate the method on PCB

inspection, showing the approach is robust enough for use in a real produc-

tion environment.

Introduction

Many industrial inspection problems consist of locating and classifying rigid compo-

nents, for example electronic devices on a printed circuit board. Typically the size and

shape of each component is defined within strict tolerances, but the surface appear-

ance (colour, texture, surface markings etc) can vary, sometimes dramatically. These

variations, combined with lighting changes and camera noise, can easily confound

naive correlation based methods for locating the components. To locate and classify

a component accurately we need a good model of its typical appearance and how the

appearance can vary. In this paper we describe how statistical models based on the

variation in grey-levels across the component can be used to achieve this end. We

compare different statistical models and model building methods. By combining sev-

eral techniques we can discriminate between true and false examples with consider-

able confidence. By testing on data sets containing large numbers of examples we

demonstrate that our techniques allow us to predict the probability distribution of

quality-of-fit parameters for a given component. We can thus estimate a threshold

which will fail no more than a given number of correct components (eg 1 in 1000) -

an important factor in setting up an inspection system.

In the remainder of the paper we review related work, describe the modelling and

search techniques and give results of experiments to test the system.
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Background

The simplest approach to locating a rigid component in an image is to use a correlation

based matching technique using a single example of the object as a template [1]. This

method will fail when the appearance of the component varies or there is too much

noise.

A more robust approach is to build a statistical model of the grey-levels in the region

of the component. Turk and Pentland [2] use Principle Component Analysis (PCA)

to build 'eigen-feature' models of the grey-levels across a face and face features,

which they then use in a correlation-like framework to detect faces and features in

new images. These models can cope with considerable variation and usually give a

distinct peak in response at the target location. This work was extended in a probabal-

istic framework by Moghaddam and Pentland [3], who consider both uni-modal and

multi-modal gaussian distribution models. A similar approach was used by Cootes

et al to model the grey-levels in regions around the model points of their Active Shape

Models [4]. They went on to demonstrate a multi-resolution search technique in

which grey-level models were trained and used at each level of a gaussian image pyra-

mid [5].

We have found that although the eigen-feature models combined with the multi-re-

solution search technique produce very promising results they occasionally fail unex-

pectedly. For instance, models trained to locate a surface mount resistor can occa-

sionally (about 1% of the time) fit better to an empty section of printed circuit board

than to a true component. This failure rate makes them impractical for most indus-

trial inspection problems.

Below we describe a more detailed statistical model which, when combined with more
accurate location methods, leads to a technique which is considerably more robust.

Method

In this section we describe the model building and search techniques that we have

developed. Modelling involves locating typical examples to create a training set and

building a statistical model of the variation of grey-levels across the examples.

The Basic Model

We wish to locate accurately examples of a given component in a new image, typically

in order to decide a) if the correct component is present in a given region and b) if

the component is mounted correctly to within some tolerance on its position or orien-

tation. We wish to be able consistently to distinguish the component both from the

background and from other, possibly quite similar, components.

To deal with variations in appearance of components we will use statistical models

derived from a set of training examples. In the experiments described below these

are simply rectangular regions of image containing instances of the component of in-

terest (see Figure 3). For each nx x ny patch we sample the image at pixel intervals

to obtain a n = njiy element vector, x. In general any shape of region is acceptable,

as long as a consistent sampling is defined for it.
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Given a set of s such example vectors, X; (i = l..s), a linear 'eigen'-model can be built

by applying a Principle Component Analysis to obtain the mean, x , and / principle

modes of variation represented by the nxt matrix of eigenvectors, P. The value of

t is chosen so that the model represents a suitable proportion of the variation in the

training set (eg 95%) [4]. A particular patch x can be approximated by

x = x' = x + Pb where b = P
r(x-x)

We will write the error in this approximation as r = x - x'

Quality of Fit Measures

We are interested in deciding how well a new patch of image matches the model.

Here we will describe several measures of quality of fit, whose performance is com-

pared in the experiments below. If x represents the grey-levels in the new patch,

there are various ways of measuring the quality of fit. In the following the smaller

the parameter, the better the fit. Turk and Pentland [2] use a sum of squares of differ-

ences between the best model fit to x and x itself,

R2 = rTr = (x_x)7(x_x )

This only penalises variation in ways not seen in the training set, but doesn't apply

limits to the magnitude of variation along modes of the model.

Cootes et al [4] use

Mt is a measure of the distance from the mean in the dimensions spanned by the

model, and X{ the i'th largest eigenvalue in the PCA (equal to the variance of the

j'th parameter over the training set).

This penalises examples far from the mean along the modes of the model, but the

relative weighting between M, and R
2 is based on the assumption that the sum of

the squares of the residuals are approximately gaussian distributed with a variance

of 0.5^ .

A more sensible approach is to estimate the variance of the sum of the squares of the

residuals, Vr, rather than assuming it. Haslam et al [7] show how this can be deduced

from miss-N-out experiments (or bootstrap/jackknife estimations [6]) using the

training data. A quality of fit measure is then

A similar measure is determined from optimal estiimates of the probability distribu-

tions by Moghaddan and Pentland [3]. These measures treat all errors from the best

model fit, /), as equally important, which is not always the case. Errors in poorly mo-

delled pixels are less important than errors in well modelled pixels. By doing miss-N-
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out experiments we can estimate v,, the variance of /}, the residual for the y'th el-

ement of x across the training set. The smaller vj the better element; is modelled.

This information can be incorporated in a new quality of fit measure;

Our statistical model of the data is thus

x = x + Pb + r

where the elements of b are zero mean gaussian with variance A;, the elements of

r are zero mean gaussian with variance Vj and the columns of P are mutually orthogo-

nal. This is the form of a Factor Model [8], with b as the common factors and r as

the errors.

Model Building

We create models to represent the appearance of the component in each level of a

Gaussian Image Pyramid [9]. Thus, given a set of s examples marked on different

images, the model building procedure proceeds as follows;

1. For each example extract five grey level patches from image. One at the given
position, and four at positions displaced by a fraction of a pixel in* andy. This
blurs the model slightly, leading to a more robust model. (Experiments suggest
a displacement of ± 0.25 is suitable - see below).

2. Apply a Principle Component Analysis to obtain the mean, x , and t principle
modes of variation P. The value of t is chosen so that the model represents
a suitable proportion of the variation in the training set (eg 95%) [4].

3. Perform miss-N-out training to estimate the variance of residual errors for
each pixel, v,. (Usually miss-5-out).

4. Repeat at each resolution of a Gaussian Image Pyramid

Search

Suppose we wish to locate the single best location of a model given a region to search

in a new image. We can assess the quality of fit of the model at a given point - not

necessarily on the pixel grid - by sampling the grey-levels (using bilinear interpola-

tion) in a region around the point, concatenating the values into a vector, x, and using

the fit measures f0, / t or / 2 . Our aim is to locate the point in the search area which

minimises the fit measure. To search over a region we use a multi-resolution tech-

nique for efficiency, as follows;

1. Project the search region into the coarsest resolution image.

2. Assess the quality of fit at all pixel grid points inside the search area, and
choose the best.

3. Use refinement techniques about this point to achieve sub-pixel location. (Re-
sample the image using bilinear interpolation and test the fit).

4. Project current best fit point into a finer resolution image and search over a
3 x 3 grid about this point (experiments with different grid sizes suggest this
is optimal).
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5. Repeat until sub-pixel location achieved at finest resolution

It is important to locate minima to sub-pixel accuracy, because their widths are often

of the order of a single pixel. Without accurate location of the pit, the estimate of

the height of the pit is poor, and can lead to poor discrimination of the object from

the background (see below).

If the angle of the object in the image is not known, the search can be repeated with

the model fixed at different angles, and the one with the best final fit chosen.

Incremental Training

It is possible to use the modelling and search techniques to help a user build a model

quickly and efficiently. The procedure is as follows :

1. Draw the outline of the example object in the first image

2. Build a model, using only the given object and four displaced versions.

3. Indicate a region containing the next example

4. Use the current model to locate the best fit in this region.

5. Modify the found location interactively if necessary.

6. Add the new example to the training set and re-build the model.

7. Repeat the process, using the current model to help locate next example.

Usually the system locates most new examples accurately after being shown a small

number of examples (sometimes only a single example is required). However, it is

important to give as many examples as possible to build the model, to ensure the

model parameters are estimated well.

Model Refinement

There will be errors when the examples are marked by hand, or when an early model

is used to locate new examples for the training set. One way to reduce these is to use

the completed model to relocate each training example. A search area is defined

which encloses the existing estimate allowing a suitable border, and the model used

to find the best fit to sub-pixel accuracy within this region. Once each training

example is so refined, the model is retrained on the refined examples. This can be

repeated several times, until the movement of the examples when re-located falls

below a certain threshold. Below we show how refining the models in this way can

lead to improved performance.

Confirmation of Object Presence

Having located the best fit of a model in a given search region, we wish to confirm

that what we have found is the desired target. The quality of fit parameters can be

shown to have a particular probability density distribution. If we knew the distribution

of fit values for the background or false positive results, we could choose a threshold

to minimise a suitable cost weighted Bayes Risk criterion. However the failure modes

are generally either unknown or are too varied to model properly. The best that can

be done is to model the distribution of correct examples and set a threshold for each

model which should fail no more than a given proportion (eg 1 in 1000) of these true

examples. Below we demonstrate that this approach will lead to thresholds which



538

should reliably discriminate between good and bad examples even when there is con-

siderable appearance variation for the target structure.

Results of Experiments

The Effect of Model Blurring on Location Accuracy

To investigate the performance of the new algorithm on synthetic data we generated

a random test image. We trained a model on a 20 x 20 pixel area about a target point

in 20 new images generated by adding gaussian noise to the original image. We

trained models both with and without including displaced examples. Both models

gave optimal fits either at or close to the original target point. For instance Figure

1 shows a graph of/o about the optimum for the model trained without any displaced

examples. In this case the trough is narrow - by moving half a pixel away from it the

quality of fit falls dramatically. Thus when sampling at pixel intervals, there is a

chance we may miss the optimum. Figure 2 shows the fit measure about the optimum

for a model trained with examples displaced by 0.25 pixels from the target. The trough

has been broadened significantly, and moving half a pixel from the optimum has little

effect on the quality of fit.
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y) through optimum (model

trained with examples displaced

by 0.25 pixels).

However, by 'blurring' the model in this way we introduce more uncertainty in the

location of the optimum. When a displacement of 0.25 pixels was used, the mean

error in optimum position was 0.08 pixels. Since we are unlikely to be able to achieve

real accuracy better than 0.1 pixels because of calibration and pixelation consider-

ations, this was considered acceptable.

Effect of Sub-Pixel Refinement

We used the multi-resolution search method described above to locate the best fit

in a 40 x 40 area about the true target. To simulate different pixelations the initial

search grid was displaced by -0.4,-0.2,0.0, + 0.2, + 0.4 pixels in both x and y (25 tests
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in all). The distributions of final fit measures (using / 0 ) and location errors were

examined.

We performed the experiment both with and without sub-pixel location of the targets,

using blurred and unblurred models. Table 1 summarises the results.

Sub-Pixel
Location

No

Yes

Unblurred

Mean Loca-
tion Error

0.36

0.0

Fit Values
mean ± sd

50 ± 20

3.1 ± 0.0

Blurred (0.25 pixels)

Mean Loca-
tion Error

0.33

0.0

Fit Values
mean ± sd

13 ± 8

2.9 ± 0.0

Table 1: Effect of using sub-pixel location and blurring model.

(Location error in pixels)

Without sub-pixel refinement there was a large variation in the fit values and a con-

siderable reduction in mean quality of fit caused by failure to find the optimum accu-

rately. The effect occurs for both blurred and unblurred models.

The Distribution of Fit Measure Values

In order to study the performance of the various models and fit measures we tested

the approach on images from a printed circuit board inspection problem. We built

a model of a region of a capacitor (Figure 3). This model is used in an inspection sys-

tem to confirm that the capacitor is present and has the correct location and orienta-

tion. The model was trained on 12 examples. We used the approach described above

to locate 260 capacitor examples in new images of circuit boards. We then studied

the distributions of fit values given by different measures. Figure 4 shows the distribu-

tion of f2 fit values for the capacitor model.
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Figure 3 : Typical capacitor examples

showing region modelled
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h
Figure 4: Histogram of fit values

for capacitor model.

If the variation and noise was purely gaussian, we would expect the measures fx and

f2 to be distributed as chi-squared of degree n, with mean of n and a variance of 2n.

In our results, although the mean is about right, the variance appears much larger



540

log(P[f>F]) (Theory)
-2.50, -^.00, -J.-50, -)-00| -y.50, | 0, p

0.2 0 .4O.fT 0.8'
P[f < F] (Theory)

1.0

Figure 5 : Comparing estimated with

actualp.d.f. for capacitor model.

Figure 6 : Comparing model with
actual p.d.f. for SMD model, assum-
ing a chi-square shaped distribution.

than 2n. This suggests that the variation is not truly gaussian, or that the models are

not fitting correctly.

In order to use the fit values to estimate the probability of fit, we need a model of

this distribution. The distributions across the test set have a chi-square shape, and

we have found that a reasonable approximation to this is given by a suitably scaled

chi-square distribution with k degrees of freedom, p(f) = (n/k)X
2
(kf/n, k). This dis-

tribution has a mean of n and a variance of 2n
2
/k . We set k = 2(n/o)

2, where a

is the standard deviation of the measured distribution. This has the correct mean and

variance. In practice a could be estimated from a verification set after training. Fig-

ure 5 shows the comparison between this estimated distribution and the measured

distribution of f2 for the capacitor model, indicating that the model distribution fits

well. Figure 6 shows the comparison between actual and model distributions for fit

measure f2 generated from a set of 3200 examples of a surface mount device (SMD),

assuming the chi-square shaped distribution. Assuming a gaussian distribution of fit

values leads to a far worse fit.

The Discriminating Power of Different Approaches

We wished to assess how well the models could discriminate between true examples

and anything else that might appear. By testing the models on large numbers of

images we were able to build a set of 130 false examples which were likely to give good

fit values and thus fool an automatic inspection program. These included patches of

bare board, damaged components, badly misaligned components and different com-

ponents with similar appearance to the target. We used the search methods to locate

the best fit of the models to these false examples, and compared their fit values with

those of our test set of good examples, when located similarly. We tried both with

and without a) blurring the training set, b) sub-pixel location and c) refining the train-

ing set. We also tried using both /j and f2 as the quality of fit measure. Table 2 sum-

marises the results of the experiments. We show two measures of discrimination.
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One is the ratio of the best false example (BF) to the worst true example (WT). The

larger this is, the wider the separation. We also give Pr[f>BF] an estimate of the

probability that a random true example would be worse than the best false example,

assuming the p.d.f. given above.

The table shows that by refining the model we gain considerable improvements in dis-

crimination, and that fit measure f2 performs considerably better than / i . Because

the R
2
 term dominates the M, term f0 is approximately a scaled version of /i and

discrimination results for f0 are similar to those for fx . Blurring the model has a

smaller effect, but does lead to some improvement. In practice blurring is particularly

important when small numbers of training examples are used (for instance during the

initial generation of the training set).

When sub-pixel location is used, the quality of fit measures improve more on the bad

examples than on the true examples, leading to a reduction in the separation between

the distributions. The mean and s.d. of the distribution of fits to good examples both

reduce by about 3%, as spurious variation caused by poor location is reduced.

Refined
Model?

Yes

No

Yes

Yes

Yes

Fit
Measure

h

h

fi

f2

h

Sub-Pixel

Location?

Yes

Yes

Yes

No

Yes

Blur

Model?

Yes

Yes

Yes

Yes

No

Auto-correlation with mean

BFIWT

2.43

1.42

1.04

2.54

2.13

0.57

Pr[f>BF]

1.0e-12

4.7e-6

720e-6

0.2e-12

30e-12

0.12

Table 2 : Effects of varying each parameter in turn on discrimination between fits to true

and false capacitor examples (See text for key).

Table 2 shows the results of the same experiment run using standard auto-correlation

with the mean patch. There is a considerable overlap between true and false

examples, suggesting that the additional information used in the statistical models is

essential for successful location and discrimination of components.

Discussion

The multi-resolution search technique described above allows us to locate objects

rapidly and accurately. The time to locate each component depends on the number

of pixels in the model and the search area, but it takes less than a second on a Sun

Sparc20 to find a typical example on a PCB. Although locating targets to sub-pixel

accuracy appears to reduce the discrimination between good and bad examples, this

accuracy of measurement is often required in an application. It also 'tightens up' the

distributions of fit measures by removing spurious variation caused by location errors,

so can improve the model of the p.d.f.

It is important to have reliable models of the p.d.f.s for the fit measures, as this allows

us to set thresholds which will fail predictable numbers of true examples. We have
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shown that the p.d.f. is well modelled by a scaled chi-squared distribution whose para-

meters can be estimated from a test set.

The more comprehensive modelling of the residual errors used in the measure f2

compared to those used in f0 or /t gives a considerable improvement in the ability

of the system to discriminate between true and false examples.

The statistical models give significantly better results than standard auto-correlation

with a mean template. Experiments on other components give results comparable

with those described above.

Conclusion

The combination of statistical models, new model building methods and sub-pixel

multi-resolution search techniques described in this paper lead to a powerful feature

detector, and allows thresholds to be chosen based on well modelled probability dis-

tributions. By training on a small number of examples we can build tools which allow

us to accurately locate and identify objects whose shape varies little but whose grey-

level appearance can vary considerably. This approach is particularly useful for indus-

trial inspection, but may have many applications in interpreting medical images and

solving other computer vision problems.
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