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Statistical Hough Transform

Rozenn Dahyot

Abstract—The Standard Hough Transform is a popular method in image

processing and is traditionally estimated using histograms. Densities modeled with

histograms in high dimensional space and/or with few observations, can be very

sparse and highly demanding in memory. In this paper, we propose first to extend

the formulation to continuous kernel estimates. Second, when dependencies in

between variables are well taken into account, the estimated density is also robust

to noise and insensitive to the choice of the origin of the spatial coordinates.

Finally, our new statistical framework is unsupervised (all needed parameters are

automatically estimated) and flexible (priors can easily be attached to the

observations). We show experimentally that our new modeling encodes better the

alignment content of images.

Index Terms—Hough transform, Radon transform, kernel probability density

function, uncertainty, line detection.

Ç

1 INTRODUCTION

CONSIDERING a set of points in a 2D plane, the Hough transform
maps each point of coordinates ðx; yÞ to all the variables ð�; �Þ in the
Hough space with the relation:

� ¼ x cos �þ y sin �: ð1Þ

If a set of observations Sxy ¼ fðxi; yiÞgi¼1���N is aligned on one

straight line with coefficients ð�̂; �̂Þ, then the family of curves

Cið�; �Þ : � ¼ xi cos �þ yi sin �; 8i 2 ½1;N �f g intersects in the

Hough space at ð�̂; �̂Þ. This property is used to robustly perform

the estimation of ð�̂; �̂Þ by incrementing a discrete two-dimensional

histogram defined on the space of variables ð�; �Þ for each point of

the curves fCig. The highest bin of this histogram allows then to

estimate the parameters ð�̂; �̂Þ of the line. This technique has been

proposed to recover lines in images more than four decades ago [1]

and refined (as expressed here) in the early 1970s [2]. Many works

have since been proposed both to generalize theHough transform to

more complex shapes than straight lines and to improve its

computational efficiency [3]. The Hough transform has recently

been proven to be a statistically robust estimator for finding lines [4].
The Hough transform has, however, one main weakness: the

probability density function p��ð�; �Þ of the parameters ð�; �Þ in the

Hough space is estimated using a discrete two-dimensional

histogram [5]. Therefore, the trade-off in between the number of

bins in the histogram and the number of available observations is

crucial. Too many bins for too few observations would lead to a

sparse representation of the density. Too few bins would also

reduce the resolution in the Hough space, and therefore, limit the

precision of the estimates. Hence, it is important to extract the

most relevant information from all available observations to model

the distribution of ð�; �Þ. To overcome histogram limitations, the

main contribution of this paper is to propose a statistical kernel

modeling of the Hough transform so that the resulting estimate

p̂��ð�; �Þ is continuous and includes as much information as

available. The variables x; y; �; and � are modeled as continuous

random variables from which some observations may (or may not)

be available. In particular, we define the following sets of

observations:

. Sxy ¼ fðxi; yiÞgi¼1���N is the set of observations of the spatial
random variables ðx; yÞ. This set is used in the Standard
Hough Transform.

. S�xy ¼ fð�i; xi; yiÞgi¼1���N is the set of the location with an
observation of the angle �. Indeed, when considering
images, the angle of the gradient can locally be computed
and used as an observation of �.

. S�� ¼ fð�i; �iÞgi¼1���N : knowing �i, xi, and yi, the measure �i
can be computed using (1) and also used as an observation.

In addition to the observations, we attached a prior pi to each
observation i. Our statistical framework completely generalizes the
Standard Hough Transform and shows the clear links between the
Hough and the Radon transforms. The second main contribution
of this paper is to take advantage of the relation (1) between the
random variables. This allows us to propose three different
estimates of p��ð�; �Þ for each set of observations (Sxy, S�xy, and
S��). This new framework is presented in Section 3.

One drawback of kernel modeling is that it requires the
estimation of bandwidths. We propose in Section 4 a method to
set automatically those bandwidths. We show in Section 5 how
accurate and also how resistant to noise our estimates are. Many
articles have been published on the Hough transform in the last
50 years or so and it has been applied to many different
applications, such as image and video [6] processing, astronomy
[7], or geoscience [8]. We start with a nonexhaustive review in
Section 2 on local appearance-based features and the Hough
Transform.

2 CONTEXT

2.1 Distribution of Local Appearance-Based Measures

Schmid et al. [9] have defined local descriptors of the intensity

surface of images to detect interesting points (e.g., corners) and

match images. Using similar local appearance-based features,

Schiele and Crowley [10] have proposed to model their distribu-

tions using multidimensional histograms, and detection and

recognition of objects can then be performed by comparing

histograms. More recently, due to the increasing computational

power of computers, kernel modeling [11] succeeded histograms

for the modeling of the distribution of local descriptors and the

Mean-shift procedure, used for finding modes of kernel densities,

has found many applications in computer vision [12].

2.2 Local Hough Features

We note ðx; yÞ ! Iðx; yÞ a surface image and its first order

derivatives Ixðx; yÞ and Iyðx; yÞ. For each pixel i at location

ðxi; yiÞ, the following three local appearance-based measures are

computed in [13]:

krIik ¼ krIðxi; yiÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2xðxi; yiÞ þ I2y ðxi; yiÞ
q

�i ¼ �ðxi; yiÞ ¼ arctan
Iyðxi; yiÞ

Ixðxi; yiÞ

� �

�i ¼ �ðxi; yiÞ ¼ xi �
Ixðxi; yiÞ

krIðxi; yiÞk
þ yi �

Iyðxi; yiÞ

krIðxi; yiÞk
:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð2Þ
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No edge segmentation is performed in [13]: The observations of all

three measures fð�i; �i; krIikÞgi¼1;���;N are computed for all pixels in

the image and the joint distribution p��krIkð�; �; krIkÞ is estimated

by a three-dimensional histogram. The estimated density is then

used to detect appearing, disappearing, or changing objects in a

sequence [13].
Integrating this 3D histogram w.r.t. the magnitude of the

gradient gives an estimate (2D histogram) of the density function

p��ð�; �Þ that is noisy (all pixels in the image have been used). An

example of such histogram computed for the image in Fig. 3b is

shown in Fig. 1a.
In another approach proposed by Ji and Haralick [14], the

image Iðx; yÞ is locally approximated by a plane:

Iðx; yÞ ¼ �yþ �xþ � þ �; ð3Þ

where � is a centered Gaussian noise. An estimate of the Hough

parameters is then computed by

tan �i ¼
�̂

�̂

�i ¼ xi cos �i þ yi sin �i;

8

>

<

>

:

ð4Þ

where �̂ and �̂ are locally estimated using least squares on the

neighborhood of ðxi; yiÞ. The spatial derivatives of Iðx; yÞ modeled

in (3) give also estimates for � and � [14]. The standard error ��i
made in computing the angle �i can also be quantified by [14], [15]:

�2�i ¼
�2

krIik
2
; ð5Þ

where �2 is the variance of the noise on the derivatives Ix and Iy,

which can be known in advance or estimated from the observa-

tions of the magnitude of the gradient [16], [17], [18]. The variance

in (5) confirms the intuition that the uncertainty of the computed

orientation �i increases as the gradient magnitude decreases. A

similar result has also been found in [19].
For the observation �i, an estimate of its variance can also be

computed for pixel i:
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Fig. 1. Statistical Hough transform on the image diamond in Fig. 3b with additional Gaussian noise � � Nð0; 202Þ. (a) Histogram hð�; �Þ (P1). (b) Weighted histogram

hwð�; �Þ [14] (P1). (c) p̂��ð�; �jS��Þ (SVB��-P1). (d) p̂��ð�; �jS��Þ (VB��-P1). (e) p̂��ð�; �jS��Þ (FB��-P1). (f) p̂��ð�; �jS�xyÞ (VB�-P1).
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�2�i ¼ cos2 �i �
2
xi
þ sin2 �i �

2
yi
þ �2�i ðyi cos �i � xi sin �iÞ

2; ð6Þ

where �2xi and �2yi are the variances of the spatial coordinates

ðxi; yiÞ. As noted in [14], the origin of the spatial coordinates is

better chosen in the center of the image in order to limit the error

done on the feature �i since its variance (c.f., (6)) depends on the

location ðxi; yiÞ.

For each observation ð�i; �iÞ for the pixel i at location ðxi; yiÞ, we

can compute their uncertainty ð��i ; ��i Þ using (5) and (6), once the

spatial uncertainty �xi and �yi are set (see Section 4.2). A weighted

histogram can then be computed using 1
2	��i��i

as weights [14]. It is

shown in Fig. 1b. The localization of the peaks are much easier to

detect than in Fig. 1a, but it is still a discontinuous representation

of the density p��ð�; �Þ.

2.3 Recent Works on the Hough Transform

Many works have been published on the Hough Transform since

its first publication [1]. Recently, Aggarwal and Karl proposed to

robustly detect lines in noisy environment in the Hough space by

adding prior modeling on the variables ð�; �Þ [20]. Several

probabilistic Hough transforms, related to the RANSAC approach

[21], have also been proposed [22], [23]. Of particular interest for

this paper is the Meanshift clustering approach in the Hough

domain proposed by Bandera et al. [23], where a continuous kernel

modeling of p��ð�; �Þ with variable bandwidth is introduced.

However, their modeling is deduced from a very different

approach and their resulting process requires many parameters

to be manually tuned.
In [24], a probabilistic interpretation of the Hough transform is

proposed: The histogram Hð�; �Þ of the variables ð�; �Þ in the

standard Hough transform is interpreted as logðpð�; �jSxyÞÞ /
PN

i¼1 log pð�; �jðxi; yiÞÞ. In [6], the standard Hough transform is

extended and related to a robust M-estimator function [25].
Usually histograms are interpreted as being direct estimates of

a probability density function [11] and not their logarithm. We

propose in Section 3 another statistical interpretation of the

Hough transform.

2.4 Reliability, Confidence, and Uncertainty
of Local Features

The notion of uncertainty of a measurement is the amount by

which an observed value differs from its true value. For instance,

Steele and Jaynes [26] studied the uncertainty of the spatial

localization of a corner detector. The notion of repeatability of a

detector [9], defined by its robustness at detecting image features

independently from perturbations in the imaging conditions, is

closely related to uncertainty. A measurement with high

uncertainty under a particular perturbation is indeed unlikely

to be repeatable.
Another way to understand uncertainty is in considering that

an observation is a random sample from an unknown distribution.

For instance, lets assume a Gaussian distribution of the angle �

centered on its estimate �i and with standard deviation as defined

in (5). Now, if we consider two instances of the same scene dðx; yÞ,
I1ðx; yÞ ¼ dðx; yÞ þ �ð1Þðx; yÞ and I2ðx; yÞ ¼ dðx; yÞ þ �ð2Þðx; yÞ, with

Gaussian noise � � Nð0; �2Þ, then the measurements of the angle �

in flat areas (i.e., when the gradient is close to zero) are going to be

randomly sampled from a uniform distribution on the interval

½�	=2;	=2�. Therefore, it is unlikely that the measurements of � on

flat areas are corresponding in both images at the same position

ðx; yÞ. The measure of the angle is not a reliable measurement to

match images when it has been computed on uniform regions. On

the contrary, when there is a contour (dx 6¼ 0 or dy 6¼ 0), the

variance of the measure � is small. As a consequence, the observed

angle is sampled from a narrow Gaussian distribution and it

should accurately repeat itself from one instance of an image I1 to

another I2.
One traditional way to deal with this uncertainty on the

features is to throw away unreliable observations before inferring

decision. For instance, in the Standard Hough Transform, only
pixels on the edges are used (i.e., pixels i with high gradient

magnitude, and therefore, low uncertainty on the angle �i). Edge
selection can be risky as relevant information can be lost in the
process. In the next sections, we propose a new formalism that

does not require edge segmentation as a preliminary step.

3 STATISTICAL HOUGH TRANSFORM

From the sets of observations S��, S�xy, and Sxy, we propose three
estimates of the probability density function p��ð�; �Þ using kernel

modeling [11].

3.1 Kernel Density Modeling of p̂��ð�; �jS��Þ

Using the set of observations S��, we model the distribution
p��ð�; �jS��Þ using kernels by

p̂��
�

�; �jS��

�

¼
X

N

i¼1

1

h�i

k�
�� �i
h�i

� �

�
1

h�i

k�
�� �i
h�i

� �

pi; ð7Þ

where h�i and h�i are the variable bandwidths. Their estimations
are explained in Section 4. The kernels k�ð�Þ and k�ð�Þ have been

chosen Gaussians so that (7) gives a continuous and smooth
estimate of the density p��ð�; �Þ.

3.2 Kernel Density Modeling of p̂��ð�; �jS�xyÞ

In the previous section, we have used a subset of the observations

leaving apart the location fðxi; yiÞgi¼1���N . We want now to take into
account those observations to model first the density p��xyð�; �; x; yÞ.
Using the Bayes formula, we can write

p��xyð�; �; x; yÞ ¼ p�j�xyð�j�; x; yÞ p�xyð�; x; yÞ: ð8Þ

As noticed by Bonci et al. [15], when x; y; � are known, the variable �
is deterministic, by definition, in (1). Therefore, we propose to
model the conditional probability as follows:

p�j�xyð�j�; x; yÞ ¼ 
ð�� x cos �� y sin �Þ; ð9Þ

where 
ð�Þ is the Dirac distribution. As a consequence, only
p�xyð�; x; yÞ is to estimate using kernels with the set of

observatons S�xy:

p̂�xyð�; x; yjS�xyÞ ¼
X

N

i¼1

p̂�xyð�; x; yj�i; xi; yiÞ pi

¼
X

N

i¼1

p̂�ð�j�iÞ p̂xðxjxiÞ p̂yðyjyiÞ pi

¼
X

N

i¼1

1

hxi

kx
x� xi
hxi

� �

1

hyi

ky
y� yi
hyi

� �

�
1

h�i

k�
�� �i
h�i

� �

pi:

ð10Þ

Note that we have assumed the variables �, x, and y independent
given their observations ð�i; xi; yiÞ. By integration with respect to

the spatial variables ðx; yÞ, an estimate of the Hough transform
p��ð�; �Þ can be computed:

p̂ð�; �jS�xyÞ ¼
X

N

i¼1

1

h�i

k�
�� �i
h�i

� �

Rið�; �Þ pi; ð11Þ
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where Rið�; �Þ is the Radon transform of the spatial kernels:

Rið�; �Þ ¼

Z Z


ð�� x cos �� y sin �Þ
1

hxi

kx
x� xi
hxi

� �

�
1

hyi

ky
y� yi
hyi

� �

dx dy:

ð12Þ

3.3 Standard Hough Transform p̂��ð�; �jSxyÞ

Let’s assume now that the only available observations are the set of

positions Sxy. No prior information is available on the variable �,

therefore, its kernel can be replaced in (11) by the uniform

distribution such that

k�ð�� �iÞ

h�i

¼
1

	
:

Consequently, expression (10) becomes:

p̂��ð�; �jSxyÞ ¼
1

	

X

i

Rið�; �Þ pi ¼
1

	
Rð�; �Þ; ð13Þ

where Rð�; �Þ is the Radon transform of the kernel estimate of the

spatial coordinates:

Rð�; �Þ ¼

Z Z


ð�� x cos �� y sin �Þ p̂xyðx; yjSxyÞ dx dy ð14Þ

with

p̂xyðx; yjSxyÞ ¼
X

N

i¼1

1

hxi

kx
x� xi
hxi

� �

1

hyi

ky
y� yi
hyi

� �

pi: ð15Þ

Equation (13) gives a kernel estimate for the standard Hough

transform. It is easy to compute using the Radon transform and its

performance is illustrated in Section 5.1.

3.4 Priors fpigi¼1���N

We consider the following priors:

1. All observations are equiprobable pi ¼
1
N ; 8i. This setting

is noted as P1 in the rest of the paper.
2. Among all of the pixels, only the ones on detected edges

are used in the Standard Hough Transform. These binary
priors (P2) are equiprobable for all the selected pixels and
zero for the others.

Other priors could be used, but all obey the following

constraints:

X

N

i¼1

pi ¼ 1

 !

^ 8i; 0 � pi � 1ð Þ:

4 KERNELS AND BANDWIDTHS

It is usually acknowledged that the choice of the kernel kð�Þ has a

limited impact on the estimate of the p.d.f. [11]. We have chosen

the kernels k� and k� as Gaussians and, in the next section, we

discuss the choice of the spatial kernels kx and ky.
On the contrary, the choice of the bandwidths does impact on

the estimate of the p.d.f. and in particular on its number of modes

and bumps. Sections 4.2 and 4.3 propose and explain how we can

set the bandwidths in the case of digital images.

4.1 Spatial Kernels

Various kernels kx and ky can be used such as:

1. The Dirac kernels are defined as:

kxðx� xiÞ

hxi

¼ 
ðx� xiÞ

kyðy� yiÞ

hyi

¼ 
ðy� yiÞ:

8

>

>

>

<

>

>

>

:

ð16Þ

In this case, no bandwidths are needed. The corresponding

kernel Rið�; �Þ in the Hough space (cf., (11) and (12)) is then

also a Dirac:

Rið�; �Þ ¼ 
ð�� xi cos �� yi sin �Þ: ð17Þ

2. The Gaussian kernels are defined as:

kxðx� xiÞ

hxi

¼ N
�

xi; h
2
xi

�

kyðy� yiÞ

hyi

¼ N
�

yi; h
2
yi

�

:

8

>

>

>

<

>

>

>

:

ð18Þ

The corresponding kernel Rið�; �Þ in the Hough space is

then

Rið�; �Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	
�

h2
yi
sin2 �þ h2

xi
cos2 �

�

q

� exp
�ð�� ðxi cos �þ yi sin �ÞÞ

2

2
�

h2
yi
sin2 �þ h2

xi
cos2 �

�

 !

:

ð19Þ

3. A standard assumption to model the image grid is to
choose uniform kernels [27]

kxðx� xiÞ

hxi

¼

1

hxi

for
jx� xij

hxi
<

1

2

0 otherwise

8

>

<

>

:

kyðy� yiÞ

hyi

¼

1

hyi

for
jy� yij

hyi
<

1

2

0 otherwise:

8

>

<

>

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð20Þ

In this case, we represented Rið�; �Þ in Fig. 2: The two
peaks in Rið�; �Þ correspond to the diagonals of the spatial
uniform kernel. So, from one observation ðxi; yiÞ, the kernel
in the Hough space is then bimodal in the case of uniform
spatial kernels, and the two directions of the diagonals
have higher probabilities than the other directions.

In this work, we have chosen the spatial kernels as Gaussian so

that no specific direction � is favored. The Dirac kernel is then just
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Fig. 2. (a) Spatial uniform kernel with (b) its Radon transform Rið�; �Þ.
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a special case of the Gaussian kernel when the bandwidth goes

toward 0.

4.2 Bandwidths

For the variables � and �, we naturally set the bandwidths h�i ¼ ��i
and h�i ¼ ��i (see (5) and (6)). The densities p̂��ð�; �jS��Þ and

p̂��ð�; �jS�xyÞ for the image 3b, computed with these variable

bandwidth estimates, are respectively, represented in Figs. 1d

and 1f.
The spatial bandwidths ðhxi ; hyi Þ are estimated in a similar

fashion as the variable bandwidth for �. ðhxi ; hyi Þ reflect the

uncertainty attached to the observations ðxi; yiÞ of the variables

ðx; yÞ. Because of the digitalization process (or quantification), the

observations of the variables ðx; yÞ have a precision �1; 8i

(assuming a regular image grid resolution). Therefore, we set

hxi ¼ hyi ¼ 1; 8i: ð21Þ

When no knowledge is available on the uncertainty of the

observations, several unsupervised methods to set the variable

bandwidths are proposed in [11]. For instance, the nearest

neighbor approach can be used [11]:

hxi ¼ hyi ¼ min
ðj2½1;N�Þ^ðj6¼iÞ

fkxi � xjkg; ð22Þ

with xi ¼ ðxi; yiÞ and xj ¼ ðxj; yjÞ. Note that this approach would

also give hxi ¼ hyi ¼ 1; 8i when the data are collected from a

regular image grid. However, (22) is general and could be applied

to other data sets when no knowledge about the uncertainty of the

spatial observations is available.

4.3 Justification of the Choice of Bandwidths

We want to estimate p��ð�; �Þ such that the estimate is not sensitive

to Gaussian noise on the intensity of the image. Let’s assume that

we have a noise free image dðx; yÞ and that we can observe this

image several times with different instances of the noise

�ðnÞðx; yÞ � N ð0; �2Þ; 8ðx; yÞ:

IðnÞðx; yÞ ¼ dðx; yÞ þ �ðnÞðx; yÞ;

then the extracted observations at pixel i are 8n:

x
ðnÞ
i ¼ xi

y
ðnÞ
i ¼ yi

�
ðnÞ
i � NðIE½�i�;VV½�i�Þ

�
ðnÞ
i � NðIE½�i�;VV½�i�Þ:

8

>

>

>

>

>

<

>

>

>

>

>

:

In other words, the noise in the intensity of the image does not

affect the measurement of the location ðxi; yiÞ of the pixel i.

However, it does affect the measurements of ð�; �Þ at pixel i.

When we have only one instance of the image, then the

expectation of ð�; �Þ is computed using (2) with the sole
observation available at pixel i:

IE½�i� ¼ �i ¼ �ðxi; yiÞ
IE½�i� ¼ �i ¼ �ðxi; yiÞ:

�

ð23Þ

The variances VV½�i� and VV½�i� are estimated as proposed in [14],
[15] (cf., (5) and (6)) and used to set the bandwidths at pixel i.

To verify our model, n ¼ 100 instances of Fig. 3b were
generated with different instance of the noise. It means that, for
each pixel i, we can compute 100 times the values ð�i; �iÞ from
which we compute their average values ðIE½�i�; IE½�i�Þ and
variances ðVV½�i�;VV½�i�Þ using standard formula of statistics. Using
these estimates in (7) gives the probability density function
represented in Fig. 1c. Peaks in the simulated distribution Fig. 1c
are slightly higher and narrower than in the estimated distribution
Fig. 1d. It shows that our variable bandwidths of � and � are
slightly overestimated in Fig. 1d, but, nevertheless, our variable
bandwidths give a good estimate.

Note that one major difference appears at the peaks at �	=2 and
	=2 in Fig. 1c. Since the angle is modulo 	, its occurrences swap
randomly in between �	=2 and 	=2 on the horizontal edge that
splits the diamond into two. Consequently, the simulated variance
for this line is very large, which flattens the peaks located at � ¼
�	=2 and � ¼ 	=2. For comparison, we also computed the p.d.f.
p̂��ð�; �jS��Þ with a fixed bandwidth hSJ (Sheather-Jones plug-in
[28]) and it is represented in Fig. 1e. One can note that this fixed
bandwidth kernel estimate of p��ð�; �Þ does not show sharp peaks
as for our variable bandwidth one (Fig. 1d).

4.4 Remark

We chose the kernels k� and k� at pixel i as being Gaussian
distributions. Consequently, the only parameters needed in our
modeling are the expectation and the variance. Note that more
complex kernels for � and � can be estimated locally using steerable
filters [29]. These would be more accurate in particular at corners.
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Fig. 3. Observations: a cloud of points, fðxi; yiÞgi¼1;���100, and an image. (a) Sparse

cloud of points. (b) Image diamond [15].

TABLE 1
Robustness

Fig. 4. Spatial and Hough densities. (a) p̂xyðx; yjSxyÞ FB; (b) p̂xyðx; yjSxyÞ VB;

(c) p̂��ð�; �jSxyÞ VB; and (d) p̂��ð�; �jSxyÞ FB.
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5 EXPERIMENTAL RESULTS

We compute a discrete representation of our estimates p̂��ð�; �Þ on

a fine grid � 2 ð� 	
2
: 
� :

	
2
Þ and � 2 ½�l� : 
� : þl��. 
� represents the

resolution of the discrete density on the axis � and 
� is the

resolution in the direction �. These have been chosen as 
� ¼ 	=180

and 
� ¼ 1 in the experiments Section 5. l� is the maximum limit of

�. Assuming an image of size w� h with the origin of the spatial

coordinates in the middle of the image, then
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Fig. 5. Comparison of the inverse Radon transforms of the estimates of p��ð��Þ computed for the image 3b with different level of noise. (a) R	½hwð�; �Þ� (P1-0).

(b) R	½hwð�; �Þ� (P1-20). (c) R	½hwð�; �Þ� (P1-100). (d) R	½p̂��ð�; �jS��Þ� (FB��-P1-0). (e) R	½p̂��ð�; �jS��Þ� (FB��-P1-20). (f) R	½p̂��ð�; �jS��Þ� (FB��-P1-100).

(g) R	½p̂��ð�; �jS��Þ� (VB��-P1-0). (h) R	½p̂��ð�; �jS��Þ� (VB��-P1-20). (i) R	½p̂��ð�; �jS��Þ� (VB��-P1-100). (j) R	½p̂��ð�; �jS�xyÞ� (FB�-P1-0). (k) R	½p̂��ð�; �jS�xyÞ� (FB�-

P1-20). (l) R	½p̂��ð�; �jS�xyÞ� (FB�-P1-100). (m) R	½p̂��ð�; �jS�xyÞ� (VB�-P1-0). (n) R	½p̂��ð�; �jS�xyÞ� (VB�-P1-20). (o) R	½p̂��ð�; �jS�xyÞ� (VB�-P1-100).
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Once our estimates are computed, we want to assess how well they
capture the alignment content of the observations. In the
experiment described in Section 5.1, only one alignment occurs
and we compare the accuracy of the detected maximum ð�̂; �̂Þ in
each of our p.d.f. estimates of p��ð�; �Þ.

The whole p.d.f. p��ð�; �Þ encodes the probability of aligned
edges in an image, and not only its maxima. We propose in
Section 5.2 to visualize the corresponding (dual) density estimate
p̂xyðx; yÞ in the spatial domain computed by inverse Radon
transform of our estimates of p��ð�; �Þ. If our density estimates
p̂��ð�; �Þ encode the alignment content of the image well, then their
Inverse Radon Transform will reflect it in the spatial domain by
enhancing straight edges and discarding the rest (e.g., nonedges
and nonstraight edges).

5.1 Estimate p̂��ð�; �jSxyÞ

N data points fðxi; yiÞgi¼1;���N¼100 are randomly generated:

. ni ¼ 30 belongs to a straight line (10 ¼ x cosð	=8Þ þ
y sinð	=8Þ with x 2 ½�50; 50�),

. while no ¼ 70 outlier points are uniformly distributed
(no þ ni ¼ N).

All of these data points have equiprobable priors pi ¼
1
N (P1),

although the clouds of the observed points can also be interpreted
as the result of an edge segmentation process in an image (P2).

An example of the data is shown in Fig. 3a. The correspond-
ing spatial densities p̂xyðx; yjSxyÞ (see (15)) are computed with
the variable bandwidth (VB) (Fig. 4a) (see (22)) and a fixed
bandwidth (FB) in Fig. 4b with hxi ¼ hyi ¼ 1; 8i. The corre-
sponding densities p̂��ð�; �jSxyÞ are in Figs. 4c and 4d, and
despite 70 percent of outliers, the maximum is easily detected to
give a robust estimate of the line. Out of 100 simulations,
99 maxima ð�̂; �̂Þ of the density p̂��ð�; �jSxyÞ computed with a
fixed bandwidth (FB1) were in the vicinity of the true values
ð	=8; 10Þ with a precision of 1 degree for the angle and 1 for �
and 89 percent of the estimates with variable bandwidth (VB1).
When relaxing the precision from 1 to 2 degrees and �̂ ¼ 10� 2,
all of the 100 estimates fð�̂; �̂ÞðnÞg computed with the fixed (FB2)
and variable bandwidths (VB2) are found.

This experience is repeated for higher percentages of outliers
(see Table 1). When the proportion of outliers reaches 90 percent,
the fixed bandwidth gives a more reliable estimation of the line
than with the variable bandwidth. Indeed, more prior information
on the uncertainty of the observations fðxi; yiÞgi¼1;���N¼100 is known
when setting hxi ¼ hyi ¼ 1; 8i, and the estimated pdf is therefore
better constrained.

5.2 Estimates p̂��ð�; �jS��Þ and p̂��ð�; �jS�xyÞ

The image diamond Fig. 3b has been used in our experiment with
three levels of noise � � Nð0; �2Þ with � ¼ 0; 20; 100. All of the
experiments use spatial Gaussian kernels with bandwidths
hxi ¼ hyi ¼ 1; 8i, for a prior P1 (all pixels have equiprobable priors).

Fig. 5 shows the inverse Radon transform of our density
estimates. FB�� (respectively, FB�) indicates that the Sheather and
Jones plug-in bandwidth [28] is used to set the bandwidths for �
and � in computing p̂��ð�; �jS��Þ (respectively, p̂��ð�; �jS�xyÞ). The
notation VB�� (respectively, VB�) stands for variable bandwidths
use for both � and � in computing p̂��ð�; �jS��Þ (respectively,
p̂��ð�; �jS�xyÞ).

Comparing Figs. 5a, 5b, and 5c, we can note that the weighted
histogram renders a good alignment content for a moderate noise.
Several straight contours with low contrast seem to disappear
quickly as noise increases. The weighted histogram is an estimate
of p��ð��Þ that is fast to compute compared to the kernel-based

estimates. In fact, the weighted histogram can be seen as a

truncated estimate of p̂��ð��jS��Þ, where the tails of the Gaussian

kernels are not taken into account.
Figs. 5d, 5e, and 5f compare the estimates p̂��ð��jS��Þ

computed with a fixed bandwidth. Even with no additional

noise, the rendering of the straight contours is not very good as

all pixels contribute with the same bandwidth. In contrast,

Figs. 5g, 5h, and 5i show a better alignment content recovered

using variable bandwidths as proposed in this paper. However,

as the noise increases, the reconstruction gets very bad: the

variable bandwidth computed for the variable � does depend on

the noise level but also on the spatial position ðx; yÞ. As

expected, as we go further away from the spatial origin (taken

in the center of the image), the quality of the rendering of the

straight contours deteriorates.
Figs. 5j, 5k, and 5l show the inverse Radon transform of the

estimate p̂��ð�; �jS�xyÞ computed with fixed bandwidth on the

variable �. The rendering reflects the alignment content of the

image diamond well and does not deteriorate away from the

spatial origin as for p̂��ð��jS��Þ. This is even improved when using

variable bandwidths in Figs. 5m, 5n, and 5o.
Fig. 6 presents the inverse radon transform computed on the

estimates p̂��ð�; �jS�xyÞ of two real images. Only the alignment

content remains while strong contours from objects with no straight

edges do not. While computing the inverse Radon transform of the

estimates of p��ð�; �Þ helps to visualize all the information encoded,

many works on the Hough transform have only focused on

detecting its modes (maxima) to recover the aligned segments (see

Fig. 6). In [30], bumps are segmented in p��ð�; �Þ as an alternative to

modes, to recover the spatial alignments.
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Fig. 6. Results on (top) real images, with their estimates p̂��ð��jS�xyÞ and the

inverse Radon transform, and (bottom) the detected lines.
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6 CONCLUSION

We have proposed several kernel modelings to generalize the

Hough Transform. This new approach is unsupervised since all

the needed bandwidths are automatically estimated. In addition,

by explicitly modeling dependencies between the variables, we

proposed a kernel modeling that is not depending on the choice

of the origin of the coordinates in the spatial domain. The

resulting density p̂��ð��jS�xyÞ encodes the alignment content of

the images well and is robust to noise. Computing the Statistical

Hough Transform on an image is more computationally

expensive than the Standard Hough transform because all pixels

of the image are used (instead of selecting only the edges) and,

moreover, the tails of the kernels have to be taken into account

in computing the estimates. Future work will investigate

random and edge selection strategies to speed up the Statistical

Hough Transform.
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