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Abstract: Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI)
data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a va-
riety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various
regressors based on realignment estimates were included as nuisance regressors in general linear model
(GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were with-
held from GLM estimation. The effects of each method were explored in several task fMRI data sets and
compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance
in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and
increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion
regression and also performed well across a variety of parameter spaces, in GLMs with assumed or
unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data
and can be a valuable processing step in studies involving populations with even mild amounts of head
movement. Hum Brain Mapp 00:000–000, 2013. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Head motion is problematic in functional magnetic reso-
nance imaging (fMRI) studies [Barch et al., 1999; Birn et al.,
1998, 1999, 2004; Friston et al., 1996; Gopinath et al., 2009;
Hutton et al., 2002; Jiang et al., 1995; Johnstone et al., 2006;
Lemieux et al., 2007; Oakes et al., 2005; Wu et al., 1997; Yet-
kin et al., 1996]. Blood–oxygen-level-dependent (BOLD)
signal acquisition depends on precise spatial and temporal
placement of magnetic gradients on scales of millimeters
and milliseconds. Head motion during scans causes image
intensity to reflect not only blood oxygenation but also
frank motion-related artifact. The more a data set is conta-
minated with such motion-related signal changes, the more
difficult it becomes to detect neurophysiological events of
interest. For investigators of subject populations that tend
to move, methods to recover relatively high-quality data
and results from relatively low-quality scans are of clear
importance.

In task fMRI, head motion is often dealt with, first by
mandatory data realignment and then by optional, addi-
tional measures to counter motion-related effects. It is a
common practice to align the data throughout a scan by
estimating the position of the head in space at each vol-
ume, followed by realignment using rigid body trans-
forms. In such transforms, head position at each time
point is described with six parameters: translational dis-
placements along the X-, Y-, and Z-axes, and rotational
displacements of pitch, yaw, and roll. Realignment is an
essential part of data processing, but it cannot correct the
signal alterations or image distortions that occur as a
result of movement.

Further optional steps can be taken to counter move-
ment-related disruption of BOLD signal in task fMRI [Birn
et al., 2004]. Investigators have demonstrated the utility of
a variety of methods, including interpolation over motion-
corrupted voxels [Huang et al., 2008], weighting images by
the inverse of their variance [Diedrichsen and Shadmehr,
2005], ignoring volumes containing stimulus-correlated
motion [Birn et al., 2004], ignoring volumes during gross
movement [Lemieux et al., 2007], monitoring and model-
ing physiologic and motion-related noise [Jones et al.,
2008], and including motion-related nuisance regressors in
general linear model (GLM) estimation [Friston et al.,
1996]. Motion regression is perhaps the most widely used
among these methods, and regressors have been shown to
improve the reliability of GLM analyses in many cases
[Lund et al., 2005; Morgan et al., 2007; Oakes et al., 2005].

GLM estimation in the presence of motion, or attempts
to counter motion, is, however, not a simple matter. Move-
ment-related signal changes tend to degrade the fit of pa-
rameter estimates to the data in a GLM, increasing the
error term and reducing statistical significance. Addition-
ally, movement that is correlated with tasks can produce
spurious task-related activity [Bullmore et al., 1999; Field
et al., 2000; Hajnal et al., 1994]. Motion regression is aimed
at compensating for some of these effects, but motion

regression cannot correct motion-induced signal drop-out
or image distortion. Additionally, in instances where sub-
ject motion is not independent of task timing, motion
regression can cause underestimation of true experimental
effects [Bullmore et al., 1999; Johnstone et al., 2006]. Such
considerations introduce uncertainty to the meaning of
results in the presence of motion or attempts to counter
motion.

Here, we evaluate an approach that mitigates effects of
head motion in task fMRI analysis while avoiding some of
the aforementioned ambiguities. We previously observed
large-amplitude signal changes limited to the periods of
subject movement in task-free resting-state functional con-
nectivity (RSFC) MRI. These observations can be made
even after motion regression is performed, indicating that
at least some common regressions do not adequately
remove motion-related changes in BOLD signal [Power
et al., 2012]. Accordingly, we developed a “scrubbing”
method to identify and remove completely high-motion
data from our analyses (by censoring volumes using tem-
poral masks). This procedure revealed clear and powerful
effects of motion in our RSFC analyses despite having pre-
pared our data with standard motion regressions [Power
et al., 2012].

Here, we modify our “scrubbing” procedure, referred
to here as motion censoring or simply censoring, to eval-
uate whether applying temporal masks to remove high-
motion volumes can improve results in task fMRI. Similar
censoring approaches have been used in task fMRI previ-
ously [Kennedy and Courchesne, 2008; Kirwan et al.,
2009; Stark et al., 2010] and in RSFC [Lemieux et al.,
2007] and are implemented in software packages such as
AFNI. However, to our knowledge, the statistical benefit
of these approaches has not been evaluated. We demon-
strate the benefit of this motion censoring approach in
three data sets, showing that censoring generally
decreases variance across subjects in parameter estimates

(i.e., time courses, or Level I analyses) and increases sta-
tistical power in ANOVAs and t-tests (Level II analyses).
We propose methods to select unbiased regions of inter-
est (ROIs) to test the effects of censoring in data sets, and
we demonstrate how censoring parameters can be
explored to yield increases in statistical power. We find
that more stringent censoring criteria (removing more
motion-contaminated data) produce increased statistical
benefits up to some point, beyond which the cost of
removing additional data points outweighs the benefit of
censoring. We explore an additional parameter space
associated with choosing volumes to censor (e.g., censor-
ing additional volumes before and after periods of
motion) and find little difference between choices. We
demonstrate these benefits when the data are modeled
without assumed response shapes and also with assumed
response shapes. Finally, we demonstrate that motion
censoring outperforms several varieties of motion regres-
sion in task fMRI.
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METHODS

Subjects

Subjects were recruited from the Washington University
in St. Louis campus and the surrounding community. The
subjects were recruited for three separate studies, and are
referred to as Cohorts 1, 2, and 3. For all three cohorts,
individuals with metal implants, heart arrhythmias, claus-
trophobia, or a reported history of developmental delay
were excluded. Individuals in Cohorts 1 and 3 reported no
history of neurologic and psychiatric diagnoses and did
not use psychotropic medications. Individuals in Cohort 2
were recruited as part of a study of Tourette Syndrome
and were not excluded on the basis of any psychiatric di-
agnosis commonly comorbid with Tourette syndrome
including attention-deficit=hyperactivity disorder and
obsessive compulsive disorder, nor were they excluded for
taking psychotropic medications. All subjects were native
English speakers. All minors were brought in for a visit
prior to scanning for the consenting process, an introduc-
tion to the scanning environment via a mock scanner, and
neuropsychological testing. For all minor subjects, verbal
assent and parental informed consent to the testing and
scanning was acquired in accordance with the guidelines
and approval of the Washington University Human Stud-
ies Committee. All adult subjects gave informed consent
prior to scanning in accordance with the guidelines and
approval of the Washington University Human Studies
Committee. Subjects were compensated for their participa-
tion. All aspects of the studies were approved by the Insti-
tutional Review Board at Washington University School of
Medicine.

Behavioral Paradigms and Data Collection

This study utilized three event-related task fMRI cohorts
representing children, adolescents, and adults (Table I).
We use these data not to focus on particular ages or pat-
terns of activity, but to show across studies, conditions,
and contrasts, the impact of various motion correction
strategies.

For all cohorts, data were acquired on a Siemens MAG-
NETOM Tim Trio 3.0T Scanner with a Siemens 12-channel

Head Matrix Coil (Erlangen, Germany). A thermoplastic
mask was individually fitted to each subject’s head to limit
head motion during data acquisition. A T1-weighted sagittal
MP-RAGE structural image was obtained (echo time [TE] 5

3.06 ms, repetition time [TR]-partition 5 2.4 s, TI 5 1,000
ms, flip angle 5 8�, 176 slices with 1 3 1 3 1 mm voxels).
A T2-weighted turbo spin-echo structural image (TE 5 84
ms, TR 5 6.8 s, 32 slices with 2 3 1 3 4 mm voxels) in the
same anatomical plane as the BOLD images was also
obtained to improve alignment to an atlas.

Cohort 1 consisted of 53 children of ages 7–8 years. Sub-
jects in this cohort performed a string-matching task on
two simultaneously presented strings of letters or letter-
like forms. Five categories or strings (words, pseudowords,
nonwords, consonant strings, and Amharic characters) were
separated by run. Subjects were asked to make a visual
matching decision via button press. Trials were arranged
for analysis in a rapid event-related design. Intertrial inter-
vals were randomly distributed between 1, 2, and 3 TRs.
Functional images were obtained using a BOLD-contrast
sensitive gradient-echo echo-planar sequence (TE 5 27 ms,
flip angle 5 90�, in-plane resolution 5 4 3 4 mm, 32 con-
tiguous interleaved 4 mm axial slices, volume TR 5 2.5 s).
Five task runs each lasting 133 volumes (332.5 s) were
obtained in each subject. In total, 15 conditions were mod-
eled, each lasting seven time points (TRs). Subjects with
<60% accuracy on the task, root-mean-square realignment
estimates (RMS movement) exceeding 1.5 mm for the entire
session, or the presence of any GLM variables with less
than two data points contributing to its estimation follow-
ing the framewise displacement (FD) 5 0.9 motion censor-
ing (described below) were excluded. In all, 20 out of 53
subjects remained after exclusion criteria were applied.

Cohort 2 consisted of 73 children and adolescents (9–15
years) with Tourette syndrome. Subjects in this cohort per-
formed a cue-switching task drawing attention to either the
color or the identity of cartoon characters. Cues (a single
word presented in all capital letters) were presented for one
TR, and Targets (a colorful cartoon character) were pre-
sented in the subsequent TR, with approximately 20% of
trials having only a cue and not a target stimulus. Target
judgments were made via button press. Trials were
arranged for analysis in a rapid event-related design with
complex trials (including separable cue and target trials).

TABLE I. Cohort properties. 3613270mm (150 3 150 DPI)

N(M=F)
Age (years)

(mean)
Study
design

RMS movement
(mm) mean (sd)

RMS movement
FD (mm)
mean (sd)

Main scrubbing
settings

% data
censored

mean (s.d.)

Cohort 1: Children (typical) 20(10=10) 7–8 (8.0) matching 0.78(0.31) 0.83(0.39) FD > 0.9 mm 16(11)
Cohort 2: Adolescents

(Tourette)
38(32=6) 9–15 (12.6) rule switching 0.59(0.26) 0.55(0.29) FD > 0.9 mm 8(7)

Cohort 3: Adults (typical) 30(14=16) 21–30 (24.4) Posner task 0.38(0.20) 0.22(0.13) FD > 0.5 mm 4(5)

r Censoring High Motion Data in fMRI r

r 3 r



Intertrial intervals were randomly distributed between 1, 2,
and 3 TRs. Functional images were obtained using a BOLD-
contrast sensitive gradient-echo echo-planar sequence
(TE 5 27 ms, flip angle 5 90�, in-plane resolution5 4 3 4
mm, 32 contiguous interleaved 4 mm axial slices, volume
TR 5 2.0 s). Three to six task runs each lasting 144 volumes
(288 s) were obtained in each subject. Four cue conditions
and eight target conditions were modeled, each lasting nine
time points (TRs). Subjects with <70% accuracy on the task
or fewer than three task runs with RMS movement below
1.5 mm were excluded. In brief, 38 out of 73 subjects
remained after exclusion criteria were applied.

Cohort 3 consisted of 35 adults of ages 21–30 years. Sub-
jects in this cohort performed a visual attention (modified
Posner) task. Target detection judgments were made via
button press. Trials were arranged for analysis in a mixed
block=event-related design with complex trials (cue and
target). Intertrial intervals were randomly distributed
between 1, 2, and 3 frames. Functional images were
obtained using a BOLD-contrast sensitive gradient-echo
echo-planar sequence (TE 5 27 ms, flip angle 5 90�, in-
plane resolution 5 4 3 4 mm, 32 contiguous interleaved 4
mm axial slices, volume TR 5 2.5 s). Six to eight task runs
each lasting 217 volumes (542.5 s) were obtained in each
subject. Two cue conditions and 10 target conditions were
modeled, each lasting seven time points (TRs). Subjects
with <85% accuracy on the task, or fewer than four runs
with RMS movement below 1.0 mm were excluded. In
total, 30 out of 35 subjects remained after exclusion criteria
were applied.

Head Realignment Estimate Calculations

Head motion estimation involved a series of rigid body
transforms, Ti, where i indexes frame (volume) and Ti spa-
tially registers volume i to a selected reference frame. Each
transform was computed by minimizing the registration
error ei5hðsIiðTð~xÞÞ2Ioð~xÞÞ2i; where Ið~xÞ is image intensity
at locus ~x, angle brackets denote the spatial average over
the brain, subscript 0 denotes the reference frame (here,
taken as the run midpoint) and s is a scalar factor that
compensates for small changes in mean signal intensity.
Each transform can be expressed as a combination of rota-
tion and displacement components. Thus,

Ti5
Ri di

0 1

" #

where Ri is a 3 3 3 rotation matrix and di is a 3 3 1 col-
umn vector of displacements. Ri can be factored into three
elementary rotations about each of the three axes. Thus, Ri

5 RiaRibRic, where

Ria5

1 1 0

0 cos ai 2sin ai

0 sin ai cos ai

2
6664

3
7775; Rib5

cos bi 0 sin bi

0 1 0

2sin bi 0 cos bi

2
6664

3
7775;

and Rig5

cos gi 2sin gi 0

sin gi cos gi 0

0 0 1

2
6664

3
7775

Thus, each rigid body transform is defined by six
parameters.

FD Calculations

Differentiating head realignment parameters over time
yields a six-dimensional time series that represents instan-
taneous head motion. To express instantaneous head
motion as a scalar quantity, we used the empirical formula
for FD, FDi5jDdixj1jDdiyj1jDdizj1jDaij1jDbij1jDgij, where
Ddix 5 d(i 2 1)x 2 dix, and similarly for the other rigid body
parameters [dix, diy, diz, ai, bi, ci]. FD0 is set to zero. Rota-
tional displacements were converted from radians to milli-
meters by calculating displacement on the surface of a
sphere of radius 50 mm, which is approximately the mean
distance from the cerebral cortex to the center of the head.
This calculation is identical to that used in Power et al.
[2012] for “scrubbing” RSFC-MRI data.

fMRI Preprocessing

Functional images were first processed to reduce arti-
facts [Miezin et al., 2000]. These steps included: (i) correc-
tion of odd versus even slice intensity differences
attributable to interleaved acquisition without gaps, (ii)
correction for head movement within- and across-runs,
and (iii) within-run intensity normalization to a whole-
brain mode value (across TRs and voxels) of 1,000.

Atlas transformation of the functional data was com-
puted for each individual via the MP-RAGE scan. For
Cohorts 1 and 2, the transformation was done by using an
atlas-representative target composed of a mutually coregis-
tered independent sample of 12 healthy adults and 12
healthy 7- to 8-year-old children, which was made to con-
form to the Talairach atlas using a spatial normalization
method [Lancaster et al., 1995]. For Cohort 3, an atlas
based on 12 healthy adults was used. Each run was then
resampled in atlas space on an isotropic 3-mm grid com-
bining movement correction and atlas transformation in a
single interpolation. Data were resampled into 3-mm iso-
tropic voxels for Cohorts 1 and 3 and into 2-mm isotropic
voxels for Cohort 2. This discrepancy in voxel sizes arose
incidentally but serves to demonstrate the generalizability
of results beyond a single voxel size. The atlas-trans-
formed image for each participant was checked against a
reference average to ensure appropriate registration.

r Siegel et al. r
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RMS movement was calculated from realignment pa-
rameters (rotational estimates converted to translational at
radius of 50 mm). As previously mentioned, subjects were
excluded from each study on the basis of study-specific
RMS movement thresholds. This study thus documents
the improvements that can be seen within “acceptable”
subject populations. Excluded subjects are not reported in
this study or in Table I.

Standard Processing=Uncensored Data

Some data were analyzed at this point with no further
efforts to counter motion effects. Such data are said to
have undergone Standard Processing and are referred to
as “uncensored” data.

Motion Censoring

The motion censoring procedure entailed the following
steps. (i) FD was calculated as mentioned above. (ii) All
volumes whose FD exceeded a particular threshold were
flagged to form a temporal mask (Table I and Fig. 1). (iii)
An optional step of temporal mask augmentation flagged
additional volumes preceding and=or following flagged
volumes. (iv) The GLM ignored all flagged volumes dur-
ing parameter estimation (equivalent to adding single-TR
regressors at censored volumes). Data that underwent this
process are called “censored” data.

Thresholds

The goal of this report is to document and explore the
benefits of motion censoring in a task fMRI context.
Accordingly, thresholds were chosen to remove modest
portions of motion-contaminated data, not to remove all
volumes with motion. A threshold of FD > 0.90 mm is of-
ten used in this report (Figs. 1–3) though other thresholds
are examined (Fig. 6).

Augmentation

The uncertainty of the precise timing of movement and
the need to re-establish spin histories suggests that it may
also be appropriate to flag volumes 1 back and at least 1
forward of any motion-flagged volume. Most figures dis-
play censoring using no augmentation. If augmentation is
performed, “fX” is used to indicate temporal mask aug-
mentation after flagged volumes, and “bX” indicates aug-
mentation prior to flagged volumes (e.g., f0, b0 means
forward zero, backward zero, i.e., no augmentation). For
Figure 6, thresholds and augmentations were chosen to
remove nearly identical amounts of data (i.e., relaxed
thresholds with augmentation vs. stringent thresholds with
no augmentation, each removing similar amounts of data).
“Random censoring” was accomplished by examining a
subject’s temporal mask (in Fig. 6, FD > 0.9 mm, f0, b0)
and removing identical amounts of data (with identical

Figure 1.

Identification of high-motion volumes of BOLD data. Data from

two subjects are presented to illustrate the methodology used

in this manuscript. Two runs of BOLD data from each subject

are used (2 3 125 frames), and a volume-to-volume index of

head motion (FD) is plotted by summing at each frame the

absolute values of the derivatives of the head realignment pa-

rameters used to realign the BOLD data. The subject at left

moves very little, whereas the subject at right moves substan-

tially at several points. A dotted line indicates a FD of 0.90 mm,

the main threshold used in this manuscript. Volumes whose FD

exceeded this threshold are shown below with vertical gray

bars, forming a temporal mask that can be applied during GLM

calculations to ignore volumes likely to contain artifactual BOLD

signal changes caused by subject motion.

r Censoring High Motion Data in fMRI r
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distribution of temporal lengths) from the subject but at
random, not targeting periods of motion.

The motion censoring procedure used here differs from
that described in Power et al. [2012] in one major respect,
which is that the DVARS measure is not used to censor
data. DVARS measures the change in signal across all
voxels in the brain from volume to volume. As the na-
ture of task fMRI is to evoke BOLD signal changes at
particular time points, the use of such a measure would
tend to target not only periods of movement but also
task-related activity. The measure is therefore not used in
this article.

Motion Regressions

To test motion regression as a means of countering move-
ment-related effects, motion parameters were included as
regressors of no interest in the calculation of the GLM. Five
different combinations of motion regressors were tested:

1. FDt: FD (1 regressor).
2. Rt: detrended rigid body realignment parameters (6

regressors).
3. Rt

0: temporal derivatives of R (6 regressors).
4. Rt and Rt

0 (12 regressors).
5. Vt, Vt

2, Vt 2 1, Vt 2 1
2: where Vs are the realignment

parameters (24 regressors). This is the Volterra

expansion proposed in Friston et al. [1996]. Values of
0 are used for Vt 2 1 at a time point 0.

GLM Estimation

As individual volumes are being withheld from the
data, it is worth defining all terms used to refer to the
data. A single volume of data may be referred to as a
frame (as in a movie) or as a TR of data. When a condition
is modeled, the number of times the condition occurs is
the number of events contributing to the condition. Each
event lasts the number of modeled TRs. Thus, a single vol-
ume, if it contributes to the modeling of several conditions
owing to a rapid event-related design, may represent mul-
tiple events. If such a volume was censored, each condi-
tion to which it contributed would have one less event at
the time point represented by that volume.

Statistical analyses of event-related fMRI data were
based on the GLM as described previously [Brown et al.,
2005; Miezin et al., 2000; Schlaggar et al., 2002] using in-
house software programmed in the Interactive Data Lan-
guage (ITT Visual Information Solutions, Boulder, CO)
and C [Miezin et al., 2000; Ollinger et al., 2001]. Temporal
masks (censoring) and motion regressors were incorpo-
rated into model estimation where indicated. GLM terms

Figure 2.

An overview of how typical motion censoring settings impact

Cohort 1. At left, a plot of data collected=censored from a sin-

gle individual. The horizontal black bars represent the number

of events collected for each condition. Within this, fine black

bars show the number of data points used to model each condi-

tion at each time point (1–7) and gray bars are the number of

data points removed by motion censoring. A two-factor

ANOVA on the cohort reveals no effect of time point or

condition on volumes removed. Middle, for the entire cohort,

the average percentage of events remaining in each condition af-

ter censoring. At right, a histogram showing the distribution of

sizes (in contiguous volumes) of the portions of data masked

out by the standard temporal mask (FD > 0.9 mm) used in this

article. Many motion epochs are only last a single TR, but many

are also considerably longer.
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included linear drift terms, baseline terms, and terms
associated with each modeled condition. Unless specified,
no assumptions were made regarding the shape of the he-
modynamic response function (time course), only the
durations were constrained for each condition (seven to
nine time points depending on TR; �18 s). This approach
is similar to the FIR approaches available in packages
such as FSL or SPM. ANOVA over time was used to
assess significance of time series generated with unas-
sumed response shapes. Some linear models were also
calculated using a double gamma function as the
assumed shape of the hemodynamic response. In this
instance, t-tests of betas were used to assess significance
of activation.

Typically, parameter estimates (time courses) for sev-
eral conditions are modeled in a study (e.g., for Words,

Nonwords, Pseudowords, Errors, etc., in Cohort 1).
Most conditions are modeled over seven TRs (17.5 s in
Cohort 1) and hence time courses will have seven time
points. Motion censoring can result in a variable num-
ber of events (contributing volumes) at different time
points in a condition. For example, prior to censoring,
a subject may have 12 events in a condition, but if
suprathreshold motion occurred during TRs 1–3 of one
event in the condition, time points 1–3 would have one
fewer event than time points 4–7 of the condition. Sub-
jects for whom less than two events (two data points
contributing to an estimate) remained for any time
point in any condition following application of a tem-
poral mask were excluded from further analysis (two
subjects in Cohort 1, not included in Table I or any
further analyses).

Figure 3.

The variance of parameter estimates across subjects typically

decreases as a result of motion censoring. Uncensored (dotted

line) and censored (solid line) time courses are shown for mean

map ROIs identified by ANOVAs as significantly active in all con-

ditions (left side) and a single condition (right side) (the same

analyses shown in Figs. 4 and 5). Representative ROIs whose

change in z-score is within one standard deviation of mean z-

score change are used (the red points from the middle of the

scatter plots in Fig. 5). To the right of each time course is a plot

of standard error for each time point estimate. The bottom row

shows mean differences (censored–uncensored) at each time

point for the top 50 positive time courses and the mean change

in SEMs. The magnitude of time course estimates changed little

with censoring, but the variance of time course estimates across

subjects typically decreased with censoring, providing a general

mechanism for the increased z-scores seen in Figure 5.
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ROI Selection

Two methods for ROI definition are used in this article.
In all cases, a peak detection algorithm was used to iden-
tify up to 50 ROIs from peaks of statistical images with z
> 3.5 at a spacing of at least 10 mm. ROIs were modeled
as 10-mm diameter spheres. Four ROIs that were clearly in
white matter or ventricles were excluded in Cohort 2. Sta-
tistical images were generated from ANOVAs operating
on time courses, and reported z-scores are the average val-
ues found within an ROI.

“Uncensored” ROIs were defined based on ANOVAs
operating in uncensored (standard processed) data. These
ROIs provided baseline z-scores to compare with the z-
scores arising under various processing strategies.

“Mean map” ROIs were defined by separately running
ANOVAs on censored and uncensored data and creating
an averaged statistical map for a given effect or contrast.
Peaks on the averaged map defined ROIs, providing an
unbiased ROI set with which to compare censoring and
standard processing. Hence, as long as the results are not
known beforehand, this is an unbiased way of selecting
ROIs to compare two methodologies. When this methodol-
ogy was selected, we did not know the results. As it will
be seen, censoring produces higher z-scores, in general,
meaning that these ROIs are biased toward censored
peaks. However, the same results are seen if “Uncensored”
ROIs are used (Fig. 6), rendering discussion of such biases
moot. Another possible way to select unbiased ROIs is to
use conjunctions of the peak ROIs found from two
methodologies.

Residual Signal Comparison

In Cohort 1, the uncensored ROIs were used to compare
GLM residual signal between uncensored, censored, and
randomly censored data. For a given ROI within a given
subject, at each time point, residuals at each time point
were calculated as the average residual across all voxels
within the ROI. RMS values over time were then calcu-
lated for each ROI within each subject. Figure 4 shows
these RMS values.

Analysis of Within-Subject Variance in Cohort 1

As described above, each subject in Cohort 1 completed
five task runs. To obtain a measure of within-subject var-
iance in parameter estimates for each individual subject, a
separate linear model was computed for each individual
task run to generate time courses. The following analysis
focused on the time course generated for all correct trials
across conditions in each run of each subject (the “All
Conditions” of Fig. 4). For each subject, the variance of the
five estimates was computed at each of seven time points
for each of the 50 “mean map” ROIs, before and after cen-
soring. Total variance across time points and ROIs within
each subject was compared in censored versus uncensored

data using a one-tailed paired t-test (Supporting Informa-
tion Fig. S1).

RESULTS

Three independent task fMRI studies are examined in
this report. The studies varied by task, subject’s age, clini-
cal status, exclusion criteria, and average head motion esti-
mates. Younger subjects exhibited greater amounts of
movement (Table I). A variety of analyses are presented
for the study involving children (Cohort 1). The studies
involving adolescents and adults (Cohorts 2 and 3) are
presented toward the end of the report as further demon-
strations of the benefits of motion censoring.

An Overview of How Motion Censoring Impacts

Subjects in Cohort 1

Figures 1 and 2 show an overview of how one typical
version of motion censoring impacted Cohort 1. This ver-
sion of censoring is used throughout this report unless oth-
erwise indicated. Figure 1 shows the FDs for two children
(one still subject, one subject with intermittent movements)
and how temporal masks are formed (gray volumes are

Figure 4.

Motion censoring reduces the signal assigned to error terms in

GLMs. Fifty uncensored ROIs were defined across all correct

trials. These ROIs were modeled as 10-mm diameter spheres

and applied to censored and uncensored GLMs. The RMS resid-

ual value at each ROI in each subject was calculated across all

time points. Each black dot on this plot compares the RMS re-

sidual of an ROI before and after the temporal mask is applied.

Residuals almost always decrease upon application of the tempo-

ral mask, indicating that the GLM was better able to model the

variance in the data when high-motion volumes were excluded.

Such decreases were not seen with random censoring.
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ignored). For Cohort 1, a temporal mask defined by a FD
> 0.9 mm with no augmentation (f0, b0) was chosen as a
default setting for data censoring (Fig. 1). These temporal
masks were chosen to remove a modest amount of high-
motion data for proof-of-principle purposes. They are not
designed to identify all time points when subjects moved
but rather only periods of large movement.

Figure 2 shows how the resulting temporal masks
impacted the design matrices of individual subjects and
Cohort 1, in general. At left in Figure 2, the number of
retained (black) and ignored (gray) events at each time
point (fine bars) of each condition (big bars) modeled by
the GLM is shown for a single subject. This subject was
typical of the cohort in terms of motion; with an RMS

Figure 5.

z-Scores increase as a result of motion censoring in a variety of

comparisons. Statistical maps from ANOVAs operating on all

correct conditions (a main effect of time), a single condition

(main effect of time), and a within-subject comparison of error

versus correct trials are shown for uncensored and censored

data. At left, the statistical maps with scale bars. At right, z-

scores for mean map ROIs before and after censoring. Regions

are “mean map” ROIs. All points above the black line in each

scatter plot (x 5 y) demonstrate increased z-scores as a result

of censoring. Time courses from representative ROIs (red points

in the scatter plot) are shown in Figure 3.
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movement of 0.72 mm. Censoring removed 16 6 11% of
the data across subjects (range, 1–36%). The middle panel
of Figure 2 shows the percentage of events removed from
each condition across subjects (collapsed across time
points within the condition). A two-way ANOVA (condi-
tion and time point) found no effect of time point or con-
dition on percent of events removed in the cohort,
meaning that motion was just as likely in all conditions,
and at all time points in conditions.

One possible method of motion correction is to interpo-
late signal during instances of motion using data before
and after movement [Huang et al., 2008]. The temporal
masks generated by censoring indicate that this approach
may not be practical for many instances of motion. The
right panel of Figure 2 is a histogram of the number of
temporally contiguous volumes excluded by the temporal
masks across Cohort 1 (i.e., the sizes of the gray portions
of the temporal masks in Fig. 1). Although many instances
of motion are brief (1 volume), many are also extended. Of
the 865 instances of motion identified across this cohort,
250 (29%) lasted three or more time points. Although gaps
of one or two TRs can be interpolated meaningfully, inter-
polation over gaps of many TRs seems unlikely to reflect
an underlying signal with much fidelity.

First-Level Analysis: Motion Censoring Reduces

Variance in Parameter Estimates

GLMs were estimated in uncensored and censored ver-
sions of Cohort 1’s data using the FD > 0.90 f0, b0 settings
described above. Figures 3–5 show the impact of censoring
on Level I (time course estimation and GLM fit) and Level
II (statistical map) analyses. To compare parameter esti-
mates before and after censoring, uncensored and cen-
sored statistical maps were averaged and peaks in this
averaged map were selected as “mean map” ROIs to com-
pare uncensored versus censored results (METHODS).
Figure 3 shows representative time courses from mean
map ROIs that showed effects over all correct conditions,
and in a single condition (Pseudowords). Seven time
points (17.5 s) are modeled for all conditions in these GLMs,
and no assumptions are made about the shape of the hemo-
dynamic response. Uncensored time courses are shown with
dotted lines, and censored time courses are shown with
solid lines. Time courses are relatively unchanged in shape
and magnitude. However, the between-subject variance in
parameter estimates generally decreases, suggesting that sec-
ond-level analyses ought to gain statistical power.

An important question is whether within-subject var-
iance in parameter estimates is reduced, in addition to
between-subject variance. Answering this question is not
straightforward in Cohort 1 because this data set is a rapid
event-related design, not a widely spaced design, and
hence the shape of each trial time course cannot be esti-
mated individually. However, by splitting the data set into
five parts (runs), for each subject, and obtaining parameter

estimates within each subset under uncensored and cen-
sored processing, we were able to compare within-subject
variance in parameter estimates before and after censoring.
This comparison, shown in Supporting Information Figure
S1, demonstrated a 14.2% reduction of within-subject var-
iance in parameter estimates (t[19] 5 2.018, P 5 0.029).

First-Level Analysis: Motion Censoring Reduces

the Error Term in GLM Estimation

Adding noise to data should reduce the fit of signal to
parameters within GLMs, thereby increasing the signal left
in the residual (error term). If censoring removes noise
from the data, it should improve the fit of signal to param-
eters and reduce the residual signal. Results thus far indi-
cate that censoring produces more uniform parameter
estimates across subjects, consistent with the first predic-
tion. To assess the second prediction, uncensored ROIs
that were active across all correct conditions were identi-
fied, and the RMS residuals of those ROIs (across all time
points) were computed for uncensored and censored
GLMs, as well as for GLMs calculated using random cen-
soring. Figure 4 shows the RMS values of these residuals
for all subjects. The error term is uniformly decreased by
the censoring procedure but unchanged by the random
censoring procedure (Supporting Information Fig. S2), con-
sistent with the removal of noise from data.

Second-Level Analysis: Motion Censoring

Increases Statistical Effects

We next examined how censoring affects statistical
power. ANOVAs were performed on uncensored and cen-
sored data to identify voxels with significant time courses
across all conditions (a main effect of time), a single Pseu-
doword condition, and in a within-subject contrast of error
versus correct responses. Statistical maps (z-scores from
ANOVA over time) from these analyses are shown in Fig-
ure 5. Censoring produced clear increases in z-scores in
each analysis. A modest threshold has been applied to the
images to ease visualization. To quantify the statistical
improvements produced by censoring, the z-scores of
mean map ROIs before and after censoring were com-
pared. In all cases, z-scores were significantly increased
by censoring: all conditions (Dz 5 0.79, t[47] 5 8.66], P 5

2.7E 2 11), single condition (Dz 5 0.59, t[45] 5 5.69, P 5

9.2E 2 7), within-subject contrast of error versus correct
trials (Dz 5 0.78, t[33] 5 7.31, P 5 2.18E 2 8).

As mentioned previously, motion artifacts are known to
cause greater spurious activation in particular locations of
the brain. One such location is the frontal pole [Oakes
et al., 2005; Wu et al., 1997]. In the single condition (Figure
5, middle), the uncensored slice at z 5 20 displays a nar-
row strip of activation around the anterior cortical surface.
This activation at the frontal pole is reduced upon
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censoring, consistent with a reduction in spurious activa-
tion produced by motion artifact.

Exploring the Parameter Space of Temporal

Mask Generation

The censoring settings used thus far were chosen to
demonstrate the effects of removing a modest amount of
motion-contaminated data. To explore how sensitive the
censoring procedure is to choices of threshold and aug-
mentation, other settings were tested using uncensored
ROIs derived from an uncensored main effect of time
ANOVA operating on all correct conditions.

Motion censoring was performed with a range of FD
thresholds, from a lenient threshold of 1.3 mm down to a

strict threshold of 0.3 mm (for reference, FD values in very
still subjects range from 0 to 0.2 mm). At the threshold of
FD > 0.3 mm censoring reduced qualifying data to one or
zero events for particular time points in particular events
and z-scores decreased dramatically because too much
data were discarded (data not shown). Figure 6 shows the
results of the FD > 0.5–1.3 mm analyses. Censoring
increased z-scores at all thresholds examined, and the
greatest increase was seen at FD > 0.9 mm.

Various augmentations of the temporal mask were also
tested. As spin histories are disrupted for many seconds
by head motion [Friston et al., 1996], removing additional
volumes after head movement may further improve data
quality. Additionally, as realignment estimates integrate
information from a full volume acquisition, it is uncertain
exactly when movement occurred, and it may be

Figure 6.

Motion censoring outperforms regressions over a wide parame-

ter space. For all comparisons, the same set of uncensored main

effect of time ROIs is used. At left, the changes in z-scores pro-

duced by various threshold criteria (removing 9, 12, 16, 23, and

35% of the data, respectively). All thresholds increase z-scores,

and the greatest increases are seen for FD > 0.9 mm. At center,

temporal mask augmentations are compared. FD > 0.9 mm is

the base comparator, and thresholds are relaxed to allow for-

ward and backward augmentations that remove similar amounts

of data. All approaches are effective, but none surpass the FD >
0.9 mm results. At right, various regressors of no interest were

included in GLM design (without censoring). FD denotes

framewise displacement, R denotes detrended realignment

estimates, and V denotes realignment estimates. The derivatives

of detrended realignment estimates and the 24-parameter

expansion of realignment estimates improve z-scores, but to a

lesser extent than most censoring approaches. To the right,

combined application of the best censoring threshold (FD >
0.9) and the best regression (R0) results improves z-scores, but

to a lesser extent than censoring alone. Far right, GLMs were

generated using a double gamma assumed response function and

the same set of uncensored main effect of time ROIs were used

to compare the best regression (R0), and the best censoring

threshold (FD > 0.9). Error bars represent standard error of

the mean change in z-scores between a given condition and the

baseline “uncensored” condition.
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advantageous to remove the volume immediately preced-
ing motion. With these two considerations in mind, five
censoring settings that removed equivalent amounts of
data in different ways were tested: (1) FD > 0.9 mm only
(f0, b0), (2) FD > 1.1 mm and 1 frame after flagged vol-
umes (f1, b0), (3) FD > 1.1 mm and 1 volume before
flagged volumes (f0, b1), (4) FD > 1.3 mm and 1 volume
before and after flagged volumes (f1, b1), and (5) volumes
removed at random in identically sized portions of data as
the FD > 0.9 (f0, b0) temporal mask within each subject.
As shown in Figure 6, all four censoring settings caused z-
scores to increase, and the random censoring caused z-
scores to drop, as expected. In a one-factor ANOVA, the
FD > 0.9, (f0, b0) mask produced significantly higher z-
scores than all of the other masks except FD > 1.1 mm
(f0,b1) which was not significantly different. On the basis
of these results, we do not recommend removing volumes
proceeding or following high-motion volumes, and we do
not do so in the other data sets used in this article.

Motion Censoring Outperforms Several Motion

Regressions

Motion censoring was compared to a variety of motion
regression techniques. Five GLMs were created, each
incorporating a different combination of motion estimates
as nuisance regressors: (1) the single measure of FD, (2)
the six detrended rigid body realignment parameters, (3)
the temporal derivatives of the six detrended rigid body
realignment parameters, (4) a combination of the
detrended realignment parameters and their derivatives
(12 regressors), and (5) a 24-parameter Volterra expansion
of the realignment parameters for each time point and the
previous time point [Friston et al., 1996]. As shown in Fig-
ure 6, two of the regressions (derivatives of detrended
realignment parameters and the 24-parameter expansion)
increased z-scores, but the other regressions decreased
z-scores.

Motion censoring generally outperformed motion regres-
sions. Censoring at FD > 0.9 mm performed significantly
better than the best regression (t[49] 5 4.51, P 5 0.0073).
To see whether a combination of censoring and regression
might most benefit the data, a GLM was created using the
default censoring settings and regressions of the deriva-
tives of realignment estimates. The changes in z-score pro-
duced by this GLM were not significantly different from
censoring alone (t[49] 5 7.50, P 5 0.34).

Motion Censoring is Beneficial When Using

Assumed Response Shapes

Finally, we tested the effects of regression (R0) and cen-
soring (FD > 0.9) when modeling the data with an
assumed hemodynamic response function. The average
t-score without censoring (of the top 50 ROIs from the
uncensored data) was 6.16. Regression did not significantly

improve t-scores (Dt 5 20.09, P 5 0.83) and censoring sig-
nificantly raised t-scores (Dt 5 0.64, P 5 3.4E 2 7).

Similar Effects are Seen Within Additional Data

Sets

Procedures similar to those just described were applied
to a separate study conducted in an adolescent cohort
with Tourette syndrome. In this cohort, cue and target
were modeled separately (complex trials) using some cue-
only partial trials [Ollinger et al., 2001].

Figure 7 shows statistical maps and mean map ROI z-
scores for uncensored and censored data for ANOVAs
operating on all correct cue and target conditions using
the censoring settings of FD > 0.9 mm (f0, b0). z-Scores for
mean map ROIs consistently increase in both cases with
censoring (Cue: Dz 5 0.81, t[47] 5 7.09, P 5 6.1E 2 9. Tar-
get: Dz 5 0.70, t[48] 5 8.45, P 5 4.7E 2 11). This suggests
that motion censoring did not interfere adversely with
complex trial modeling.

An additional study conducted in healthy adults was
examined to compare censoring and regression in a differ-
ent population. These subjects moved much less than the
other cohorts (Table I), enabling stricter censoring settings.
Settings of FD > 0.5 mm, f0, and f0 were used to censor
this data, removing 2% of the data. To see whether regres-
sion alone might be just as good as censoring in this low-
movement population, we calculated a GLM using R0 as a
coregressor of no interest. To compare between options,
we used z-scores from top 50 uncensored ROIs. As shown
in Figure 8, even this small change caused uncensored
ROI z-scores for all correct trials to significantly increase
(Dz 5 0.15, t[49] 5 6.03, P 5 1.7E-8). Including regressors
of no interest in the uncensored GLM produced a decrease
in z-scores (Dz 5 20.20, t[49] 5 26.73, P 5 2.1E 2 7).

DISCUSSION

This report compares two methods to counter effects of
motion in task fMRI data: (1) motion censoring and (2)
motion regression. We first explored the effects of motion
censoring on a healthy pediatric data set with relatively high-
movement estimates. As measured by variance in time
course estimates across subjects, GLM residuals, and the sta-
tistical significance of activation, censoring improves model-
ing of the BOLD signal in nearly every region examined (and
decreased activation in frontal pole regions known to exhibit
artifactual motion-induced activity). We compared a range of
parameters for motion regression and motion censoring and
found that motion censoring produces sizeable increases in z-
scores across most choices of parameters (the exception, pre-
dictably, is that z-scores decrease when too much data have
been removed from a data set). Next, we compared z-scores
from standard processing (realignment only) to those found
after motion regression or motion censoring. Results indi-
cated that motion censoring performs significantly better
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than a variety of motion regressions. Similar advantages for
censoring over regression were observed when data were
modeled with an assumed hemodynamic response shape.
We then examined the impact of motion censoring in two
additional data sets: a pediatric Tourette cohort and a healthy

adult cohort (Table I). The Tourette syndrome group showed
improvements similar to those of the healthy children. The
healthy adults showed smaller, but still significant, increases
in statistical significance of task-evoked activation and no
improvement with motion regression.

Figure 7.

Motion censoring improves z-scores in a clinical data set. Statistical images and mean map ROI

z-scores are shown from ANOVA main effect of time in cue conditions and ANOVA main effect

of time in target conditions before and after censoring in Cohort 2.

Figure 8.

Motion censoring produces modest improvements in adults who move little. Statistical images

and mean map ROI z-scores are shown for an ANOVA main effect of time across all correct

conditions before and after censoring in Cohort 3.
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These data range in age, clinical status, amount of
motion, study design, and task. They are, however, all
from the same site, acquired on the same scanner, and use
similar pulse sequences. It is possible that our findings
may not generalize beyond these populations (e.g., to the
elderly) or acquisition parameters (e.g., other flip angles),
and that faster TRs and other advances in methodology
will diminish the utility of the types of corrections used in
this report. However, given the growing number of
reports on incomplete removal of motion-related artifact
(using various scanners, pulse sequences, denoising strat-
egies, etc.) [Bright and Murphy, 2013; Satterthwaite et al.,
2013; Van Dijk et al., 2012], these findings are likely rele-
vant for many groups and existing data sets. Our findings
may also be less pronounced when analyses are performed
using other strategies, such as using other assumed
response shapes or when using group level analyses that
take into account the error variance of lower-level esti-
mates (e.g., FLAME in FSL).

A natural issue that arises is the extent to which data
should be censored. We have no definitive solution to this
important issue. Our experiences with RSFC indicate that
any and all head motion produces artifactual changes in
BOLD signal [Power et al., 2012], suggesting that optimal
task fMRI results would be obtained with stringent motion
censoring criteria that rigorously exclude volumes during
which even modest movements occurred. As shown in Fig-
ure 1, a floor does exist for FD values (which rarely exceed
0.2 mm in still subjects), and stringent thresholds could be
set just above this floor. Such a threshold could conceivably
identify and remove almost all data contaminated with
motion related effects. However, as the removal of noise by
censoring entails a reduction in data available for analysis,
the impact of censoring is entwined with study design and
subject movement. As censoring settings are made more
stringent, fewer trials remain, and the accuracy of GLM
estimation diminishes. Figure 6 shows this pattern quite
clearly: z-scores improve as FD thresholds eliminate increas-
ing amount of motion-contaminated data from thresholds
of FD > 1.3 mm down to FD > 0.9 mm, but below FD >

0.9 mm improvements diminish until z-scores frankly
decrease at thresholds of FD > 0.3 mm. In cohorts with
substantial motion, ideal levels of censoring are probably
unobtainable. Nevertheless, even modest amounts of cen-
soring can produce notable improvements in data quality.

Hence, we are unable to offer blanket prescriptions for
censoring settings. We have demonstrated methods to
select and test ROIs for improvements under a variety of
motion censoring thresholds. Within our laboratory, we
currently explore several FD thresholds, seeking the inflec-
tion point at which statistical improvements become over-
shadowed by the deleterious effects of losing data (e.g.,
between FD < 0.9 and FD < 0.7 for Cohort 1, Fig. 6). The
position of this inflection point varies by cohort and is de-
pendent on study design, subject motion, and so forth,
leaving us unable to make universal recommendations.

A related issue is that in data sets limited by data quan-

tity (e.g., numbers of events within a particular condition),
gentler motion correction tools might be preferable to cen-
soring techniques. This concern is certainly reasonable, but
even in the most limited condition considered in this arti-

cle (the Single Condition of Fig. 5 had �25 events per sub-
ject), removal of 11% of the data produced considerable
improvement in the reliability of estimates.

In general, motion censoring appears to improve data

quality more than many motion regression approaches.
Only regression of derivatives of realignment estimates
and the 24-parameter expansion produced improvements
in data quality, and these improvements were significantly

less than those produced by almost any version of censor-
ing. It is possible that voxel-specific regressors or regres-
sors built using more elaborate methods may perform
better than the brain-wide regressors used here (though,
see Satterthwaite et al., 2013). Previous studies have found

benefit to regression [Morgan et al., 2007; Oakes et al.,
2005], and we are unable to account for their relative lack
of benefit in this study other than to note that there are, of
course, many differences in acquisition parameters, data
processing, tools, and so forth, between such studies and

this study. For example, we perform a single atlas trans-
formation step in preprocessing and then compute a GLM
with regressors on data in atlas space, whereas other stud-
ies compute a GLM with regressors in native space and
then transform to atlas space. It is difficult to say if this

would significantly alter the effect of motion regressors.
However, though motion regression can be beneficial

[Morgan et al., 2007; Oakes et al., 2005], there are also
drawbacks to regression. If motion is correlated with be-
havioral condition in the data, motion regressors can cause
task-related activity to be modeled as an effect of motion,
resulting in underestimation of the effect of task [Bullmore
et al., 1999]. This concern is particularly pertinent in block
design experiments in which motion often does correlate
with condition [Johnstone et al., 2006] (though, see Birn
et al., 2004 for a discussion of optimizing study design in
the presence of motion). As motion censoring avoids such
problems and produces substantial improvements in data
quality, we see little reason to regress rather than censor
fMRI data.

Investigators planning to use censoring techniques may
wish to alter study design in several ways. In populations
that tend to move, investigators may overpower study
design to accommodate the loss of some data. Modest cen-
soring in our pediatric and adolescent cohorts removed
15–20% of the data, and caused a small number of subjects
to be excluded from analysis because sufficient trials no
longer remained in particular conditions. Simpler designs
with increased numbers of trials will best tolerate strict
censoring settings. Another modification of study design
that may further improve data quality would be the use of
optical recording techniques to measure subject motion
[Dold et al., 2006]. Current motion estimates are derived
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from MRI acquisitions spaced by 2–3 s, and movements
occurring under the Nyquist limit could still impact data
quality but pass undetected. Optical motion measurements
have finer temporal and spatial resolution and should be
capable of forming very precise temporal masks.

CONCLUSIONS

This article presents a simple way to reduce the effects
of subject motion in task fMRI data. This method reduces
between-subject variance in parameter estimates, reduces
the error term in GLM calculations, and boosts statistical
power in several data sets. The method is ad hoc but effec-
tive and can already be implemented in a variety of analy-
sis platforms such as AFNI. In populations that tend to
move, such as pediatric or clinical populations, motion
censoring can substantially increase the quality, sensitivity,
and accuracy of fMRI studies.
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