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STATISTICAL INDEPENDENCE OF A NEW CLASS
OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS

JÜRGEN EICHENAUER-HERRMANN

Abstract. Linear congruential pseudorandom numbers show several undesir-

able regularities which can render them useless for certain stochastic simula-

tions. This was the motivation for important recent developments in nonlinear

congruential methods for generating uniform pseudorandom numbers. It is

particularly promising to achieve nonlinearity by employing the operation of

multiplicative inversion with respect to a prime modulus. In the present paper

a new class of such inversive congruential generators is introduced and ana-

lyzed. It is shown that they have excellent statistical independence properties

and model true random numbers very closely. The methods of proof rely heav-

ily on Weil-Stepanov bounds for rational exponential sums.

1. Introduction

The outcome of a stochastic simulation strongly depends on the quality of

the pseudorandom numbers. General background material on pseudorandom

number generation can be found in the book of Knuth [23] and the survey

article of Niederreiter [28]. The classical standard method of generating uni-
form pseudorandom numbers in the interval [0,1) is the linear congruential

method. Theoretical results on the structural and statistical properties of the

generated sequences indicate that a reasonable behavior can be obtained if a

judicious choice of parameters is made which depends on the dimension of the

simulation problem (cf. [27-29]). Hence, a considerable computational effort

has to be expended to guarantee acceptable properties, at least for a very modest

range of dimensions (cf. [1, 19, 20]). However, linear congruential sequences
show an unfavorable coarse lattice structure which stems from the simple nature

of the underlying linear recursion and cannot be overcome even by the most

judicious choice of parameters (cf. [25, 26, 37]).

This state of affairs provided the motivation for recent work on nonlinear

congruential methods in order to overcome the deficiencies of the linear con-

gruential method (cf. [2-9, 11-18, 30-33]). A review of the development of
this area is given in [10] and in Niederreiter's excellent survey articles [34, 35].

The key idea behind these methods is the use of different nonlinear recursions

in modular arithmetic instead of the simple linear recursion. Understandably,
all these techniques are somewhat slower than the linear congruential method.
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However, nowadays the computer time taken for pseudorandom number gener-

ation in a typical stochastic simulation can almost always be neglected (cf. [21,
36]).

The most promising results have been obtained for prime moduli. For a

(large) prime p put Zp = {P, I, ... , p - 1} and Z* = Z„\{0} . The follow-
ing general class of nonlinear congruential generators was introduced in [2]: A

nonlinear congruential sequence (yn)n>o of elements of Zp is generated by

yn+i =fiyn),      n>p,

where /: Zp -» Zp is a function such that (yn)„>o is purely periodic with

maximal period length p. Niederreiter [30] pointed out that there exists a

uniquely determined permutation polynomial g of degree s with 1 < s < p-2

over the finite field Zp such that

yn = g(n),        n>P.

In Niederreiter [31] it is shown that any nonlinear congruential generator has

excellent statistical independence properties for all dimensions d < s provided

the degree 5 of g is small relative to px¡2.

In contrast, the present paper deals with certain polynomials g of maximal

degree s = p - 2 and establishes favorable statistical independence properties

for all dimensions d < p . In the following the abbreviation z = zp~2 (mod p),

z £ Zp , is used for integers z . Note that z is the multiplicative inverse of z

modulo p if z ^ 0 (mod p). A method for its efficient calculation is based

on the Euclidean algorithm with the integers z and p (cf. [10]). The stan-

dard inversive congruential method, which was introduced in [4], generates a

sequence (yn)n>o of elements of Zp by the recursion yn+x =ayn + b (mod p)

for « > 0. In the present paper the following new class of inversive congru-

ential generators is considered which has even better structural and statistical

independence properties than the standard type. For integers a, b £ Zp with

a =¡¿ 0 an inversive congruential sequence (y„)n>o of elements of Zp is defined

by _
y„ = an + b,        « > 0.

A sequence (x„)„>o of inversive congruential pseudorandom numbers in the

interval [0,1) is obtained by the normalization xn = yn/p for « > 0. Ob-

viously, any inversive congruential sequence is purely periodic with maximal

period length p, i.e., {yo, yx, • • • , yP-i} = Zp , which guarantees that the one-

dimensional distribution of the corresponding pseudorandom numbers is as

good as possible. Hence, any inversive congruential generator passes the unifor-

mity test for equidistribution in [0, 1 ).

Statistical independence properties of pseudorandom numbers are at least

as important for stochastic simulations as uniformity properties. A reliable

theoretical test for statistical independence is the serial test, which employs the

discrepancy of tuples of pseudorandom numbers. For a given dimension k > 2

and for N arbitrary points to, ti,..., t/v_i £ [0, l)k the discrepancy is defined

by
DN(to, tx, ■ ■ ■ , t/v-,) = sup \FNiJ) - V(J)\,

j

where the supremum is extended over all subintervals J of [0, 1)* , Fn(J) is

N~x times the number of terms among t0, tx,...,tN-X falling into J , and V(J)
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denotes the volume of J. In the present paper, for a sequence of inversive

congruential pseudorandom numbers (x„)„>o, the points

xn = (Xn+n, > Xn+n2 > • • • > Xn+nk ) € [0 , 1)   , 0<«</7,

are considered, where «i, «2, ... , nk are arbitrary integers with 0 = «1 < «2 <

■■• <nk <p, and the abbreviation

DP   = DP(xo » X), ... , xp_i)

is used for their discrepancy. An inversive congruential generator passes the

k-dimensional serial test if Dp ' is reasonably small. Since an exact calculation

of the discrepancy Dp ' is impossible, one is interested in bounds for Dp '.

In the present paper upper and lower bounds for Dp ' are established, which

are essentially best possible. In §2 the main results are stated precisely and the

behavior of inversive congruential generators under the serial test is discussed.

Section 3 contains several auxiliary results. The proof of the main results is

given in §4. The methods of proof rely heavily on Weil-Stepanov bounds for

rational exponential sums. Extensive background material on exponential sums

can be found in [24].

2. Main results

Theorem 1. Let 2 < k < p. Then the discrepancy Dp ' for any inversive con-

gruential generator satisfies

Dpk) < 2p~x'2 (ik-l) ßlogp + 7~y + l\+ kp~x.

Theorem 2. Let P < t < I. Then there exist more than Ap(t)(p-l) valuesof a £

Z* such that the discrepancy Dp for any corresponding inversive congruential

generator satisfies

Up   ~2in + 2)P

for all dimensions k>2, where

(l-t2)p
AP(t) =

pw     (4-t2)p + l2pl'2 + 9'

Theorem 1 shows that Dp ' = 0(p~ xl2(logp)k) for any inversive congruential

generator, where the implied constant is absolute. It should be observed that this

bound is independent not only of the specific choice of the parameters a, b in

the inversive congruential method, but also of the parameters «2, ... , nk . This

is a remarkable contrast to the linear congruential method, where the behavior

under the serial test strongly depends on these quantities (and on the dimension

k).
Theorem 2 implies that a positive proportion of the inversive congruential

generators has a discrepancy Dp ' which is at least of the order of magnitude

p~xl2 for all dimensions k > 2. Therefore the upper bound in Theorem 1 is

in general best possible up to the logarithmic factor.

Theorems 1 and 2 show that in the inversive congruential method the dis-

crepancy Dp ' has on the average an order of magnitude between p~x¡2 and
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p~x¡2(logp)k . It is in this range of magnitudes where one also finds the discrep-

ancy of p independent and uniformly distributed random points from [0, l)k ,

which should be roughly /7~1/2(loglog/?)1/2 according to the law of the iterated

logarithm for discrepancies (cf. [22]). In this sense, inversive congruential pseu-

dorandom numbers model true random numbers very closely.

3. Auxiliary results

First, some further notation is necessary. For integers k > 1 and q > 2 let

Ckiq) be the set of all nonzero lattice points (hx,..., hk) £ Zk with -q/2 <

hj < q/2 for 1 < j < k . Put

(I for« = 0,

r{h>q) = \qsin*-f   forheCxiq),

and define
k

ri\i,q) = ]Jrihj,q)
j=i

for h = («i, ... , hk) £ Ckiq). For t £ R the abbreviation e(/) = e2n" is used,

for integers z we put %(z) = e(z/p), and u • v stands for the standard inner

product of u, v £ Rk .

Below, four known results are stated. The first two lemmas follow from

Lemmas 2.2 and 2.3 in [27], the third lemma is a special case of a classical

result of Weil [39] (cf. [32, 38]), and the last lemma is a special version of

Lemma 1 in [33].

Lemma 1. Let N > 1 and q > 2 be integers. Suppose that yo, yi, • ■ • , y/v-i £

Zk. Then the discrepancy of the points tn = q~xyn £ [0, l)k for P < n < N

satisfies

a)

N-l

5>(h-tn)
«=0

D/v(to,t1,...,tJV_1)<^ + l   £   -1-

h€Ck(q)    V    '

Lemma 2. Let q > 2 be an integer. Then

^        1 2, 2
,*-"   r(h,q)     n 5
h€C,(q)    V       H>

Lemma 3. Let P, Q be polynomials over the finite field Zp with 1 < deg(ö) <

deg(P) < p. Let r denote the number of distinct poles of PQ in the alge-

braic closure of Zp (including the point at infinity) and let mx, ... , mr be the

multiplicities of the poles. Then

Y        X(P(z)Q(z))
z€Zp

<2(z)=É0 (modp)

<[r-2 + Y,mi)p 1/2

/=1

Lemma 4. The discrepancy of N arbitrary points to, ti, ... , t^-i € [0, l)k

satisfies
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-Djv(to, ti, ... , t/y_i) >
1

£e(h.t„;
n=0

2in + 2)\hxh2\N

for any lattice point h = («!, «2, 0, ... , 0) £ Zk with «i«2 ^ 0.

Lemmas 1 and 4 show that the exponential sums 5(h) = z^„eZ e(h>x„) for

h e Ck(p) are the crucial quantities for the analysis of the discrepancy Dp '.

Put 7(h) = {1 < ; < k\hj ¿ 0} for h = (hx, ... , hk) £ Ck(p). The following
technical result is used for the proof of Theorems 1 and 2.

Lemma 5. Let h e Ck(p). Then |5(h)| < m(2px'2 + 1) - (2p1/2 - 1), where m

denotes the number of nonzero coordinates of h.

Proof. The definition of an inversive congruential sequence implies that

S(h)=£*     £ hjia(n + nj) + b)

n€Zp       \jeJ(h)

for h = («i, ... , hk) £ Ckip). If m = 1, then

5(h) = £*(z) = 0,
z€Z„

which proves the desired inequality. From now on, m > 2 is assumed. Put

N(h) = {« £ Zp\a(n + nj) + b = P   (mod p) for some j £ /(h)}.

Then one obtains

|5(h)| < m + £  *     £ hMn + nA + *)
neZp        V'€/(h)

n$N(h)

= m +

n€Zp
n$N(h)       \

£ hj  I] (a(n + n,) + b)
j€J(h)      /e/(h)

W (a(n + n¡) + b)
<jeJ(h)

Now, let jo £ 7(h) be fixed and put

Z(h) = {a(njo-nj)£Zp\J£j(h)}.
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Then the transformation z = a(n + «_,-„) + b yields

(I
£*|5(h)|<m +

\

£ «j■ \ [ (z + ain¡ - nh))
zez„

:£Z(h)       \ \
j€J(k)       l€J(h)

Vj !

= m + £*

(

zez,
z£Z(h)       \      \

n (z+a(nj - nJo))
uey(h)

£ hj   n   (a(n/-»>0)z+i;
je/(h)      /ej(h)

/ÍÍ/.Á} /

[   (fl(«7 - «7o)Z + !

. jey(h)
/;

<m + 1 +

with the polynomials

P(z) = z

£      X(P(z)Q(z))
z€Zp

z(j?Z(h)\{0}

/

£      «, (iZ(«/-«;o)Z+l)

je/(h)        /e/(h)
/ÍÍJ.Jo}

and
ß(z)=    [J   («(«;-«,„)z+i;

jey(h)

for z £ Zp . Since deg^) = m and deg(Q) = m — 1 > 1, Lemma 3 can be

applied with r = deg(ß) + 1 = m and mx = ■ ■ ■ = mr = 1, which implies that

|5(h)| < «i + 1 + (2m - 2)px<2, i.e., the desired result.   D

Finally, some further prerequisites are necessary in order to prove Theorem

2. First, a short calculation and the transformation z = n + a~b (mod p) show

that 5(h) = K„2ia) for h = (1, -1, 0,..., 0) € Zk , where

Kyic)= £^(c(z-(zTy)))
zez,,

for c £ Z* and y £Z*p. Hence, Lemma 5 implies that |Äy(c)| < 2p1/2 + 3 for

c£Z*p and y £ Z*p .

Lemma 6. Let y £ Z*. Then

"£   \KyiC)\2 > P(P -  I) .
cez*
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Proof. Easy calculations show that

J2\Ky(c)\2=Y,   £ xiciy~WTY)-^ + 77+T)))
cez; c€z; y,zezp

=   £   £ X(c(y -iy + y)-z + iz + y))) - p2

y, zeZp c€Z„

= p\{iy, z)£Z2\y-iy + y) = z-iz + y) imodp)}\-p2

>p\{iy, z)£Z2p\y = zory = -iz + y) imodp)}\-p2

>pi2p-l)-p2=pip-l).   G

4. Proof of the main results

Proof of Theorem 1. First, Lemma 1 is applied with N = q = p and t„ = x„

for 0 < « < p . This yields

DpkUk-+l-

P     P
y h€Ck<j>)

V,    r(h-f{^

- + -£    £     £ -tt^tIswi.p    p l^,       ¿.^        z^   r(h,p)'
^ m=l   JC{l,...,k]   heCk{f>)    K    ,y'

\J\=m       J(\\)=J

m=l x    7    VAeC,^)    v    ' l

Therefore, Lemma 2 implies that

^)<^ + ¿£(m(2p1/2+l)-(2p'/2-l))Q^logp + |)W

^i/2+i)K^og/,+i)0iog/,+O"1

-(2y/2-l)(glog, + I)fc-l))

_k_    1

2^-'/2 Uk - 1) (Jlog/> + Z)     + 1 j  + (k - l)p~X

k-l

-'■' (§*>+s) " (*"2 -k (i"*'+ !) - (I'°8'+D)

<2p-'/2((A:-l)^logp + ^   +i\+kp-x

which yields the desired result, since pxl2 - \ logp - •$, > 0.   D
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Proof of Theorem 2. First, Lemma 4 is applied with N = p, tn = x„ for

0<« <p,and h = (l, -1,0, ... , 0) € Z* . This yields

D'^ sorb»1**001-
Now, it is proved by contradiction that for every fixed y e Z* and 0 <

í < 1 there exist more than Ap(t)(p - 1) values of c £ Z* such that

|ATj,(c)| > tpxl2, which completes the proof. Suppose that |AT7(c)| > tpxl2

for at most Ap(t)ip - 1) values of c £ Z*. Then \Kyic)\ < tpxl2 for at least

(1 - APit))ip - 1) values ofceZJ. Since \Kyic)\ < 2px<2 + 3 for all c £ Zp ,
it follows that

Y, \Kyic)\2 < (1 - APit))ip - l)t2p + Ap(t)(p - l)i2px'2 + 3)2 = pip - 1),
c€z;

which is a contradiction to Lemma 6.   D
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