
Biostatistics (2004),5, 2, pp. 249–261
Printed in Great Britain

Statistical inference and model selection for the
1861 Hagelloch measles epidemic

PETER J. NEAL†, GARETH O. ROBERTS

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK
P.Neal-2@umist.ac.uk

SUMMARY
A stochastic epidemic model is proposed which incorporates heterogeneity in the spread of a disease

through a population. In particular, three factors are considered: the spatial location of an individual’s
home and the household and school class to which the individual belongs. The model is applied to an
extremely informative measles data set and the model is compared with nested models, which incorporate
some, but not all, of the aforementioned factors. A reversible jump Markov chain Monte Carlo algorithm
is then introduced which assists in selecting the most appropriate model to fit the data.
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1. INTRODUCTION

The statistical analysis of temporal infectious disease data is often complicated by a lack of complete
data. Therefore it is crucial to make the most of ‘complete’ data sets in order to try to understand infection
paths, and to devise effective control strategies (for example, vaccination policies). One such data set
where the data are far more ‘complete’ than usual is the Hagelloch data set of Pfeilsticker (1863).

This data set concerns a severe outbreak of measles in an isolated German village (Hagelloch) in the
winter of 1861. The last previous measles outbreak in Hagelloch occurred in the winter of 1847, and this
suggests that only those children born after 1847 are susceptible to measles. This conjecture is supported
by the data since 185 out of the 197 children under the age of 14 were infected, whilst only three (all of
whom were aged either 14 or 15 and had not previously contracted measles) out of the remaining 380
village inhabitants are infected. Pfeilsticker also provides limited information about the 12 children under
the age of 14 not infected during the course of the epidemic. Seven were infants under the age of twelve
months and were therefore presumably carrying placental immunity. Three children were kept totally
isolated during the course of the epidemic, one child was aged two years old (and therefore did not attend
the school) and the final child was an immigrant who had previously had measles. We shall therefore
assume that the total susceptible population became infected. This is a reasonable assumption which is
necessitated by the lack of data about the uninfected members of the population (the vast majority of
whom were almost certainly immune to infection). For the same reason we shall ignore the interactions in
the population between those infected and the remaining two-thirds of the population. This assumption is
not as unreasonable as at first it may seem since the epidemic is restricted to children, of whom over 90%
are infected. Therefore we restrict the population of interest to the children within the village and ignore
the adults.
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The data set has previously been studied by Lawson and Leimich (2000). Their approach is based
on methods developed in spatial epidemiology and the model is fitted using a proportional hazards
approximation. We take a very different approach using a stochastic epidemic model (see, for example,
O’Neill and Roberts (1999)). The specific scientific question of interest is the significance of the spatial
effect in the transmission mechanism. However, the methodology developed here can be used more
generally to explore various important features of the transmission of infection.

Usually, temporal infectious disease data only give information about the appearance of first visible
symptoms (e.g. the appearance of a rash for measles). The Hagelloch data set, by contrast, is extremely
rich. For each infected individual the following information was obtained by Pfeilsticker: name, age (in
years), sex, date of first sign of symptoms, date rash appeared, class of child at the village school, date of
death (where appropriate), most likely source of infection, number of days between first sign of symptoms
in infector (most likely source of infection) and infected, complications due to other diseases, location of
the individual’s home, number of cases within family, maximum temperature and day of maximum fever
(days after rash appears).

By exploiting this unusually rich data-set, we wish to investigate which factors are the most important
in the spread of the disease. The period when an individual is infectious is of particular importance. In
accordance with usual practice for measles, we assume that each individual is infectious from some time
before the first sign of symptoms to some time after the appearance of the measles rash. (Typically the first
symptoms of measles are Koplik spots which appear on the inside of the cheek.) Further, we assume that
an individual is equally infectious throughout their infectious period. This is a questionable assumption
since it is well known that an individual’s infectivity varies during their infectious period. However, we
make the assumption to avoid the model becoming over-complicated. For ease of exposition, initially we
do not include latent periods in the model. The latent period for measles is approximately a week in length,
the time from infection until the individual becomes infectious. As we shall see later the results obtained
with latent periods included are very similar to those obtained without latent periods. We consider both
fixed length and unknown (imputed) infectious periods.

The three factors we consider in the model beyond the infection times (appearance of symptoms and
rash) are the household and school class (if any) to which an individual belongs and the distance between
the different households. We have chosen to omit the other factors for the following reasons. The day of
maximum fever (and the corresponding maximum temperature) should provide a good indication of how
long an individual is infectious after the appearance of the rash. However, this is complicated by more
than 50% missing data and the data which are known are often distorted by the presence of other diseases.
The age and sex of an individual are important in determining their mixing patterns with the rest of the
population. With regard to age, a general grouping is provided by school class, which suffices. The data
suggests that characteristics of the disease such as susceptibility, infectiousness, severity of disease, etc,
do not depend upon the sex of an individual. Therefore we chose to omit the sex of an individual from the
model. Our analysis of the data does not require us to assign a particular individual as the infector of a
given individual.

2. MODEL

Let n andm denote the total size of the population and the eventual number infected, respectively.
Label the individuals who are infected asi = 1, 2, . . . , m and those who remain susceptible throughout
the course of the epidemic asi = m + 1, m + 2, . . . , n. (Note that for the Hagelloch data, we assume
that m = n = 188.) For individuali , let Si and Qi denote the dates upon which the symptoms and the
rash first appear, respectively. LetIi denote the time at which individuali becomes infected and letRi

denote the end of individuali ’s infectious period, i.e. when individuali is removed. Note thatSi andQi
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are known whileIi and Ri are unknown and need to be imputed. We assume that there exists a constant
d0 ∈ N such thatRi = min{Di , Qi + d0} whereDi denotes the date of individuali ’s death. ForSi − Ii

we consider two models. In the first model we assume that there existsd1 ∈ N such thatSi − Ii = d1.
Therefore the dates,I = (I1, I2, . . . , In), upon which the individuals are infected are assumed known
given the data. In the second model we assume that the infection times are unknown, and therefore we
treatI as parameters in the model. Furthermore, we shall assume thatSi − Ii ∼ Gam(ω, δ) whereω and
δ are unknown parameters. Fork = m + 1, m + 2, . . . , n, setIk = ∞.

We assume that individual,i say, exerts a constant infection rate throughout the course of their
infectious period (i.e. over the time interval(Ii , Ri ]). We assume that, while infectious, individuali makes
infectious contacts with individualj , say, at rateαi j per day whereαi j depends upon the relationship
between individualsi and j . In other words, the probability that individuali fails to make an infectious
contact with individualj on any given day is exp(−αi j ). In particular, we assume that

αi j = βH 1{ρ(i, j)=0} + β1
C1{Li =L j =1} + β2

C1{Li =L j =2} + βG exp(−θρ(i, j)) (2.1)

where βH , β1
C , β2

C βG and θ are non-negative parameters of interest,ρ(i, j) denotes the distance
between the households of individualsi and j and Li denotes the school classroom (either 1 or 2)
to which individual i belongs andLi = 0 if individual i does not attend the school. ThereforeβH ,
β1

C and β2
C denote the within-household, within-classroom 1 and within-classroom 2 infection rates,

respectively. (Preliminary analysis of the data suggest a different within-classroom infection rate for
each of the two classrooms.) AlsoβG denotes the global infection rate whilstθ governs the extent to
which distance between individuals reduces the global transmission rate. Therefore the infection rate
between two individuals can be split into three categories: household, spatial (global) and classroom.
The household and classroom effects are self-explanatory, in that we assume there is increased contact
between two individuals if they share the same house or classroom. In particular, we assume that there
is a ‘nugget’ household effect on top of the spatial effect. This seems a reasonable assumption owing to
the relatively cramped living conditions (by modern standards) in the middle of the nineteenth century.
The spatial component needs a bit more consideration. The choice ofβG exp(−θρ(i, j)) to model the
spatial component in the disease spread is somewhat arbitrary, but does seem qualitatively reasonable. By
choosing an exponential decay for the spatial infection, we allow global/spatial infection throughout the
whole population, whilst maintaining a spatial element to the spread of the disease. In Section 3, we shall
consider two alternative models for the spatial component, and we will show that all three different spatial
components considered produce similar qualitative results.

Clearly,θ is highly dependent on the distance measure used. The households were plotted by Oesterle
on a square reference grid approximately 100× 100 units (Oesterle, 1992). (The length of each unit
is 2.5 m.) We rescale so that the reference grid is approximately a unit square and give a plot of the
households in Figure 1. In particular, we rescale so that each unit is 250 metres in length.

Let g(x) (x � 0) be the probability density function forS − I and letγ denote the parameters of the
densityg(·). The parametersγ may either be known or unknown. Then

f (I, R|γ, θ, β, Z, P, Iκ) =
∏
j �=κ




∑
i∈Y j

αi j


 exp(−A)

m∏
i=1

g(Si − Ii ) (2.2)

where κ denotes the initial infective (i.e.Iκ = min1� j�m{I j }), Y j = {k : Ik < I j � Rk},
Z = (D, L, S, Q) (the infectious periods data),β = (βH , β1

C , β2
C , βG), A = ∑m

j=1
∑n

k=1 α jk{(R j ∧
Ik) − (I j ∧ Ik)} and Pi (1 � i � n) denotes the spatial position of individuali ’s household. Therefore
Y j (1 � j � m) denotes the set of individuals who are infectious when individualj becomes infected
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Fig. 1. Location of the households in Hagelloch containing at least one infected individual with locations on the
approximate unit square.

andA denotes the total amount of person-to-person infectious pressure observed during the course of the
epidemic.

To each parameterβH , β1
C , β2

C , βG andθ we assign independent Gamma priors, namely,π(ζ ) ∼
Gam(νζ , λζ ) whereζ = βH , β1

C , β2
C , βG , θ . Suppose thatγ comprisesk parametersγ1, γ2, . . . , γk . Then

we assign Gamma priors, namely,π(γi ) ∼ Gam(ν
γ

i , λ
γ

i ) (1 � i � k). Also, if I is unknown, we assign
a prior to Iκ , in particularπ(Iκ) ∝ exp(ε Iκ ) for someε > 0. (Note thatIκ < Q1.) In each iteration we
update each of the parametersγ and the infection timesI. At each iteration we update 18 of the infection
times, updating one infection time at a time. (Updating approximately 10% of the infection times in each
iteration was found to be close to optimal in terms of computing time and convergence of the MCMC
algorithm.) The rationale for single site rather than block updating is given in Neal and Roberts (2003).

Weadopted the following MCMC scheme to simulate from the joint distribution
f (I, R, γ, θ, β, Z, P).

For each of the parametersθ , βH , βG , β1
C andβ2

C , we updated the parameter using random walk
Metropolis with a Gaussian proposal; for example,θ ′ ∼ N (θ, σ ), whereσ is ‘tuned’ to give an overall
acceptance rate of approximately 0.4 (see, for example, Gelmanet al. (1996)). This simple MCMC method
is easy to implement and we found it gave adequate results.

The γ parameters are updated using a Gibbs step where appropriate, or random walk Metropolis
with a Gaussian proposal otherwise. In particular, when the infectious periods are assumed to be Gamma
distributed with parametersω andδ, i.e. Gam(ω, δ), we updateδ using a Gibbs step while updatingω
requires random walk Metropolis.

UpdatingI. Suppose that we are updatingI j . We propose a new valueI ′
j by samplingS j − I ′

j from
its conditional posterior density. Letκ ′ denote the initial infective under the proposed change. Then we
accept the move with probabilitypacc, where

pacc = min

{
1,

∏
j �=κ ′ {∑i∈Y ′

j
αi j }∏

j �=κ{∑i∈Y j
αi j } exp(−(A′ − A)) exp(ε(I ′

κ ′ − Iκ))

}
.

We call the model described above the full model, denotedM . However, we are interested in model
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selection, and in particular, wish to establish which of the parametersθ , βH , β1
C andβ2

C are important.
(Note that we requireβG > 0 for the model to be valid.) Therefore for each of the parametersθ , βH , β1

C
andβ2

C , we used reversible jump (RJ) MCMC (Green (1995)) to move betweenM and sub-models for
which one of the parameters is set equal to 0. LetMX denote the model with parameterX set equal to
0, whereX = θ , βH , β1

C , β2
C . We also number the models one through five with models 1, 2, 3, 4 and

5 corresponding to modelsM , Mθ , MβH , Mβ1
C

and Mβ2
C
, respectively. The models are nested as shown

below.

Mθ (2) MβH (3) Mβ1
C
(4) Mβ2

C
(5).

�������
��� ��

�������

M (1)

The algorithm was then implemented as above except that a model switching step was added. We now
describe how the reversible jump moves were implemented.

Firstly, we consider a move fromM to Mθ (the latter corresponding to homogeneous spatial mixing).
We leave the parametersβH , β1

C andβ2
C as they are. We proposeβ ′

G = βG exp(−τ1θ) for someτ1 � 0.
For the reverse move, we require an auxiliary random variableU . Let U ∼ Exp(τ2) for someτ2 > 0.
Then setθ = u andβ ′

G = βG exp(τ1u). Thenτ1 andτ2 can be chosen so as to optimize mixing between
the two models. The Jacobian for the transformation fromM to Mθ is exp(−τ1θ). Therefore,

α′
i j = βH 1{ρ(i, j)=0} + β1

C1{L(i)=L( j)=1} + β2
C1{L(i)=L( j)=2} + β ′

G ,

and we therefore accept the proposed move with probability

min

{
1, 4

∏
j �=κ

(∑
i∈Y j

α′
i j∑

i∈Y j
αi j

)
exp(−(A′ − A))

τ2 exp(−τ2θ)�(νθ )

λ
νθ

θ θνθ−1 exp(−λθθ)

(
β ′

G

βG

)νβG −1

exp(−λβG (β ′
G − βG))

ζ2

ζ1
e−τ1θ

}
, (2.3)

whereζi (1 � i � 5) denotes the prior assigned to modeli . The factor 4 in (2.3), corresponds to the fact
that if we are currently usingMθ then we will always propose modelM , whilst there is probability1

4 of
proposing a move fromM to Mθ .

Secondly, we consider moves betweenM and MβH , with the parametersβG andθ left unchanged

during the move. We propose(β1
C )′ = β1

C
βH +β1

C +β2
C

β1
C +β2

C
and(β2

C )′ = β2
C

βH +β1
C +β2

C

β1
C +β2

C
. For the reverse move

we use an auxiliary random variableU ∼ U (0, 1). Then we set(β1
C )′ = uβ1

C , (β2
C )′ = uβ2

C andβ ′
H =

(1 − u)(β1
C + β2

C ). The Jacobian for the transformation fromM to MβH is 1
β1

C +β2
C

. Therefore

α′
i j = (β1

C )′1{L(i)=L( j)=1} + (β2
C )′1{L(i)=L( j)=2} + βG exp(−θρ(i, j)),

and we therefore accept the proposed move with probability

min


1, 4

∏
j �=κ

(∑
i∈Y j

α′
i j∑

i∈Y j
αi j

)
exp(−(A′ − A))

2∏
i=1




(
(β i

C )′

β i
C

)ν
βi

C
−1

exp(−λβi
C
((β i

C )′ − β i
C ))




�(νβH )

λ
νβH
βH

β
1−νβH
H exp(λβH βH )

ζ3

ζ1

1

β1
C + β2

C

}
.
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Fig. 2. Histograms for the time spent in each model for fixed and unknown infection times, respectively. The models
are labelled as before (i.e.M , Mθ , MβH , M

β1
C

andM
β2

C
correspond to models 1, 2, 3, 4 and 5, respectively).

A similar procedure is used for moves betweenM and Mβ1
C

(and alsoM and Mβ2
C
). We propose

β ′
H = βH

βH +β1
C +β2

C

βH +β2
C

and (β2
C )′ = β2

C
βH +β1

C +β2
C

βH +β2
C

. For the reverse move we useU ∼ U (0, 1) and set

β ′
H = uβH , (β2

C )′ = uβ2
C and(β1

C )′ = (1 − u)(βH + β2
C ).

3. RESULTS

3.1 Hagelloch data set

We began by running the algorithm for the Hagelloch data set, firstly with fixed infection times and then
with unknown (imputed) infection times. The results for fixed and unknown infection times are very
similar especially with regards to model selection as demonstrated in Figures 2 and 3 below. In both
cases we obtained samples of size 20 000 taken after every five iterations with a burn-in period of 1000
iterations. For each of the parametersω, δ and Iκ we assigned an Exp(1) prior when necessary. We set
π(θ) ∼ Exp(0.1) andπ(β) ∼ Exp(10) for β = βH , βG , β1

C , β2
C . We assign a uniform prior for the

models, i.e.ζi = 1
5 (1 � i � 5). We taked0 = 3, that is, an individual is infectious for three days after

the appearance of the rash (unless they die). Also for fixed infection times we taked1 = 1: that is, an
individual becomes infectious a day before the appearance of symptoms (the results are robust to different
choices ofd1, for exampled1 = 5 produces very similar results). These assumptions ond0 andd1 are
reasonable for measles. For the model selection step, we takeτ1 = 0 andτ2 = 1. Thus, when moving
between modelsM and Mθ , βG is left unchanged andθ (where necessary) is drawn from an Exp(1).
The resulting reversible jump step exhibited excellent mixing whilst mixing over the parameter space was
more than adequate.

The results give most support for the full model. However, there is also noticeable support forMβH ,
Mβ2

C
andMθ . There is very strong evidence thatβ1

C > 0: that is, that classroom 1 plays a crucial role in
the spread of the disease.

3.2 Model extensions

We begin by presenting two alternatives to the exponential spatial component: namely, the Cauchy and
discrete spatial components. The MCMC procedure is the same as that presented in Section 2 with the only
difference being that (2.1) is replaced by (3.1) and (3.2) for the Cauchy and discrete spatial components,
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Fig. 3. Density plots for the parametersθ , βG , βH , β1
C andβ2

C for both fixed (solid line) and unknown (dashed line)
infection times, conditional on the full model.

respectively, where

αi j = βH 1{ρ(i, j)=0} + β1
C1{Li =L j =1} + β2

C1{Li =L j =2} + βG(1 + θρ(i, j)2)−1 (3.1)

and

αi j = βH 1{ρ(i, j)=0} + β1
C1{Li =L j =1} + β2

C1{Li =L j =2} + βL1{ρ(i, j)<θ} + βG . (3.2)

The Cauchy spatial component is self-explanatory. The discrete spatial component on the other hand
requires a bit more explanation.

The discrete spatial component comprises household, local and global infection rates,βH , βL andβG ,
respectively. We allowθ (the measure of how close two households need to be, to be considered local) to
be a random variable and we shall setπ(θ) ∼ U (0.1, 0.4). Therefore the distance which constitutes local
ranges from 25 to 100 m. Note that settingβL = 0 and/orθ = 0 eliminates the spatial component. We
shall consider the following nested models withMβL corresponding to no spatial effect:

MβL (2) MβH (3) Mβ1
C
(4) Mβ2

C
(5).

�������
���

�
�

�������

M (1)
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Fig. 4. Histograms for the time spent in each model for Cauchy and discrete spatial components, respectively.
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Fig. 5. Histograms for the time spent in each model for the Hagelloch data set without and with latent periods,
respectively.

Therefore, once again model 2 represents no spatial effect. The model switching steps betweenM
and each ofMβH , Mβ1

C
and Mβ2

C
are as in Section 2. For a move fromM to MβL , we proposeβ ′

G =
βG

βG+βL+βH
βG+βH

andβ ′
H = βH

βG+βL+βH
βG+βH

. For the reverse move we again useU ∼ U (0, 1) as an auxiliary
random variable settingβ ′

G = uβG , β ′
H = uβH andβ ′

L = (1 − u)(βG + βH ). The Jacobian for the
transformation and, hence, the acceptance probability of the move are then straightforward to calculate.

Obviously, the interpretation of the spatial parameter(s)θ (andβL ) varies from model to model but in
terms of model selection and, in particular, the importance of the spatial component, the results are similar
as demonstrated in Figure 4. For both models, we setπ(β) ∼ Exp(10) for β = βH , βG , β1

C , β2
C , (βL for

the discrete model) and we setπ(θ) ∼ Exp(0.1) for the Cauchy model.
Similar results were obtained with other spatial components we considered. Therefore, since the model

selection question is robust to the choice of model for the spatial component, we focus our further analysis
on the model of Section 2.

The introduction of a latent period into the original model is very straightforward. As an example,
we introduce a fixed length latent period of a week, adjusted where necessary to ensure that the model is
consistent with the data, into the model with fixed infectious periods. The results obtained are very similar
to those obtained previously. This is demonstrated in Figure 5. Similar results are again obtained if the
latent period and/or infectious periods are unknown and need to be imputed.
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Table 1.True model parameters for simulated
data sets

Data set θ βH βG β1
C β2

C
SD1 5 0.05 0.05 0.06 0.04
SD2 0 0.05 0.025 0.075 0.05
SD3 5 0 0.075 0.075 0.05
SD4 5 0.1 0.05 0 0.05
SD5 5 0.075 0.075 0.075 0

3.3 Comparisons with simulated data

Wenow compare the results from the Hagelloch data set with the results obtained from five simulated data
sets, thereby allowing us to assess the ability of our methodology to distinguish between models given the
observed data set. In each of the simulated data sets we structure the population as in the Hagelloch data
set. Then forX = 1, 2, 3, 4, 5, we simulate a data set withX as the true model and label the data set SDX .
The model parameters were chosen and the simulations run to ensure that the entire susceptible population
was infected as in the case of Hagelloch. We used fixed (known) infection times withd0 = 3, d1 = 1 and
Qi − Si (1 � i � m) drawn uniformly at random from{1, 2, 3, 4}. Simulations where infection times
were unknown (imputed) produced similar results.

The parameter values in Table 1 are generally higher than the means of the parameter posterior
densities given by Figure 3. The primary reason for this is that the posterior densities in Figure 3 are
for the full modelM1, while the simulations are done (with the exception of SD1) using the sub-models
M2–M5.

The algorithms were again run to obtain samples of size 20 000 taken after five iterations with a burn-
in period of 1000 iterations. We assign a uniform prior for the models. We setπ(θ) ∼ Exp(0.1) and
π(β) ∼ Exp(10) for β = βG , βH , β1

C , β2
C . (Therefore we use the same priors as in Section 3.1.) Also, we

setτ1 = 0 andτ2 = 1 as before. The reversible jump step again exhibits excellent mixing.
Figure 6 shows that the algorithm is very good at detecting the ‘correct’ model except in the caseβH

(SD3). In SD1, more informative priors give increasing support for the full model, since the parameter
priors that we have chosen are fairly uninformative and such choice of priors penalize the full model. The
results of the simulation study are very promising and give further credence for using the full model for
the Hagelloch data set.

One major concern with the algorithm, which we now address, is its apparent inability to detect that
βH = 0 in SD3. This is due to problems of identification within the model. The absence of a classroom 1
effect (i.e.β1

C = 0) reduces the chance that two individuals in classroom 1 are infected at the same time,
especially if they live far apart. Therefore it is fairly easy to detect whetherβ1

C = 0 or not. The same
argument applies for classroom 2. Suppose that we were to assume thatβ1

C = β2
C = βC , say. Then it is

even easier to detect the absence of a school parameter (i.e.βC = 0) since the spread of the epidemic is
then purely spatial. (This is particularly noticeable ifθ is large.) On the other hand ifθ = 0, there is no
spatial spread of the disease. The absence of a spatial parameter leads to an overlapping groups model
with (uniform) global infection (see, for example, Becker and Dietz (1995)). However, the absence of a
household parameter (i.e.βH = 0) does not alter the spatial nature of the disease spread. Also, ifβG

andθ are large, there is a high within-household infection rate, similar to that found in the full model. In
other words, the parametersβG andθ can often compensate forβH = 0 to ‘create’ a household effect.
The classroom mixing is left unaltered from the full model, which implies that the epidemics produced by
modelsM andMβH are very similar. Therefore unless the priors for either the parameters or the models
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Fig. 6. Histograms for the time spent in each model for SD1, SD2, SD3, SD4 and SD5, respectively.

encourage the algorithm to choose modelMβH , the algorithm will tend to choose the full modelM .
We therefore considered a model which completely separates out the household infection from the

spatial infection. In particular, we set

αi j = βH 1{ρ(i, j)=0} + βG1{ρ(i, j)�=0} exp(−θρ(i, j)) +
2∑

k=1

βk
C1{Li =L j =k} (1 � i, j � n). (3.3)

Then, withαi j given by (3.3), we simulated a data set, SD6, withβH = 0, βG = 0.075,β1
C = 0.075,

β2
C = 0.05 andθ = 5. We ran the algorithm for both the Hagelloch data set and SD6 withαi j of the form

given in (3.3). The same priors as before were used. The results are similar to those obtained before in
terms of model selection. This is shown to be the case in Figure 7.

By considering SD6, we explain why the above results are similar to those previously obtained.
Consider three individualsi , j andk, say, and suppose thati and j belong to the same household and
k belongs to a neighbouring household. Thus,i cannot infectj unless they belong to the same class at
school. Suppose that in SD6,i infectsk andk infects j such thati is still infectious whenj is infected. At
the height of all the simulated epidemics (SD1–SD6), 65–70% of the population are infectious, and the
above situation therefore occurs frequently. That is, even in the absence of household infection, members
of the same household will often be infectious at the same time. This is accentuated if members of the
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Fig. 7. Histograms for the time spent in each model for the Hagelloch data set and SD6, respectively, withαi j given
by (3.3).

household belong to the same class at school. The algorithm will therefore ‘assign’ the infection ofj to
i rather than tok. Thus, even in the complete absence of household infection, the model setup and the
severity of the epidemic are such that the algorithm will often choose to incorporate household infection.

Unfortunately, there does not seem any way around this problem. All the spatial transmission
mechanisms have difficulty differentiating between a true household effect and a high local infection
rate. Despite the problems of identifiability associated with the household effect it is important to include
it in the model since the Hagelloch data certainly suggest that the households play an important role in the
spread of the disease. In the absence of a specific household effect (i.e.βH = 0), the spatial effect needs
to compensate for this to ‘create’ a household effect. Therefore ifβH = 0, θ > 0 out of necessity and the
question of the significance of the spatial effect in the transmission of the measles is redundant.

3.4 Control strategies

Clearly, with any disease it is useful to know what effect control strategies have in limiting the size and
spread of an epidemic. The most commonly applied control strategies are the immunization of susceptibles
and the quarantining of infectives. However, for Hagelloch it would be interesting to study the effect
of various control strategies: in particular, closure of the school for the duration of the epidemic. We
simulated 5000 epidemics using model parameters from the MCMC output for the full modelM . Then,
to assess the effect of closing the school, we simulated 5000 epidemics again using the same model
parameters except we setβ1

C = β2
C = 0. The results are presented in Figure 8 for epidemics which infect

in excess of 165 people. (In both cases over 90% of the epidemics infect at least 165 individuals.) In
the uncontrolled case 139 of epidemics failed to infect more than 10 people compared with 225 in the
controlled case. The (estimated) mean size of an epidemic is reduced from 177.9 in the uncontrolled case
to 169.2 in the controlled case.

The results are not as dramatic as one might hope. While there is definitely a classroom effect in the
spread of the epidemic through Hagelloch, the spatial and household infection rates are sufficient to drive
the epidemic process in their own right, so that, although the size of the outbreak is not dramatically
reduced by closing the school, the nature of the spread of the epidemic is very different being purely
spatially driven. The closure of the school accompanied by halving the global infection rate (i.e. setting
βG = 0.5βG) has a far more dramatic effect on the epidemic. In that case, the probability that the epidemic
fails to infect at least 10 people is 0.243 and the mean size of an epidemic is 104.6.
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Fig. 8. Histograms of all outbreaks infecting at least 165 individuals from 5000 simulations for both uncontrolled and
controlled epidemics, respectively.

4. DISCUSSION

We have considered the question of model selection for an extremely rich epidemic data set. In
particular, we have studied which of spatial location, households and classrooms are important in the
transmission of measles throughout the population. Our conclusion is that all three effects are important,
to varying degrees, in the transmission of the disease. In particular, there is definitely a classroom 1 effect.

The results of the study into model selection are shown to be robust to reasonable changes in the
model, such as inclusion of latent periods or unknown (imputed) infectious periods. This is due to the data
being very informative about the spread of measles through the population.

The reversible jump step is easy to implement. We note that even a straightforward dimension-
swapping step produces excellent mixing. More generally, characteristics of the epidemic model can be
used to ensure that the MCMC algorithm moves readily between models.

The epidemic is far more severe than we usually observe, in that the entire susceptible population is
assumed to be eventually infected. However, our approach readily extends to the situation where some
of the individuals remain susceptible throughout the course of the epidemic. We would then require data
on the household location and the school classroom of those individuals who remain susceptible. The
likelihood in (2.2) incorporates susceptible individuals, by takingIk = ∞ for k = m + 1, m + 2, . . . , n.

It is therefore clear that the methods introduced and developed in this paper can be applied to a
wide range of epidemic models. The complexity of the model that can be analysed will depend on how
informative the data are and how easily missing data can be imputed.

As is the case with many variable dimension parameter problems, choosing priors which do not unduly
prejudice in favour of one or other model, requires care. The study of simulated data sets is an important
tool for understanding the statistical information contained within the data.

ACKNOWLEDGEMENTS

Both authors would like to thank Niels Becker for both bringing the Hagelloch data to the authors’
attention and for providing the data set. The work by Heike Oesterle to assemble the data set from the
original thesis of Pfeilsticker and other historical records is gratefully acknowledged. The authors would
also like to thank Philip O’Neill, the referee and associate editor for their helpful comments on earlier
versions of the paper which have greatly improved the presentation of the paper. This research was
supported by the UK Engineering and Physical Sciences Research Council, under research grant number
GR/M62723.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/5/2/249/237371 by guest on 21 August 2022



Statistical inference and model selection 261

REFERENCES

BECKER, N. G. AND DIETZ, K. (1995). The effect of household distribution on transmission and control of highly
infectious diseases.Math. Bioscience 127, 207–219.

GELMAN , A., ROBERTS, G. O.AND GILKS, W. R. (1996). Efficient Metropolis jumping rules.Bayesian Statistics
5, 599–608.

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
Biometrika 82, 711–732.

LAWSON, A. B. AND LEIMICH, P. (2000). Approaches to space-time modelling of infectious disease behaviour.IMA
Journal of Mathematics Applied in Medicine and Biology 17, 1–13.

NEAL, P. J.AND ROBERTS, G. O. (2003). Optimal Scaling for MCMC algorithms. Submitted toAnn. Appl. Prob.

OESTERLE, H. (1992). Statistiche Reanalyse einer Masernepidemie 1861 in Hagelloch, M.D. Thesis, Eberhard-Karls
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