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Abstract 

This review article looks at a small part of the picture of the interre

lationship between statistical theory and computational algorithms, espe

cially the Gibbs sampler and the Accept-Reject algorithm. We pay par

ticular attention to how the methodologies affect and complement each 

other. 
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1 Introduction 

Computations and statistics have always been intertwined. In particular, ap

plied statistics has relied on computing to implement its solutions of real data 

problems. Here we look at another part of the relationship between statistics 

and computation, and examine a small part of how the theories not only are 

intertwined, but how they have influenced each other. 

With the explosion of methods based on Monte Carlo methods, particularly 

those using Markov chain algorithms such as the Gibbs sampler, there has been 

a blurring of the distinction between the statistical model and the algorithmic 

model. This is particularly evident in the examples of Section 3. There, the 

statistical model will typically be a hierarchical model, while the computational 

algorithm will be based on a set of conditional distributions. We will see that 

the manner in which we view the model can have a large impact on the validity 

of the statistical inference. It is therefore important to consider the statistical 

model that underlies the Monte Carlo algorithm. 

We can also turn things around. When one uses a Monte Carlo algorithm 

to do a calculation, it is common to process the output by taking an average. 

However, we should realize that the output from a Monte Carlo algorithm can 

be viewed as data, with the algorithm itself playing the part as a statistical 

model. As such, taking a naive average may not be the most effective way of 

processing the output. In Section 4 we look at this question, and investigate the 

effect of classical decision theory on output from the Accept-Reject algorithm. 

We consider these improvements as a post-simulation processing of a gener

ated sample, which is statistically superior to the original estimator, although 

they may be computationally inferior in taking more computer time. However, 

this latter concern can also be addressed with estimators that offer statistical 

improvement while only requiring a slight increase in computational effort. 

We also emphasize that our approach and, in particular, the optimizations 

involved in the derivation of some of the improved estimators, is based on statis

tical rather than computational principles. The overall goal of the statistician is 

to process samples in an optimal way, and to make the best inference possible. 

To do so requires treating an algorithm as a statistical model, and (as far as 

possible) ignoring the computational issues. 

Another consideration in the interplay of statistical theory and algorithms is 

the prospect of using the structure of the algorithm to more efficiently construct 

an optimal procedure. We illustrate this in Section 5, where we look at three 

examples. These examples use the Gibbs sampler, and show that we can use the 

iterative nature of the algorithm to implement procedures that are sometimes 

computationally feasible and can result in an optimal inference. We end the 

paper with a short discussion section. 
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2 Synthesis 

Given the audience of this presentation, a digression may be in order into the 

Bayesjfrequentist approaches to statistics. The topic of algorithms, particularly 

Monte Carlo algorithms, is a prime example of an area that is best handled 

statistically by a mixture of the Bayesian and frequentist approaches. Moreover, 

it seems that to completely analyze, understand, and optimize the relationship 

between a statistical model, its associated inference, and the algorithm used for 

computations, both Bayesian and frequentist ideas must be used. 

The Bayesian approach provides us with a means of constructing an estima

tor that, when evaluated according to its global risk performance, could result in 

an optimal frequentist estimator. This highlights important features of both the 

Bayesian and frequentist approaches. Although the Bayesian paradigm is well

suited for the construction of possibly optimal estimators, it is less well-suited 

for their global evaluation. The frequentist paradigm is quite complementary, 

as it is well-suited for global evaluations, but is less well-suited for construction. 

We look at two examples, taken from Lehmann and Casella (1997). 

Example 1 Rao-Blackwellizing the Gibbs Sampler. The Gibbs sampler 

(Geman and Geman 1984, Gelfand and Smith 1990) provides a method of com

puting Bayes estimators. These estimators are computed by averaging random 

variables and this averaging is improved if the Rao-Blackwell theorem is ap

plied (Liu, Wong and Kong 1994, 1995). More precisely, in a typical use of 

the Gibbs sampler, our estimand is the actual Bayes estimator, which we are 

computing by generating random variables and averaging them. The validity of 

our method rests on the Ergodic Theorem (Law of Large Numbers). When the 

Rao-Blackwell theorem is applied to these averages, we get a new average with 

the same expectation (the actual value of the estimator) and smaller variance. 

Thus, the calculation of a Bayes estimator is improved using a frequentist 

methodology. Moreover, monitoring convergence of the Gibbs sampler is es

sentially a frequentist problem, so again frequentist techniques can be used to 

improve Bayes estimators. II 

The preceding example shows how frequentist methods can aid a Bayesian 

approach. The reverse is also true. 

Example 2 REML variance estimation. In the one-way random effects 

model 

}ij = j3 + Ui + Eij (j = 1, ... , ni, i = 1, ... , k) (1) 

where j3 is the overall mean, Ui is a random effect, and Eij is error, it is often 

of primary interest to estimate a 2 and a~, the variance of the random effects ui 

and Eij, respectively. Two basic problems must be overcome. 
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(a) Elimination of the effect of f3 from the estimates of a2 and a;. As the 

latter are estimates of dispersion, they should not be affected by a change 

in the mean level. 

(b) Interpretation of possibly negative estimates of variance, which can arise 

from some classical estimation methods (see Searle, et al. 1992, Section 

3.5c). 

Both (a) and (b) can be dealt with using frequentist methodologies. For exam

ple, the effect of f3 can be eliminated by requiring the variance estimates to be 

translation invariant (one derivation of the so-called REML variance estimates; 

see Searle et al. 1992, Section 6.6 and Chapter 9) and the negativity problem 

can be handled by truncation. 

Alternatively, a Bayesian model can eliminate both of these problems in a 

straightforward way. First, the parameter f3 can be integrated out using a prior 

distribution, creating a marginal likelihood. Moreover, Bayes estimates of a2 

and a; will never be negative. 

Note that we are using the Bayesian approach to construct the estimators. 

The evaluation of the estimators, and establishment of any optimality proper

ties, can still be done using a frequentist global risk approach. 

II 

Thus, it is important to view these two approaches as complementary rather 

than adversarial, as together they provide a rich set of tools and techniques for 

the statistician. Moreover, there are situations and problems in which one or 

the other approach is better-suited, or even a combination may be best, so a 

statistician without a command of both approaches may be less than complete. 

3 Algorithms and Statistical Inference 

In this section we look at how an algorithmic approach to a problem has funda

mental repercussion on the statistical inference. In Section 3.1, where we mainly 

give details for the mixed linear model, we will see that approaching a problem 

through a Gibbs sampler can mask posterior impropriety. This can have a pro

found effect on the possible statistical inferences. In the most extreme cases, 

which are in no way pathological, evaluating a statistical model only through a 

Gibbs sampler can lead to erroneous, even nonsensical, inferences. This latter 

point is examined in Section 3.2. 

3.1 How the Algorithm Affects the Posterior 

The model equation of a general linear mixed model is given by 

Y = X/3+Zu+ e 
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where Y is an n x 1 vector of observations, j3 is a p x 1 vector of fixed effects 

(parameters), u is a q x 1 vector ofrandom effects (random variables), X and Z 

are known design matrices whose dimensions are n x p and n x q, respectively, 

and e is an n x 1 vector of residual errors. 

A typical set of error distributions (or priors) for the mixed model has eJa-; ,...., 
Nn(O, Ia-;) and uJa-r, ... , a-'; ,...., Nq(O, D) where u = (u~ u~ ... u~) 1 , ui is qi x 1, 

D = EB£= 1 Iq, a-f, and I:~= 1 qi = q. The r subvectors of u correspond to the r 

different random factors in the experiment. It is also common to put a flat prior 

(Lebesgue measure) on the so-called fixed effects, represented by the vector /3. 
In classical mixed model inference, such an assumption is used in REML, or 

restricted maximum likelihood estimation. As is turns out, the type of prior 

used on {3 has no impact on what follows. 

The variance components themselves, which are often the prime targets of 

inference, are often given power-type priors of the form 

( 21 ( 2)-(b+1) n. a-. b) ex a-. , (3) 

where the ai's and b are known and the following conditional independence as

sumptions are in force: ( 1) given u, Y is conditionally independent of O"f, ... , a-;, 
(2) given a-r, ... , a-;, u is conditionally independent of {3 and a-;, and (3) {3, a-;, 
and a-r, ... , a-; are a priori independent. 

All of these assumptions can be summarized in the hierarchical model 

n({3) ex 1 (4) 

With the increased popularity of Monte Carlo algorithms such as the Gibbs 

sampler, the experimenter tends to pay less attention to the model specified by 

(4), and rather concentrates on the set of full conditionals, which make up the 

input into the Gibbs Markov chain. For our mixed model, these conditionals 

are given by 

(5) 

( 2 ) (( I 2 -1)-1 I ( ) 2 ( I 2 -1)-1) f uJu,y,a-.,{3 =Nq ZZ+a-.D Z y-X/3 ,a-. ZZ+a-.D 

5 



f (/3117Y, r1;, u) = NP ( (X'X) - 1 X' (y- Zu), r1; (X'X) - 1
) 

where 17 = (r1r, ... ,rJ;), 17-i = (rJf, ... ,r1i-1,r1i+1,···,rJ;), IG stands for in
verted gamma and we say that X"' IG(r,s) if fx(t) ex t-r- 1 exp(-1/st) for 

positive t. 
If 2ai :S -qi for some i or 2b :S -n, then at least one of the conditionals 

is improper, since the inverted gamma density is defined only when both pa

rameters are positive (Berger 1985, p. 561). Clearly, one improper conditional 

implies an improper posterior. 

Although it may be tempting to assume that propriety of the conditionals 

in (5) implies propriety of the posterior distribution, this is false. Indeed, there 

are many values of the vector ( a1, az, ... ar, b) which simultaneously yield proper 

conditionals (2ai > -qi Vi and 2b > -n) and an improper posterior. Thus, in 

general, if one incorrectly assumes propriety of a posterior and writes down a 

(false) proportionality statement like 

r 

1r(r1L. · . , r1;, r1;, u, ,Biy) ex f(ylu, r1;, ,B)f(uirJ?, · · · , 0";)1r(,8)1r, (r1; lb) IJ 11"i (r1l iai) 

i=1 
(6) 

where f is used to represent a generic density, it may happen that the Gibbs 

conditionals are all proper densities. Such a situation is very dangerous because, 

if the output from the Gibbs sampler fails to warn the user that the posterior 

is improper (which seems to be the common situation), the result could be an 

inference about a nonexistent posterior distribution. We will return to this point 

in Section 3.2. 

We now state a theorem that will insure the propriety of posterior distribu

tions coming from the model. This theorem is similar, in spirit, to those given 

in Ibrahim and Laud (1991), who consider the use of Jeffreys's prior in gener

alized linear models (GLM's), Dey, Gelfand and Peng (1994), who discuss the 

use of improper priors in overdispersed GLM's, and Natarajan and McCulloch 

(1995), who deal with mixed models for binomial responses. Another related 

paper is Zeger and Karim (1991) who discuss the use of improper priors and 

Gibbs sampling in GLM's. For a proof of the theorem see Hobert and Casella 

(1996). 

Theorem 1 Lett = rank (P xZ) = rank (Z'P xZ) :S q where we define P x = 
(r- X (X'X)- 1 x'). There are two cases: 

1. If t = q or if r = 1 then conditions ( i), ( ii), and (iii) below are necessary 

and sufficient for the propriety of the posterior distribution of model (4). 
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2. If t < q and r > 1 then conditions ( i), ( ii), and (iii) below are sufficient 

for the propriety of the posterior distribution of model (4) while necessary 

conditions result when (ii) is replaced with (ii') qi > -2ai. 

(i) ai < 0 

( ii) qi > q - t - 2ai 

(iii) n + 2 2::: ai + 2b- p > 0. 

Thus, we see that it is relatively easy to check if the posterior distributions 

are proper, being merely a matter of counting categories. Also, conditions {i)

{iii) are intuitively reasonable, and can be interpreted as requiring that we 

have enough observations, in particular enough observations on the variance 

components o}, to adequately control the tails of the posterior (large enough 

qi). 

3.2 How the Algorithm Affects the Inference 

In this section, we look at what can happen to the inference if one uses a 

set of Gibbs conditionals, all of which are proper, that do not correspond to 

a proper posterior. This situation was investigated in detail by Hobert and 

Casella (1995), and we will discuss a few of their findings. 

A set of conditional densities such as those in (5) may, or may not, result in 

a proper posterior. However, the fact that may obscure the impropriety of the 

posterior is the functional compatibility of the set of densities. First consider 

the following simple example from Casella and George (1992). 

Example 3 The pair of exponential conditionals densities 

h(xly) = ye-yx and h(vlx) = xe-xY. 

appear to be a pair of conditional densities, but there is no joint density function 

which will yield h and h as conditional densities. If such a joint density did 

exist, the pair h and h would be compatible. As one does not exist, this pair 

is incompatible. However, the non-integrable function g(x, y) = exp( -xy), if 

treated as a joint density, does yield h and h as its "conditionals". In such a 

case, where no proper g(-) exists, but an improper one does, we say that h and 

h are functionally compatible. This is the dangerous case, as h and fz appear 

to be a set of conditional densities. This is exactly what can happen in (5) if 

the conditions of Theorem 1 are not satisfied. II 

When there are more than two variables, the definitions of compatibility 

and functional compatibility become more involved, but the idea is the same. 

Compatibility of a set of densities was investigated by Besag (1974), Arnold 
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and Press (1989), and Gelman and Speed (1993). They tended to focus on 

conditions under which a set of conditional densities could be used to uniquely 

determine the joint density, assuming that such a density existed. In our case, 

however, we cannot assume that such a joint density exists. 

The major concern for a user of a Gibbs sampler based on a set of functionally 

compatible densities that are not compatible (that is, for which not proper joint 

density exists), is what inference can be made from the resulting Markov chain? 

This is the question investigated in detail by Hobert and Casella (1995), and 
the results are quite negative. They prove the following theorem. 

Theorem 2 Let h, ... , f m be a set of conditional densities on which a Gibbs 

sampler is based. The resulting Markov chain~ is positive recurrent if and only 

if It, ... , f m are compatible. 

Thus, a set of densities that are only functionally compatible will not result 

in a positive recurrent Markov chain. Hence, there cannot be any stationary 

probability distribution for the chain to converge to. Moreover, there is virtually 

no reasonable inference that can be made. Under some additional technical 

conditions (which are satisfied for most typical Gibbs samplers), it can be shown 

that if t : A --+ ~+ is a bounded measurable function for which, given E > 0, 

there exists a compact set C E A such that t (y) :S E V y E cc, then 

liminf.!. ~t(<I>i) = 0 a.s. 
n-HX> n ~ 

i=l 

(7) 

In a typical Gibbs sampling application, one might estimate a posterior den

sity 7r(Oiy) with an average of conditional posterior densities, say 7r(Oiy) ~ 

(1/m) E~ 1 7r(Oiy, .Xi). It will often be the case that the densities 7r(Oiy, .Xi) sat

isfy the conditions on the function t above. Hence, the only place the average 

(1/m) E~ 1 7r(Biy,.Xi) can converge to is 0; or else it will not converge. 

Gibbs samplers based on a set of densities that are not compatible result in 

Markov chains that are null, that is, they are either null recurrent or transient. 

In either case, there is no limiting probability distribution. However, output 

from the Gibbs sampler may produce nice looking pictures of the supposed 

marginal posterior densities, particularly when the posterior density is computed 

as an average of conditional densities. But there can be no actual distribution 

to which the Gibbs picture corresponds. This was the problem with the Gibbs

based conclusions of Wang et al. (1993, 1994) and Gelfand et al. (1990) as they 

used models for which a posterior distribution did not exist. 

An insidious feature of this situation is that a null Gibbs chain may be unde

tectable to the practitioner, that is, the resulting Monte Carlo approximations 

appear completely reasonable. Moreover, not only do the Gibbs averages look 

reasonable, but the actual output from the Markov chain may appear reason

able. (Consider Geyer 1992, who published what he first believed to be proper 
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Gibbs output, but later found that it corresponded to an improper posterior. 

He noted, in proof, that, " ... (the model) produces an improper posterior, so the 

Gibbs sampler apparently converged when there was no stationary distribution 

for it to converge to. A run of one million iterations gave no hint of lack of 

convergence ... ") Thus, it is not surprising that a practitioner can be fooled into 

believing that the Gibbs chain is giving a reasonable inference. 

In order to demonstrate just how reasonable some of these null Gibbs chains 

can appear, we give an example. 

Example 4 The one-way random effects model (1) with a typical set of priors 

is 

Yii 1,8, u, 17; "'N(,8 + Ui, 17;) 

u "'Nk (0,1172 ) 17; "'(17;)-(b+l) (8) 

172 ,..._, ( 172) -(a+l). 

For a simulation study we set k = 7, ni = n = 5, 172 = 5, 17; = 2, and ,8 = 10. 

The vector (u1, ... ,u7) was simulated by generating seven iid N(0,5) random 

variables and the vector (Ell, ... , E75) was simulated by generating 35 iid N(O, 2) 

random variables. We also set a= b = 0, which yields an improper posterior. A 

Gibbs chain was constructed using the conditionals given in (5). We denote the 

chain by ( 172(j), 17;(j), u'(j), ,B(j)), j ::=: 1. At the start, all parameters were set 

to one, except for the overall mean, ,8, which was set to eight. The chain was 

first allowed to run for 15,000 iterations; keep in mind that the word "burn-in" 

is not appropriate for these initial iterations because the chain is null and is 

therefore not converging (in the usual sense). The sole purpose of these initial 

iterations was to provide the chain with ample opportunity to misbehave and 

alert us that something may be wrong; it never did. We chose 15,000 because a 

typical burn-in would probably be in the hundreds (see Gelfand et al. 1990 and 

Wang et al. 1993) so that if our chain did not misbehave during the burn-in 

stage, neither would that of an unknowing experimenter. 

After the initial 15,000 iterations, the output from the 15,001st through the 

16,000th was collected. Figure 1 is a histogram of the 1,000 effect variances 

from the null Gibbs chain, that is, 172(i+l5,ooo), j = 1, 2, ... , 1000, with a Monte 

Carlo approximation of the supposed marginal posterior density superimposed. 

Figure 2 is the analog of Figure 1 for the error variance component. The density 

approximations in Figures 1 and 2 were calculated using the usual "average 

of conditional densities" approximation . All of these plots appear perfectly 

reasonable even though the posterior distribution is improper and the Monte 

Carlo density approximations have almost sure pointwise limits of zero or no 

limit at all. Clearly, if one were unaware of the impropriety, plots like these 

could lead to seriously misleading conclusions. 

This particular posterior is improper due to an infinite amount of mass near 

172 = 0. One might suspect that if the starting value of 172 were near zero, the 
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Histogram of Effect Variances 

110 

55 

0 
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Figure 1: Histogram of the 1000 values of the effect variance from the null Gibbs 

chain, that is, a histogram of 0"2(i+15•000) for j = 1, 2, ... , 1000. Superimposed is 

the approximate (supposed) marginal posterior density of 0"2 . An appropriately 

scaled version of 1To-2IY (tly) is on the ordinate with ton the abscissa. (Actually, 

15 of the 1,000 values of the effect variance, ranging from 21.0 to 45.1, were not 

included in the histogram.) 
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Histogram of Error Variances 
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Figure 2: Histogram of the 1000 values of the error variance from the null Gibbs 

chain, that is, a histogram of IT;(j+15'000) for j = 1, 2, ... , 1000. Superimposed is 

the approximate (supposed) marginal posterior density of 11;. An appropriately 

scaled version of ir,.;ly (tly) is on the ordinate with ton the abscissa. 
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0'2 component of the Gibbs chain would be absorbed at 0. This is not the case, 

however. In fact, the 0'2 component and the random effects components move 

towards zero, but eventually they all return to a reasonable part of the space. 

For example, we started the chain with 0'2 = 10-50 and after 20,000 iterations 

the 0'2 component was approximately 10-122 and the largest magnitude of any 

of the random effects components was about 10-60 . The chain was allowed to 

run for a total of one million iterations, after which all of the components were 

back in a reasonable part of the parameter space. This Gibbs chain behaves 

somewhat like one constructed with the exponential conditionals of Example 3 

in that it leaves the "center" of the space for long periods of time, but eventually 

returns. Such behavior is consistent with null recurrence. II 

Lastly, we note that it seems virtually impossible to detect a null chain 

with a diagnostic measure. Standard "convergence diagnostics" proposed in 

the MCMC literature (see, for example, Raftery and Banfield 1991, Gelman 

and Rubin 1992, Roberts 1992, Tanner 1993, and Robert 1995) assume that 

the chain is positive recurrent and use the output to provide information about 

when Monte Carlo approximations are "close enough" to the true values. They 

are not designed to detect if the Gibbs chain converges (positive recurrence), nor 

even when the Gibbs chain has converged; as it never does. Thus, one should 

not count on "convergence diagnostics" to detect an improper posterior. 

4 Decision Theory and Algorithms 

Now that we have looked at the effect of the algorithm on the statistical infer

ence, we will somewhat turn things around and look at the effect of statistical 

theory on the output from the algorithm. We can consider a Monte Carlo al

gorithm as outputting data about an underlying process, with the goal being 

the construction of an estimate of some feature of the process. In this light, we 

can ask how to best process the data, and answer that question by applying 

statistical principles. In what follows, we apply one of the simplest principles, 

that of Rao-Blackwellization, to the output of an Accept-Reject Algorithm. For 

more details, including applications to the Metropolis-Hastings Algorithm, see 

Casella and Robert (1995, 1996abc). 

4.1 The Accept-Reject Algorithm as a Statistical Model 

The Accept-Reject algorithm is based on the following lemma. 

Lemma 1 Iff and g are two densities, and there exists M < oo such that 

f ( x) :::; M g( x) for every x, the random variable X provided by the algorithm 

1. Simulate Y,...., g(y); 
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2. Simulate U ,....., U[O, 1] and take X = Y if U :::; f(Y)/ M g(Y); otherwise, 

repeat step 1. 

Then X is distributed according to f. 

When viewed statistically, we have the following description of the algorithm. 

A sequence Y1 , Y2 , ... of independent random variables is generated from g along 

with a corresponding sequence U1 , Uz, ... of uniform random variables. Given a 

function h, the Accept-Reject estimator ofT= E{h(X)}, based upon a sample 

X 1 , ... , Xt generated according to Lemma 1, is given by 

(9) 

Note that, conditional on the value t, the random variables X 1 , ... , Xt represent 

an iid sample from the distribution f. The Accept-Reject algorithm is usually 

implemented with a prespecified value oft, and the number of generated Yi 's is 

a random integer N satisfying 

N N-1 

L I(Ui :::; Wi) = t and "' I(U· < w·) = t- 1 ~ t- t ' 

i=1 i=1 

where we define Wi = f(Yi)/Mg(Yi). 

When we evaluate OAR as an estimator ofT, we see an estimator that 

1. Is based on extraneous information {the uniform random variables}. 

2. Is, in fact, a randomized estimator, that scourge of statistics. 

Classical statistical theory tells us that 

1. We need an estimator that does not depend on the observed values of the 

uniform random variables. 

2. If an estimator is constructed by averaging over the uniform random vari

ables, such an estimator will dominate OAR by the Rao-Blackwell theorem. 

It is straightforward to "Rao-Blackwellize" OAR by noting that it can be 

written 

(10) 

so the conditional expectation 

(11) 
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improves upon (10) by the Rao-Blackwell Theorem. 

Details of this calculation are carried out in Casella and Robert (1996a), 

where it is established that 

1 n 

8RB = t L Pih(Yi) (12) 

i=1 

where, fori= 1, · · ·, n- 1, Pi satisfies 

Pi P(Ui::::; wiiN = n, Y1, ... , Yn) 

"'(. . ) rrt.-Z1 Wi. rr~-t 2 1 (1 - Wi.) W tt,··· 12t-2 J= J J= - J 

Wi "' rrt-1 rrn-1 (1 ) 
L...-(ib···,it-1) j=l Wi; j=t - Wij 

(13) 

while Pn = 1. The numerator sum is over all subsets of {1, ... , i-1, i+ 1, ... , n-

1} of size t - 2, and the denominator sum is over all subsets of size t - 1. The 

resulting estimator 8RB is an average over all the possible permutations of the 

realized sample, the permutations being weighted by their probabilities. The 

Rao-Blackwellized estimator is then a function only of (N, Y(1), ... , Y(N-l), YN ), 

where Y(i) denotes the order statistics. 

Because of the identity 

var(8) = var[E{8(U, Y)IY}J + E[var{8(U, Y)IY}]. (14) 

we see that the improvement that 8RB brings over 8AR is related to the size 

of E[var{8(U, Y)IY}]. This latter quantity can be interpreted as measuring the 

average variance in the estimator that is due to the auxiliary randomization, 

that is, the variance that is due to the uniform random variables. In some cases 

this quantity can be substantial. 

Example 5 The target distribution is a Gamma distribution Q(a,/3) with a> 

1. We set f3 = 2a so that the mean of the distribution is 1/2. The candidate 

distribution we select is the Gamma Q(a, b) distribution with a = [a] and b = 

f3afa. We require a < a in order for Min Lemma 1 to be finite. The choice 

b = 2a improves the fit between the two distributions since both means match. 

We consider two cases which reflect different acceptance rates for the Accept

Reject algorithm. In Case 1 we set a = 2.434, a = 2 and 1/M = 0.9 and, in 

Case 2, a = 20.62, a = 2 and 1/ M = 0.3. 

For each case we estimate the mean, chosen to be 1/2 using both the sim

ple Accept-Reject algorithm and its Rao-Blackwellized version. We also include 

mean squared error estimates for the Accept-Reject estimator and the improve

ment brought by Rao-Blackwellizing. This improvement is measured by the 

percentage decrease in mean squared error. From the table, it can be seen 

that the Rao-Blackwellisation provides a substantial decrease in mean squared 

error, reaching 60% in the case where the acceptance rate of the algorithm is 
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Table 1: Estimation of a gamma mean, chosen to be 1/2, using the Accept

Reject Algorithm, based on 7, 500 simulations. 

Acceptance rate .9 

AR AR RB AR Percent 

Sample Estimate Estimate MSE Decrease 

Size OAR ORB in MSE 

10 .5002 .5007 .0100 17.02 

25 .5001 .4999 .0041 18.64 

50 .4996 .4997 .0020 20.81 

100 .4996 .4997 .0010 21.45 

Acceptance rate .3 

AR AR RB AR Percent 

Sample Estimate Estimate MSE Decrease 

Size OAR ORB in MSE 

10 .5005 .5004 .0012 52.85 

25 .4997 .5000 .0005 58.62 

50 .4998 .5001 .0002 60.49 

100 .4995 .5001 .0001 61.60 

0.3. The improvement is better at the lower Accept-Reject acceptance rate par

tially because the Rao-Blackwellized sample is about three times bigger, with 

approximately two thirds of the sample being discarded by the Accept-Reject 

algorithm. Another interesting observation is that the percent improvement in 

mean squared error remains constant as the Accept-Reject sample size increases, 

implying that the variance of the original Accept-Reject estimator does not ap

proach the variance of the Rao-Blackwellized estimator even as the sample size 

increases. We will return to this point in Section 5.2. 

II 

Computation of the pi's of (13) can be accomplished with a recursion rela

tion, and will typically require a calculation of order n 2 . This may represent, 

to some, an unacceptable increase in computation time given the size of the 

anticipated decrease in mean squared error. To somewhat address this point, in 

Casella and Robert( 1996b) we considered a simpler version of the Rao-Blackwell 

strategy that led to (12). Notice that, in what follows, we will simultaneously 

decrease computational complexity and increase statistical complexity. 
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4.2 Termwise Rao-Blackwellization 

Starting from the Accept-Reject estimator (10), rather than calculating the full 

conditional expectation, we can instead calculate the termwise conditional ex

pectation. This accomplishes the goal of removing the uniform random variables 

but retains computational simplicity. 

To calculate the termwise conditional expectation of (10), conditioning the 

ith term on (N, Yi), we need the conditional distribution of Ud, Yi, N = n. 

Although the original random variables are independent, the Accept-Reject al

gorithm stopping rule introduces a dependence in the sample. For example, for 

i = 1, ... , n- 1 the marginal distribution of Yi is 

() t-1/() n-tg(y)-}rf(y) 
my=--y+-- 1 

n-1 n-1 1-M 
(15) 

and Yn has marginal distribution f(y). It then can be shown that the resulting 

estimator, br RB is given by 

1 n 

t L E[I(Ui:::; Wi)IYi]h(Yi) 
i=1 

(16) 

where 
t- 1 f(Yi) 

b(yi) = E[Iu,<w; IYi] = --1-( -), i = 1, · · ·, n- 1. (17) 
- n- m Yi 

See the Appendix for details of these calculations. 

We now have a seemingly reasonable estimator that is not complicated to 

compute, but its statistical properties are not as easy to establish as the full 

Rao-Blackwellized estimator (12). In fact, the Rao-Blackwell theorem does not 

apply to the estimator (16) because we did not condition on the entire estimator. 

To establish dominance of brRB of (16) over bAR of (9), we must calculate the 

variance of br RB, which involves n( n - 1) /2 covariance terms. Moreover, it can 

easily be seen that br RB cannot dominate bAR in mean squared error. This is 

because the sum of the weights in (17) is random, and if the target function h(-) 

is a nonzero constant function, brRB will not estimate it correctly, while bAR 

will. This major difficulty is also common to some importance sampling schemes 

and prohibits uniform domination results there. A solution to this drawback is 

to force the estimators to estimate constant functions correctly, which can be 

achieved by dividing the weights b(yi) by their sum, thus replacing brRB by its 

rescaled version 

(
n-1 ( ) ) b - ~ h + t - 1 b Yi h . 

Tr- t ( (Yn) t ~ 2:::~-1 b( ·) (y~) · 
~=1 1 =1 Y1 

(18) 
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Table 2: Estimation a gamma mean, chosen to be 1/2, using rescaled estimators 

from the Accept-Reject Algorithm, based on 7, 500 simulations. 

Acceptance rate .9 

AR %Dec. %Dec. %Dec. %Dec. 

Sample in MSE in MSE inMSE in MSE 

Size dTRB dTr O!Sr dRB 

10 14.01 16.88 20.27 17.03 

25 14.67 18.45 20.04 18.64 

50 17.48 20.77 21.68 20.81 

100 18.11 21.37 21.50 21.45 

Acceptance rate .3 

AR %Dec. %Dec. %Dec. %Dec. 

Sample in MSE in MSE inMSE in MSE 

Size dTRB 0Tr 0ISr ORB 

10 -259.62 53.76 54.07 52.85 

25 -277.80 59.04 59.23 58.62 

50 -272.18 60.73 60.78 60.49 

100 -281.77 61.82 61.91 61.82 

Such rescalings seem common in practice, despite any concern about the effect 

of introducing a bias in the estimator. Such concerns need not cause worry, how

ever, as the bias induced by this rescaling is of an higher order than the variance 

(Casella and Robert 1996b). The following theorem can then be established. 

Theorem 3 For every function h, 6rr asymptotically dominates JAR in terms 

of quadratic risk. More precisely, as t-+ oo, if N = Op(t) then, 

where T = E[h(X)]. 

Moreover, the size of the improvement brought about by the rescaled estimator 

is truly impressive. 

Example 6 {Continuation of Example 5) . Table 2 gives MSE reduc

tions for the rescaled estimator 6rr, along with a rescaled importance sampling 

estimator and the full Rao-Blackwellized estimator (12). For comparison, we 

included in Table 2 a rescaled importance sampling estimator, derived as follows. 

A typical importance sampling estimator is of the form 
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1 ~ J(yi) 
61s = - .L..t -(-) h(yi), 

n i=l g Yi 
(19) 

which would be unbiased under a random sampling scheme. However, the 

Accept-Reject Algorithm renders (19) biased. More importantly, (19) is not 

correct for constants, and will suffer from the same problems as 6rRB· We thus 

want to rescale 61s, which results in the rescaled importance sampling estimator 

6 - !(h( ) + t- 1 (~ f(Yi)/g(yi) h( ·)) (20) 
!Sr - t Yn t .L..t "'n-1 j( ·)/ ( ·) Y~ · 

i=l L-j=l Y1 9 Y1 

The last observation comes from the correct density, and doesn't have to be 

reweighted. The remaining n- 1 terms are rescaled. As it turns out, this esti

mator performs quite well in our simulation studies. This is really no surprise, 

as it is very close to the rescaled termwise Rao-Blackwell estimate. 

There are a number of interesting points to notice about Table 2. First, 

termwise conditional expectation can actually make things worse, as 6rRB in

creases the MSE over JAR· Although we knew that 6rRB could not dominate 

for constant functions, the numerical example shows that even for more variable 

functions there may not be dominance. 

The second striking thing to notice is that the improvement from the rescaled 

estimators 6rr and 61sr is actually better than that of the Rao-Blackwellized 

estimator 6RB· This, no doubt, represents a favorable variance/bias trade-off, 

but is still quite startling. The decrease in computation time of 6rr and 61sr 
over 6RB can be quite substantial, and the fact that mean squared error is 

improved really underscores the power of rescaling. II 

It is interesting to note that the rescaling idea, making the weights sum 

to one, arose naturally as "the right thing to do", especially in light of the 

performance of the estimators when h(-) is constant. Many times we notice, 

or intuit, empirical adjustments that help in certain cases. We can use the 

structure of decision theory to formalize our intuition, and see if the empirical 

improvements will, in fact, be useful in a wide variety of cases. Here we see 

that the value of the rescaling is confirmed by the decision-theoretic calculation 

of Theorem 3 and a simulation study. We thus have a nice interplay between 

using our intuition to construct an what we think is an improved estimator, and 

using theory to establish that we have, in fact, done so. 

5 Other Considerations 

In this section we review some recent work that further explores the structure 

of Monte Carlo algorithms, particularly the Gibbs sampler. The goals of these 

investigations are to understand how to better, or even optimally, process the 
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output of the algorithm, and also to use the structure of the algorithm to help 

construct optimal procedures. It is interesting to note that both frequentist 

and Bayesian inferences benefit in the following examples. Unfortunately, these 

illustrations are somewhat less detailed, as some of the work is still in progress 

5.1 Constructing the Inference from the Algorithm 

An endpoint of a Gibbs sampler is typically a sample from a posterior distri

bution 1r(Biy), a distribution which may itself be intractable to work with. If 

a confidence set, or more specifically, a credible set, for e is desired, we may 

have to solve a difficult integral equation where the integrand may not be ex

pressible in closed form. Specifically, suppose that we have a pair of conditional 

posterior densities 1r(Biy, .A) and 1r(.Aiy, B) in a Gibbs sampler Markov chain, 

and we are interested in inferences about 1r(Biy). If we use the Gibbs sam

pler to generate the pairs (Bi, Ai), i = 1, 2, · · ·, then, from the ergodic theorem, 

1r(Biy) = limm-+oo(1/m) 2:.::1 1r(Biy, Ai)· Suppose that, for a specified value of 

a, we are interested in finding the value a* such that J~~ 1r(Biy)dB = a, a lower 

confidence bound. A first approach would be to solve for a* in 

1 ra· m 

m l-oo ~ 1r(Biy, Ai)dB =a. 

As this calculation could be quite involved, we ask if the value a* can be con

structed from the Gibbs sequence (Bi,Ai) in any simple way? 

A first approach on the problem, developed in Eberly (1997), is the following. 

Writing II(·) for a distribution function, for example, II(aly) = f~oo 1r(Biy)dB, 
calculate for each Ai a value ai such that II(aiiY, Ai) = 1, where the value of 

1 will be determined shortly. (Note that in a typical Gibbs sampler, the full 

conditionals are usually very nice densities, so solving for the ais should be very 

quick.) Now ~ 2:.::1 ai = a -+ a', for some value a', but it is not necessarily 

the case that a' =a*. However, expanding II(aiiY, Ai) in a Taylor series around 

a yields 

II(aiiY, Ai) ~ II(aly, .Xi)+ (ai- a)1r(aly,.Ai)· 

Now sum both sides, and remember that II(aiiY,Ai) = 1 to get 

It can be established that~ 2:.::1 II(aly, Ai)-+ II(a'ly), so we have the approx

imation 
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which suggests setting 1 = a+ 7k 2:::1 (ai- ii)7r(ajy, .Ai), with the hope that 

a~ a'~ a*. 

This linear approximation seems to perform adequately in some situations, 

but can be improved upon by a quadratic Taylor series approximation. Further 

work, in understanding the value and limitations of this approximation, and 

thoroughly developing the theory, is presently being done. 

5.2 The Effect of Rao-Blackwellization 

In Section 4.1 we alluded to the fact that Rao-Blackwellization will always result 

in an appreciable variance reduction, even as the sample size (or the number 

of Monte Carlo iterations) increases. To address this point more precisely, con

sider the work of Levine (1996), who formulated this problem in terms of the 

asymptotic relative efficiency (ARE) of c5o = (1/m) I: h(X;) with respect to its 

Rao-Blackwellized version 61 = (1/m) I: E[h(X;)IYi], where the pairs (X;, Yi) 

are generated from a Gibbs sampler with X; ""' f(xiYi-d and Yi ""' f(yjX;). 

(Levine 1996 considers more complex Gibbs samplers, but we will only use this 

simple case for illustration. The key property that the sampler need have is 

reversibility.) The ARE is a ratio of the variances of the limiting distribution 

for the two estimators, which are given by 

00 

rr~ 0 = var(h(X)) + 2 L cov(Xo,Xk) (21) 

k=l 

and 
00 

rr~ 1 = var(E[h(X)jY]) + 2 L cov(E[XoiYo], E[XkiYk]). (22) 

k=l 

Levine then proves the following theorem. 

Theorem 4 If a sample {(X;, Y;)}f=o is generated by the bivariate Gibbs sam

pler, then for all h(·) with finite variance, the ratio rr~ 0 /rr~ 1 2: 1, with equality 

if and only if var(h(X)) = var(E[h(X)jY]) = 0. 

To see the amount of possible improvement, consider the following example. 

Example 7 Let 

where -1 < p < 1. Assume interest lies in estimating J-L = E(X). The Gibbs 

sampler can obtain samples from the bivariate normal distribution by alternately 

drawing random variables from 

XIY 

YIX 

N(pY, 1- p2 ) 

N(pX, 1- p2). 
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It can be shown that cov(X1, Xk) = p2k, for all k, and 

2 2 1 
uooluot = 2 > 1. 

p 

So, if <h is less than 1/ p2 times more complex that <50 , then <51 should be 

used. Since E(X I Y) = pY, it takes n + 2 floating point operations (flops) 

to compute 61 = (1/n) L:~=O E(X I Yk) as compared to n + 1 flops to compute 

<50 = (1/n) L:~=O Xk. Therefore, the cost of computation, in terms of flops, is 

essentially the same, but there can be a vast gain in precision by using <51. II 

5.3 Minimax Gibbs Samplers 

An interesting example of the interplay between decision theory and Monte 

Carlo algorithms is given by the problem of optimizing the random scan Gibbs 

sampler (see, for example, Rosenthal1995, Amit 1996, Roberts and Sahu 1996) 

The random scan Gibbs sampler is characterized by selection probabilities o:1, ... , 

ad. These probabilities determine the percentage of visits to a specific site or 

component of the d x 1 vector of interest X= (X1, ... , X d) during a run of the 

sampler. A standard approach is to choose the selection probabilities to provide 

the sampling strategy with the smallest convergence rate. However, choosing 

the selection probabilities according to such a criterion may be undesirable in 

practice. For example, the convergence rate is not only typically difficult to 

compute and possibly mathematically intractable, but also may also ignore im

portant features of the target distribution necessary for determining the optimal 

random scan, as we will see below. 

Levine (1996) considers an alternative measure derived from statistical de

cision theoretic considerations, which seems to provide an attractive criterion 

for choosing an appropriate random scan. Assume a random d x 1 vector X 

is generated by a random scan Gibbs sampler which generates a Markov chain 

{X(i) }i=1 with stationary distribution 1r. Suppose interest lies in estimating 

f1 = E1r(h(X)) where var(h(X)) < oo. If we estimate f1 with the sample mean 

jl = ~ 2::~= 1 h(X ( i)), the optimal mean squared error scan is the one that mini

mizes the risk 

Alternatively, we may consider the asymptotic risk 

R(a,h) lim nR(n)(a,h) 
n-+= 

var (h(X)) + 2 }~~ ~ ( n: i) cov ( h(XC0l), h(X(i))) (24) 
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00 

var (h(X)) + 2 J~~ L cov ( h(X<0l), h(X(i))) 

i=l 

as a basis for choosing a random scan. 

We note that the convergence rate of the random scan, the norm of the 

forward operator, can be expressed as 

where the supremum is over all functions with finite variance. Thus we see that, 

when compared to (24), the convergence rate contains less information about 

the variance and covariances of the chain. It is in this sense that we feel that 

(24) is a better optimality measure. 

To use (24) as a criterion for selecting a scan, we would like it to produce a 

reasonable scan for any function h. This suggests that we might want to protect 

against the worst possible function h, with finite variance, by minimizing the 

maximum risk suphR(a,h). Levine (1996) develops a method for doing this, 

implementing an adaptive scan of the state space. That is, at each iteration the 

selection probabilities are updated via a sequence of sample points from the pre

vious iteration, and may even use information from past iterations (which could 

destroy the Markov nature of the chain). However, the chain does converge, 

approaching the optimal random scan according to (24). Levine also discusses 

examples where this procedure can be implemented, however full implementa

tion in a general setting is presently too computationally intensive to be useful. 

Approximations are being investigated for these cases. 

6 Discussion 

Even though we have covered a lot of ground in understanding the interplay 

between statistical theory and computational algorithms, there is an enormous 

amount of work that we have not mentioned. We only alluded to the fundamen

tal papers of Liu, Wong and Kong (1994, 1995), which provide an elegant and 

comprehensive treatment of the structure of the Gibbs sampler. Other work, 

such as Tanner and Wong (1987), Liu (1994), Tierney (1994) or Robert (1995), 

illustrates how statistical theory interfaces with Monte Carlo algorithms, most 

notably the Gibbs sampler and the Metropolis algorithm. 

The other body of work we have not discussed is that which deals with miss

ing data problems, using techniques such as the EM algorithm. Although EM 

and Gibbs share a similar underpinning, (see Casella and Berger 1995 for a view 

of the EM algorithm as a Gibbs sampler ) they tend to be used in somewhat 

different ways. However, research in these methods, which also combines sta

tistical theory with the computational algorithms, continues to flourish; see for 
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example Smith and Roberts (1993), Meng and Rubin (1993), Liu and Rubin 

(1994), Meng (1994), Besag et al. (1995) and Meng and van Dyk (1996). 

The message of this paper, which by now may be obscured in these sometime 

incoherent ramblings, is one that bears repeating. What we have done is to 

approach a new methodology, that of iterative Monte Carlo calculation, with 

the standard tools of the theoretical statistician. What resulted are procedures 

whose output and performance have been optimized from a statistical view. 

It sometimes may happen, as with the Rao-Blackwellized Estimator of (12), 

or Section 5.3, that a statistically optimal answer may result in a difficult, or 

even prohibitive computational burden. In such cases, statistical theory, in 

particular decision theory, can still provide answers. It them becomes a matter 

of specifying an alternate optimality criterion, or loss function, to take these 

other matters into account. 

7 Appendix: The Termwise Weights 

To calculate the weights for the termwise Rao-Blackwellized estimator (16), it is 

necessary to derive the distribution of the uniform random variable conditional 

on the generated value of the candidate random variable. This is a rather 

straightforward exercise in distribution theory, and is only made complicated 

by the stopping rule of the Accept-Reject Algorithm. 

From the Accept-Reject Algorithm of Lemma 1, we get a sequence Y1 , Y2 , ... 

of independent random variables generated from g along with a corresponding 

sequence U1 , Uz, ... of uniform random variables. For a fixed sample size t, i.e. 

for a fixed number of accepted random variables, the number of generated Yi's 
is a random integer N. The joint distribution of (N, Y1, 0 0 0' YN, u1, 0 0 0 'UN) is 

given by 

P(N = n, y1 ::::: Y1' 0 0 0 'Yn ::::: Yn, ul :::; U1' 0 0 0' Un ::::: Un) 

J:~ g(tn)(un !\ Wn)dtn iy~ ... iY~-l g(t1) ... g(tn-d (25) 

t-1 n-1 

X L II ( Wi; !\ Ui;) II ( Ui; - Wi; )+ dt1 ... dtn-1, 
(il , ... ,it-1) j=1 j=t 

where wi = f(Yi)/Mg(yi) and the sum is over all subsets of {1, ... ,n- 1} of 

size t- 1. 

We next want to get the joint distribution of (Yi, Ui)JN = n, for any i = 

1, · · ·, n- 1. Since this distribution is the same for each of these values of i, we 

can just derive it for (Y1, Ul). Recall that Yn ,...., f. 
If we set Y1 = y, U1 = u, Yz = Y3 = · · · = Yn = oo and Uz = U3 = · · · = Un = 

1, we can derive the joint distribution of (N, Y1 , Ul). Assume, without loss of 

generality, that limy-+oo f (y) / g(y) = 1. (If this is not the case, we just have to 
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adjust the constant Min what follows). Then, aside from the pair (w1 ,u1), we 

have (wii 1\uij) = k and (ui;- Wii)+ = (1- k), hence 

t-1 n-1 

L II (wi; 1\ Ui;) II (ui; - Wi; )+ = 
(il, ... ,it-l)j=l j=t 

( n _ 2 ) ( 1 ) t-2 
( 1 ) n-t 

= (wl 1\ ul) t- 2 M 1-M 

+ (u1-w1)+ n- - 1--( 
2 ) ( 1 ) t-1 ( 1 ) n-t-1 

n-t-1 M M 

Noting that 

( n-2) =.!..=J:. ( n-1) 
t-2 n-1 t-1 

( n-2) n-t(n-1) 
' n-t-1 =n-1 t-1 ' 

and J~~ g(tn)(un 1\ Wn)dtn = ]~ 00 g(tn) (k) dtn = k, we have 

P(N = n, Y1 ::; y, U1 ::; u) = 

= ( ~ ~ ~ ) (! y-1 ( 1_!) n-t-1 

x [.!..=J:.(w1/\u1) (1- _!_) + ~(u1 -wt)+ (_!_)] 
n-1 M n-1 M 

X ;:
00 

g(t1)dt1. 

(26) 

(27) 

From (27) we can immediately get the negative binomial marginal distribu

tion of N, P(N = n) = ( ~ ~: ) ( k) t ( 1 - 1 r-t, the marginal distribution 

of Y1 , m(y) of (15) and, most importantly, we get the conditional distribution 

of UdYi., N and can calculate 

g(y)w(y)M ~:.i 
P(U1 ::; w(y)IY1 = y, N = n) = m(y) , (28) 

which is the same as b(yi) of (17). 
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