
Statistical inference based on k-records

J. Ahmadi and M. Doostparast∗

Department of Statistics,

Ferdowsi University of Mashhad, Mashhad

Abstract

In this paper, an extension of record models, well known as k-records,

is considered. Bayesian estimation as well as prediction based on k-records

are presented when the underlying distribution is assumed to have a general

form. The proposed procedure is applied to the Exponential, Weibull and

Pareto models in one parameter case. Also, the two-parameter Exponential

distribution, when both parameters are unknown, is studied in more details.

Since the ordinary record values are contained in the k-records, by putting

k = 1, the results for usual records can be obtained as special case.
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1 Introduction

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) con-

tinuous random variables each distributed according to cumulative distribution
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function (cdf) F (t) and probability density function (pdf) f(t). An observation

Xj will be called an upper record value if its value exceeds that of all previous ob-

servations. Thus, Xj is an upper record if Xj > Xi for every i < j. An analogous

definition can be given for lower record values. Today there are over 500 papers

and several books published on record-breaking data (see, for instance, Chandler

[8], Resnick [19], Shorrock [21], Glick [14], Samaniego and Whitaker [20], Arnold

et al. [5] and Nevzorov [18]).

There are several situations where the second or third largest values of special

interest, insurance claims some non-life insurance can be used as an example, see

Kamps [16], so the usual record models is inadequate. Also, in the ordinary

record value theory, while inverse sampling considerations have given valuable

insights, their practical implementation is greatly hindered by the sparsity of

records. These problems caused the researchers to study the theory of k-record

models. Upper k-record process is defined in terms of the k-th largest X yet seen.

For a formal definition, we consider the definition in Arnold et al. [5], p. 43, in

the continuous case, let T1(k) = k, R1(k) = X1:k and for n ≥ 2, let

Tn(k) = min{j : j > Tn−1(k), Xj > XTn−1(k)−k+1:Tn−1(k)
},

where Xi:m denotes the i-th order statistic in a sample of size m. The sequence

of upper k-records is then defined by Rn(k) = XTn(k)−k+1:Tn(k)
for n ≥ 1. Arnold

et al. [5] call this a Type 2 k-record sequence. For k = 1, note that the usual

records are recovered. An analogous definition can be given for lower k-records as

well. This sequence of k-records was introduced by Dziubdziela and Kopocinski

[12] and it has found acceptance in the literature. Some work has been done on

the statistical inference, based on k-records. See, for instance, Deheuvels and

Nevzorov [11], Berred [7], Ali Mousa et al. [4], Malinowska and Szynal [17],

Danielak and Raqab [9],[10], Ahmadi et al. [2], Fashandi and Ahmadi [13] and

references therein.

We assume that this type of k-record data is available and the aim of this

paper is to develop inference methods as well as prediction of future k-records
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based on past observed k-records. The rest of the paper is organized as follows.

In Section 2, Bayesian estimation as well as prediction based on k-records are

presented when the underlying distribution is assumed to have a general model.

In Section 3, a two-parameter exponential distribution is considered; the maxi-

mum likelihood and Bayes estimators for the unknown parameters, are obtained.

Bayesian prediction of the future k-records, either point or interval, are obtained

in Section 4, when the k-records are assumed to come from the two-parameter

exponential model.

2 A General Model

In this section, we consider the problems of estimation and prediction based on

k-records, when the underlying distribution has a general form. In order to do

this, let C be the class of all absolute continuous distribution functions F of the

form

Fθ(x) = 1− e−λθ(x), x > 0, (2.1)

where λ′θ(x) (the derivative of λθ(x) w.r.t θ) exists and is a positive function of

θ and x. Then

fθ(x) = λ′θ(x)e−λθ(x), x > 0. (2.2)

This class includes several important life time families such as: Exponential,

Weibull, compound Weibull, Pareto, Beta, Gompertz, compound Gompertz and

Burr type XII, among others.

2.1 Estimation

Using the joint pdf of usual records, we readily have the joint density of the first

m, k-records R1(k), R2(k), ..., Rm(k) as

f(x1, ..., xm) = km
m∏

i=1

f(xi)
1− F (xi)

(1− F (xm))k, (2.3)
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(see, Arnold et al. [5]). Now, suppose we observe R1(k) = x1, · · · , Rm(k) = xm

then by substitution of (2.1) and (2.2) in (2.3), the likelihood function L(θ) is

L(θ) ∝ A(θ;x)e−B(θ,xm), (2.4)

where x = (x1, · · · , xm),

A(θ;x) =
m∏

i=1

λ′θ(xi) and B(θ, xm) = kλθ(xm).

There is clearly no way in which one can say that one prior is better than any

other. Presumably one has own subjective prior and must live with all of its lumps

and bumps. It is more frequently the case that we elect to restrict attention to

a given flexible family of prior distributions and we choose one from the family

which seems to the best of our match and personal believes. With this in mind,

let the conjugate prior density function for θ, proposed by AL-Hussaini [3], is

given by

π(θ; δ) ∝ C(θ; δ)e−D(θ;δ), θ ∈ Θ, δ ∈ Ω, (2.5)

where Ω is the prior parameter(s) space. Then the posterior density function is

derived as

π(θ|x) = C1(M,N)M(θ;x, δ)e−N(θ; xm,δ), (2.6)

where

M(θ;x, δ) = C(θ; δ)A(θ;x),

N(θ;xm, δ) = D(θ; δ) + B(θ, xm),

and C1(M,N) is the normalizing constant given by

C1(M,N) =
[∫

Θ
M(θ;x, δ)e−N(θ; xm, δ)dθ

]−1

. (2.7)

If Θ is one dimensional then the Bayes estimator of θ, under squared error (SE)

loss function, is

θ̂BS =
C1(M,N)
C1(M?, N)

, (2.8)
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where M?(x) = xM(x).

Remark. θ̂BS in (2.8) is the unique Bayes estimate of θ under SE loss function

with respect to the above mentioned proper prior and hence is admissible.

Example 2.1 (One-Parameter Exponential Model)

Let λθ(x) = (x − µ0)/σ where µ0 is known and θ = σ, i.e. we have a one

parameter exponential distribution. Then A(θ;x) = 1/σm and B(θ;xm) =

k(xm − µ0)/σ. It can be shown that the maximum likelihood estimation of σ

is σ̂M = k(Rm(k) − µ0)/m. We use Inverted Gamma with parameters a and

b as the conjugate prior, i.e. π(σ) = baσ−(a+1) exp{−b/σ}/Γ(a), where from

(2.5), C(θ; δ) = σ−(m+2), D(θ; δ) = b/σ and δ = (a, b). Therefore, M(θ;x, δ) =

1/σm+a+1 and N(θ;xm, δ) = (b+ k(xm−µ0))/σ. From (2.8), the Bayes estimate

of σ under SE loss function is given by

σ̂BS =
b + k(Rm(k) − µ0)

m + a− 1
.

It may be noted that, from (2.6), the posterior distribution of σ−1 is Γ(m+a, b+

k(xm − µ0)).

Example 2.2 (Weibull Model)

Suppose λθ(x) = αxβ, where β is known and θ = α. Then λ′θ(x) = αβxβ−1. It

can be shown that the maximum likelihood estimate of α is α̂M = m/(kRβ
m(k)).

Assuming a Gamma conjugate prior with parameter a and b, i.e.

π(α) = baαa−1 exp{−bα}/Γ(a), the Bayes estimate of α under SE loss function

is given by

α̂BS = (m + a)/(kRβ
m(k) + b).
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Example 2.3 (Pareto Model)

In this model, λθ(x) = α ln(x/β) where β is known and θ = α. So, by (2.4), max-

imum likelihood estimate of α is α̂M = m/(k ln[Rm(k)/β]). Assuming a conjugate

prior Gamma with parameters a and b, i.e. π(α) = baαa−1 exp{−bα}/Γ(a), the

Bayes estimate of α under SE loss function is given by

α̂BS =
m + a

k ln[Rm(k)/β] + b
.

When both of the parameters in the above examples are unknown, In [1] we

have obtained similar results based on usual records (k = 1).

2.2 Prediction

Assume that we have the first m upper k-records R1(k) = x1, R2(k) = x2, ..., Rm(k) =

xm from a member of class C in (2.1). Based on such a sample, prediction, ei-

ther point or interval, is needed for s-th upper k-record, 1 ≤ m < s. Now, let

Y = Rs(k) be the s-th upper k-record value, s > m. The conditional pdf of Y

for the given vector parameter θ and that the first m k-record R1(k), · · · , Rm(k)

is given by

f(y|x, θ) = ks−m [λθ(y)− λθ(xm)]s−m−1

Γ(s−m)
λ′θ(y)e−k(λθ(y)−λθ(xm)). (2.9)

Hence, from equations (2.6) and (2.9) we get the Bayes predictive density function

of Y

h∗(y|x) =
∫

Θ
f(y|x, θ)π(θ|x)dθ

=
ks−mC1(M,N)

Γ(s−m)
(2.10)∫

Θ
M(θ;x, δ)[λθ(y)− λθ(xm)]s−m−1λ′θ(y)e−k[λθ(y)−λθ(xm)]−N(θ;xm,δ)dθ.
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The Bayes point predictor of the s-th upper k-record based on the first m (m < s)

observed k-records is given by

ŶBS =
∫ +∞

xm

yh∗(y|x)dy

=
ks−mC1(M,N)

Γ(s−m)

∫
Θ

M(θ;x, δ)e−N(θ;xm,δ)

∫ +∞

xm

y[λθ(y)− λθ(xm)]s−m−1λ′θ(y)e−k(λθ(y)−λθ(xm))dy dθ

=
ks−mC1(M,N)

Γ(s−m)

∫
Θ

M(θ;x, δ)e−N(θ;xm,δ){∫ +∞

0
λ−1

θ (z + λθ(xm))zs−m−1e−kzdz

}
dθ

= C1(M,N)
∫

Θ
M(θ;x, δ)e−N(θ;xm,δ)E

{
λ−1

θ (Z + λθ(xm))
}

dθ,

(2.11)

where Z ∼ Γ(s−m, k) and λ−1
θ (x) is the inverse function of λθ(x).

Example 2.4 (Continuation Examples 2.1-2.3)

Using (2.11), we obtain the Bayesian point prediction of Rs(k) for the following

three models. We have

i. One parameter Exponential model:

ŶBS =
(

s + a− 1
m + a− 1

)
Rm(k) +

(
s−m

m + a− 1

) (
b

k
− µ0

)
.

ii. Weibull model:

ŶBS =
(

s + a− 1
m + a− 1

)
Rβ

m(k) +
(

s−m

m + a− 1

)
b

k
.

iii. Pareto model:

ŶBS =
[b + k log(Rm(k)/β)]m+a

Γ(m + a)
I(Rm(k)),
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where I(Rm(k)) =
∫ +∞
0

αs+a−1

(α−1/k)s−m e−[b+k log(Rm(k)/β)]αdα.

Remark. It may be noted that one may use (2.10) to obtain Bayesian prediction

interval for Rs(k).

In the rest of the paper, we consider two-parameter Exponential distribution

which does not belong to the class C in (2.1), where the location parameter µ is

unknown. Its cdf and pdf are given by

F (x;µ, σ) = 1− e−
1
σ

(x−µ) x ≥ µ, σ > 0, (2.12)

and

f(x;µ, σ) =
1
σ

e−
1
σ

(x−µ) x ≥ µ, σ > 0, (2.13)

respectively, which is denoted by X ∼ Exp(µ, σ). Ahmadi et al. [2] studied

the problem of estimation and prediction in Exp(µ, σ) under LINEX (LINear-

EXPonential) loss function based on k-records from Bayesian view point.

3 Estimation in Exponential Model

As mentioned in Section 1, the usual record data are rare in practical situations.

In fact, the expected waiting time is infinite for every record after the first; but,

this problem will be fixed by considering k-records instead (see Theorem 2.1

of [15]). So, in this section, we shall be concerned with estimation of the two

unknown parameters µ and σ of Exp(µ, σ) based on k-record values. Suppose,

we observed the first m upper k-records R1(k) = x1, R2(k) = x2, ..., Rm(k) = xm

from an Exp(µ, σ).Then from (2.3), (2.12) and (2.13) the likelihood function is

given by

L(µ, σ|x) = (
k

σ
)me−

k
σ

(xm−µ), µ ≤ x1 < x2 < ... < xm, σ > 0, (3.1)

where x = (x1, x2, ..., xm).
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3.1 Maximum likelihood estimation

In the case k = 1, the MLE (maximum likelihood estimation) of the two-parameters

of the Exponential distribution can be found in Arnold et al. [5], p. 123. We

obtained MLE based on k-record values, by (3.1). The natural logarithm of (3.1)

is given by

l = m ln k −m lnσ − k

σ
(xm − µ), µ ≤ x1 < x2 < ... < xm. (3.2)

Assume that the parameters µ and σ are unknown, from (3.2) we readily obtain

the MLE of µ and σ as follows:

µ̂M = R1(k), (3.3)

and

σ̂M =
k

m
(Rm(k) −R1(k)). (3.4)

It is easy to verify that

• R1(k) ∼ Exp(µ, σ/k),

• Rm(k) −R1(k) and R1(k) are independent random variables,

• Rm(k) −R1(k) has gamma distribution with parameters m− 1 and k/σ.

Then by (3.3) and (3.4) we have

• E(µ̂M ) = µ + σ
k ,

• MSE(µ̂M ) = 2σ2

k2 .

Also,

• E(σ̂M ) = m−1
m σ,

• MSE(σ̂M ) = σ2

m , do not depend on k.

• Cov(µ̂M , σ̂M ) = 0.

Notice that µ̂M is a biased estimator µ, while an unbiased estimator for µ is given

by

µ̃ =
m + k − 1

m− 1
R1(k) −

k

m− 1
Rm(k).



76 J. Ahmadi M. Doostparast

3.2 Bayes estimation

Our aim is to obtain Bayes estimate of the unknown parameters based on x1, ..., xm

under SE loss function. We consider the following two cases for our Bayesian es-

timation problem.

a) σ is known.

Without loss of generality, we may assume σ = 1 then by (3.1), we have

f(x|µ) = kme−k(xm−µ), µ < x1 < x2 < ... < xm. (3.5)

Assume the Jeffreys non-informative prior distribution (see [6]) of the parameter

µ in the form

π(µ) ∝ 1. (3.6)

Hence the posterior distribution of µ is

π(µ|x) ∝ f(x|µ)π(µ),

where f(x|µ) is the joint density function given by (3.5) and π(µ) is the prior

density given by (3.6). So, we have

π(µ|x) = kek(µ−x1), µ < x1. (3.7)

Suppose an SE loss function, the Bayes estimate of a parameter is its posterior

mean. Therefore, by (3.7), the Bayes estimate of the parameter µ is given by

µ̂1BS = R1(k) −
1
k
. (3.8)

From Eq. (3.8) we get

• E(µ̂1BS) = µ,

• MSE(µ̂1BS) = 1
k2 .

b) σ is unknown.
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Under the assumption that both of the parameters µ and σ are unknown, we

may consider the joint density as a product of the conditional density of µ for

given σ and a two parameter inverted gamma density for σ. So, we have

π(µ, σ) ∝ βα

Γ(α)
1

σα+2
e−

β
σ . (3.9)

In fact σ−1 ∼ Γ(α, β), which is the conjugate prior distribution of the parameter

σ for the fixed value of µ, and π1(µ|σ) ∝ σ−1 which is the Jeffreys non-informative

prior distribution (see [6]) of the parameter µ for fixed value of the parameter σ.

Thus, the joint posterior density is given by

π(µ, σ|x) =
k[β + k(xm − x1)]m+α

Γ(m + α)
1

σm+α+2
e−

1
σ

[β+k(xm−µ)]. (3.10)

Therefore, by (3.10) under SE loss function the Bayes estimate of the parameter

σ is given by

σ̂2BS =
β + k(Rm(k) −R1(k))

m + α− 1
. (3.11)

Notice that, as β → 0 and α → 1, σ̂2BS → σ̂ML. By (3.11) we have

• E(σ̂2BS) = β+σ(m−1)
m+α−1 ,

• MSE(σ̂2BS) = m−1
(m+α−1)2

σ2 + (β−σα)2

(m+α−1)2
.

Also, the Bayes estimate of the parameter µ is given by

µ̂2BS = Rm(k) + β − m + α

k(m + α− 1)
[β + k(Rm(k) −R1(k))]. (3.12)

By (3.12), we have

• E(µ̂2BS) = µ + ασ
k + [1− (m+α)

k(m+α−1) ]β,

• V ar(µ̂2BS) = σ2

k2 [1 + m−1
(m+α−1)2

],

• Cov(µ̂2BS , σ̂2BS) = − (m−1)σ2

(m+α−1)k .

Remark. It may be noted that one may use (3.7) and (3.10) to obtain Bayesian

estimation interval for the parameters µ and σ.
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4 Prediction in Exponential Model

In this section, we consider the problem of prediction, either point or inter-

val, for future k-record values by Bayesian approach. Assume that we have

the first m upper k-records R1(k) = x1, R2(k) = x2, ..., Rm(k) = xm from the

Exp(µ, σ)−distribution. Based on such a sample, prediction, either point or in-

terval, is needed for s-th upper k-record, 1 ≤ m < s. We consider the following

two cases:

a) σ is known.

Without loss of generality, we may assume σ = 1, then by (2.12), (2.13) and

(2.9), we have

f∗(y|xm, µ) =
ks−m

Γ(s−m)
(y − xm)s−m−1e−k(y−xm), y > xm, (4.1)

which is independent of µ. So by (2.10) and (4.1) we have

h∗(y|x) =
∫ x1

−∞
f∗(y|x, µ)π(µ|x)dµ

=
ks−m

Γ(s−m)
(y − xm)s−m−1e−k(y−xm), y > xm, (4.2)

for any posterior distribution (therefore, for any prior distribution) π(µ|x). By

(4.2), we have

Y − xm|x ∼ Γ(s−m, k).

So,

Ŷ1 = Rm(k) +
s−m

k
. (4.3)

By (4.3) we have

• E(Ŷ1) = µ + s
k ,

• MSE(Ŷ1) = s−m
k2 .

Ahmadi et al. [2] obtained the 100(1 − γ)% Bayesian prediction interval for

Rs(k), with equal tail as (L1, U1), where L1 and U1 are the lower and upper
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bounds, respectively which are given by

L1 = Rm(k) +
χ2

γ
2

2k
,

and

U1 = Rm(k) +
χ1− γ

2
2

2k
.

where χ2
γ stands for the γ-th percentage of Chi-square distribution with 2(s−m)

degrees of freedom.

b) σ is unknown

Let Y = Rs(k) be the s-th upper k-record value, 1 ≤ m < s. So, by (2.12)

and (2.13), we have

f∗(y|x, µ, σ) = (
k

σ
)s−m (y − xm)s−m−1

Γ(s−m)
e−

k
σ

(y−xm). (4.4)

By (2.13), (3.10) and (4.4) Bayesian predictive density function of Y = Rs(k) ,

for the given past m records, is given by

h(y|x) =
∫ x1

−∞

∫ ∞

0
f∗(y|x, µ, σ)π(µ, σ|x)dσdµ

=
1

B(m + α, s−m)
(
k(xm − x1) + β

k(y − x1) + β
)m+α

×(1− k(xm − x1) + β

k(y − x1) + β
)s−m 1

y − xm
, y > xm. (4.5)

Now, by (4.5) the Bayes point predictor of the s-th upper k-record is given by

Ŷ2 =
s + α− 1
m + α− 1

Rm(k) +
s−m

m + α− 1
(
β

k
−R1(k)). (4.6)

By (4.6) we have

• E(Ŷ2) = kµ(α+m−1)+sσ(m−1)+β(s−m)
k(m+α−1) ,

• MSE(Ŷ2) = (s−m){σ2

k2 (1 + (m−1)(s−m)
(m+α−1)2

) + (s−m)( α
m+α−1 −

β
k )2}.

In this case, Ahmadi et al. [2] also derived a Bayesian prediction interval for

Rs(k) as follow: The 100(1 − γ)% Bayesian prediction interval for Rs(k) is given

by

(L2, U2),
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where

L2 =
Rm(k) −R1(k)

b1− γ
2

+
β

k
(

1
b1− γ

2

− 1) + R1(k),

and

U2 =
Rm(k) −R1(k)

b γ
2

+
β

k
(

1
b γ

2

− 1) + R1(k),

where bγ is the γ-th percentage of Beta(m + α, s−m)-distribution.

5 Conclusion

In this paper, we have tackled the problems of estimation and prediction based on

k-record data while the underlying distribution is assumed to have a general form.

This family contains several life distribution such as Exponential, Weibull and

Pareto and so on. A general form of conjugate prior was considered to obtain

Bayesian estimation of unknown parameters and prediction of future k-record

values. The proposed procedure was applied to the Exponential, Weibull and

Pareto models in one parameter case. Moreover, we have developed the proposed

procedure for two-parameter Exponential distribution in details.
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