
Statistical Inference by Confidence
Intervals: Issues of Interpretation
and Utilization

This article examines the role of the confidence interval (CI) in
statistical inference and its advantages over conventional hypothesis
testing, particularly when data are applied in the context of clinical
practice. A CI provides a range of population values with which a
sample statistic is consistent at a given level of confidence (usually
95%). Conventional hypothesis testing serves to either reject or retain
a null hypothesis. A CI, while also functioning as a hypothesis test,
provides additional information on the variability of an observed
sample statistic (ie, its precision) and on its probable relationship
to the value of this statistic in the population from which the sample
was drawn (ie, its accuracy). Thus, the CI focuses attention on the
magnitude and the probability of a treatment or other effect. It thereby
assists in determining the clinical usefulness and importance of, as well
as the statistical significance of, findings. The CI is appropriate for both
parametric and nonparametric analyses and for both individual studies
and aggregated data in meta-analyses. It is recommended that, when
inferential statistical analysis is performed, CIs should accompany point
estimates and conventional hypothesis tests wherever possible. @Sim J,
Reid N. Statistical inference by confidence intervals: issues of interpreta-
tion and utilization. Phys Ther. 1999;79:186–195.#
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M
uch published physical therapy research
that involves statistical inference seems to
make exclusive use of hypothesis testing.
In this approach, a null hypothesis of no

difference (or of no association, according to the nature
of the relationship being examined) is posited, and, by
means of a statistical test, this hypothesis is either
rejected or not rejected. A number of limitations to the
hypothesis testing approach have been identified.
Among these limitations are that this approach gives
little or no indication of the magnitude of statistical
relationships, that it reduces statistical inference to a
process of binary decision making, and that whether or
not statistical significance is achieved may simply be a
function of choice of sample size.1–3

An alternative approach to statistical inference, using
confidence intervals (CIs), assists in addressing some of
these limitations. In the medical literature, there has
been increasing attention focused on the use of CIs.4–7

In a discussion of various aspects of statistical inference,
Ottenbacher8 has advocated greater use of CIs in
rehabilitation research, and CIs feature prominently
in a recent discussion of statistical inference in
rehabilitation.9

In this article, we examine some of the merits of an
approach to statistical inference based on CIs. The
conventional approach to hypothesis testing is
described, followed by a discussion of the nature and use
of CIs. Key strengths of the CI as a means of statistical
inference are then considered, in particular, the preci-
sion that they attach to statistical estimates and the light

they shed on issues of clinical importance. Finally,
recommendations are made concerning the use of CIs.

Conventional Hypothesis Testing

Basic Principles
When an experiment or other form of quantitative study
is carried out, it is rarely the case that data are gathered
from the entire population of interest. Most commonly,
a study sample is selected, and this will be just one of an
infinite number of possible samples from the popula-
tion. At the conclusion of the study, the results are
generalized back from the sample to the population.

Certain properties of the study sample can be calculated,
such as the variance of all the scores for a given variable,
the mean of these scores, or the mean difference in
scores between 2 groups within the sample. These values
are referred to as statistics. They can be calculated for
each variable represented in the sample (although dif-
ferent statistics may be appropriate for different vari-
ables), and they will normally be slightly different, as
different samples are drawn from the population. The
corresponding properties of the population are known
as parameters, and, because there is only one population,
these values are fixed. Thus, the mean of a given
population is invariant, but the means of a series of
samples drawn from that population will typically vary to
some degree. A study statistic, such as the mean, is an
estimate of the corresponding population parameter. It
is an estimate because the true value of the population is
almost always unknown.
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When a study is carried out, one or more relationships
between various statistics will often be examined. For
example, a study can examine an association between 2
variables within the sample or a difference in the mean
or median values of a variable between 2 (or more)
subgroups within the sample. The purpose of a statistical
hypothesis test is to determine whether such a relation-
ship is a “real” one (ie, it represents a corresponding
relationship in the population) or a “chance” one (ie, it
has emerged due to sampling variation and, although
accurately reflecting the relationship that exists in the
sample, does not necessarily represent a corresponding
relationship in the population). The way in which the
statistical test accomplishes this is by asking the question:
What is the likelihood of finding this relationship in the
sample, if, in fact, no such relationship exists in the
population from which it was drawn? This assumption of
no relationship is referred to as the null hypothesis, and
the rival assumption (that the relationship does exist
within the population) is referred to as the alternative
hypothesis.10

A hypothetical example may serve to illustrate the way in
which a statistical hypothesis test is utilized. A sample of
50 patients with fibromyalgia syndrome (FMS) is drawn
randomly from a population of such patients and then
assigned (again randomly) to receive 1 of 2 treatments
designed to alleviate pain. The null hypothesis is that a
difference in pain relief will not exist between the 2
groups following treatment. The alternative hypothesis is
that such a difference will exist. The chosen outcome
variable, pain intensity as measured in millimeters on a
10-cm visual analog scale (VAS), is measured before and
after treatment, and a pain relief score is thereby
obtained (pretest score minus posttest score). The mean
pain relief score can then be calculated for each group.

This pain relief score will almost certainly differ in the 2
groups, but the question is whether such a difference in
outcome is attributable to an underlying difference in
the treatments received by the groups, rather than
simply to the effect of sampling variation or of chance
differences in group assignment. If there is a sufficiently
high probability that the observed difference in outcome
can be attributed to such variation in sampling or group

assignment (conventionally, a probability of 5% or above
@ie, P$.05#), then the assumption of no difference
between the treatments (ie, the null hypothesis) is
retained. That is, the observed difference between
groups is considered to be no greater than the differ-
ence expected from variation in sampling or group
assignment, at the specified level of probability, and the
assumption of no underlying difference between groups,
therefore, is considered to be plausible. Conversely, if
there is a sufficiently low probability that the observed
difference in outcome is due to these chance factors
(conventionally, a probability of less than 5% @ie,
P ,.05#), then the assumption of no difference between
treatments is rejected. That is, it is considered more
plausible that the difference in outcome is due to an
underlying difference between the groups than that it is
due to chance factors such as variation in sampling or
group assignment. The null hypothesis is rejected in
favor of the alternative hypothesis.

Table 1 shows the results of the hypothetical experi-
ment. A statistical test for differences was used in this
study. Because the data concerned are continuous, are
approximately normally distributed, and can be argued
to lie on an interval scale of measurement, a t test for
independent measures was performed. The probability
associated with the test statistic (P5.043) was less than
the conventional critical value of .05. This finding pro-
vides sufficient grounds for doubting the null hypothe-
sis, which is therefore rejected in favor of the alternative
hypothesis. The difference in pain relief between the 2
groups is said to be real.

There are 2 important and related questions that have
not yet been answered with respect to this study. The first
question relates to the importance of the difference that
has been detected. Although a mean difference in pain
relief between the 2 treatments has been shown to be
real, based on probabilistic statistics, it may be of little
practical importance. On a 10-cm VAS, a difference
between treatments of 3.48 mm is relatively minimal and
could be outweighed by other features of the more
successful treatment (eg, it might be more expensive or
require more frequent attendance by the patient).

Table 1.
Results From the First Hypothetical Study of the Effectiveness of Treatment for Patients With Fibromyalgia Syndrome (N550)

Subjectsa

Visual Analog Scale Scores Pain Relief Statistical Test

Mean
(Pretest)

Mean
(Posttest) Mean

Mean
Difference t df P

Group 1 68.68 61.08 7.6
3.48 2.08 48 .043

Group 2 66.52 55.44 11.08

a The subjects in the 2 groups received different treatments designed to alleviate pain.
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The outcomes of statistical tests need to be considered in
the context of the situation to which they relate, and
outcomes of clinical research must be subjected to
clinical judgment. It is worth noting that the converse of
the situation just outlined may also arise. A difference in
pain relief may be found not to be real, perhaps due to
insufficient sample size or a high degree of variance in
subjects’ scores (Type 2 error). In such a case, although
the observed difference in pain relief is real for this
sample, it cannot be assumed to reflect a real difference
in the population. In order for such a finding to be
applicable to general clinical practice, the observed
difference must be shown to be real for the population.
This will require a reduction in the risk of a Type 2 error,
through an increase in sample size, a more precise
method of measurement, or other means of reducing
random error.

Another unanswered question relates to the magnitude
of this difference in pain relief between groups. This
difference is an estimate of the difference that would
exist if the full population of patients with FMS were
studied. All we know is that the difference found in this
particular sample is sufficiently great for it to be attrib-
uted to a genuine difference between the treatments
rather than to chance variation in sampling or allocation
to groups. We do not know how good an estimate it is of
the true population difference (ie, the difference we
would find had we tested the treatments on the whole
population of individuals with FMS). The hypothesis test
has told us, on a “yes/no” basis, whether the observed
difference is real, but it has not enlightened us as to the
true value of this difference in the population. As
Abrams and Scragg11 point out, a probability value
conveys no information about the size of the true effect.
This is information, however, that we need in order to
inform clinical practice.

The CI assists in addressing these questions as to the
clinical importance and magnitude of an observed effect
and remedies some of the shortcomings of more con-
ventional approaches to hypothesis testing. These points
will be considered in detail following an account of
interval estimation.

The Nature of Confidence Intervals
A sample statistic, such as a sample mean, provides an
estimate of a population parameter. It provides a single
estimate of the specific value of the parameter on the
basis of the observed value of the statistic. As an adjunct
to a single estimate, an interval estimate can be calculated.
This interval estimate specifies a range of values on
either side of the sample statistic within which the
population parameter can be expected to fall with a
chosen level of confidence.2 To return to the FMS study,
the mean pretest VAS score for the sample of patients is

67.6 mm, and the associated 95% CI is 64.15, 71.05.
What this CI tells us is that we can be 95% sure that the
population mean for this variable lies somewhere
between 64.15 and 71.05 mm. It is also the case that
values toward the extremes of this interval are rather less
likely to represent the population mean than those
nearer the center.2

The essential meaning of a 95% CI can be expressed as
follows. If we were to draw repeated samples from a
population and calculate a 95% CI for the mean of each
of these samples, the population mean would lie within
95% of these CIs. Thus, in respect of a particular 95% CI,
we can be 95% confident that this interval is, of all such
possible intervals, an interval that includes the popula-
tion mean rather than an interval that does not include
the population mean. It does not strictly express the
probability that the interval in question contains the
population mean, as this must be either 0% or 100%.
The population mean is either included or not
included.12,13

The function of a CI, therefore, is essentially an inferen-
tial one. A CI is used when examining a characteristic of
a sample (in this case, the mean pretest VAS score) in
terms of its degree of variability in the corresponding
population. If the researcher’s concern with sample
statistics, however, is a purely descriptive one (ie, if the
researcher is interested only in the pretest VAS score of
the sample, without reference to the population from
which this sample was drawn), conventional measures of
dispersion, such as the standard deviation (for a mean)
or the semi-interquartile range (for a median), should
be used.

Width of Confidence Intervals
For a given level of confidence, the narrower the CI, the
greater the precision of the sample mean as an estimate
of the population mean. In a narrow interval, the mean
has less “room” to vary. There are 3 factors that will
influence the width of a CI at a given level of confidence.

First, the width of the CI is related to the variance of the
sample scores on which it is calculated. If this sample
variance can be reduced (eg, by increasing the reliability
of measurements), the CI will be narrower, reflecting the
greater precision of the individual measurements.
Selecting a sample that is more homogeneous will
reduce the variance of scores and thereby increase their
precision. This factor, however, is often outside the
researcher’s influence.14

Second, following the principles of sampling theory,
sampling precision increases in a curvilinear fashion
with increasing sample size. This increase in precision
occurs because the variance of a statistic, as expressed by
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its standard error, decreases as sample size increases.
Figure 1 shows 4 samples of a progressively greater size
drawn from a single population of physical therapists
and the mean period of postqualification experience for
each sample. The mean is precisely the same in each
case, but the CI becomes narrower as the sample size
increases. As sampling precision is related to the square
root of the sample size, doubling the sample size will
only decrease the width of the CI by 25%.15

Third, the chosen level of confidence will influence the
width of the CI. If the investigator wants to be 99%
confident of having included the population mean
within the interval, this interval would be wider. With a
higher level of confidence, the interval needs to be wider
in order to support the claim of having included the
population parameter at the chosen level of confidence.
Conversely, a 90% CI would be narrower than a 95% CI.

It is not the case, however, that, at a given confidence
level, a narrow CI is any more (or less) likely than a wider
CI to be one that contains the population parameter.
The probability of including the parameter is deter-
mined by the chosen confidence level, not by the width
of the particular CI concerned. If a 95% CI is narrow,
this means that only a small range of possible values has
to be included in order to be 95% confident that the CI
contains the parameter. Correspondingly, a wide CI
means that a large range of possible values has to be
included in order to be 95% confident that the param-
eter lies within the CI. The probability of inclusion,
however, is the same in both cases. A 95% CI is, by
definition, one that is 95% likely to contain the popula-
tion parameter, irrespective of its width.

The width of a CI is indicative of its precision (ie, the
degree of random error associated with it), but it does
not convey its accuracy (ie, whether it includes the
population parameter), which is determined by the
chosen level of confidence.9 Choosing a 99% CI rather
than a 95% CI will increase the accuracy of the CI (ie, it
will have a greater chance of being one of those that
includes the population parameter), but will decrease its
precision (ie, it will be wider than the corresponding
95% CI).

The usefulness of a CI depends on the point statistic
(eg, the sample mean) on which it is based being an
unbiased point estimate. If systematic error is present in
a study, the point estimate will lie at some distance from
the true value of the parameter. In such a case, a CI
based on a large sample will, paradoxically, be more
misleading than one based on a small sample.16 Con-
sider again Figure 1. Imagine that the point estimate of
9.2 obtained is biased and that the true population mean
is 8.5. It is evident that, unlike the 2 wider CIs, the
narrow CIs, based on the larger samples, actually
exclude this value. In the presence of systematic error,
the lesser precision afforded by a wide CI actually
increases the likelihood of its including the true popu-
lation value. This example illustrates the fundamental
point that increases in sample size will only assist in
dealing with random, not systematic, error. Systematic
error is usually an issue in study design rather than a
function of the statistics used.

Calculating the Confidence Interval
The 95% CI stated earlier for the mean pretest VAS
scores in the FMS study is calculated from the sample
mean (X), the statistic from the t distribution represent-
ing a 95% level of confidence at 49 degrees of freedom
(tcv), and the standard error of the sample mean (SE),
according to the following formula:

95% CI 5 X 6 ~tcv 3 SE!

5 X 6 ~2.010 3 1.7183!

5 67.6 6 3.45

5 64.15, 71.05
The terms in the calculation relate to some of the basic
concepts considered earlier. The t statistic corresponds
to a particular probability level (and thus a confidence
level), the degrees of freedom are determined by sample
size, and the standard error of the mean represents
sample variance.

For a 99% CI, tcv would be 2.683, and the CI will
accordingly be wider: 62.10, 72.21. Conversely, for a 90%

Figure 1.
Means and confidence intervals of years of qualified experience for
progressively larger samples of physical therapists drawn from a single
population.
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CI, tcv would be 1.676, resulting in a narrower CI of
64.72, 70.48.

A 95% CI for a difference in means would be calculated
in an analogous manner:

95% CI 5 ~X1 2 X2! 6 ~tcv 3 SEdiff!

where X1 and X2 are the 2 sample means and SEdiff is the
standard error of the difference between these means.

Confidence intervals can also be constructed for sample
statistics other than the mean and in relation to samples
that do not satisfy the assumptions of parametric
statistics.17–19

Advantages of Confidence Intervals

Confidence Intervals Attach a Measure of Accuracy to a
Sample Statistic
Determining the accuracy of a point estimate is not
possible. A statistic such as a sample mean is just one
estimate of the population mean, and, because the
population mean is nearly always unknown, it is not
possible to know how good the estimate is. Table 2 shows
the means and 95% CIs of 10 random samples of 9 cases
drawn from a population of 300, and Figure 2 displays
the same data graphically. In this case, the population
mean is 9.5, but the researcher is unlikely to know this.
Any one of these point estimates of the mean, taken on
its own, gives no indication of how precise an estimate it
is or of how near it lies to the population mean. In
contrast, for any of the associated 95% CIs, we can be
95% sure that the population mean lies somewhere
between its upper and lower limits. Moreover, the width
of the interval gives an indication of the precision of the
point estimate. For those samples with smaller variance,
the interval is narrower, reflecting greater precision in
the point estimate. Because each CI differs from sample
to sample, however, it does not follow that any single CI
will include the means of 95% of all samples of 9 cases
drawn from this population.20

Confidence Intervals Can Function as Hypothesis Tests
Confidence intervals have been considered as a means of
estimating the value of a parameter. In many cases,
however, researchers may want to test a specific hypoth-
esis, as in the example of the FMS study considered
earlier. Although the orthodox approach is to conduct a
hypothesis test, in this case using the independent-
measures t test (Tab. 1), CIs can also be used to either
reject or retain the null hypothesis, and thereby perform
precisely the same function as the orthodox significance
test. The appropriate CI for hypothesis testing is deter-
mined by subtracting alpha (the criterion probability
value for statistical significance) from 1. Thus, a 95% CI
would be used to test the null hypothesis at the P ,.05

level, a 99% CI would be used to test the null hypothesis
at the P ,.01 level, and so forth.12

The way in which the null hypothesis is tested by means
of a CI is by determining whether the null value (ie, the
value specified in the null hypothesis) lies within the CI.
If the null value lies within the CI, we cannot exclude it
as being the population parameter at the chosen level of
confidence. In contrast, if the null value lies outside the
CI, we can exclude the null value from the possible
values of the population parameter at this level of
confidence. For example, Table 3 shows a 95% CI for the
mean difference between the pain relief scores for the 2
groups in the FMS experiment, in addition to the results
of the t test reported previously. The null value is that of

Figure 2.
Graphic representation of the data presented in Table 2. The solid
horizontal reference line represents the population mean of 9.5. The
95% confidence interval (CI) for the ninth sample fails to include the
population mean; it is as likely as not that this will be the case for 1 in
10 samples. This CI is actually the narrowest of the 10 CIs, illustrating
the fact that the precision expressed by a CI is independent of its
accuracy.

Table 2.
Means and 95% Confidence Intervals (CIs) (in Arbitrary Units) for 10
Random Samples (n59 in Each Sample) Drawn From a Population of
300 Individuals by Type of Hypothetical Data

Sample No. Mean 95% CI

1 10.57 8.87, 12.28
2 8.11 5.04, 11.18
3 9.67 7.12, 12.22
4 8.88 6.00, 11.78
5 10.67 8.95, 12.40
6 8.10 5.00, 11.19
7 10.11 7.63, 12.59
8 9.43 7.20, 11.65
9 11.70 10.05, 13.34

10 7.71 4.60, 10.81
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zero difference, and the 95% CI does not include zero.
That is, the researcher can be 95% confident that the
difference that would be found in the population of
patients with FMS would be greater than zero, which is
equivalent to rejecting the null hypothesis of no differ-
ence at the P ,.05 level by means of a t test.

The 95% CI gives additional information not afforded by
the outcome of the t test. This advantage of the CI can be
illustrated by considering the results of a second exper-
iment, this time carried out with a larger sample of 100
patients with FMS (Tab. 4). The effect size (ie, the mean
difference in pain relief) is the same as in the study using
50 patients, but the probability value is much smaller.
The same effect size returns different probability values,
depending on the size of the sample. Thus, the proba-
bility value is not a direct function of the effect size
alone, but is instead a function of both the effect size and
the sample size, just as the weight of a cylindrical object
is a function of both its height and its diameter. It follows
that knowledge of the probability value returned by a
hypothesis test does not, on its own, provide an indica-
tion of the likely effect size in the population, just as the
reported weight of a cylinder does not, on its own,
indicate its height. The CI, in contrast, provides this
information.

The 95% CI has a further advantage over conventional
hypothesis testing because it is equivalent to a hypothesis
test for not just one population value but a range of
possible population values, in respect to the sample on
which it has been calculated.21 To illustrate this point,
imagine that a third study was done on a sample of

patients with FMS (n550), using a different pair of
clinical interventions. The t test performed rejected the
null hypothesis that the population difference between
treatments is zero (Tab. 5). If the null value, however,
lies outside the 95% CI, the corresponding null hypoth-
esis will be rejected at the P ,.05 level. Thus, in this
example, the 95% CI serves to reject not only a null
hypothesis based on a difference of zero, but also a null
hypothesis, in respect to this particular sample, based on
any population difference outside the limits of the CI.
Based on the evidence of this study, the researcher not
only can be 95% confident that there is a nonzero
difference between treatments, but can also be 95%
confident that this difference is not less than 2.63 or
greater than 11.69. The t test, in contrast, only serves to
exclude a difference of zero and does not allow infer-
ences to be made about other possible values of the
population parameter.

If a series of CIs are calculated on a given data set, the
risk of a Type I error (ie, the risk of rejecting the null
hypothesis when it is true) will rise accordingly, just as in
the case of multiple tests of significance.2 This is a
particular problem when unplanned, post hoc compari-
sons are made. In such circumstances, it is often appro-
priate to adjust the level of confidence for the CI to
maintain the same risk of a Type I error, in a manner
analogous to the Bonferroni procedure for adjusting
probability values.10 Thus, if 5 CIs were to be calculated
on a single data set for the purpose of testing 5 null
hypotheses, the confidence level could appropriately be
adjusted from 95% to 99% for each CI, and the overall
level of confidence will thereby be maintained at 95%.

Table 3.
Results From the First Hypothetical Fibromyalgia Study, Showing 95% Confidence Interval (CI) for Mean Difference in Pain Relief

Subjectsa

Pain Relief Statistical Test

Mean
Mean
Difference

95% CI for Mean
Difference t df P

Group 1 7.60
3.48 0.11, 6.85 2.08 48 .043

Group 2 11.08

a The subjects in the 2 groups received different treatments designed to alleviate pain.

Table 4.
Results From the Second Hypothetical Fibromyalgia Study, Using a Sample of 100 Patients

Subjectsa

Pain Relief Statistical Test

Mean
Mean
Difference

95% Confidence Interval
for Mean Difference t df P

Group 1 7.60
3.48 1.21, 5.75 3.05 98 .003

Group 2 11.08

a The subjects in the 2 groups received different treatments designed to alleviate pain.
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When parametric analysis involving the testing of multi-
ple hypotheses is being performed, there are techniques
that take account of the number of such comparisons
more efficiently than manual adjustment of probability
values (eg, the various multiple range tests associated
with analysis-of-variance procedures).13 In such situa-
tions, it is probably most advisable initially to conduct
the process of hypothesis testing by a technique of this
sort and then report CIs for the pair-wise comparisons
found to be both statistically significant and clinically
important.

Confidence Intervals Are Informative on Questions of
Clinical Importance
The CI can provide valuable information when trying to
determine the clinical importance of the outcome of a
trial. In the third FMS study (Tab. 5), the mean differ-
ence in pain relief of just over 7 mm on the VAS was
sufficient to reject the null hypothesis of no difference
with an independent t test. Despite the statistical signif-
icance (a high probability that the result was real)
attained by this outcome, the lower limit of the 95% CI
reveals that the true value of the difference between
treatments could be as low as 2.63 mm. The CI for the
pain-relief scores is wider in this FMS study than in the
previous FMS study (Tab. 4) due to the greater variance
of these scores. Although a mean difference of 7.16 mm
on a VAS is arguably likely to be clinically important and
is the best estimate of the corresponding population
parameter for this study sample, a difference of 2.63
mm, which is arguably not likely to be clinically impor-
tant, is also compatible with rejection of the null hypoth-
esis at the P ,.05 level. Accordingly, 2 conclusions can
be drawn from these results:

1. On the basis of this study, the researcher can be more
than 95% confident that there is a difference in the
effectiveness of the treatment for the population of
patients with FMS between the 2 interventions tested.
This conclusion can be inferred from either the t-test
results or the 95% CI.

2. Despite having rejected the null hypothesis, the
researcher cannot be 95% confident that the value of

this difference in the population of patients with FMS
is clinically important, and this conclusion emerges
from the 95% CI alone.

We believe that it is equally important for CIs to be
reported when the null hypothesis is not rejected. Gore
pointed out that a nonsignificant statistical test is “a
statement that the trial results are consistent with there
being no difference between treatments, and is not
at all the same as saying that there is actually no
difference.”15(p660)

A 95% CI of the differences in scores that includes zero,
and thereby causes the null hypothesis to be retained,
may nonetheless contain differences, in either direction,
that could be clinically meaningful and that may repre-
sent the “true” population value. Such information is
potentially important to the clinician but is not revealed
by inspection of the probability value alone. The Physi-
cians’ Health Study23 provides a case in point. In this
randomized, controlled trial investigating the effects of
aspirin and a placebo in the prophylaxis of stroke
(N522,071), the odds ratio (ie, the ratio of the likeli-
hood of death from stroke in the group that received
aspirin to the likelihood of death in the group that
received a placebo) was 3.0.23 This 3-fold difference,
however, was not statistically significant (P5.16). This
finding is confirmed by the fact that the 95% CI for the
odds ratio (0.75, 11.98) includes 1, which is the null
value for an odds ratio. Inspection of the upper limit of
the CI for the odds ratio reveals that an almost 12-fold
difference in fatal stroke between the 2 groups cannot be
excluded as the population parameter with 95% confi-
dence. Thus, there is considerable lack of precision in
the odds ratio for this study, which is due to the low
incidence of strokes among the subjects (6 in the group
that received aspirin, 2 in the group that received a
placebo). Consequently, despite the nonsignificant find-
ing, we would hesitate to conclude that aspirin has no
effect on stroke mortality.

Table 5.
Results From the Third Hypothetical Fibromyalgia Study, Showing a 95% Confidence Interval (CI) for Mean Difference in Pain Relief

Subjectsa

Pain Relief Statistical Test

Mean
Mean
Difference

95% CI for Mean
Difference t df P

Group 1 6.52
7.16 2.63, 11.69 3.18 48 .003

Group 2 13.68

a The subjects in the 2 groups received different treatments designed to alleviate pain.
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The Role of Confidence Intervals in
Meta-analysis
Recently, there has been a call for a more rigorous and
systematic approach to the review of the existing
research literature in a given area.24 In place of the
narrative literature review, the systematic review should
be the approach of choice.25 The process of meta-
analysis also plays a key role in systematic reviewing.26–28

Meta-analysis has been defined as “the statistical analysis
of results from a large number of individual research
studies so as to integrate their findings.”29(p390) The
strengths of CIs become particularly evident in
meta-analysis.30

In order for a meta-analysis to be performed, a common
measure of effect size must be extracted from, or retro-
spectively calculated for, each study included in the
analysis. The odds ratio is an appropriate measure of
effect size for studies that examine the relative incidence
of a dichotomous outcome, as opposed to differences in
an outcome variable measured on a continuous scale.31

The odds ratio is the ratio of the odds (likelihood) of
achieving a certain outcome under one treatment con-
dition to the odds of achieving that outcome under
another treatment condition, with an odds ratio of 1.0
denoting no difference. To illustrate, in a systematic
review of randomized, controlled trials of intensive ver-
sus conventional therapy for stroke, Langhorne et al32

found an overall odds ratio for death or deterioration of
0.54. This odds ratio means that the likelihood of death
or deterioration during intensive therapy is 54% that of
conventional therapy.

Studies will vary in the contributions they make to the
total odds ratio, based on sample sizes and other factors
that may or may not control random error. Displaying
the CI for each study on what is known as a forest plot
illustrates clearly the relative merits of the separate
studies. Those studies that are based on larger samples
have correspondingly narrower CIs, and the CI for the
total odds ratio is the narrowest, as this CI is based on the
aggregated sample.

Figure 3 shows a forest plot for hypothetical studies of
biofeedback versus control treatment for habitual shoul-
der dislocation, in which the dichotomous outcome
measure was whether a recurrence of dislocation
occurred within the 8 weeks following treatment. The
figure also shows the total odds ratio, which is calculated
by statistical analysis of the aggregated data from the
individual studies (odds ratios can be calculated retro-
spectively for studies that used other outcome measures,
such as risk ratios). A ratio of less than 1.0 indicates that
biofeedback is associated with a lower likelihood of
recurrence than the control treatment. Note that,
although the odds ratio from study “c” approximates the

total odds ratio very closely, the width of the associated
95% CI shows that it would be very difficult to draw a
meaningful inference from the results of this study
alone. The narrow width of the CI for the total odds ratio
reflects the precision that results from aggregating data,
and the fact that it excludes 1.0 indicates that the ratio is
statistically significant at the P ,.05 level. Thus, CIs assist
considerably in the interpretation of the results of
meta-analytic studies.

Conclusion
Interval estimation is a valuable form of statistical infer-
ence that we believe has certain advantages over conven-
tional hypothesis testing based on tests of significance.
We contend that CIs also lend themselves readily to
graphic portrayal and, therefore, are a useful means of
“eyeballing” relationships in a set of data.33 Based on our
review of the physical therapy literature, however, we
believe that CIs are underutilized. We, therefore, make
the following recommendations:

• A CI should be included whenever a sample statistic
such as a mean (or difference in means) is pre-
sented as an estimate of the corresponding popu-
lation parameter (the standard deviation of the
mean should be presented if no inference to the
population is intended).

• Confidence intervals should be provided in addi-
tion to (or even instead of) the results of hypothesis
tests, with the level of confidence for the CI
matched to the level of statistical significance for
the hypothesis test (eg, 95% CI for P ,.05, 99% CI
for P ,.01).

Figure 3.
A forest plot of 6 hypothetical studies (a-f ) of biofeedback for habitual
shoulder dislocation, showing odds ratios for the individual studies and
the total odds ratio for the aggregated data. The solid reference line
denotes an odds ratio of 1.0 (no difference), and the broken reference
line indicates the total odds ratio. The horizontal scale is logarithmic.
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• Advantage should be taken of the information
provided by CIs to assess the clinical importance of
study findings.

• If multiple CIs are calculated, the level of confi-
dence should be adjusted to maintain the desired
risk of a Type 1 error.

• When systematic reviews are conducted, CIs from
individual studies should be reported (or calculated
if missing from the original study), and these
CIs should be displayed in any meta-analysis
performed.
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