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SUMMARY

In life testing studies, where failure times are usually recorded
only for the first k (out of n) units that fail, one may wish to
study the relationship between the failure time and other concomitant
variates. The present investigation concerns this study for the case
when these concomitant variates are observable only for the units
pertaining to the actual failures, i.e., for the induced order statis-
tics. For a bivariate normal distribution, estimation of parameters
based on these induced order statistics is considered and a related
test for independence is also studied. Empirical power studies are

made for this test.
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1. INTRODUCTION

Let (xl’Yl)""’ (Xn,Yn) be independent and identically dis-
tributed random vectors (i.i.d.r.v) and let Y £ .. <Y be
n,1 n,n
the order statistics corresponding to Yl, ...,Yn. Also, assume that
the conditional distribution function (d.f.) of Yi given Xi is of

the form F with a probability density function (p.d.f.)

(y)
BXi

fBX (y), for i=1,...,n; here, the Xi may be p(21l) - vectors
i .

and B 1is also an unknown vector.

In a 1life testing problem, treating the Yi as the fatilure
times, if an experiment is run until the first k failures (out
of n) occur, the likelthood function of the censored sample (and

given the Xi) is

~ k n
L . =4TT ¢ (Y DR TT[1-F Y_ )] (1.1)
mk o lia1 By M e By ™K
where
Xn[i] = Xj if Yn,i = Yj for i, j=1, ...,n . (1.2)

Bhattacharya (1974) has termed the X as the induced order

n[i]
statistics while David and Galambos (1974) have named these as the
concomitants of order statistics.

Various authors have used (1.1) to draw statistical inference

[on B and other parameters associated with p.d.f. fo(y)]; we

may refer to David and Moeschberger (1978) for some of these
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procedures. The conditional likelihood approach of Cox (1972) is
similar to this, but uses fewer parametric assumptions. These
procedures, however, assume that though Yn,l""’ Yn,k are only
observable, the entire set (Xl,..., Xn) [or equivalently,
Xn[l]""’ Xn[n]] is given prior to experimentation, so that (1.1)
is properly defined. In many other life testing problems, especially,
arising in clinical trials, Xn[i] is observable only when Yn,i
is so (for 1i<n), so that the second factor on the right hand side
(rhs) of (1.1) is no longer deterministic. This is particularly true
if recording of Xi necessitates the failure of the ith unit, so
that for the surviving [n-k] units, the Xi are not observable.
In toxicological experimentation this is a common feature.

The necessity of observing concomitant data for all individuals
no longer exists if we make the assumption that (Xi,Yi) has a
bivariate normal d.f. and denote its density by ¢§(x,y) where
8= (Mys Hys 0)2(, o@, P), My, Wy stand for the means, 0)2(, 0§ for the
variances and p for the correlation coefficient of X and Y.
Watterson (1959) found linear estimators of My and POy using
Xn[l]""’ xn[k]’ while the estimation of uY and OY using the

order statistics Yn 1 <. .. <Yn x can be made as in Sarhan and
Greenberg (1962). However, the estimation of oi (and p) poses

certain difficulties and constitutes the main objective of the

current study.
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In Section 3, an estimator of o; is developed. Likelihood

equations are incorporated in Section 4 for deriving Cramér-Rao
lower bounds for variances of unbiased estimators based on censored

data. Estimation of My s o2 and p using both order and induced

X,
order statistics is formulated in Section 5. In Section 6, the
desirable properties of the classical Pearsonian correlation coef-

ficient as a test statistic for testing H_ : p=0 are considered

0
and some power calculations are presented for various combinations
of (k,n). Foundations of many of these results are laid down in

Section 2.

2. CONDITIONAL DISTRIBUTIONS AND MOMENTS OF INDUCED ORDER STATISTICS

Since (Xl, Yl), cens (Xn, Yn) are i.i.d.r.v. having the p.d.f.
q;e (x,y), by an appeal to Lemma 1 of Bhattacharya (1974), we conclude
that given Yn,l’ vees Yn,k’ Xn [y’ Xn k] are (conditionally)
independently distributed and the conditional p.d.f. of Xn[j] given
the Yn T 1<i<k is univariate normal with mean

2

- o 201 _ 2 .
uX+pGX(Yn,j uY)/oY and variance dx(l p¢), for j=1,...,k and

> = t = v
every n>k=21. Let then X (xn[l]’ cees Xn[k]) I (Yn,l’ ""Yn,k)
and Z= 0;1 Y- luY) . The joint (conditional) p.d.f. of X given Y

is then

1

— [X-uyl-po,Z]' [X-u,l - po Z]}. (2.1)
21_p2y = FX® X< X X~
Zox(lp)

-k/2
[Ui(l - p?) 2] exp{—
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It follows from (2.1) that
ECX|Y) =uyl +po,Z and EQX'[Y) =0}(1-p))L + [EGIDIEEIDI'. (2.2)

Thus, if we let

= = - - '=V=
BZ=y=(u, b -ooouyy) end EQZ-ED)(Z-EZ)' =V=(v, ;)),  (23)

then, from (2.2) and (2.3), we obtain that

E(X) =pyl +po,u and E(X-EX) X-EX)' = 0§(1-p2)£k-+p20;y . (2.4)

Note that for k<n<20, u and V are tabulated in Sarhan and
Greenberg (1962, pp. 193-205) and approximations for the same for
higher values of n are considered in David (1970, pp. 65-7 ). These
are quite useful in subsequent sections.

3. ESTIMATION OF Oi FROM THE INDUCED ORDER STATISTICS

Watterson (1959) used (2.4) to find estimators of My and POy

which are linear functions of X s eees X . His estimator of
n[1] n[k]
My is
i, = a'x=7% a.x ; (3.1)
X =~ = i=1"i"n[i] :

~

ai:=k-1"ak(un,i'ak)/z;=1(un,m"ﬁk)z’ 1<ic<k, (3.2)

- _.-1vk ~ L . .
and lk"k zi=1un,i . Uy 1s the minimum variance unbiased (MVU)
estimator of My when p=0. ﬁx losses its MVU property when p#0

and it is not in general possible to find a MVU estimator since p is



= ' =
'where a (al,..., ak) » b (bl, ...,bk)', c
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not known. However, he observed that for a certain range of p

ﬁx in (3.1) has a smaller variance than that of the MVU estimator,
assuming p=1. The &i in (3.2) are the same as in Gupta (1952)
where the estimation of Hy based on Yn,l’ ""Yn,k is treated.

It follows from (2.4) that there is no estimator of 02, linear
in X and valid for all p. It is therefore natural to try a quadratic
estimator of the form X'AX. Again, the variance of such an estimator
would depend on the unknown p. Following the Watterson approach, we
might minimize the variance of X'AX when p =0, which amounts to
minimizing tré2 subject to E(§'5§)==c§. The authors have found
(by extensive simulations) the use of this estimator, which requires
the solution of k simultaneous equations, has little to gain over a
much simpler estimator which we preseﬁt below. Let

5% = L1 R (3-3)

where ﬁx is defined by (3.1) and the c; are real constants. Using

(2.4), (3.1), (3.2), and (3.3), it follows by some some standard steps

that

EG2 = o2 a'c + polb'c , (3.4)
x =% 2¢ <

(cl,..., ck)' with

_ - - k - .2
ai"(k_l)/k+uk{1+2(un,i' uk)}/zmzl(un,m-uk) (3.5)
b.=-a, -2 ) a.v._ .. + a_a v + VL. +ut,, (3.6)
i i §=1 jm,3i Ly (2 Tis s n,ii n,i



for i=1,...,k. Thus, for an unbiased estimator, we require that
a'c=1 and b'c=0 and, motivated by Watterson, we minimize ¢'c
which minimizes V(Bi) when p=0, considering {i, given. The

result is
c, = {b,a'b-a.b'b}/{(a'p)?- (a'a) (®'D)}, 1<isk.  (3.7)

An estimator of p can also be obtained by considering the Watterson
estimator of Poy (based on X alone) and dividing the same by the
square root of 5; in (3.3) and (3.7). However, such an estimator
does not depend on Y, and hence, when the latter is given, may not
be a very efficient one. For this reason, in the next Section, we

proceed to study the efficiency of estimators of @ = (ux, Hys 0)2(, 0;, p)

based on (X, Y).

4. INFORMATION LIMITS TO THE DISPERSION OF UNBIASED ESTIMATORS OF 6

Note that the joint p.d.f. of Y is

k
k -k -k
N (AT VBT SR N (c SUNEITI V208 LV 3
i=1 ’ ’
where n[k]=11--. (n-k+1), ¢ 1is the standard univariate normal

1
d.f. and ¢, is its p.d.f. Multiplying (2.1) and (4.1), we obtain
1

that the joint p.d.f. of X and Y is equal to

k
e TT4%Cnpy ) (CEENCAMETRIZR g SO

Yn,1%n,2 77" = Tn,k



where q)e(x,y) is the bivariate normal p.d.f. with the parameter §.

With the notations in (2.3), we let W= (wl, ceos u)k) where

- .2 <i< N
Wy Vn,ii+un,i’ 1<i<k. Also, we denote by Ln,k the logarithm

of (4.2) and define X, Y, and Z as in before (2.1). Then, we

have (on letting )~(0 =l(-uxl)
- _ 201_p2
(8/3uy )L, 4 = {(X, - poy2) '1}/ oy (1-p%),
- _ 301_n2
(/30 )Ly | = -k/0y + [XgXy - PoyXgz]/oy (1-p%)

(3/3p) Ln,k = (1-p?) "2 [kp(1-p?) - pg)‘(Zzézo -pZ'Z+ 0)—(1 (1+IJ2)§6Z‘] s

. : + (4.3)

(/3L (= (K)o ey (2, /1122 )]

- (1-p®) "oy [poytXAL - 2111,
(3/30 )L = (-K) 03’2, (0,2, /1= 92, )]

-1 -1 =1y, ' -1
-0yt (1-p*) {poy TXpZ - 212} - Koy, J
where Zn,k= (Yn,k-“Y)/oY' Let
bnk; a,b,c,d) =ELI, (2 1718 (2 D171 - 0 (2, 1720 3 (4.0)

where a,b,c,d are non-negative numbers and the p.-d.f. of Zn K is

>

n a1, @1 -0, 1M (1), -emcice, (4)

for k=1, ...,n. Differentiating each side of each equation in (4.3)

with respect to ux, Hys ox, OY, and p and taking expectations, we



obtain by some standard steps that

111=E{-(32/8p)2()Ln,k} = k[o)z((l-pz)]-l, (4.
I 5= E{- (3%/dugdo )L 1} = @'Dploga-p17", (4.
1,5 =E{-(3%/amdp)L |} = (@' [oy(1-p")]17", (4.
1,,=E-(3%/dudupL |} = -kplogoy (1-p)177, (4.
I, =E{-(3%/0uyd0)L |} = -p(u' Dloyoy (1-p*)17Y, (4.
I5=E{-(3%/30Q)L |} = {2k (1-p?) + pu'1}/ [0%(1-p?) 1, (4.
I, =E{-(3%/80,3u)L |} = -p®(u'D) [og0y (1-P*) 17, .
135=E{-(82/30X8p)Ln’k} = p(w'1-2k) [cx(l—pz)]—l, (4.
Iy, = E{- (3%/20y00,)L, 3 = -p*(@'D) [0y0,(1-p*)17Y, (4.
Igg = E{-(3%/0p")L |} = {2Kkp®+ (1-p*)u'1}(1-p") %, 4.
Ig,=E{-(3%/3pdu)L 1} = -p(u'1) [oy (1-p*)17%, (4.
I, = B{(-(3%/0pdo)L 3 = -p(e'D) [0y (1-p")] ", .
122=E{-(32/au§)Ln’k} = {(n-X) [¥(n,k; 2,0,2,0) - ¢(n,k; 1,0,1,1)]
+ k(1-p*) Mo, 4.

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

IZ4=E{-(82/8uY30Y)Ln,k} = {(n-k) [¢(n,k; 1,0,1,0) - ¥(n,k; 1,0,1,2)

+ W(n,k; 23092,1] + B'l(z'Pz)/(l‘Pz) }/0’%, (4'

144=E{-(az/ao§)Ln,k} = {(n-k) {2¥(n,k; 1,0,1,1) - y(n,k; 1,0,1,3)

+ P(n,k; 2,0,2,2)] -k - (1-p?) "' (2p-3)u'1}/ 0}, (4.

and where Ij£=I£j for every j,£=1, ..., 5.

19)

20)
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[In passing, we may remark that Des Raj (1953) in the context of
maximum likelihood estimators (MLE) of 6, when Y is truncated instead
of censored, obtained equations similar to those in (4.3). However

our (4.6) - (4.20) are different from his.]

To evaluate £:=((Ij£))j,£=1,...,5’ the information matrix, we
need to evaluate u'l and w'l. For this, as in Saw (1958), we note

that given Zn K’ the joint distribution of (Zn 1° ""Zn,k-l) 1s

s L]
reducible to that of k-1 independent rv's from a univariate normal

d.f., truncated from above by Zn K we denote the latter variables

s

by Sl’ ""Sk-l’ so that for 1<ic<k-1,

E(Silzn,k):=*¢1(Zn,k)/®l(zn,k)’ E(Silzn,k):=1—Zn,k¢(zn,k)/¢l(zn,k) ’

(4.21)
and, in general, for r 20,
T+2 _ T _ LT+l
E(S; |Zn,k)"(r+1)E(Si|Zn,k) zn’k¢1(zn,k)/¢1(zn’k) . (4.22)
Hence,
k k-1
w'l= LB, ) =B 0 Lo B08;]
= E(Z_,) + Xk'lE{E[s [z .1} (4.23)
n,k i=1 i'“n,k :
= w(n’k; 0:0’0,1) - (k'l)w(n,k; 1:1,010);
_ vk 2 _ 2 k-1 2
W'l = BiqB(Zy 5) = B ) v B BEGEIZ, )
= Y(n,k; 0,0,0,2) + (k-1)[1-¥(n,k; 1,1,0,1)]. (4.24).

[Note that, in Saw's notation, yY(n,k; a,a,0,b) =¢(k/(n+l), n: a,b)

and these can be easily calculated for given (k,n) by numerical integration.]
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For the calculations which follow, ox and oy, are both taken
as unity. For three selected sample sizes and five values of p
the elements of ] were calculated. The Cramer-Rao lower bounds
for variances of unbiased estimators, which are the diagonal elements
of 1—1, are presented in the following table. These bounds also

represent asymptotic variances of the maximum likelihood estimators

using (4.3), ﬁx, ﬁY, ax, 6,, and p.

TABLE 1

Cramér-Rao lower bounds for variances

n Kk p VIR VE,] VB VIS VIR
20 10 0 .2433 .0761 .0500 .0601 .2433
1 .2417 .0761 .0514 .0601 .2372
.3 .2283 .0761 .0618 .0601 ~ .1916
.5 .2015 .0761 .0775 .0601 .1181
.9 .1078 .0761 .0787 .0601 .0049
100 20 0 .4598 .0567 .0250 .0345 .2134
.1 .4557 .0567 .0266 .0345 .2077
.3 .4235 .0567 .0385 .0345 .1653
.5 .3590 .0567 .0562 .0345 .0984
.9 .1333 .0567 .0564 .0345 .0032
1000 50 0 .6170 .0508 .0100 .0155 .1410
.1 .6114 .0508 .0112 .0155 .1370
.3 .5661 .0508 .0200 .0155 .1081
.5 .4755 .0508 .0330 .0155 .0630
.9 .1584 .0508 .0322 .0155 .0017
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It is interesting to note that for a large censoring proportion (small
k/n) My cannot be estimated well at all from induced order statistics

yet o0, can be estimated with more accuracy than Oy for small p.

X
Also, lower bounds for variance of estimators of Hy and oy are
independent of p as one would expect; Hy and oy, can be estimated
efficiently with a small number of order statistics regardless whether
or not induced order statistics are observable.

The difficulty in estimating My stems from ) being unknown,
therefore bringing an unknown location bias to the sample of induced
order statistics due to the selection process on Y. For example, if

p were known to be zero My would be. estimated by the sample mean

with variance Gi/k.

5. MODIFIED MAXIMUM LIKELIHOOD ESTIMATORS OF §©
An iterative method may be used to estimate © by using (4.3).
Des Raj (1953) set up the implicit solutions to the likelihood
equations for the case of double truncation on Y from a bivariate
normal sample which is similar to our case relating to censoring.
Assuming the theorem outlined by Halperin (1952) to be valid for our
bivariate casel, the ML-estimator will be consistent, asymptotically

normally distributed and asymptotically efficient too. However, the

+Since Yn 1’ ...,Yn K are not independent, study of the asymptotic
properties of MLE may demand additional regularity conditions [viz. Sen
(1976)]. Nevertheless, for bivariate normal d.f.'s, these hold

under quite general setups.-
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complexity of the solutions in (4.3) makes the study of the properties
of the estimator difficult for any finite sample size. Also, if the
results obtained by Saw (1961) for estimating Uy and Oy by the
MLE from censored data can be extrapolated to our bivariate case, we
can expect the MLE to have undersirable properties for small k or n.
Particularly, the MLE may have considerable bias (relative to its
standard error). The linearization of the log-likelihood function
described in Chan (1967), which results in simple and efficient

estimators of My and o© does not work here as, in this case, we

Y?
will face 4 equations in 5 unknown parameters. Therefore, a second
order Taylor-series expansion of .Ln,k is needed and this will be as
complicated as using the original equations in (4.3) and does not lead
to unbiased estimators.

There are other good estimators of My and Oy besides the one
considered by Chan (1967). For instance, Saw (1959) developed an
unbiased estimator of uY which is a linear combination of Yn,k

and (k—l)-llg;iY and has asymptotic efficiency (a function of

n,i

k/(n+1)) 294% for k/(n+l) as low as 0.25. He has also considered

a linear combination of Z?:i(Yn ;- Y k)2 and {ZE:%(Yn i Y k)}2
- ] ’ - ] >

2

Y which is of 100% asymptotic

as an unbiased estimator of ¢
efficiency for all k/(n+l).
Since the lower bounds for V(ﬁx) and V(SX) are independent

of p (and hence, equal to the bounds when p=0), for the estima-

tion of (uy,oY); the induced order statistics may not contribute
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any information. In view of this, it seems natural to estimate
(uY,oY) by some (efficient) procedure [based only on

~ * %
X-(Yn’l,..., Yn,k)] [denote the estimators by (uy, 0y)] and then
to consider only the first three equations in (4.3) wherein Hys Oy
are replaced by u§,o§ and equating these to 0, we get three

equations in three unknown parameters (ux,ox,p) and denote these

solutions (u;,a;,p*) as the modified MLE. For this purpose, we

denote by
v _ -1¢k T -1vk 2 _ 411 _ ¥y 2
X=k" L%y VoK T, SkTK Lia (om0
(5.
2 _ -1¢k _gy2 _-lk _ ¥ _y
sy =k Zi=1(Yn’i ¥)? and S, =k Zi=1(xn[i] X)(Yn’i Y.
Then, for the modified MLE, we have
* * * 7 * *
*2 _ g2 *2 37 0 FV2,F %2 Y _* ¥ _u*
*y 2 * * ok - 2 *2
[or (p™)* - p*Sy /030y = 1= 8y/0%*] (5.
and the third equation in (4.3) along with (5.2) leads us to
* * 2 * 2 * 2 2 * 2 * 2 * ok
p*(1-p™°) -p (Sx/ox +SY/0Y ) + (1+p )SXY/UXUY =0, (5.

so that by (5.4) and (5.5), we have

* % *o2
P =0ySyy/ xSy

= (S,y/SySy) [(03/5) (S,/08)]. (s

1)

2)

3)

4)

5)

7)
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From (5.4) and (5.7), we obtain that

*2 _ o2 2 2 *2 /g2 _
oy ~-SX+(SXY/SY)(0Y /SY 1) (5.8)

and from (5.2), (5.7) and (5.8), we have

u;‘( =X + (sXY/si) (u§ -9 . (5.9)
Thus, having estimated Hys Oy by u;, 0;, we may estimate My Oy»
and p by (5.9), (5.8), and (5.7), respectively. One nice feature
of these estimators is that as k/n -~ 1 (i.e., the amount of
censoring decreases), the estimators approach the ordinary MLE,
which are known to be efficient.
Noting that given Y, u; is linear in X, we obtain by (2.2),

(5.1), and (5.9) that

and hence, u; is unbiased for Hy if u; is unbiased for My« It

can also be shown that

*y _ 209 2 * _9y2/q2 2.2 =2y %
V() =02 (1-p?) [1 + EL(uy - V) /G /k + pPojoy V) , (5.11)
*2y _ 2 2. 21,72 *2 201_n271" 1 *2 21 _
E(0y ) =0y +Pp ox[oY E(oy") -1]-+0X(1 Pk [E{oY /SY }-2]. (5.12)
In order to estimate the expected values of o; and p* as well
as the variances of u;, 0;, and p*, for each of three different

combinations of (n, k) and five different values of p, 500 random

sets of (X, Y) were generated and the statistics were evaluated.
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u;, 0; were taken as the estimators due to Gupta (1952). Also,
for comparison V(ﬁx) (where ﬁx is defined by (3.1)-(3.2)) was
evaluated and for the latter, the uh,i in (3.2) were approximated
by the method due to Harter (1961). For simplicity, we have taken
here cx==0Y==1. We have also estimated the trace efficiency of the
modified MLE, which is the ratio of the sum of the five Cramer-Rao

lower bounds from Table I to the sum of the estimated variances of the

five modified MLE.

TABLE II

Estimated moments of modified maximum likelihood estimators

n ko p |V[u}][VIE 1| ViG] [E0}] | VIoF]| VIo§] [E[p*] | VIP*] Ef;;:i(_::ncy
20 10 0 .281] .297| .074 |1.021 ] .077 | .078 |-.020| .236 .902
.17 .287 1 .293 | .092 .998 1 .074 | .088 0601 .213 .884
.3 .281 | .293 .082 |1.043} .079 | .079 275 .196 .862
.51 .265| .276} .087 .998 | .102 | .086 .449 | 172 .749
.91 .123| .126 | .093 {1.014 1} .106| .083 .889 | .024 .764
100 20 0 .495{ .508 | .076 |1.038 | .042 | .045 |-.044 | .169 .955
.11 .548 | .564 | .087 ]1.059 ! .047 | .051 .080 1] .176 . 859
.3 .487 ] .507 | .090 {1.054 | .050 1} .049 .256 1 .152 .868
.5 | .400 ] .420 | .081 [1.020 1| .057 | .046 .442 | . 115 .865
.91.202|.2091 .087 |1.014 | .080 | .048 .8851 .009 .667
1000 50 0| .663}).685|.078 (1.045| .019 | .022 |-.016 | .114 .931
1.601|.616 | .091 |1.044 | .018 | .025 .092 | .105 .983
.31 .624 | .648 | .094 [1.048 ] .024 | .024 .274 | .103 .875
51.477 | .508 | .091 |1.030 | .032 | .025 .462 | .066 .923
9].187].188 .982 .987 | .038 | .023 .887 | .003 777
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From Table II we see that u; is consistently slightly better than
ﬁx although a small part of this may have to do with the approximation
used for the un,i' The simulated efficiency of u; is between 66%
and 102% according to the bounds in Table I. As expected, u; has
large variance for large censoring proportion. On the other hand, Oy

is estimated as well as o, in almost every case and has lower

Y
variance in some cases. Also, 0; appears to be not badly biased and
is 53-103% efficient. p* has efficiency between 69% and 130% for
the cases studied except when p=.9. The bias in p* is very low

except for moderate p (p=.3 or .5 resulted in maximum estimated

bias of .06).

6. TESTS FOR INDEPENDENCE OF (X,Y)
Since u;, 0; are efficient estimators of Uys> Oy for all p,
the modified MLE in Section 5 may be incorporated to prescribe a
modified likelihood ratio test for H,: p=0. As before, u;, 0;;
ui, o;, p* are the estimators considered in Section 5. Over the

parameter space restricted by p=0, the parallel estimators are
u;, G?; ﬁ;, 5;, 0 where

ﬁ;‘(=)'( and 0*2=82 are defined by (5.1). (6.1)
Since the second factor of (4.2) involves only (uY, OY) and we

have the same estimator (u;, o;) in both the null and non-null cases,

substituting the two sets of estimates in (4.2), taking the ratio and
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proceeding by some standard steps, we obtain that -2 times the

logarithm of the (modified) likelihood ratio statistic is equal to
*2 * _
-klog(l-r™“) where T --SXY/SXSY (6.2)
and the S_,, S,, S are defined by (5.1). Thus, r* is the ordinary

X* 7Y’ XY

product moment correlation of the set (Y_ ., X r.q1), i=1,...,k.
n,i’ "n[i]

Thus, as a test statistic (for testing HO:p==0), we may use T*.

We define
* _ oy *2 _p*2y - Q2 9" lrg2g2 _ g2
T = (k-2)r*%/(1-r"°) SXY/{(k 2) 7 [548y sXY]} , (6.3)
* _1q27.2_ ~2yK 92
U” =kSy/oy = oy Ziﬂ(vn’i Y)2. (6.4)

Let HA(t; a,b) be the non-central F d.f. with degrees of freedom
(DF) (a,b) and non-centrality parameter A and G k(u)==P{U*$11}

for 0<u<e. Finally, let

Hp(t; a,b) = f:pzu/(l-pz)(t; a,b)dGn’k(u) , 0st<o, (6.5)
0

Then, we have the following

Theorem 6.1
For every t=20 and given U*
P{T*<t|U*} = H -1, . (t; 1,k-2) . 6.6
{ |~ } pZ(l_pZ) U*( ) ( )
Hence, P{T*st}=H;(t; 1,k-2),V t e [0,®), Under H;:p=0,

H;(t; 1,k-2) = Hy(t; 1, k-2) is the central F d.f. with DF (1, k-2).
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Proof:

As in Section 2, given Y, )(n [y’ -’ Xn k] are (conditionally)
. . . . -1
independently normally distributed with means ux-rpcxoY (Yn,i - Hy)
1<i<k and a common variance cﬁ(l-pz). Hence, given Y, kSXY is

conditionally normally distributed with mean

*

(Y-Y1)' {uxl + poxo;l Y - qu)} = kpUXS\Z(/OY = payo U and variance

o2(1-pH (X -Y 'L, (Y-Y1) = c)z(c;(l-pz)u*. Therefore, given Y,

K
k282, /{002 (1-p*) U™} v xF(P2U* (1-p") 1), 6.7)
where x;(A) stands for the non-central chi-square d.f. with p

DF and non-centrality parameter A. Further,
2 a2g2 2 2_2 2y %Y -
k2 (5357 - Syy)/{ogoy(1-p*)U*} = U'AY (6.8)

where

>
1

o2U* (L - k'L - (X-YL(-TD)!
1 (6.9)
= {0}0d (1-p*) U™} /25

c
|

and given Y, U is conditionally normally distributed with mean vector

1
Yy = {uyl +poyol’ (¥ - uyl) HoZoZ (1-p*)U*} 2 (6.10)

and dispersion matrix k-lsgzlk. Further, it can be shown that

2

Ak'ls; is an idempotent matrix and rank of A=k-2. Also, Yy'Ay=0.

~

Thus, given Y,

kz(sxsf{ - S)Z(Y)/{c)z(of{(l—pz)u*} v Xg_,(0). (6.11)

Finally, noting that (l{-\-{l)' A=0, we obtain by (5.1), (6.8), and
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(6.9) that given Y, S, and {S§S§-S§Y} are conditionally independent,

XY
and hence, (6.6) follows from (6.3), (6.7), (6.11) and the fact that
this conditional df depends on Y through U* alone. Finally, by
(6.5) and (6.6),

P(T*st)=E{P(T*St|l~1*)}=H;(t; 1,k-2). Under Hy:p=0, (6.6) is equal

to Hy(t; 1,k-2) for all U*, and hence, H;;=HO. Q.E.D.

1f follows from Theorem 6.1 that under H,:p=0, T* has the
classical variance-ratio distribution with DF (1, k-2) and the test
can be made without any difficulty. Let F; be the upper 1000%
point of HO( ; 1,k-2) i.e., HO(F;; 1,k-2)=1-0. Then, the power
of the test based on T* (or r*) and corresponding to the level of

significance a(0<o<1) is given by
*  k _
1 - Hp(Fa’ 1,k-2). (6.12)

In general, for k<n, Gn K’ the d.f. of U*, is quite complicated,
2

and hence, analytical solutions for (6.12) are difficult to obtain.

However, one can obtain one or two moment approximations for it, using

the following formulate-r due to Saw (1958):

+This paper contains additional errors not reported in its
Corrigenda. Let wab==w(n,k; a,a,o,b), defined by (4.4). Then, noting
* _ 71V (7.7 = ' wi = -
that U (Z-Z1) ' (Z-Z1) where 2 (Zn,l""’ Zn,k) with Zn,i (Yn,i uY)/o
1si<k relate to the standard normal df, we find after rederiving Saw's
formulae that

* _ 1”1 _ _ _ _ - - - 2 2
EU* = k™ (k-1) [(k-1) - (k-3)¥, + ¥y, - (k-2)¥,,] = ESy/0y
and the coefficient of wls in equation (3.6) of Saw (1958), relating to
Es;, should be -(3k2 - 14k + 15) instead of (5k?- 10k +1). Dr. Saw has

confirmed these findings in a personal communication. Also, we limit
ourselves to k>4 (or>6) for these approximations.
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E(T*) = {1 + gEU*} (k-2)/ (k-4), T=p?/(1-p%), (6.13)

E(T*2) = {3+ 6CEU* + Z2EU*2}(k-2)2/(k-4) (k-6). (6.14)

For the one moment approximation, we replace the distribution of T

= * .
by Fl’k_z(k) where A =gEU” and Fa b(A) has the d.f. HA(t, a,b),

defined after (6.4). For the two-moment approximation, we replace the
distribution of T* by an k_2(0) and equating its moments to (6.13) -

(6.14), we obtain that
a=1+CEU* and b=2a%/{g2V(U*) + 4CEU*+2} . (6.15)

Note that under p=0, a=1, b=1 and A=0, so that both the
approximations give the correct null d.f. For the two-moment approxi-

mations, (a, b) values for different n, k, p combinations are as

follows.
n k P EU* V(U™ a b
20 10 0 3.43246 3.87797 1 1
0.1 1.035 1.001
0.3 1.339 1.057
0.5 2.144 1.312
0.9 15.633 3.731
100 20 0 4.22029 3.60135 1 1
0.1 1.043 1.002
0.3 1.417 1.085
0.5 2.407 1.443
0.9 18.992 5.174
1000 50 0 6.79174 4.41258 1 1
0.1 1.069 1.004
0.3 1.672 1.182
0.5 3.264 1.845
0.9 29.954 9.063
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For each n, k, and p, the power of the r*

test under censoring

at the 5% level was estimated by generating 2000 k x2 random vectors.

The exact upper 5% critical values were used and the power was calculated

by counting the number of r*'s having absolute value greater than the

true critical value. For purposes of comparison the simulated critical

values are also given. In order to compare the power of the test using

censored data to that using a complete bivariate sample, the complete

sample size ¢ required to achieve the same simulated power using the

Fisher-Yates Z-test is given.

TABLE III

Estimated power of 5% r-test for censored data

Estimated True Power from

Power from

Critical Value Critical Value One Moment Two Moment Simulated c
n k p of |r*| of |r*| Approximation Approximation Power
20 10 0 .624 .632 .0500 .0500 .0485
.1 .0531 .0531 .0615 13
.3 .0810 .0802 .0810 6
.5 .1570 .1522 .1645
.9 .9160 .8331 .8080 7
100 20 0 .433 .444 .0500 .0500 .0445
.1 .0544 .0544 .0555 8
.3 .09839 .0921 .0915 7
.5 .2025 .1929 .1920 7
.9 .9796 .9468 .9305 9
1000 50 0 .280 .276 .0500 .0500 .0535
.1 .0576 .0575 .0595 12
.3 .1266 .1219 .1130 9
.5 .3140 .2967 .3225 11
.9 .9995 .9985 .9980 14
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Note that a complete sample of about one-fourth the size of the
censored sample would give the same power for n=1000, k=50. The
two power approximations are very similar but the two-moment approxi-
mation appears to be slightly better. However, because of the

simplicity of the one-moment approximation, it might be preferred.
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