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Summary. Likelihood inference for discretely observed Markov jump processes with finite state
space is investigated. The existence and uniqueness of the maximum likelihood estimator of
the intensity matrix are investigated. This topic is closely related to the imbedding problem for
Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by
the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood
estimator does not exist, an estimator can be obtained by using a penalized likelihood function
or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its
implementation are illustrated by examples and simulation studies.
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1. Introduction

Markov jump processes with finite state space have many applications and, if a continuous record
of such a process has been observed, likelihood inference concerning the transition intensities
is simple and well known; see for example Billingsley (1961), Jacobsen (1982) and Küchler and
Sørensen (1997). If a Markov jump process is observed only at discrete time points, the situ-
ation is more complex. Discretely observed diffusion processes have been studied intensively
in the last decade. A few recent references are Kessler and Sørensen (1999), Hoffmann (1999),
Roberts and Stramer (2001), Elerian et al. (2001), Aı̈t-Sahalia (2002) and Bibby et al. (2004).
For Markov jump processes not much research has been done on the discretely sampled case.
Discretely sampled birth processes and birth-and-death processes were investigated in Keiding
(1974, 1975). An important application of Markov jump processes in mathematical finance is
in credit risk modelling, where the transitions between different credit ratings are modelled by a
Markov jump process; see Jarrow et al. (1997). This led Israel et al. (1997) to propose a method
of estimating the jump intensities from discrete time observations. Their method is not efficient,
however, and ad hoc modification of the estimator is required to obtain an intensity matrix.

In this paper we discuss the problems that are related to maximum likelihood estimation of
the intensity matrix based on a discretely sampled Markov jump process and demonstrate that
the maximum likelihood estimator can be found either by the EM algorithm or by a Markov
chain Monte Carlo (MCMC) procedure. It is possible that the maximum likelihood estimator
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does not exist, but this problem can be overcome by using a penalized likelihood function or
the MCMC estimator with a suitable prior.

The problems of identifiability and of existence and uniqueness of the maximum likelihood
estimator are closely related to a classical problem in probability theory: the imbedding problem
for Markov chains. This is the question about whether a given discrete time Markov chain can be
obtained by discrete time sampling of a continuous time Markov jump process. In Section 2 we
review results on the imbedding problem that we need for our discussion of maximum likelihood
estimation. We also present the various likelihood functions that are used in later sections, give
a result on existence and uniqueness of the maximum likelihood estimator and study in detail
the instructive case of a two-state process where the problem of possible non-existence of the
maximum likelihood estimator can be discussed explicitly. In Section 3 we demonstrate how
the EM algorithm can be implemented and give a result on the convergence of the algorithm.
The problems of non-existence of the maximum likelihood estimator can be avoided by using
the MCMC procedure that is presented in Section 4. In fact, a Gibbs sampler with a conjugate
prior turns out to be sufficient to solve the problem. In Section 5 implementation problems are
discussed and illustrated by examples and simulation studies. In particular, it is demonstrated
that the proposed MCMC methodology is applicable even when the number of states is as large
as 50.

2. The likelihood function

Let X be a Markov jump process with finite state space E = {1, . . . , m} and intensity matrix
(infinitesimal generator) Q = {qij}. If X has been observed continuously in the time interval
[0, τ ], i.e. if the data are {X.t/|0 � t � τ}, maximum likelihood estimation of Q is an easy task
that has been considered by several researchers (e.g. Billingsley (1961), Jacobsen (1982) and
Küchler and Sørensen (1997)). The likelihood function is given by

L.c/
τ .Q/=

m∏
i=1

∏
j �=i

q
Nij.τ /

ij exp{−qijRi.τ /}: .2:1/

The superscript (c) indicates continuous time observation. The process Nij.t/ is the number of
transitions from state i to state j in the time interval [0, t], whereas

Ri.t/=
∫ t

0
I{X.s/= i} ds .2:2/

is the time that is spent in state i before time t. For details see for example Jacobsen (1982). It is
not difficult to see that the maximum likelihood estimator of Q is

q̂
.c/
ij .τ /=Nij.τ /=Ri.τ /, .2:3/

provided, of course, that Ri.τ />0. If the process has not been in state i, there is no information
about qij in the data, and the maximum likelihood estimator of qij does not exist.

The continuous observation likelihood function will play a role in later sections, but in the
present paper we are mainly interested in inference about the intensity matrix Q based on a
sample of observations of X at discrete time points, i.e. {X.t1/, . . . , X.tn/}. Also for discrete
time observations the likelihood function is in theory simple. The process Yi =X.ti/ is a discrete
time Markov chain, in general time inhomogeneous, for which the transition matrix at time i is
P∆i .Q/, where ∆i = ti+1 − ti and

Pt.Q/= exp.tQ/, t> 0, .2:4/
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with exp.·/ denoting the matrix exponential function. Hence the likelihood function for the
discrete time data is given by

Ln.Q/=
n−1∏
i=1

P∆i .Q/xixi+1 , Q∈Q, .2:5/

where x1, . . . , xn denote the observed values of X. For a matrix A we denote the ijth entry by
Aij. The set of all intensity matrices is denoted by Q. This is the set of matrices for which the
off-diagonal entries are non-negative and the sum of the entries in each row equals 0. In the case
of equidistant observation times, i.e. when ∆i =∆ for some ∆> 0, the Markov chain Y is time
homogeneous with transition matrix P∆.Q/, so the likelihood function simplifies somewhat to

Ln.Q/=
m∏

i=1

m∏
j=1

P∆.Q/
Kij.n/

ij , Q∈Q, .2:6/

where Kij.n/ is the number of transitions from state i to state j in the discrete time Markov
chain {X.t1/, . . . , X.tn/}. We shall mainly consider the case of equidistant observation times.

For the full class of time homogeneous Markov chains with state space {1, . . . , m}, the like-
lihood function based on observations of the state of the chain at the first n time points is

Ln.P/=
m∏

i=1

m∏
j=1

P
Kij.n/

ij , P∈P , .2:7/

where Kij.n/ is again the number of transitions from i to j before time n, and where P denotes the
set of m×m transition matrices (stochastic matrices), i.e. (m×m)-matrices with non-negative
entries for which the sum of the entries in each row is equal to 1. This likelihood function is iden-
tical to the likelihood function for m independent multinomial distributions, so the maximum
likelihood estimator of the parameter P is

P̂ij =Kij.n/=Ki:.n/ .2:8/

where

Ki:.n/=
m∑

j=1
Kij.n/:

Define

P0 ={exp.Q/|Q∈Q}, .2:9/

the set of transition matrices that correspond to discrete time observation of a continuous time
Markov jump process. Now suppose that we calculate P̂ by equation (2.8) based on our discrete
time observations of a continuous time Markov jump process. If P̂ ∈P0, there is a Q̂ ∈Q such
that P∆.Q̂/= P̂, and the likelihood function (2.6) attains its maximal value at Q̂, which is thus
the maximum likelihood estimator. There are, however, two problems here. One is that the set
P0 is very complicated (except when m=2); the other is that the matrix exponential function is
not an injection in all parts of its domain, so Q̂ need not be unique. When P̂ =∈P0, the situation
is not clear owing to the complicated structure of P0, but it seems not to be uncommon that the
maximum likelihood estimator does not exist, in particular when the time between observations
∆ is large. General results on the existence and uniqueness of the maximum likelihood estima-
tor are summarized in theorem 1 below, in particular, the probability that P̂ ∈P0 goes to 1 as
n→∞. We shall give a complete discussion of the case m= 2, where the maximum likelihood
estimator does not exist when P̂ =∈P0.
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The problem of identifying the set P0 has a long history and was first posed by Elfving
(1937). It is usually referred to as the imbedding problem for finite Markov chains. Kingman
(1962) showed that P0 =P+ when m=2, where

P+ ={P∈P|det.P/> 0},

and derived the following general results about P0. For m�3, P0 is a (relatively) closed subset
of P+ with a complex geometric shape. In particular, it is not convex. Its relative interior as
a subset of P is non-empty, so its dimension is m.m− 1/. Let δP0 denote the boundary of P0
relative to P+. Then

δP0 = .∪i�=jEij/∪E , .2:10/

where Eij is a non-empty subset of the set of exponentials of intensity matrices with qij =0, and
E is a non-empty subset of the m×m transition matrices with fewer than m distinct eigenvalues.
For details see Kingman (1962). Johansen (1974) gave an explicit description of P0 for m= 3,
which already at this low dimension is somewhat complicated.

The second problem is whether there are two or more intensity matrices Q for which the cor-
responding transition matrix exp.∆Q/ is the same, i.e. do two or more continuous time Markov
jump processes exist for which the discrete time sample .X.∆/, . . . , X.n∆// has the same dis-
tribution? In statistical terms this is the question of whether or not the parameterization of
the distribution of the data X.∆/, . . . , X.n∆/ by Q is identifiable. Let P00 denote the subset
of P0 of transition matrices P ∈ P0, for which Q is uniquely determined by P = exp.Q/. For
m= 2, P00 =P0 =P+. The characterization of the set P00 is the classical problem of when the
real logarithm of a matrix is unique, which was solved for general matrices by Culver (1966).
His general result is that P00 consists of the transition matrices P∈P0, for which all eigenvalues
of P are positive and no elementary divisor (Jordan block) of P belonging to any eigenvalue
appears more than once. Thus, once P̂ has been calculated from equation (2.8), it is in principle
easy to check whether it determines an estimator of the intensity matrix uniquely (provided
that P̂ ∈P0). If P =∈P00, there are infinitely many solutions X to the equation P = exp.X/, not
all of which are intensity matrices. The set of solutions is countable if all real eigenvalues of P
are positive with their Jordan blocks appearing only once and any complex eigenvalue belongs
to only one Jordan block. Otherwise there are uncountably many solutions. Cuthbert (1973)
showed that in the countable case only a finite subset of the solutions are intensity matrices.

Simple necessary conditions for a transition matrix P to belong to P00 were given by Cuthbert
(1972, 1973). A simple, but crude, condition for P∈P0 to belong to P00 is that

inf
i

.Pii/� 1
2 : .2:11/

A less crude criterion for P∈P0 to belong to P00 is that

inf
i

.Pii/ ·det.P/> exp.−π/
∏
i

Pii; .2:12/

see Cuthbert (1973) (exp.−π/�0:0432).
We can now summarize the results on existence and uniqueness of the maximum likelihood

estimator.

Theorem 1. If P̂ given by equation (2.8) belongs to P0, then the maximum likelihood estimator
of the intensity matrix Q̂ exists and is the solution to P̂= exp.∆Q̂/. If P̂ =∈P0, then either the
maximum likelihood estimator Q̂ exists and satisfies the condition that exp.∆Q̂/∈δP0 (given
by equation (2.10)), or the likelihood function given by equation (2.6) has no maximum in Q.
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If the true transition matrix Q0 satisfies the condition that exp.∆Q0/ ∈ int.P0/, and if the
Markov process is ergodic, then the probability that the maximum likelihood estimator exists
goes to 1 as n→∞, and exp.∆Q̂/→exp.∆Q0/ almost surely. Moreover, if Q0 satisfies the con-
dition that exp.∆Q0/∈ int.P00/, then the probability that the maximum likelihood estimator
is unique goes to 1 and Q̂→Q0 almost surely as n→∞. The condition exp.∆Q0/∈ int.P00/

is satisfied when ∆ is sufficiently small.

Proof. The situation where P̂∈P0 is trivial and was discussed above. Next assume that P̂ =∈P0
and define the set

Pc ={P∈P| log{L.P/}�−c},

where L.P/ is the likelihood function for the full class of Markov chains given by equation (2.7)
and c > 0. Consider the compact set Pc ∩ P̄0 for a c > 0 that is sufficiently large that Pc ∩ P̄0 is
not empty. Here P̄0 denotes the set P̄0 =P0 ∪{P∈P|det.P/=0}. The continuous function L.P/

has a maximum P̃ in Pc ∩ P̄0 and, since L.P/ increases whenever P is moved in the direction
of P̂, P̃ is on the boundary of Pc ∩ P̄0. Thus either P̃ ∈ δP0, in which case there is a Q such
that exp.∆Q̂/= P̃ (remember that P0 is closed relative to P+), or det.P̃/=0, in which case the
likelihood function does not have a maximum in Q.

Now assume that exp.∆Q0/∈ int.P0/. From a well-known result for Markov processes (see
for example theorem 1.1 in Billingsley (1961)), we know that P̂ → exp.∆Q0/ ∈ int.P0/ almost
surely as n→∞. Therefore the probability that P̂∈ int.P0/ goes to 1 as n→∞. The claim about
uniqueness and consistency of the maximum likelihood estimator is shown in the same way.
That exp.∆Q̂/∈ int.P00/ when ∆ is sufficiently small follows from inequality (2.11). �

The situation that det.P̃/=0, where the maximum likelihood estimator does not exist, is more
likely to happen when the determinant of exp.∆Q0/ is close to 0. When the Markov process
is ergodic, exp.∆Q0/ converges as ∆→∞ to the singular matrix, where all rows are equal to
the row vector π given by πQ0 = 0 (the stationary distribution). Hence the propensity of the
maximum likelihood estimator not to exist increases with ∆ (at least when ∆ is sufficiently
large).

For a finite sample size all that we can say for sure about uniqueness is that the maximum
likelihood estimator is unique when P̂∈P00 and that the maximum likelihood estimator is not
unique when P̂ ∈P0\P00. If P̂ =∈P0, we cannot be sure that the maximum likelihood estimator
is unique, even when P̃∈P0, because of the complicated geometric structure of the set P0.

2.1. Example 1
Let us consider the case of a Markov process with two states in more detail. This case is simpler
than when m>2 because here P0 =P+, but the statistical problems occur at the boundary where
det.P/=0, so the two-state example is instructive.

For an intensity matrix (−α α
β −β

)
,

where α, β �0, the eigenvalues are 0 and −.α+β/. The corresponding transition matrix is

P∆.Q/= 1
α+β

(
β +α exp{−∆.α+β/} α[1− exp{−∆.α+β/}]
β[1− exp{−∆.α+β/}] α+β exp{−∆.α+β/}

)

with eigenvalues 1 and ρ= exp{−∆.α+β/}. It is convenient to introduce a new parameteriza-
tion of the model:
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π11 =P∆.Q/11 =1− .1−ρ/α=.α+β/,

π21 =P∆.Q/21 = .1−ρ/β=.α+β/:

We ignore the trivial case where α=β =0. The set of parameter values is

Π0 ={.π11, π21/|0�π21 <π11 �1}:

Note that Π0 is a parameterization of P0, and P = [0, 1]2. The determinant of P∆.Q/ equals
π11 − π21, so the diagonal π11 = π21 corresponds to the problematic boundary of P0, where
det.P/=0. The likelihood function is

L.π11, π21/=π
K11.n/
11 .1−π11/K12.n/π

K21.n/
21 .1−π21/K22.n/,

so the maximum likelihood estimator of π11 is π̂11 =K11.n/=K1:.n/. If

K21.n/=K2:.n/<K11.n/=K1:.n/,

i.e. if P̂ ∈P0, then π̂21 =K21.n/=K2:.n/. Otherwise, the profile likelihood L̃.π21/=L.π̂11, π21/,
where 0�π21 < π̂11, keeps growing as π21 approaches the boundary point π̂11. Thus in this case
the likelihood function does not have a maximum in Π0, and the maximum likelihood estimator
does not exist. This situation is more likely to happen when the true values of π21 and π11 are
close, which happens when ∆.α+β/ is large because then both probabilities are close to the
probability of state 1 in the stationary distribution, β=.α+β/.

Since α + β = − log.π11 − π21/=∆, we see that the likelihood function grows (slightly) as
α+β →∞. If we have reason to believe that α+β is not large, we can avoid the problem by
penalizing the likelihood with a prior, for instance

φ.α, β/∝αa exp.−bα/βc exp.−dβ/,

which is the conjugate prior for the continuous time model with likelihood function (2.1). The
exponential functions ensure that the posterior distribution goes to zero at the critical boundary
where π11 =π21 so that an estimator that maximizes the posterior exists also when

K21.n/=K2:.n/�K11.n/=K1:.n/,

i.e. when P̂ =∈P0. This estimator is not explicit but must be found numerically.

The eigenvalues of exp.∆Q/ are exp.∆λi/, i=1, . . . , m, where {λi} are the eigenvalues of Q.
Therefore, as exp.∆Q/ goes to the critical boundary, where det{exp.∆Q/}→0, one or more of
the eigenvalues of Q must go to −∞ (∆ is fixed). Therefore the idea that is presented in example
1 of penalizing the likelihood function (2.6), which is bounded, by the conjugate prior for the
continuous time likelihood function (2.1) will in general ensure that there are no problems with
existence of an estimator that maximizes the posterior. A general MCMC method along these
lines is presented in Section 4.

Asymptotic normality of the maximum likelihood estimator can be established by standard
arguments, or follows from results in Billingsley (1961), provided that exp.∆Q0/ ∈ int.P00/,
that .Q0/ij > 0 for i �= j and that the process is ergodic. As earlier Q0 denotes the true intensity
matrix. The expression for the asymptotic variance of the maximum likelihood estimator is very
complicated and involves infinite sums. If the maximum likelihood estimator is found by the
EM algorithm that is discussed in the following section, the Fisher information matrix can be
calculated by means of a formula that was given by Oakes (1999). If .Q0/ij =0 for one or more
pairs i �= j, a result about asymptotic normality of the maximum likelihood estimator can be
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obtained if the parameter space is reduced by fixing these intensities at zero, provided that the
process is still irreducible.

3. The expectation–maximization algorithm

For a discretely sampled Markov jump process it is natural to use the EM algorithm for optimiz-
ing the likelihood function: there is a simple expression for the maximum likelihood estimator
when complete continuous time data X={X.t/|0� t �τ} are observed, but only the partial data
Yi = X.ti/, i = 1, . . . , n, are available. Here t1 = 0 and tn = τ . The difficult step in the EM algo-
rithm is the E-step, i.e. the calculation of EQ0 [log{L.c/

τ .Q/}|Y = y], where Y = {Yi|i= 1, . . . , n}
and where Q0 is a given intensity matrix. From equation (2.1) we see that

EQ0 [log{L.c/
τ .Q/}|Y =y]=

m∑
i=1

∑
j �=i

log.qij/ EQ0{Nij.τ /|Y =y}−
m∑

i=1

∑
j �=i

qij EQ0{Ri.τ /|Y =y}:

This is the continuous time log-likelihood for data with observed statistics EQ0{Nij.τ /|Y = y}
and EQ0{Ri.τ /|Y =y}, which is maximized (as a function of Q) by equation (2.3) (the M-step).
The only non-trivial task left is hence to evaluate EQ0{Nij.τ /|Y =y} and EQ0{Ri.τ /|Y =y}. By
the Markov property and the homogeneity of the process, it is sufficient to find

M̃
k

ij.t/=EQ0{Rk.t/|X.t/= j, X.0/= i} .3:1/

and

f̃
kl

ij.t/=EQ0{Nkl.t/|X.t/= j, X.0/= i} .3:2/

because

EQ0{Nij.τ /|Y =y}=
n−1∑
k=1

f̃
ij

yk , yk+1
.tk+1 − tk/, .3:3/

EQ0{Rl.τ /|Y =y}=
n−1∑
k=1

M̃
l

yk , yk+1
.tk+1 − tk/: .3:4/

To calculate equation (3.1), it turns out to be convenient to study the related quantity (here
and later we drop the index Q0 for simplicity)

Mk
ij.t/=E[Rk.t/ I{X.t/= j}|X.0/= i]:

The following result can be found in Bladt et al. (2002). In formula (3.5) as well as in equa-
tion (3.8), δij equals 1 if and only if i= j and is 0 otherwise.

Theorem 2. The function Mk
ij solves the differential equation

d
dt

Mk
ij.t/=∑

l

Mk
il.t/qlj + exp.tQ/ijδjk .3:5/

with initial condition Mk
ij.0/=0.

Define Mk
i·.t/= .Mk

i1.t/, . . . , Mk
im.t// (row vector). Then formula (3.5) may be written as

d
dt

Mk
i·.t/=Mk

i·.t/Q+Ak
i .t/,

where Ak
i .t/ = e′

i exp.Qt/eke′
k with ei denoting the unit vector with the ith co-ordinate equal

to 1 and with e′
i denoting its transpose. This is a system of inhomogeneous linear differential
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equations with initial condition Mk
i·.0/= 0 which may efficiently be solved numerically by, for

example, a fourth-order Runge–Kutta method. Alternatively, we note that the solution to the
system of differential equations is given by

Mk
i·.t/=

∫ t

0
Ak

i .s/ exp{.t − s/Q}ds

= e′
i

∫ t

0
exp.sQ/.eke′

k/ exp{.t − s/Q}ds,

which may be evaluated numerically by making a suitable expansion of the matrix exponentials
by using, for example, the uniformization method (see Neuts (1995), page 232). Specifically,
choose λ�maxi=1,:::,m.−Qii/, and define

B= I + 1
λ

Q= 1
λ

.λI +Q/:

Then Mk ={Mk
ij}ij∈E is given by

Mk.t/= exp.−λt/λ−1
∞∑

n=0

.λt/n+1

.n+1/!

n∑
l=0

Bl.eke′
k/Bn−l:

Both methods are equally efficient in lower dimensions (m<30). In higher dimensions (from 30
upwards) the uniformization method is more efficient.

Now we can calculate the quantity (3.1) by

M̃
k

ij.t/= Mk
ij.t/

e′
i exp.Qt/ej

: .3:6/

To calculate the quantity (3.2), the expected number of transitions from state k to state l in
a time interval of length t given that the process initiates in state i and terminates in state j, we
first consider

f kl
ij .t/=E[Nkl.t/ I{X.t/= j}|X.0/= i] .3:7/

for fixed k and l.

Theorem 3. The function f kl
ij that is given by equation (3.7) solves the differential equation

d
dt

f kl
ij .t/=

m∑
h=1

f kl
ih.t/qhj +qkl exp.Qt/ikδjl, .3:8/

with boundary condition f kl
ij .0/=0 for all i and j.

Proof. In Bladt et al. (2002) it is shown that

VÅ
ij .s, Z; t/=E

[
exp

{
−

m∑
h=1

sh Rh.t/

} ∏
a,b

z
Nab
ab I{X.t/= j}

∣∣∣∣X.0/= i

]

= exp[{Q • Z +∆.s/I}t],

where s = .s1, . . . , sm/ and Z = {zab}a,b=1,:::,m are variables, I denotes the identity matrix,
• denotes the Schur product (which is defined as a product between two matrices A = {aij}
and B ={bij} by A • B ={aijbij}) and ∆.s/ is the diagonal matrix with the numbers s1, . . . , sm

as its diagonal. Setting s = 0, zab = 1, .a, b/ �= .k, l/ and zkl = z, the result is easily obtained by
differentiation with respect to z and t, evaluating the former at z=1. �
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We may solve for f kl
ij .t/ by either the Runge–Kutta method or by the uniformization method.

By uniformization we obtain that

fkl.t/=qkl exp.−λt/λ−1
∞∑

n=0

.λt/n+1

.n+1/!

n∑
j=0

Bj.eke′
l/B

n−j, .3:9/

where λ and B are as for Mk
ij.t/.

We can now calculate the quantity f̃
kl

ij.s, t/ that is defined by equation (3.2):

f̃
kl

ij.t/= f kl
ij .t/

e′
i exp{Q.t/}ej

: .3:10/

Summing up, the EM algorithm for maximum likelihood estimation of Q̂ is as follows.
Let Q0 be any intensity matrix for a Markov jump process with state space E. Initially set

Q=Q0.

Step 1: calculate M̃
k

yi,yi+1
.ti+1 − ti/ and f̃

kl

yi,yi+1
.ti+1 − ti/ for all k and l under the model with

intensity matrix Q by equations (3.6) and (3.10).
Step 2: calculate EQ{Ri.τ /|Y =y} and EQ.Nij|Y =y/ by equations (3.3) and (3.4).
Step 3: calculate Q̂ by Q̂ij =EQ.Nij|Y =y/=EQ{Ri.τ /|Y =y} for all i �= j.
Step 4: Q := Q̂. Go to step 1.

Let Q0, Q1, Q2, . . . be a sequence of intensity matrices obtained by the EM algorithm. Then
certainly Ln.Qk+1/�Ln.Qk/ for k=0, 1, 2, . . . , where Ln is the discrete time likelihood function
(2.5); see Dempster et al. (1977). Regularity conditions for the sequence to converge to a (possi-
bly local) maximum of the likelihood function were given by Wu (1983); see also McLachlan and
Krishnan (1997). Unfortunately, one of Wu’s conditions, condition (3.19) in McLachlan and
Krishnan (1997), is not satisfied by the model that is treated here. In the two-state case that was
considered in example 1 it is obvious that there is a problem at the boundary where π11 =π21,
which does not belong to the parameter space. For general m there is a similar problem at the
boundary where det{exp.Q/}→ 0. One way around this problem is to use the slightly smaller
parameter space

Q" ={Q∈Q|det{exp.Q/}� "}
for some small " > 0. With this restricted parameter set, it is clear that condition (3.19) in
McLachlan and Krishnan (1997) is satisfied, because the discrete time likelihood function Ln is
essentially a multinomial likelihood with an unusual parameter space. Let us consider the rest
of the conditions (3.18)–(3.21) and (3.23) in McLachlan and Krishnan (1997), which by their
theorem 3.2 would imply the convergence of the sequence {Qk}. Condition (3.18) with d =
m.m−1/ is trivial, and condition (3.20) that the function Q 
→Ln.Q/ is continuous and differ-
entiable in the interior of the parameter space follows from the fact that the function Q 
→exp.Q/

is continuous on Q and differentiable on the interior of Q, i.e. where qij > 0 for all i �= j; see for
example Neuts (1995). The continuity of the function

.Q, Q0/→EQ0 [log{L.c/
τ .Q/}|Y =y],

condition (3.23), is obvious from the expressions that were derived previously for M̃ij.t/ and
f̃

kl

ij.t/ as functions of the parameter Q0. Finally, condition (3.21) that Qk+1 solves

@EQk
[log{L.c/

τ .Q/}|Y =y]=@Q=0

is satisfied for the full parameter space Q, provided that the initial matrix Q0 is chosen in the
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interior of Q. To see this, note that for any Q0 in the interior of Q the expected holding times
and the expected numbers of jumps are strictly positive for all possible states. Therefore the
maximum likelihood estimator that is obtained by using these expected values as the statistics in
Ln has strictly positive off-diagonal elements (see equation (2.3)), and hence Q1 belongs to the
interior of Q. Iteration of this argument shows that Qk belongs to the interior of Q for all k.
(Note that some .Qk/ij may converge to 0 as k →∞.) However, for the restricted parameter
space Q", it may happen that the sequence Qk converges to the boundary where det{exp.Q/}="

and that det{exp.Q/k}=" for some k. Then condition (3.21) in McLachlan and Krishnan (1997)
will typically not be satisfied. In view of theorem 3.2 in McLachlan and Krishnan (1997) we can
summarize the discussion as follows.

Theorem 4. Suppose that the initial matrix Q0 belongs to the interior of the parameter space
Q, i.e. that .Q0/ij >0 for all i �=j. Then the sequence {Qk} will either converge to a stationary
point of the likelihood function Ln or det{exp.Qk/}→0.

If the latter possibility occurs, it is an indication that the maximum likelihood estimator does
not exist. Indeed, the problems with the EM algorithm are closely related to the problems with
the maximum likelihood estimator that were discussed in the previous section. Obviously, it is a
good idea to choose the initial matrix Q0 in such a way that det{exp.Qk/} is far from 0. If Q0 is
chosen such that some .Q0/ij =0, then the expected number of jumps from i to j will remain 0
through all iterations, i.e. all Qk will belong to the boundary of Q, where differentiability does
not make sense, and where some of the above conditions do not hold. If it is desirable to choose
Q0 such that some .Q0/ij = 0, a convergence result similar to theorem 4 can be obtained by
reducing the parameter space by the restriction qij =0.

Use of the restricted parameter space Q" is a rather crude way to solve the problem at the
boundary where det{exp.Q/}→0 and is mainly a technical device to prove theorem 4. A softer
approach would be to use a likelihood function that is penalized near the critical boundary
in such a way that the penalized likelihood goes to 0 as det{exp.Q/}→ 0. The EM algorithm
can also be applied to maximum penalized likelihood estimation; see McLachlan and Krishnan
(1997). An obvious way to penalize the likelihood is provided by the conjugate priors that are
discussed in the next section, where an MCMC method is presented as an alternative to the EM
algorithm.

4. Markov chain Monte Carlo estimation

In this section we present an MCMC approach to estimating the parameters of a discretely
observed Markov jump process. The setting is slightly more general than that in the previous
sections because this can be useful and does not essentially complicate the MCMC approach.
Consider a Markov jump process {J.t/} with p=p1 +p2 + . . .+pm states and intensity matrix
Q. A new process {X.t/} is defined in the following way:

X.t/= i⇔J.t/∈{pi−1 +1, . . . , pi}, i=1, 2, . . . , m,

where p0 =0. Thus we have grouped the states of J , and X indicates which group the process J is
in at any given time. The process {X.t/} is in general not a time homogeneous Markov process,
since the sojourn times in states 1, 2, . . . , m are not necessarily exponentially distributed.

In this section we consider discrete time observations of X, and the purpose is to estimate the
intensity matrix Q of the Markov jump process J underlying the non-Markovian process X to
the extent that this is possible. If pi =1 for all i∈E, then we may estimate the parameters of Q
whenever it is uniquely determined by the distribution of the discrete time process (see Section 2
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for some necessary conditions). If some pi >1, then Q is no longer unique, and it is not possible
to estimate all parameters of Q by MCMC sampling, which will be apparent from the following
discussion. It will, however, be possible to estimate functions of Q that are invariant under the
different representations of the distribution of the observed discrete time process. An example
is the (time-dependent) rates of transitions between the different states 1, 2, . . . , m of the process
X.

Consider the discrete time observations x= .x1, . . . , xn/ of the continuous time jump process
{X.t/}t�0 observed at times t1, . . . , tn up to time τ .t1 =0 and tn =τ ). We choose a prior φ.Q/ and
are interested in the conditional distribution of Q given the data x. We shall, however, study the
slightly more general problem of finding the conditional distribution of .Q, J/ given x, where
J = {J.t/}0�t�τ denotes the continuous time sample path of J . For this we employ the Gibbs
sampler with two sites Q and J and sample by alternately drawing J given .Q, x/ and Q given
.J, x/.x is of course of no importance when conditioning on J). Iteration of the Gibbs sampler
results in a sequence of variables .Qn, Jn/. Under suitable conditions the Gibbs sampler will
eventually produce a stationary and ergodic sequence, i.e., after discarding a certain burn-in
period, say the first K − 1 iterations, the sequence .Qn, Jn/n�K may be considered stationary,
and the stationary distribution is exactly that of .Q, J/ given x.

If pi =1 for all i, then by ergodicity the empirical average

1
N

N+K∑
i=K

Qi

converges to the true mean of Q conditionally on x. Also credibility intervals based on the empir-
ical distribution of .Qn, Jn/n�K may be constructed, and quantiles of the empirical distribution
may be of interest as well.

In situations where Q is not uniquely determined by the distribution of the discrete time sam-
ple, the mean of the posterior distribution may not be a meaningful quantity, and credibility
intervals hardly make sense for parameters that are not uniquely determined. The same is true if
pi >1 for some i. However, a function of Q that depends only on the distribution of the discrete
time sample can in both cases be estimated by averaging the simulated values of the function.
As discussed in Section 2, the set of Qs for which this problem occurs when pi = 1 for all i is
complicated, so it is important to study the posterior distribution carefully for indications that
the problem has occurred, for instance by inspecting scatterplots. It might seem desirable to use
a prior that is concentrated on the set of Qs for which exp.Q/∈P00 but, since this set is a very
complicated set, this idea would be very difficult to implement. An easier, but less satisfactory,
solution is a prior concentrated on the set of Qs for which exp.Q/ satisfies inequality (2.12).

A proper choice of prior is usually essential to ensure good mixing properties and a posterior
which is not dominated by the prior. Sometimes hyperparameters may have to be specified to
ensure satisfactory mixing; experience shows, however, that this is not necessary in the present
case. We choose the prior

φ.Q/∝
n∏

i=1

∏
j �=i

q
αij−1
ij exp.−qijβi/, .4:1/

where αij > 0, i, j ∈E, and βi > 0, i∈E, are known constants to be chosen conveniently (set to
be all 1 in the following examples). Then qij ∼Γ.1=βi, αij/. In this way parameters that are near
the critical boundary are effectively penalized because there at least one of the qijs must go to
∞ (at least one eigenvalue goes to ∞).

This family of priors is conjugate for the model for continuous observation in the time interval
[0, τ ], which is an exponential family of processes; see Küchler and Sørensen (1997). Indeed, the
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posterior is

pÅ.Q/=L.c/
τ .Q/ φ.Q/

∝
n∏

i=1

∏
j �=i

q
Nij.τ /+αij−1
ij exp[−qij{Ri.τ /+βi}],

where the likelihood function L.c/
τ .Q/ is given by equation (2.1). Drawing a J given .Q, x/ is

performed by simulating Markov jump processes step by step through the intervals [tk, tk+1]
initiating from some initial condition X.tk/= i such that the process will be in a state (or more
generally in a group of substates) X.tk+1/ = j, say, by time tk+1. This can be done by simple
rejection sampling, which has turned out to be quite efficient even in higher dimensions; see
the next section. There may, however, be situations where more sophisticated methods such
as importance sampling or Metropolis–Hastings algorithms may have to be applied if some
transition from X.tk/ to X.tk+1/ has a low probability.

5. Implementation and examples

From a computational point of view the crucial step in the EM algorithm is the E-step. Since
the E-step is essentially given as a solution to the system of differential equations (3.5) and (3.8)
of dimension m, the time complexity is necessarily exponentially increasing as a function of the
number of states. If the sampling frequency is constant, i.e. tk+1 − tk =∆ for all k, the compu-
tational burden reduces significantly. In this case the EM algorithm is essentially insensitive to
the number of data points.

When solving for the E-step, we have applied the fourth-order Runge–Kutta method, which
is a relatively fast and very reliable method. The step size specification is a crucial parameter
for the Runge–Kutta method which should be chosen adequately depending on the increment
tk+1 − tk. For tk+1 − tk = 1 a step size of 0.2 or less was found to perform well. The execution
time of the E-step is inversely proportional to the step size. One way of obtaining both speed
and precision is to let the step size vary from coarser at the first iterations to finer at the last
iterations. Convergence of the EM algorithm may on a contemporary personal computer be
obtained in a central processor unit (CPU) time ranging from a few seconds for two states to
about 45 min for 10 states (90 free variables).

The only time-consuming part of the MCMC algorithm is the (rejection) sampling of the tra-
jectories through the observed data points. Even if rejection could be avoided, the execution time
increases proportionally to the number of observed data points. There is also a linear increase
in the execution time as the number of states increases. The MCMC algorithm runs effectively
also for a large number of states (10 and upwards) with relatively short burn-in periods. For
uniquely imbeddable data it seems that the MCMC algorithm is insensitive to the choice of the
parameters in the gamma prior.

For either approach, the model state space must coincide with the observed states and states
that can be inferred from the data. If some states are not observed in the data, a reduction of the
state space must take place if it cannot be deduced from the data and structure of the intensity
matrix that such unobserved states have been visited by the Markov jump process between the
observation time points. For a birth-and-death process it can for instance be inferred that an
unobserved state 4 has been visited if the data contain the observations 3 and 5.

In example 1 we saw what typically happens when the matrix of empirical transition prob-
abilities (2.8) is not imbeddable. The following examples, most of them with simulated data,
illustrate how the proposed estimation methods work in various situations.
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5.1. Example 2
Consider the intensity matrix

Λ=




−10:81910 4:174788 0:6537399 2:405759 3:584813
4:946455 −11:30472 0:0792565 2:065462 4:213545
2:059437 2:949915 −9:921236 4:214654 0:6972306
3:353977 0:2849829 4:707894 −8:927676 0:5808223
1:880896 2:227394 0:8062197 0:1347199 −5:049230


:

Suppose that we observe a Markov jump process with intensity matrix Λ at times t = 1, 2, . . ..
Then the transition matrix of the observed Markov chain is

P=




0:2112767 0:1784938 0:1178301 0:1588798 0:3335184
0:2112521 0:1785134 0:1177149 0:1587348 0:3337837
0:2114293 0:1783682 0:1185720 0:1598076 0:3318222
0:2114681 0:1783316 0:1187727 0:1600574 0:3313693
0:2111336 0:1785908 0:1172314 0:1581089 0:3349343


:

All rows of P are approximately equal to the row vector π where the co-ordinates equal the
probabilities of the stationary distribution. This occurs in all cases where the observed Markov
jump process has sufficiently high intensities compared with the sampling frequency that the
process settles almost into stationary mode between two consecutive sampling times. One prob-
lem is that any stationary Markov jump process with stationary distribution π has a transition
matrix that is close to P above, and hence with a large probability the solution to the imbedding
problem given by the matrix of empirical transition probabilities (2.8) is not unique. Even worse,
it is quite possible that the maximum likelihood estimator does not exist (e.g. because two rows
of matrix (2.8) are identical so that the determinant is zero); see the discussion after theorem 1.

If we had instead sampled at the time points t =0:2, 0:4, . . . , we would have been in a situation
of unique imbedding. In practice it may be difficult to judge whether a solution that is produced
by either the EM or the MCMC algorithm is unique. An indication can be obtained by cal-
culating the matrix of empirical transition probabilities P. If the rows of P are close to being
identical, the solution is most probably not unique. For the MCMC algorithm non-uniqueness
will result in a non-stationary sequence of intensity parameters (but of course drawn from the
same distribution).

5.2. Example 3
Here we consider the computationally and statistically demanding problem of estimating the 90
free parameters in a 10-state Markov jump process from a series of 5000 simulated observations
sampled at intervals of 0.5.

The MCMC estimation was based on 10000 iterations. Burn-in occurred for all parameters
in less than 200 iterations. This was concluded by inspection of graphs of the time series of sim-
ulated parameters and their autocorrelation functions, which were found to decrease quickly.
We used the last 9000 iterations for estimation. In the gamma prior all parameters were equal
to 1. The EM algorithm converged to a precision of six decimal places in 620 iterations using
2885 s of CPU time. The 10000 iterations of the MCMC algorithm took 24434 s of CPU
time. If we had used only 1000 simulated parameter values after the burn-in for our MCMC
estimates instead of 9000, the CPU time would have been 4887 s, and the estimates would largely
have been unchanged. In Table 1 the estimates of the 10 diagonal intensities are given, including
the continuous time maximum likelihood estimates that the EM and MCMC estimates attempt
to reconstruct from the incomplete discrete time data. It seems that the MCMC algorithm tends
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Table 1. Estimates of the total jump rates of the 10 states†

Method λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

TRUE 2.418 2.090 1.973 2.011 2.020 3.120 2.085 2.189 1.950 1.884
CONT 2.666 2.049 1.862 1.990 2.046 3.162 2.139 2.215 1.866 1.927
EM 2.662 2.065 1.869 1.893 2.000 3.391 2.190 2.137 1.877 1.920
MCMC 2.801 2.517 1.938 1.977 2.089 3.639 2.290 2.248 1.950 2.010
2.5% 2.421 1.879 1.717 1.748 1.853 3.112 2.013 1.968 1.734 1.763
97.5% 3.211 2.517 2.165 2.219 2.344 4.277 2.596 2.542 1.950 2.263

†TRUE, the parameter values that were used in the simulation of the data; CONT, maximum likeli-
hood estimates based on continuous time data; EM, estimates when applying the EM algorithm to
the discrete time data; MCMC, estimates when applying the MCMC method to discrete time data;
the last two rows are the 2.5% and 97.5% percentiles of the data from the MCMC method.

Table 2. Comparison of the continuous time, EM and MCMC estimates of rates out of state 1
and the 95% credibility bounds of the MCMC method

Method λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ1,10

TRUE 0.417 0.065 0.241 0.358 0.495 0.008 0.207 0.421 0.206
CONT 0.436 0.114 0.268 0.337 0.704 0.000 0.193 0.416 0.198
EM 0.470 0.117 0.237 0.443 0.585 0.000 0.077 0.530 0.203
MCMC 0.456 0.133 0.233 0.452 0.627 0.060 0.095 0.547 0.207
2.5% 0.277 0.010 0.068 0.246 0.342 0.002 0.005 0.312 0.051
97.5% 0.664 0.316 0.414 0.694 0.971 0.186 0.256 0.810 0.396

to overestimate these rates of transitions. This is probably due to our choice of the prior which
does not allow for zero or very small rates. Table 2 shows the estimates of the intensities of the
transitions out of state 1. Also here both methods work well.

MCMC estimation also worked well for a 20-state Markov jump process (380 parameters).
Here each iteration took about 5 CPU s, which—as expected—is twice the CPU time that is
used per iteration for the 10-state process.

5.3. Example 3
Considerable improvement in speed and precision may be obtained for a submodel of the full
Markov jump process model with fewer parameters. An example is a birth-and-death process,
for which the number of free parameters increases only linearly with the number of states as
opposed to the quadratic increase for the full model. In the E-step of the EM algorithm we still
must solve the system of differential equations, which from a numerical point of view simplifies
only slightly by the parameter reduction, so the main improvement in speed and precision is due
to the actual parameter reduction itself. To give a concrete example, 1000 observations sampled
at equidistant times t =1, 2, . . . were generated from two five-state Markov jump processes: one
of the general type and one of the birth-and-death type. The full model has 20 free parameters,
whereas the birth-and-death process has only 10. Convergence (to six decimal places) of the EM
algorithm was obtained in 40 iterations for the birth-and-death process, whereas it took 2210
iterations for the full model. Whereas for the birth-and-death process there were 5.7 iterations
per second of CPU time, there were 5.1 iterations per second of CPU time for the full model.
Similar considerations apply to the MCMC approach.
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Table 3. MCMC estimates with the 95% credibility bounds for certain parameters of the 50-state birth-
and-death process

Method λ3,4 λ4,3 λ8,9 λ9,8 λ13,14 λ14,13 λ18,19 λ19,18 λ23,24 λ24,23

True value 0.989 0.016 0.942 0.116 0.372 0.510 0.227 0.865 0.615 0.927
MCMC 1.891 0.199 1.951 0.144 0.463 0.659 0.247 0.899 0.749 1.110
2.5% 0.229 0.004 0.236 0.003 0.346 0.495 0.153 0.564 0.481 0.706
97.5% 5.379 0.813 5.315 0.595 0.605 0.857 0.376 1.351 1.180 1.726

λ28,29 λ29,28 λ33,34 λ34,33 λ38,39 λ39,38 λ43,44 λ44,43 λ48,49 λ49,48

True value 0.625 0.451 0.378 0.661 0.824 0.339 0.359 0.513 0.960 0.567
MCMC 0.916 1.021 0.624 0.826 0.824 0.353 0.341 0.491 1.032 0.672
2.5% 0.165 0.103 0.280 0.349 0.657 0.278 0.213 0.305 0.798 0.519
97.5% 2.618 3.250 1.172 1.630 1.017 0.439 0.507 0.737 1.324 0.870

In view of these considerations, we can test whether the rejection sampling that we use to
simulate a continuous time trajectory conditionally on the discrete time data causes problems
for MCMC estimation when the number of states is very large by considering estimation for
a birth-and-death process. A simulated birth-and-death process with 50 states was observed at
5000 equidistant time points t =1, 2, . . .. The execution time to run 10000 MCMC iterations was
41032 CPU s or 4.1 CPU s per iteration, so the rejection sampling works even for this extreme
number of states. The burn-in time appeared to be less than 20 iterations and the autocorrela-
tion function decreases very quickly to 0, but we discarded the first 1000 iterations. Estimates
of some of the parameters that are the average of 9000 simulated parameter values are given in
Table 3. In some cases the 95% credibility bounds are rather wide because the corresponding
transitions were relatively rarely observed.

6. Concluding remarks

We have demonstrated that maximum likelihood estimation of the intensity matrix of a Markov
jump process with finite state space is practically feasible by means of the EM algorithm or an
MCMC procedure. When one or more of the intensities are large, the maximum likelihood esti-
mator may not exist. Essentially the problem of non-existence occurs when the process moves
too quickly compared with the sampling frequency, which implies that much happens between
the sampling times that we do not obtain information about. Therefore non-existence of the
maximum likelihood estimator should perhaps be taken as a sign that there is not enough infor-
mation in the data to estimate the intensity matrix properly. If the process is such that it moves
quickly between the states within one or more groups, but more slowly between the groups and
other states, it might be a good idea to join each of the groups into a new single state, and then
to estimate only the transition intensities between the states in this new process with reduced
state space. In this way the information in the data is used to estimate the parameters about
which the data actually contain information. It is, of course, not possible that both the original
process and the new process are Markovian, so the results that are obtained by means of the
new process must be interpreted with care.

As we have seen, another way around the non-existence problem is to use a penalized like-
lihood function or the MCMC estimator with a suitable prior. Then an estimator will always
be obtained, but it is likely that, at least in extreme cases, the estimator will depend heavily
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on the prior. A more serious problem is that the MCMC approach may hide problems of non-
existence or non-uniqueness of the maximum likelihood estimator. In the first case, it might not
be noticed that the data contain very little information on certain parameters or that the model
is perhaps not appropriate. In the second case, nonsensical results may be obtained. Again care
is required.
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