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Abstract  

In this paper, the shape parameters, reliability and hazard rate functions of the inverted Kumaraswamy 

distribution are estimated using maximum likelihood and Bayesian methods based on dual generalized order 

statistics. The Bayes estimators are derived under the squared error loss function as a symmetric loss function 

and the linear-exponential loss function as an asymmetric loss function based on dual generalized order statistics. 

Confidence and credible intervals for the parameters, reliability and hazard rate functions are obtained. All results 

are specialized to lower record values, also a numerical study is presented to illustrate the theoretical procedures. 
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1. Introduction 

 

         The concept of generalized order statistics (gos) was introduced by Kamps (1995) as a unified models for 

ordered random variables which produce several models as a special case. These models play an important role in 

statistics in general and in reliability theory and life testing in particular. Since its inception gos has attracted number 

of statisticians as distribution specific results obtained for gos can be used to obtain the results for other models of 

ordered random variables as special case. The random variables that are decreasingly ordered cannot be integrated 

into this framework. Burkschat et al. (2003) studied the dual generalized order statistics (dgos) that enables a common 

approach to descending ordered random variables as reversed ordered order statistics, lower record models and lower 

Pfeifer records. Some applications in reliability theory, such as, times of failure of technical components or systems, 

the failure of some components of the system can be more or less strongly influence life-length distribution of the 

remaining components in the system. Also as a model for successively largest insurance claims, highest water-levels 

or highest temperatures. For more details, see Burkschat et al. (2003), Khaledi and Kochar (2005), Jaheen and Al 

Harbi (2011), Khan and Khan (2012), MirMostafaee et al. (2016) and Mahdizadeh (2016). 
Let 𝑋(1, 𝑛, 𝑚, 𝑘), 𝑋(2, 𝑛, 𝑚, 𝑘), … , 𝑋(𝑛, 𝑛, 𝑚, 𝑘) are n dgos from an absolutely cumulative distribution 

function (cdf) with corresponding probability density function (pdf). Then, the joint pdf has the form  

𝑓𝑋(1,𝑛,𝑚,𝑘),…,𝑋(𝑛,𝑛,𝑚,𝑘)(𝑥(1), … , 𝑥(𝑛)) = 𝑘 (∏ 𝛾𝑗
𝑛−1
𝑗=1 ) [∏ (𝐹(𝑥(𝑖)))

𝑚

𝑓(𝑥(𝑖))𝑛−1
𝑖=1 ] (𝐹(𝑥(𝑛)))

𝑘−1

𝑓(𝑥(𝑛)),                         (1)                          
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where  𝐹−1(1) ≥ 𝑥(1) … ≥ 𝑥(𝑛) ≥ 𝐹−1(0), 𝑛 ∈ 𝑁, 𝑘 ≥ 1, 𝑚1, … , 𝑚𝑛−1 = 𝑚,         

𝑚 ∈ ℝ   and    𝛾𝑟 = 𝑘 + (𝑛 − 𝑟)(𝑚 + 1) ≥ 1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑟 ≤ 𝑛. 

For more details of dgos, see Ahsanullah (2004), Khan and Kumar (2010), Athar and Faizan (2011), Tavangar 

(2011), Mahmoud et al. (2014), Kumari and Pathak (2014) and Kim et al. (2016). Statistical modeling using new 

distributions has been largely studied in recent years, for an example see MirMostafaee et al. (2015) and MirMostafaee 

et al. (2017). 

Kumaraswamy (1980) constructed Kumaraswamy (Kum) distribution which is applicable to many natural 

phenomena whose outcomes have lower and upper bounds, such as heights of individuals, scores obtained in a test, 

atmospheric temperatures and hydrological data. Some papers deal with different methods of generalization for the 

Kum distribution, see Cordeiro et al. (2010) and Barreto-Souza and Lemonte (2013).   

Abd AL-Fattah et al. (2017) introduced the inverted Kumaraswamy (IKum) distribution and studied some of 

its properties. The maximum likelihood (ML) and Bayes estimators, confidence intervals for the parameters, the 

reliability and the hazard rate functions of the IKum distribution based on Type II censored samples, are obtained.   

         Assuming T is a random variable distributed as IKum distribution with shape parameters; 𝛼 > 0 and  𝛽 > 0, 

denoted by T~IKum (𝛼, 𝛽). Then the pdf, cdf, reliability function (rf) and hazard rate function (hrf) are given, 

respectively, by  

  𝑓(𝑡; 𝛼, 𝛽) = 𝛼𝛽(1 + 𝑡)−(𝛼+1)(1 − (1 + 𝑡)−𝛼)𝛽−1 ,        𝑡 > 0;   𝛼, 𝛽 > 0 ,                                                               (2)                      

𝐹(𝑡; 𝛼, 𝛽) = (1 − (1 + 𝑡)−𝛼)𝛽 ,                                 𝑡 > 0;  𝛼, 𝛽 > 0,                                                                              (3) 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = 1 − (1 − (1 + 𝑡)−𝛼)𝛽 ,           𝑡 > 0, α, β > 0,                                                                           (4) 

and 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝛼𝛽(1+𝑡)−(𝛼+1)(1−(1+𝑡)−𝛼)𝛽−1

1−(1−(1+𝑡)−𝛼)𝛽  ,          𝑡 > 0 ;       𝛼, 𝛽 > 0 .                                                                            (5)                                                                                                                                               

Fatima et al. (2018) proposed the exponentiated IKum distribution; they derived some statistical properties 

of this distribution and used the ML method to estimate the parameters. Mohie El-Din and Abu-Moussa (2018) 

estimated the unknown parameters of the IKum distribution based on general progressive Type II censored data using 

ML and Bayesian methods. Also, ZeinEldin et al. (2019) introduced the Type I half-logistic IKum distribution, some 

statistical properties of this distribution are derived. The method of ML estimation, methods of least squares and 

weighted least squares estimation and method of Cramer-von Mises minimum distance estimation are used to estimate 

the parameters of this distribution. Usman and ul Haq (2020) introduced the Marshall-Olkin extended IKum 

distribution, sub models were showed of this generalization. They derived explicit expressions for major mathematical 

properties of this distribution and they estimated the parameters using the ML method. 

This paper is organized as follows: In Section 2, ML estimators of the parameters, rf and hrf based on dgos are 

obtained. Bayes estimators of the parameters, rf and hrf  based on dgos under squared error (SE) and linear 

exponential (LINEX) loss functions are derived in Section 3. Also, credible intervals for the parameters, rf and hrf are 

obtained. A numerical study is presented in Section 4.  

2. Maximum Likelihood Estimation Based on Dual Generalized Order Statistics  

In this section, the ML method is used to estimate the parameters, rf and hrf of the IKum distribution based 

on dgos. The asymptotic variance-covariance matrix of the ML estimators for the parameters 𝛼 and 𝛽 and the 

asymptotic 100 (1- 𝜔)% confidence intervals for 𝛼 and 𝛽 are obtained. 

2.1 Maximum likelihood estimation for the parameters 

 Suppose that T (1, n, m, k), T (2, n, m, k), …, T(n, n, m, k) be n dgos from IKum distribution, the likelihood 

function can be derived by substituting (2) and (3) in (1) as follows: 
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 𝐿(𝛼, 𝛽; 𝑡) ∝ [∏ 𝛼𝛽(1 + 𝑡(𝑖))
−(𝛼+1)

(𝑢𝑖)
𝛽𝑚+𝛽−1]𝑛−1

𝑖=1 [𝛼𝛽 (1 + 𝑡(𝑛))
−(𝛼+1)

(𝑢𝑛)𝛽𝑘−1 ]                                           

                 = 𝛼𝑛𝛽𝑛 ∏ (1 + 𝑡(𝑖))
−(𝛼+1)𝑛

𝑖=1 ∏ (𝑢𝑖)
𝛽(𝑚+1)−1 𝑛−1

𝑖=1 (𝑢𝑛)𝛽𝑘−1 ,                                                                      (6)            

where  𝑢𝑛 = (1 − (1 + 𝑡(𝑛))
−𝛼

)  and  𝑢𝑖 = (1 − (1 + 𝑡(𝑖))
−𝛼

) .                                                                              (7) 

The natural logarithm of the likelihood function is given by 

ℓ = 𝑙𝑛 𝐿(𝛼, 𝛽; 𝑡) = 𝑛 𝑙𝑛 𝛼 + 𝑛 𝑙𝑛 𝛽 − (𝛼 + 1) ∑ 𝑙𝑛(1 + 𝑡(𝑖))𝑛
𝑖=1   

                                     +[𝛽(𝑚 + 1) − 1] ∑ 𝑙𝑛(𝑢𝑖) + (𝛽𝑘 − 1)𝑙𝑛(𝑢𝑛) .𝑛−1
𝑖=1                                                                                           (8) 

  Considering that the two parameters 𝛼 and 𝛽 are unknown and differentiating the log likelihood function 

partially in (8) with respect to 𝛼 and 𝛽, one obtains 

𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
+ (𝑚 + 1) ∑ 𝑙𝑛(𝑢𝑖)

𝑛−1
𝑖=1 + 𝑘 𝑙𝑛(𝑢𝑛) ,                                                                                                                                                  (9)  

and                                             

 
𝜕ℓ

𝜕𝛼
=

𝑛

𝛼
− ∑ 𝑙𝑛(1 + 𝑡(𝑖))𝑛

𝑖=1 + (𝛽(𝑚 + 1) − 1) ∑
(1+𝑡(𝑖))

−𝛼
𝑙𝑛(1+𝑡(𝑖))

𝑢𝑖

𝑛−1
𝑖=1  

           +
 (𝛽𝑘−1)(1+𝑡(𝑛))−𝛼 𝑙𝑛(1+𝑡(𝑛)) 

𝑢𝑛
.                                                                                                                                                                  (10) 

 Equating the derivatives (9) and (10) to zero, one can obtain the ML estimator of  𝛽                                                                                 

 �̂� =
−𝑛

(𝑚+1) ∑ 𝑙𝑛(1−(1+𝑡(𝑖))
−�̂�

)𝑛−1
𝑖=1 +𝑘 𝑙𝑛(1−(1+𝑡(𝑛))−�̂�)

 .                                                                                                          (11) 

Then the ML estimator of the parameter 𝛼 can be obtained numerically by substituting (11) in (10).  

2.2 Maximum likelihood estimation for the reliability and hazard rate functions 

The invariance property of the ML estimation can be used to obtain the ML estimators  �̂�𝑀𝐿(𝑡0) and ℎ̂𝑀𝐿(𝑡0), 

for a given time 𝑡0, just replacing the parameters 𝛼 and 𝛽 by their corresponding ML estimators, as given below  

 �̂�𝑀𝐿(𝑡0) = 1 − (1 − (1 + 𝑡0)−�̂�)
�̂�

  ,     𝑡0 > 0 ,                                                                                                         (12) 

and 

ℎ̂𝑀𝐿(𝑡0) =
�̂��̂�(1+𝑡0)−(�̂�+1)(1−(1+𝑡0)−�̂�)

�̂�−1

1−(1−(1+𝑡0)−�̂�)
�̂�

      , 𝑡0 > 0 .                                                                                                                              (13) 

 2.3 Asymptotic variance –covariance matrix of the maximum likelihood estimators 

The asymptotic variance -covariance matrix, 𝑽, of the ML estimators for 𝛼 and 𝛽 is the inverse of the 

observed Fisher information matrix, 𝐹,  using the second derivatives of the logarithm of the likelihood function as 

follows: 

𝐹 ≈ − [
𝜕2ℓ

𝜕𝛼2

  
𝜕2ℓ

𝜕𝛽𝜕𝛼

    
  

𝜕2ℓ

𝜕𝛼𝜕𝛽

 
𝜕2ℓ

𝜕𝛽2

],   

and 

𝑽 = 𝐹−1,  

where 
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𝜕2ℓ

𝜕𝛽2 =
−𝑛

𝛽2 ,                                                                                                                                                                                                                (14) 

𝜕2ℓ

𝜕𝛼2
=  

−𝑛

𝛼2
−

(𝛽𝑘 − 1)(1 + 𝑡(𝑛))
−2𝛼

𝑙𝑛(1 + 𝑡(𝑛))
2

𝑢𝑛
2

−
(𝛽𝑘 − 1)(1 + 𝑡(𝑛))

−𝛼
𝑙𝑛(1 + 𝑡(𝑛))

2

𝑢𝑛

 

                 −(𝛽(𝑚 + 1) − 1) ∑ [
(1 + 𝑡(𝑖))

−2𝛼
𝑙𝑛(1 + 𝑡(𝑖))

2

𝑢𝑖
2 +

(1 + 𝑡(𝑖))
−𝛼

𝑙𝑛(1 + 𝑡(𝑖))
2

𝑢𝑖

]

𝑛−1

𝑖=1

 ,                                      (15) 

and 
𝜕2ℓ

𝜕𝛽𝜕𝛼
= (𝑚 + 1) ∑

(1+𝑡(𝑖))
−𝛼

𝑙𝑛(1+𝑡(𝑖))

𝑢𝑖
+

(1+𝑡(𝑛))
−𝛼

𝑙𝑛(1+𝑡(𝑛))

𝑢𝑛

𝑛−1
𝑖=1 .                                                                                             (16) 

The asymptotic normality of the ML estimation can be used to compute the two sided approximate  

100 (1- 𝜔)% confidence intervals for 𝛼 and 𝛽  as follows: 

�̂� ±   𝑍(1−
𝜔

2
)√𝑣𝑎�̃�(�̂�)    and      �̂� ±   𝑍(1−

𝜔

2
)
√𝑣𝑎�̃�(�̂�) .                                                                                                                 (17) 

Also, the asymptotic 100 (1- 𝜔)% confidence intervals for rf and hrf are given by 

�̂�𝑀𝐿(𝑡0) ±   𝑍(1−
𝜔

2
)
√𝑣𝑎�̃�(�̂�(𝑡0))    and      ℎ̂𝑀𝐿(𝑡0) ±  𝑍(1−

𝜔

2
)
√𝑣𝑎�̃� (ℎ̂(𝑡0))     ,                                                                      (18)                                                 

where  𝑍(1−
𝜔

2
) is standard normal percentile and (1 −

𝜔

2
) is the confidence coefficient. 

3. Bayesian Estimation Based on Dual Generalized Order Statistics 

 The Bayesian approach is considered to estimate the parameters, rf and hrf of the IKum distribution based 

on dgos. The Bayes estimators are obtained under the SE and LINEX loss functions to estimate (point and credible 

intervals) of the parameters, rf and hrf of the IKum distribution based on dgos. 

3.1 Bayesian estimation under squared error loss function 

             In this subsection, the Bayes estimators of the shape parameters, rf and the hrf based on dgos are obtained 

under SE loss function. 

           Assuming that the parameters 𝛼 and 𝛽 of the IKum distribution are random variables with a joint bivariate 

prior density function that was considered by AL-Hussaini and Jaheen (1992) as 

𝜋(𝛼, 𝛽) = 𝜋1(𝛽|𝛼) 𝜋2(𝛼),                                                                                                                                                   (19) 

where       𝜋1(𝛽|𝛼) =
𝛼𝜃+1

Γ(𝜃+1)𝑤𝜃+1 𝛽𝜃𝑒
−𝛼𝛽

𝑤   ,                 𝜃 > −1   , 𝑤, 𝛼, 𝛽 > 0  ,                                                           (20) 

and the prior of 𝛼 is  

                𝜋2(𝛼) =
𝛼𝑐−1

Γ(𝑐)𝑏𝑐  𝑒−
𝛼

𝑏  ,                             𝛼, 𝑏, 𝑐 > 0 ,                                                                                        (21)  

                                                     

The joint prior pdf of 𝛼 and 𝛽; will be obtained by substituting (20) and (21) in (19) as given below  

    𝜋(𝛼, 𝛽) ∝  𝛼𝑐+𝜃𝛽𝜃𝑒−𝛼(
1

𝑏
+

𝛽

𝑤
)
 ,               𝑐, 𝑏, 𝑤 > 0 .                                                                                              (22) 

The joint posterior of 𝛼 and 𝛽 can be derived by using (6) and (22) as follows: 

   𝜋(𝛼, 𝛽|𝑡) ∝ 𝐿(𝛼, 𝛽|𝑡) 𝜋(𝛼, 𝛽) .                                                                                                                              (23) 

                      =
𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ 𝑙𝑛(𝑢𝑖)−𝑘 𝑙𝑛(𝑢𝑛)]𝑛−1

𝑖=1   

∏ (𝑢𝑖)𝑛
𝑖=1

,                                                              (24) 

hence, the joint posterior distribution of 𝛼 and 𝛽 is given by    

𝜋(𝛼, 𝛽|𝑡) =
𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ ln 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛]𝑛−1

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

    ,                                                                 (25) 

where  𝑢𝑛  and  𝑢𝑖 are given by (7) , also                                        
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𝜓(𝑡) = ∫
𝛼𝑛+𝜃+𝑐𝑒

−𝛼[
1
𝑏+∑ ln (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖[
𝛼

𝑤
−(𝑚+1) ∑ ln 𝑢𝑖−𝑘 ln 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝑛
𝑖=1

∞

0
𝑑𝛼 .                                                                                                (26) 

Under SE loss function the Bayes estimators for the parameters 𝛼, 𝛽, rf and hrf are given, respectively, by their 

marginal posterior expectations using (25) as shown below 

𝛼(𝑆𝐸)
∗ = 𝐸(𝛼|𝑡) = ∫

𝛼𝑛+𝜃+𝑐+1𝑒
−𝛼[

1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ ln 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝜓(𝑡)

 𝑑𝛼
∞

0
   ,                                                                       (27)  

𝛽(𝑆𝐸)
∗ = 𝐸(𝛽|𝑡) = ∫

(𝑛+𝜃+1)𝛼𝑛+𝜃+𝑐𝑒
−𝛼[

1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+2
𝜓(𝑡)

 𝑑𝛼
∞

0
,                                                                                (28)                  

𝑅(𝑆𝐸)
∗ (𝑡) = 𝐸(𝑅(𝑡)|𝑡)  = 1 − ∫

𝛼𝑛+𝜃+𝑐𝑒
−𝛼[

1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 ln 𝑢𝑛−𝑙𝑛(1−(1+𝑡)−𝛼)]𝑛−1

𝑖=1

𝑛+𝜃+1
𝜓(𝑡)

𝑑𝛼 ,
∞

0
                                  (29)                                                                                                                                                               

and   

      

ℎ(𝑆𝐸)
∗ (𝑡) = 𝐸(ℎ(𝑡)|𝑡) 

         = ∫ ∫
(1+𝑡)−(𝛼+1)(1−(1+𝑡)−𝛼)𝛽−1𝛼𝑛+𝜃+𝑐+1𝛽𝑛+𝜃+1𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ ln 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛]𝑛−1

𝑖=1   

[1−(1−(1+𝑡)−𝛼)𝛽] ∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

𝑑𝛼 𝑑𝛽
∞

0
,

∞

0
           (30) 

 

To obtain the Bayes estimates of the parameters, rf and hrf, (27)-(30) should be solved numerically. 

Since, the posterior distribution is given by (25), then a 100 (1- 𝜔) % credible intervals for 𝛼 and 𝛽 is (𝐿(𝑡), 𝑈(𝑡)), 

respectively, where 

𝑃[𝛼 > 𝐿(𝑡)|𝑡 ] = ∫
𝛼𝑛+𝜃+𝑐𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ ln 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝜓(𝑡)

 𝑑𝛼
∞

𝐿(𝑡)
= 1 −

𝜔

2
,                                                         (31)                                                                           

 𝑃[𝛼 >  𝑈(𝑡)|𝑡 ] = ∫
𝛼𝑛+𝜃+𝑐𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝜓(𝑡)

 𝑑𝛼
∞

𝑈(𝑡)
 =  

𝜔

2
 ,                                                          (32)                                                                                                                                                            

𝑃[ 𝛽 >  𝐿(𝑡)|𝑡 ] = ∫ ∫
𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛]𝑛−1

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

𝑑𝛼𝑑𝛽 = 1 −
𝜔

2
  ,

∞

0
 

∞

𝐿(𝑡)
                 (33) 

and 

  𝑃[ 𝛽 >  𝑈(𝑡)|𝑡 ] = ∫ ∫
𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 ln 𝑢𝑛]𝑛−1

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

𝑑𝛼𝑑𝛽 =
𝜔

2

∞

0

∞

𝑈(𝑡)
 .                        (34) 

      

3.2 Bayesian estimation under linear exponential loss function 

        In this subsection, the Bayes estimators of the shape parameters, rf and hrf based on dgos are obtained under 

LINEX loss function. Under the LINEX loss function, the Bayes estimators for the shape parameters 𝛼, 𝛽, rf  and hrf 

are given, respectively, by 

𝛼(𝐿𝑁𝑋)
∗ =

−1

𝜐
ln 𝐸(𝑒−𝜐𝛼|𝑡) =

−1

𝜐
𝑙𝑛 [∫

𝛼𝑛+𝜃+𝑐𝑒
−𝛼[𝜐+

1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [

𝛼

𝑤
−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝜓(𝑡)

 𝑑𝛼
∞

0
] ,                                            (35) 

𝛽(𝐿𝑁𝑋)
∗ =

−1

𝜐
ln 𝐸(𝑒−𝜐𝛽|𝑡) =

−1

𝜐
𝑙𝑛 [∫

𝛼𝑛+𝜃+𝑐𝑒
−𝛼[

1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 [𝜐+

𝛼

𝑤
−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 ln 𝑢𝑛

𝑛−1
𝑖=1 ]

𝑛+𝜃+1
𝜓(𝑡)

 𝑑𝛼
∞

0
] ,                                        (36) 

 

𝑅(𝐿𝑁𝑋)
∗ (𝑡) =

−1

𝜐
ln 𝐸(𝑒−𝜐𝑅(𝑡)|𝑡) 
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      =
−1

𝜐
𝑙𝑛 [1 − ∫ ∫

𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒
−𝜐[1−(1−(1+𝑡)−𝛼)

𝛽
]
 𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛]𝑛−1

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

𝑑𝛼 𝑑𝛽
∞

0
 

∞

0
],          (37)                                                                                                                                                                                                                                                                                                                   

and  

ℎ(𝐿𝑁𝑋)
∗ (𝑡) =

−1

𝜐
𝑙𝑛 𝐸(𝑒−𝜐ℎ(𝑡)|𝑡)          

=
−1

𝜐
𝑙𝑛 [∫ ∫

𝛼𝑛+𝜃+𝑐𝛽𝑛+𝜃𝑒
−𝜐

𝛼𝛽(1+𝑡)−(𝛼+1)(1−(1+𝑡)−𝛼)
𝛽−1

1−(1−(1+𝑡)−𝛼)𝛽
 𝑒

−𝛼[
1
𝑏+∑ 𝑙𝑛 (1+𝑡(𝑖))]𝑛

𝑖=1 𝑒
−𝛽[

𝛼
𝑤−(𝑚+1) ∑ 𝑙𝑛 𝑢𝑖−𝑘 𝑙𝑛 𝑢𝑛]𝑛−1

𝑖=1   

∏ 𝑢𝑖
𝑛
𝑖=1 Γ(𝑛+𝜃+1)𝜓(𝑡)

𝑑𝛼 𝑑𝛽
∞

0
 

∞

0
] .     (38)                             

To obtain the Bayes estimates of the parameters, rf and hrf, (35)-(38) should be solved numerically.                                                                                                                                                                                                                                                                                

4. Numerical Results 

         This section aims to illustrate the theoretical results of the ML and Bayesian estimation under SE and LINEX 

loss functions. Numerical results are presented for the IKum distribution based on lower record values through a 

simulation study and some applications.  

 4.1 Simulated example 

        The lower record values can be obtained as a special case from dgos by setting 𝑚 = −1, 𝑘 = 1; the estimation 

results obtained in Sections 2 and 3 can be specialized to lower records. The ML and Bayes estimates of 𝛼, 𝛽, rf and 

hrf and their average estimates and Estimated Risks (ERs) are computed based on lower record values through Monte 

Carlo simulation study according to the following steps: 

a. The population parameter values of 𝛼 and 𝛽 are used to generate random samples of size n from the IKum 

distribution observing that if U is uniform distribution (0,1), then 

      𝑡𝑖𝑗 = [(1 − 𝑢𝑖𝑗

1

𝛽)
−

1

𝛼

− 1]  , is IKum (𝛼, 𝛽) distribution. 

b. For each sample size n, consider the first observation is the first lower record value 𝑡1 denoting it by 𝑅1 and 

the second observation 𝑡2 denoting it by 𝑅2 which is smaller than the maximum record (𝑡1 > 𝑡2) and  if  𝑡1 ≤
𝑡2 ignore it and repeat until you get a sample of record values (Rv). 

c. For the number of the surviving units t and the population parameter values of the shape parameters, the ML 

estimates of the parameters 𝛼 and 𝛽 are obtained, also the rf and hrf are calculated using the ML estimates of 

the parameters. The computations are performed using Mathematica 9. 

d. The Bayes estimates of the parameters, rf and hrf under SE and LINEX loss functions are computed for the 

number of the surviving units t  based on the population parameter values of the shape parameters 𝛼 and 𝛽 

and the hyper parameters of the prior distribution. The computations are performed using R programming 

language. 

e. Tables 1 and 2 show the ERs of the  estimates and 95% confidence intervals of the shape parameters α and β 

from the IKum distribution based on lower records where the population parameter values are  𝛼 = 1.1,1.2,
𝛽 = 1.5, 2 based on samples of Rv= 3, 5, 7, 9  and replications (NR)= 2000. 

f. Table 3 displays the ML averages and 95% confidence intervals of the rf and hrf at 𝑡0 = 0.5, 1, from the IKum 

distribution based on lower records for different samples of Rv, and NR = 2000.   

g. Tables 4 and 5 present the Bayes estimates under informative prior of the parameters and their ERs, averages 

and credible intervals based on lower record values for different population parameter values for 𝛼 = 1.2, 1.1 

and  𝛽 = 0.8, 0.4, respectively, based on  samples of Rv=5, 7, 9  and NR = 10000. 

h. Table 6 displays the Bayes averages and 95% confidence intervals of the rf and hrf at 𝑡0 = 0.5, 1, from the 

IKum distribution based on lower record values for different samples of Rv= 5, 9, and NR = 10000. 

4.2 Applications 

In this subsection, three applications to real data sets are provided to illustrate the importance of the IKum distribution 

based on lower records. Table 7 displays ML averages of the parameters, rf, hrf and ERs from IKum distribution for 

the real data based on lower records.  The averages of the Bayes estimates for the parameters, their ERs and the 

credible intervals based on informative prior are given in Table 8. To check the validity of the fitted model, 
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Kolmogorov-Smirnov goodness of fit test is performed for each data set and the p values in each case indicates that 

the model fits the data very well.  

I. The first application is a real data set obtained from Hinkley (1977). It consists of thirty successive values of 

March precipitation (in inches) in Minneapolis/St Paul. The data is 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 

3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 

0.90, 2.05. 

II. The second application is given by Murthy et al. (2004). The data refers to the time between failures for repairable 

items. The data is 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 

0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. 

III. The third application is the vinyl chloride data obtained from clean upgrading, monitoring wells in mg/L; this 

data set was used by Bhaumik et al.  (2009). The data is: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 

0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 

 

4.3 Concluding remarks 

o From Tables 1and 2 one can observe that the ERs of the ML averages for the shape parameters 𝛼 and 𝛽 

decreases when the sample size of lower records Rv increases. Also, the lengths of the confidence intervals 

become narrower as the sample of record size increases.  

o It is clear from Tables 4 and 5 that the ERs of the Bayes averages for the parameters, rf and hrf perform better 

and the length of the credible intervals get shorter when the sample of Rv increases.  

o One can notice that the ERs for the averages of the parameters, rf and hrf under LINEX loss function have 

the less values than the corresponding ERs of the averages under SE loss function. 

 

 

 

 

Table 1: ERs of ML estimates and 95% confidence intervals of the shape 

parameters 𝛂 𝐚𝐧𝐝 𝛃 from IKum distribution based on lower records 

 ( 𝜶 = 𝟏. 𝟏, 𝜷 = 𝟏. 𝟓 , 𝐍𝐑 = 𝟐𝟎𝟎𝟎) 

 

 

 

 

 

 

 

 

 

 

 

Rv Estimators ER LL UL Length 

 

3 

�̂� 

�̂� 

0.0019 

0.0004 

0.7200 

0.8860 

1.5457 

2.3585 

0.8257 

1.4725 

 

5 

�̂� 

�̂� 

0.0010 

0.0002 

0.7623 

0.9326 

1.5013 

2.1526 

0.7389 

1.2200 

 

7 

�̂� 

�̂� 

0.0009 

0.0001 

0.7717 

1.0639 

1.5017 

1.9879 

0.7299 

0.9240 

 

9 

�̂� 

�̂� 

0.0008 

 0.0001 

0.7589 

1.0519 

1.4678 

1.8693 

0.7088 

0.8173 



Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 649-660  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.2774 

 

 
Statistical Inference for Inverted Kumaraswamy Distribution Based on Dual Generalized Order Statistics 656 

 

Table 2: ERs of ML estimates and 95% confidence intervals of the shape 

 parameters 𝛂 𝐚𝐧𝐝 𝛃 from IKum distribution based on lower records  

( 𝜶 = 𝟏. 𝟐 , 𝜷 = 𝟐 , 𝐍𝐑 = 𝟐𝟎𝟎𝟎) 

 

  

 

 

 

 

Table 3: ML averages and 95% confidence intervals of the rf and hrf at 𝒕𝟎 = 𝟎. 𝟓, 𝟏, from IKum 

 distribution based on lower records for different sample size of Rv and NR = 2000  

 

Table 4: Bayes averages of the parameters and their estimated risks and credible intervals  

based on lower records (𝜶 = 𝟏. 𝟏 , 𝜷 = 𝟎. 𝟗 , 𝐍𝐑 = 𝟏𝟎𝟎𝟎𝟎) 

Rv Estimators ER LL UL Length 

 

3 

�̂� 

�̂� 

0.0001 

0.0003 

0.3488 

1.2829 

1.5464 

2.3881 

1.1977
1.1051

 

 

5 

�̂� 

�̂� 

0.0002 

0.0001 

0.4058 

1.2662 

1.5577 

2.2125 

1.1519 

0.9462 

 

7 

�̂� 

�̂� 

0.0001 

0.0001 

0.4053 

1.3465 

1.5527 

2.1038 

1.1473 

0.7573 

 
9 

�̂� 

�̂� 

0.0001 

0.0001 

0.4369 

1.3208 

1.5349 

2.0244 

1.0979 

0.7036 

Rv 𝒕𝟎 Estimators Average LL UL Length 

 

 

5 

 

0.5 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.8832 

0.3278 

0.7813 

0.0332 

0.9853 

0.6225 

0.2039 

0.5893 

 

1 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.7159 

0.3545 

0.8144 

0.0185 

0.9900 

0.5451 

0.1755 

0.5266 

 

 

9 

 

0.5 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.9022 

0.2818 

0.7791 

0.0534 

0.9766 

0.6292 

0.1976 

0.5757 

 

1 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.7321 

0.3407 

0.5506 

0.0838 

0.9134 

0.5977 

0.3627 

0.5139 

 

Rv 

Loss 

functions 

 

Estimators 

 

Average 

 

ER 

 

LL 

 

UL 

 

Length 

 

 

5 

 

SE 

𝜶∗ 

𝜷∗ 

1.0952 

0.9230 

5.09e-05 

2.73e-01 

1.0838 

0.8982 

1.1040 

0.9430 

0.0201 

0.0447 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1094 

0.9047 

0.0001 

0.2548 

1.0992 

0.8939 

1.1156 

0.9130 

0.0164 

0.0190 

 

 

7 

 

SE 

𝜶∗ 

𝜷∗ 

1.1004 

0.9017 

8.61e-06 

2.52e-01 

1.0929 

0.8934 

1.1060 

0.9056 

0.0131 

0.0122 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1028 

0.9069 

1.29e-05 

2.56e-01 

1.0985 

0.8974 

1.1064 

0.9107 

0.0079 

0.0132 

 

 

9 

 

SE 

𝜶∗ 

𝜷∗ 

1.0997 

0.9000 

1.01e-07 

2.50e-01 

1.0995 

0.8997 

1.0999 

0.9001 

0.0005 

0.0004 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.0999 

0.8999 

2.63e-08 

2.49e-01 

1.0997 

0.8996 

1.1002 

0.9003 

0.0005 

0.0006 
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Table 5: Bayes averages of the parameters and their estimated risks and credible intervals  

based on lower records(𝜶 = 𝟏. 𝟐 , 𝜷 = 𝟎. 𝟖, 𝐍𝐑 = 𝟏𝟎𝟎𝟎𝟎 ) 

 

 

Table 6: Bayes averages and credible intervals of the rf and hrf at 𝒕𝟎 = 𝟎. 𝟓, 𝟏, from IKum distribution  

based on lower records for different sample size of recods Rv, and repetitions NR = 10000   

 

 

 

 

 

 

 

 

 

 

 

Rv 

Loss 

functions 

 

Estimators 

 

Average 

 

ER 

 

LL 

 

UL 

 

Length 

 

 

5 

 

SE 

𝜶∗ 

𝜷∗ 

1.1035 

0.8998 

0.0921 

0.0901 

1.0957 

0.8962 

1.1093 

0.9034 

0.0135 

0.0071 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1058 

0.8972 

0.0936 

0.0917 

1.0994 

0.8888 

1.1110 

0.9039 

0.0115 

0.0151 

 

 

7 

 

SE 

𝜶∗ 

𝜷∗ 

1.1005 

0.9011 

0.0904 

0.0893 

1.0989 

0.8991 

1.1018 

0.9028 

0.0029 

0.0036 

 

LINEX 

𝜶∗ 

𝜷∗ 

0.1014 

0.8983 

0.0908 

0.0910 

1.0997 

0.8971 

1.1023 

0.9000 

0.0026 

0.0029 

 

 

9 

 

SE 

𝜶∗ 

𝜷∗ 

1.1004 

0.8982 

0.0902 

0.0910 

1.0993 

0.8970 

1.1010 

0.8992 

0.0017 

0.0022 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1008 

0.9007 

0.0904 

0.0895 

1.0997 

0.8990 

1.1015 

0.9016 

0.0017 

0.0026 

Rv 𝒕𝟎 Estimators Average LL UL Length 

 

 

5 

 

0.5 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.9078 

0.5986 

0.8904 

0.59758 

0.9203 

0.5995 

0.0299 

0.0019 

 

1 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.8843 

0.6009 

0.8707 

0.5995 

0.9005 

0.6022 

0.0298 

0.0026 

 

 

9 

 

0.5 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.9094 

0.5987 

0.8986 

0.59737 

0.9177 

0.5996 

0.0191 

0.0023 

 

1 
�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

0.9029 

0.6002 

0.8880 

0.5986 

0.9105 

0.6013 

0.0225 

0.0026 
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Table 7: ML averages of the parameters, rf, hrf and estimated risks from  

IKum distribution for the real data based on lower records 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Bayes averages of the parameters, estimated risks and credible intervals  

for the real data based on lower records 

 

 

 

 

 

 

 

 

Real data Rv Estimators Average ER 

 

 

I 

 

 

 

3 

�̂� 

�̂� 

�̂�(𝒕) 

�̂�(𝒕) 

1.3242
2.1875
0.6721
0.4698

 

0.5245
0.9753
0.0028
0.0424

 

 

 

II 

 

 

 

5 

�̂� 

�̂� 

�̂�(𝒕) 

�̂�(𝒕) 

0.8318
2.1696
0.8330
0.2318

 

0.0537
0.9402
0.0115
0.0011

 

 

 

III 

 

 

7 

�̂� 

�̂� 

�̂�(𝒕) 

�̂�(𝒕) 

0.5282 

1.2893 

0.7822 

0.2144 

0.0052 

0.0079 

0.0031 

0.0024 

Real 

data 

 

Rv 

Loss 

functions 

 

Estimators 

 

Average 

 

ER 

Credible interval 

LL UL Length 

 

 

 

I 

 

 

 

3 

 

SE 

𝜶∗ 

𝜷∗ 

1.1005 

0.9003 

0.0406 

0.0910 

1.0999 

0.8967 

1.1024 

0.8998 

0.0024 

0.0031 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1025 

0.8993 

0.0399 

0.0889 

1.0982 

0.8997 

1.1010 

0.9038 

0.0027 

0.0041 

 

 

II 

 

 

 

2 

 

SE 

𝜶∗ 

𝜷∗ 

1.0997 

0.8987 

4.90e-01 

5.01e-07 

1.0996 

0.8985 

1.1009 

0.9004 

0.0013 

0.0018 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.0998 

0.9003 

4.90e-01 

1.63e-06 

1.0997 

0.8999 

1.1013 

0.9022 

0.0016 

0.0023 

 

 

III 

 

 

7 

 

SE 

𝜶∗ 

𝜷∗ 

1.1002 

0.8991 

4.90e-01 

8.24e-07 

1.0993 

0.8983 

1.1009 

0.8998 

0.0016 

0.0014 

 

LINEX 

𝜶∗ 

𝜷∗ 

1.1002 

0.9000 

4.90e-01 

5.30e-07 

1.0991 

0.8988 

1.1009 

0.9016 

0.0017 

0.0027 
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