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June 24, 2010

Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near chaotic

dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes

plus demographic and environmental process noise, and are only observable with error. Their sensitivity

to history means that minute changes in the driving noise realization, or the system parameters, will cause

drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability

density of the observable data and the process noise, rendering it useless as the basis for obtaining measures

of statistical fit. Since the joint density is the basis for the fit measures used by all conventional statistical

methods, this is a major theoretical shortcoming. The inability to make well founded statistical inferences

about biological dynamic models in the chaotic and near chaotic regimes, other than on an ad hoc basis,

leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of

biological science. Here it is shown that this impasse can be resolved in a simple and general manner, us-

ing a method that requires only the ability to simulate the observed data about a system from the dynamic

model about which inferences are required. The raw data series are reduced to phase insensitive summary

statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to

obtain the mean and covariance matrix of the statistics, given model parameters, allowing a synthetic like-

lihood to be constructed, which assesses model fit. This likelihood can be explored by a straightforward

Markov Chain Monte Carlo sampler, but one further post-processing step returns pure likelihood based

inference. The method is applied to finally establish the dynamic nature of the fluctuations in Nicholson’s

classic Blowfly experiments1,2,3.
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Figure 1: Measuring fit of the Ricker model a. Population data simulated from the Ricker model in the text,

observed under Poisson sampling (log r = 3.8, σ = .3, φ = 10). b. The log joint probability density, log fθ(y, e),

of data y and random process noise terms, e, plotted against the value of the first process noise deviate, e1, with

the rest of e and y held fixed. c. log fθ(y, e) plotted against model parameter r, again with e and y held fixed. d.

The log synthetic likelihood, ls, against r for the Ricker model and the data given in panel a (Nr = 500).

The prototypic ecological model with complex dynamics is the scaled Ricker map4, describing the time course

of a population Nt by

Nt+1 = rNte
−Nt+et (1)

where the et are independent N(0, σ2
e) ‘process noise’ terms (assumed to be environmental noise here, for illus-

trative purposes), and r is an intrinsic growth rate parameter controlling the model dynamics. This model amply

illustrates the collapse of standard statistical methods in the face of chaotic or near chaotic dynamics. Figure 1a

shows data from a realization of (1) when log r = 3.8, and what is observed are Poisson random deviates, yt,

with mean φNt, reflecting a reasonably common sampling situation. Suppose that the aim is to make statistical

inferences about θT = (r, σ2
e , φ) from this data series. Figures 1b and 1c illustrate the joint probability (density)

function, fθ(y, e), of data vector, y, and noise vector, e, when the (fixed) noise realization and data from the 1a

simulation are plugged in. 1c plots how log fθ varies with r, while 1b keeps r fixed but varies the first element of

the noise realization, e1. Likelihood based inference about θ requires that we integrate fθ over all e, something

which is analytically intractable, and from figure 1b, is clearly numerically intractable as well5. Bayesian inference

would require that we sample replicate e,θ vectors from a density proportional to fθ: no methods exist to do this
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Figure 2: Synthetic likelihood evaluation. Starting at the top, we wish to evaluate the fit of the model with

parameter vector θ to the raw data vector y. Replicate data vectors y∗1, . . . ,y
∗
Nr

are simulated from the model,

given the value of θ. Each replicate, and the raw data, is converted into a vector of statistics, s∗i or s, in the same

way. The s∗i are used to estimate the mean vector, µ̂θ, and covariance matrix, Σ̂θ, of s, according to the model

with parameters θ. µ̂θ, Σ̂θ and s are used as respectively the mean vector, covariance matrix and argument of the

log multivariate normal probability density function, to evaluate the log synthetic likelihood, ls.

in a meaningful way for an fθ as irregular as that shown in 1b and 1c.

The problem with the conventional approaches is really philosophical. Naive methods of statistical inference

try to make the model reproduce the exact course of the observed data in a way that the real system itself would

not do if repeated. While the dynamic processes driving the system are a repeatable feature about which inferences

might be made, the local phase of the data is an entirely noise driven feature, which should not contribute to any

measure of match or mismatch between model and data. Hence if statistical methods are to correspond with what

is scientifically meaningful, it is necessary to judge model fit using statistics which reflect what is dynamically

important in the data, while discarding the details of local phase. In itself this idea is not new4,6,7,8,9. What is new

is the ability to assess the consistency of statistics of the model simulations and data without recourse to ad hoc

measures of that consistency, but in a way that instead gives access to much of the machinery of likelihood based

statistical inference5.

Defining fit. The first step in the proposed analysis is therefore to reduce the raw observed data, y, to a

vector of summary statistics, s, designed to capture the dynamic structure of the model (by specifying the compo-

nents s we define what matters about the dynamics, but not how much it matters). Example suitable statistics are

the coefficients of the autocovariance function, and of polynomial autoregressive models. To ensure appropriate
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marginal distributions we can also use the coefficients obtained from polynomial regression of the observed order

statistics on appropriate fixed reference quantiles. Using regression coefficients as statistics promotes approximate

normality in the distribution of s, supporting the key multivariate normality approximation,

s ∼ N(µθ,Σθ). (2)

The unknown mean vector, µθ, and covariance matrix, Σθ, are generally intractable functions of the vector of

unknown model parameters θ, but for any θ value they can be estimated by simulating from the model, in which

case a sort of ‘synthetic likelihood’ can be evaluated (see figure 2).

Evaluating the synthetic likelihood of θ . For a given value of parameter vector θ. . .

1. Use the model to simulate Nr replicate data sets, y∗1,y
∗
2, . . ., and convert these to replicate statistics vectors

s∗1, s
∗
2, . . ., exactly as y was converted to s.

2. Evaluate µ̂θ =
∑

i s
∗
i /Nr.

3. Setting S = (s∗1 − µ̂θ, s∗2 − µ̂θ, . . .), then10

Σ̂θ = SST/(Nr − 1).

4. Dropping irrelevant constants, the log synthetic likelihood is

ls(θ) = −1
2
(s− µ̂θ)TΣ̂−1

θ (s− µθ)− 1
2

log |Σ̂θ|.

Like any likelihood, ls(θ) measures the consistency of parameter values θ with the observed data, but it is a much

smoother function of θ than fθ, as 1d illustrates. Note that a robust estimator10,11 can be advantageous at step 3.

The ls evaluation method is general enough to deal with hidden state variables, complicated observation pro-

cesses, missing data, and multiple data series. ls is invariant to reparameterization and is robust to the inclusion of

uninformative statistics, so that very careful selection of statistics is not necessary. There is complete freedom to

transform statistics to improve approximation (2). Further more, ls behaves like a conventional likelihood in the

Nr →∞ limit, giving access to much of the machinery of likelihood based inference.

Finding maximum likelihood estimates, θ̂, by maximizing ls with respect to θ, can not usually be achieved by

numerical optimizers for smooth functions, as ls usually displays some residual small scale roughness. Instead,

a standard Metropolis Hastings Markov Chain Monte Carlo method4,12 can be used for this purpose, and for

simultaneously exploring the range of parameter values consistent with the data. See the methods section for

implementational details, refinements, model checking and supporting theory.
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Figure 3: Blowfly data and model runs. a,b. Two laboratory adult populations of Sheep blowfly maintained

under adult food limitation from Nicholson 19573 and 19542. c,d. As a,b but maintained under moderate and

more severe juvenile food limitation2. e-h each show two replicates from the full model (4) fitted separately to

the data shown in each of panels a-d, immediately above. i-l as e-h for the demographic stochasticity only model.

All observations are every second day. The simulation phase is arbitrary. Notice the qualitatively good match

of the dynamics, e-h, of the full model (4) to the data, compared to the insufficiently variable dynamics of the

demographic stochasticity only model, i-l.

To illustrate efficacy, the method was applied to the simulated Ricker data of figure 1a. Statistics were (i) the

auto-covariances to lag 5, (ii) the coefficients of the cubic regression of the ordered differences, yt− yt−1, on their

observed values, (iii) the coefficients of the autoregression y.3
t+1 = β1y

.3
t +β2y

.6
t +εt, (iv) the mean population and

(v) the number of zeroes observed. Resulting 95% confidence intervals were 3.6 < log r < 4.2, .10 < σ < .55

and 9.1 < φ < 11.3: all include the truth, but a simulation study suggested that such intervals achieve coverage

probabilities of .84, .85 and .87 for sample size 50, achieving nominal .95 coverage for sample sizes 100-200.

As the main example, figures 3a-d show adult blowfly populations from four runs of Nicholson’s classic

experiments2,3. Three decades after the experiments, Gurney and Nisbet1,13 provided the first plausible model

for the last 3 replicates:
dN

dt
= PN(t− τ)e−N(t−τ)/N0 − δN(t), (3)

5
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Figure 4: Gurney and Nisbet’s1,13 blowfly model stability diagram, with samples from the stability controlling

parameter combinations, δτ and Pτ , plotted for each experimental run shown in figure 3. Colour coding matches

figure 3. The open circle and black circle show stability properties for alternative chain starting conditions: they

give indistinguishable results, although the black circle conditions lie in Gurney and Nisbet’s plausible range for

external noise driven dynamics. Clearly, the dynamics are limit cycles perturbed by noise, but are not noise driven.

The fluctuations are driven by the intrinsic population dynamic processes, not by random variation exciting a

resonance in otherwise stable dynamics.

where N is adult population and P , N0, δ and τ are parameters. Depending on parameter values, this model

displays dynamics ranging from stable equilibrium to chaos. Using careful, but ad hoc, parameter estimation

methods Nisbet and Gurney concluded that the dynamics of the adult food limited replicate, 3b, are limit cycles:

the fluctuations are intrinsic to the blowfly population biology. For the juvenile food limited replicates, 3c and 3d,

it was not possible to decide conclusively whether the fluctuations were driven and initiated by random external

forcing and/or demographic stochasticity (quasi-cycles), or were intrinsically driven limit cycles. To go further,

requires a stochastic version of (3) that can produce both types of dynamics, and some means of estimating its pa-

rameters from data. Prior to the method proposed here, estimation was difficult because the dynamics of plausibly

parameterized models can be chaotic or near chaotic13.

(3) was discretized with a daily timestep. Births and death were subject to demographic stochasticity, with

rates perturbed by daily environmental noise, yielding

Nt+1 = Rt + St, (4)
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where recruitment is Rt ∼ Poi{PNt−τ exp(−Nt−τ/N0)et} and survival is St ∼ binom{exp(−δεt), Nt}. i.e.

egg production is an independent Poisson process for each female and each adult has independent probability

exp(−δεt) of surviving each day. Environmental stochasticity terms et and εt are independent Gamma random

deviates with mean 1 and variance σ2
p and σ2

d, respectively. All parameters are positive and τ is integer. However,

the experiments were conducted in controlled conditions kept as constant as possible, suggesting that a model in

which stochasticity is purely demographic is more plausible, a priori. That is, the simplified model with et = εt =

1 should be compared to (4) statistically.

(4) and its simplified version were fitted to each experimental replicate, with MCMC chains run for 50000

iterations. Example replicate simulations from the final chain states are shown in figure 3e-h for (4) and 3i-l for

the simplified model. The χ2 fit statistic suggested a good fit (p > .2) for (4) but a very bad fit (p ¿ .002) for the

simplified version, in all cases. AIC differences were > 1800 in favour of the full model (4) for all 4 replicates.

Figure 3 suggests that the comprehensive rejection of the simplified model is because demographic stochasticity

can not produce the irregularity of the real cycles.

So, the stochastic Nisbet and Gurney model (4), is not just qualitatively plausible, but actually fits the data

quantitatively. Furthermore, uncontrolled variability in the experimental setup dwarfs demographic stochasticity,

begging the question of whether it drove the fluctuations, rather than simply perturbing them? To answer this,

figure 4 shows Gurney and Nisbet’s stability diagram for (3), overlaid with 1500 values of the stability controlling

parameters Pτ and δτ randomly sampled from the second half of the MCMC chain for each experimental replicate.

The overlaid sets summarize the parameter combinations consistent with the data.

Clearly there is extremely strong statistical evidence that the Nicholson’s blowfly fluctuations are limit cycles

perturbed by noise. They are not the result of stochastic forcing or excitation of the system, despite decisive

evidence for stochasticity well above demographic levels. The fluctuations are an intrinsically driven feature of

blowfly biology and would have occurred no matter how constant the experimental conditions, and no matter how

large the cultures had been made. The method allowing this conclusion to be reached is widely applicable, and

the first general purpose method for well founded statistical inference about noisy ecological (and other) dynamic

models in the chaotic and near chaotic regimes.

Methods summary

Exploring ls by MCMC. Starting from a parameter guess θ[0], iterate the following for k = 1, 2, 3 . . .

1. Propose θ∗ = θ[k−1] + δ[k], where δ[k] is a random vector from a convenient symmetric distribution.

2. Set θ[k] = θ∗ with probability min[1, exp{ls(θ∗)− ls(θ[k−1])}], otherwise set θ[k] = θ[k−1].

7



Further inference. For many statistical purposes the set of θ[k] values from the converged chain is sufficient.

However, in the vicinity of the maximum likelihood estimate θ̂, limNr→∞ ls can be estimated by quadratic regres-

sion of the sampled ls(θ[k]) values on the θ[k] values, from the converged chain. This allows the use of standard

likelihood theory for inference4,14. In particular alternative models can be compared using AIC, or generalized

likelihood ratio testing5,7,14. A useful model checking diagnostic is that (s− µ̂θ)TΣ̂−1
θ (s− µθ) ∼ χ2

dim(s) if the

model fits.

Blowfly statistics. The auto-covariances to lag 11 and the difference distribution summary used in the Ricker

example were used, along with mean{Nt}, mean{Nt} − median{Nt}, the number of turning points observed

and the estimated coefficients, β̂, of the autoregression

Ni = β0Ni−12 + β1N
2
i−12 + β2N

3
i−12 + β3Ni−2 + β4N

2
i−2 + εi.

Further details and code are in the supplementary material and online methods section.
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Figure legends

1. Measuring fit of the Ricker model a. Population data simulated from the Ricker model in the text, observed

under Poisson sampling (log r = 3.8, σ = .3, φ = 10). b. The log joint probability density, log fθ(y, e),

of data y and random process noise terms, e, plotted against the value of the first process noise deviate, e1,

with the rest of e and y held fixed. c. log fθ(y, e) plotted against model parameter r, again with e and y

held fixed. d. The log synthetic likelihood, ls, against r for the Ricker model and the data given in panel a

(Nr = 500).

2. Synthetic likelihood evaluation. Starting at the top, we wish to evaluate the fit of the model with parameter

vector θ to the raw data vector y. Replicate data vectors y∗1, . . . ,y
∗
Nr

are simulated from the model, given the

value of θ. Each replicate, and the raw data, is converted into a vector of statistics, s∗i or s, in the same way.

The s∗i are used to estimate the mean vector, µ̂θ, and covariance matrix, Σ̂θ, of s, according to the model

with parameters θ. µ̂θ, Σ̂θ and s are used as respectively the mean vector, covariance matrix and argument

of the log multivariate normal probability density function, to evaluate the log synthetic likelihood, ls.

3. Blowfly data and model runs. a,b. Two laboratory adult populations of Sheep blowfly maintained under

adult food limitation from Nicholson 19573 and 19542. c,d. As a,b but maintained under moderate and more

severe juvenile food limitation2. e-h each show two replicates from the full model (4) fitted separately to

the data shown in each of panels a-d, immediately above. i-l as e-h for the demographic stochasticity only

model. All observations are every second day. The simulation phase is arbitrary. Notice the qualitatively

good match of the dynamics, e-h, of the full model (4) to the data, compared to the insufficiently variable

dynamics of the demographic stochasticity only model, i-l.

4. Gurney and Nisbet’s1,13 blowfly model stability diagram, with samples from the stability controlling

parameter combinations, δτ and Pτ , plotted for each experimental run shown in figure 3. Colour coding

matches figure 3. The open circle and black circle show stability properties for alternative chain starting

conditions: they give indistinguishable results, although the black circle conditions lie in Gurney and Nis-

bet’s plausible range for external noise driven dynamics. Clearly, the dynamics are limit cycles perturbed by

noise, but are not noise driven. The fluctuations are driven by the intrinsic population dynamic processes,

not by random variation exciting a resonance in otherwise stable dynamics.

10



Methods

This section includes further method details, refinements and theory. See the supplementary material for MCMC

details, example specific details and further examples.

Choosing statistics

The statistics, s, play the same role in the synthetic likelihood, ls, that the raw data would play in a conventional

likelihood. Hence there is no need for particular statistics to relate to particular parameters any more than there is

for particular raw data points to relate to particular parameters in conventional likelihood based statistics. What is

important is to identify a set of statistics which is sensitive to the scientifically important and repeatable features

of the data, but insensitive to replicate-specific details of phase.

Several types of statistic are especially useful.

1. Marginal distribution statistics: these characterize the marginal distribution of the observations, or first

differences of the observations. Here, ‘marginal distribution’ means the distribution ignoring time ordering.

Simple moment statistics such as the mean, median and standard deviation are the most obvious. As useful

are statistics summarizing the ‘shape’ of the marginal distribution. A convenient way of obtaining these

is via polynomial regression of the ordered observed values from the marginal distribution of interest, on

some reference quantiles. Obvious reference quantiles are uniform on (0, 1), but a better choice is to use

the ordered observed values from the raw data as the reference quantiles. The statistics are the resulting

polynomial regression coefficients.

2. Dynamic process statistics: a dynamic model predicts the state next timestep (or the change in state) from

the state now, and possibly the state at earlier times. Similarly, auto-regression using the observed states can

be used to characterize how the observed state, or observed change in state, depends on previous observed

states. For example, the structure of the Ricker model suggests that a regression yα
t = β0+β1y

α
t−1+β2y

2α
t−1+

β3y
3α
t−1+εt, might capture a good deal of the dynamics in the Ricker data (α is a transformation parameter, to

be tuned to improve fit). If this is so, then the estimates of the regression coefficients, β, would be statistics

carrying information about dynamic structure. For models with unobserved states, simple auto-regressions

will often need to be replaced by auto-regressions on multiple lagged states (by Taken’s theorem15).

3. Time series statistics: these are sensitive to the shape and period of fluctuations. Good examples are the

coefficients of the autocovariance function for the data series, truncated at some lag.

11



Note that sometimes the selection of statistics will be iterative. i.e. after fitting with an initial set of statistics,

model checking may identify discrepancies in the fit, which in turn suggest extra statistics to incorporate in a

revised synthetic likelihood.

While the need to find suitable statistics might be viewed as an extra burden, the preparatory work required to

do so is no more than the exploratory analysis that constitutes good statistical practice. Similarly, the requirement

to explicitly formulate what the model should get right, at the outset, has benefits beyond that of simply permitting

estimation.

Theoretical properties of the method

This section provides some theoretical investigation of the multivariate normality approximation, and of ls itself.

The section provides theoretical justification for the approach described in the paper.

The multivariate normality approximation

The method employs the approximation

s ∼ N(µθ,Σθ) (5)

which requires some justification, since even with careful choice of statistics (5) is unlikely to be exact (although

for many statistics the central limit theorem will imply normality as the raw sample size n → ∞). Therefore, let

the true, but unknown, joint density of s be fθ(s). A Taylor expansion of log fθ about its mode, µθ, gives

log fθ(s) ' log fθ(µθ) + (s− µθ)T
∂ log fθ

∂s
+

1
2
(s− µθ)T

∂2 log fθ

∂s∂sT
(s− µθ) (6)

and as usual the approximation will be more accurate the closer s is to µθ. Since µθ is a mode, ∂ log fθ/∂s = 0.

So, exponentiating, we have the approximation

fθ(s) ' k exp
{
−1

2
(s− µθ)T

(
−∂2 log fθ

∂s∂sT

)
(s− µθ)

}

where k is a constant of proportionality. It is immediately recognizable that if the r.h.s is to be a p.d.f then it is the

multivariate normal p.d.f., with covariance matrix Σθ =
(−∂2 log fθ/∂s∂sT

)−1
. This approximation is familiar

in statistics from the Laplace approximation of integrals. So, for s sufficiently close to µθ we expect fθ to be

well approximated by the probability density function of N(µθ,Σθ). For a good model with plausible parameter

estimates, s should be close to µθ, with proximity increasing with increasing raw sample size, n.

Now, without knowledge of fθ itself, µθ and Σθ are unknown. However they can be estimated from a sample

of s vectors produced by simulation, as in the paper. Given the Taylor series truncation used to obtain (5), we do not
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necessarily expect it to be a good approximation in the tails of the distribution of s. Hence it may be advantageous

to use robust estimators for µθ and Σθ, which down-weight s vectors from the tails of fθ. Such a procedure is

described in section ‘Robust covariance estimation’, below.

Properties of the log synthetic likelihood, ls

Given (5), consider the properties of ls, itself. Firstly, s is observed data, just as the raw data, y, is, and is therefore

an equally valid basis for forming a likelihood. Hence given the approximation (5), ls is a valid likelihood for θ.

Given that ls is a valid likelihood, we can use standard likelihood asymptotic results5,14,15 for inference about

the model parameters, θ. However when using this standard theory the effective sample size is dim(s), which will

always be rather small, calling into question the accuracy of approximations based on large sample asymptotics. It

is therefore of interest to investigate the properties of ls as the raw sample size, n = dim(y), becomes large.

The key to establishing several useful results is to show that ls → E(ls) as n → ∞ (see e.g. Silvey, 1975,

Section 4.5 ). Let θ0 denote the true value of θ, so that µθ0 is the corresponding true mean vector of s. Let

Nr → ∞. Define ε = s − µθ0 and make the mild assumption that the elements of s are such that ε → 0 and

|Σθ| → 0 as n →∞. Then ls can be re-written as

ls(θ) = −1
2
(µθ0 − µθ + ε)TΣ−1

θ (µθ0 − µθ + ε)− 1
2

log |Σθ|

= −1
2
(µθ0 − µθ)TΣ−1

θ (µθ0 − µθ)− εTΣ−1
θ (µθ0 − µθ)− 1

2
εTΣ−1

θ ε− 1
2

log |Σθ|

= −1
2
tr

[
Σ−1

θ

{
(µθ0 − µθ)(µθ0 − µθ)T + 2(µθ0 − µθ)εT + εεT

}]− 1
2

log |Σθ|

For µθ0 − µθ 6= 0 then as n → ∞, ε → 0 and the term in {·} is dominated by (µθ0 − µθ)(µθ0 − µθ)T, so

ls → E(ls) when θ 6= θ0. When θ = θ0, both E(ls) and ls → − 1
2 log |Σθ|.

Let θ̂ be the maximizer of ls. Standard theory (e.g. Silvey14, section 4.4) establishes that E(ls) is maximized

at θ0. So by the asymptotic convergence of ls to E(ls), just established, θ̂ is a consistent estimator.

Turning to the large sample distribution of the maximum likelihood estimator, θ̂, the usual Taylor expansion

argument (e.g. Silvey14 Section 4.6) gives:

θ̂ − θ0 ' −
(

∂2ls
∂θ∂θT

)
∂ls
∂θ

. (7)

By standard properties of the expected log likelihood E(∂ls/∂θ) = 0 while cov(∂ls/∂θ) = ∂2ls/∂θ∂θT. Since

ls converges to its expected value, then in the limit n → ∞, we have that θ̂ has expectation θ0 and covariance

matrix (∂2ls/∂θ∂θT)−1.

Now, if ∂ls/∂θ had a multivariate normal distribution, then, by 7, so would θ̂, at least asymptotically. So,
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consider

∂ls
∂θk

=
∂µT

θ

∂θk
Σ−1

θ (s− µθ) +
1
2
(s− µθ)Σ−1

θ

∂Σθ

∂θk
Σ−1

θ (s− µθ)

=
∂µT

θ

∂θk
Σ−1/2

θ z +
1
2
zTΣ−1/2

θ

∂Σθ

∂θk
Σ−1/2

θ z

where z = Σ−1/2
θ (s − µθ) is a normal random vector, asymptotically ∼ N(0, I). The first term on the r.h.s. is

clearly normally distributed, but the second can only be approximately so. Hence, ∂ls/∂θk will be approximately

normally distributed if (i) Σθ depends only weakly on θk so that ∂Σθ/∂θk is close to the zero matrix and the

second term on the r.h.s., above, is negligible, or (ii) if dim(z) = dim(s) → ∞ so that the second term, above,

tends to a normally distributed random variable, by the central limit theorem.

So we have the rather weak result that θ̂ will only have a normal distribution if Σθ depends only weakly on the

parameters, or if the number of statistics used is large. This, along with loss of asymptotic efficiency, is the price

paid for circumventing the massive irregularity that near chaotic dynamics give the inferential problem.

In summary, in the limit as n → ∞, ls results in consistent estimators, which are asymptotically unbiased

with covariance matrix (∂2ls/∂θ∂θT)−1. The estimators will not be fully asymptotically efficient, and are not

guaranteed to be normally distributed.

Method refinements

This section introduces various useful refinements of the basic method described in the paper.

Robust covariance estimation

The method often produces perfectly reasonable results using the straightforward estimate, Σ̂θ, given in the paper.

However, the argument of the above section on multivariate normal approximation suggests that an estimate which

discounts the tails of the distribution of s is better justified theoretically. That is a statistically robust estimator

is somewhat more appropriate. In addition, if statistics of widely different magnitudes are used, then some care

should be taken to ensure numerical robustness.

Let S and µ̂θ be as in the paper, with S an Ns ×Nr matrix.

1. Let D̄ = diag(d̄) where d̄i =
(∑

j S2
ij/Nr

)1/2

. Then form the QR decomposition

Q̄R̄ = STD̄−1/
√

Nr − 1

The initial estimate of Σθ is Σ̄θ = D̄R̄TR̄D̄, while Σ̄−1
θ = D̄−1R̄−1R̄−TD̄−1. The use of pre-conditioning

matrix D̄ ensures that R̄ has full numerical rank (and low condition number) so that stable computation of

R̄−1 is possible.
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2. Find the Mahalanobis distance, mj , of each s∗j from µ̂θ. That is form

mj = (s∗j − µ̂θ)TΣ̄−1
θ (s∗j − µ̂θ).

The mj are used to identify points far into the tails of the distribution of s.

3. Set m0 =
√

Ns +
√

2 and compute weights

wj =





e−(mj−m0)
2/2m0/mj if mj > m0

1 otherwise.

4. Redefine and recompute

µ̂θ =
∑

j

wjs∗j/
∑

j

wj

and S = (s∗1 − µ̂θ, s∗1 − µ̂θ, . . .).

5. Compute di =
(∑

j S2
ij/Nr

)1/2

, define D = diag(d) and W = diag(w), and then form the QR decom-

position

QR = WSTD−1/
√∑

w2
j − 1.

6. Now Σ̂θ = DRTRD, and Σ̂−1
θ = ETE where E = R−TD−1. The latter is convenient for computation of

the log likelihood, as is the fact that log |Σ̂θ|/2 =
∑

i log |Rii|+
∑

i log(di).

The re-weighting via the wi is Campbell’s method11, as described on p231-235 of Krzanowski10. It down-

weights extreme tail observations to ensure statistical robustness. The use of D is standard numerical pre-

conditioning to ensure numerical robustness (see e.g. Watkins17 section 2.9). Operating in terms of the QR

decomposition is efficient when computing with the inverse and determinant of the covariance matrix.

A robust ls for poorly fitting models

When comparing the fit of different models, some models in the comparison may turn out to fit the data poorly.

This means that the observed statistics will be in the tail of the distribution of the statistics according to the model,

even for the best fitting parameter values. The consequent undermining of the normality approximation for the

statistics is unimportant if the model doesn’t fit anyway, but a more serious problem is that the MCMC chain may

fail to mix properly. This failure is because the likelihood based on extreme tails of the statistics distribution can be

rather irregular and display local maxima which are pronounced enough that the chain can become stuck in them.

A solution is to modify ls in order to attenuate the tail behaviour.
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For example, first define

g(x, d0) =





x2 |x| ≤ d0

k|x|γ + c |x| > d0

where k = 2d2−γ
0 /γ and c = d2

0 − kdγ
0 . g(x) is quadratic in x up to d0, but thereafter grows less quickly than a

quadratic if γ < 2: it is continuous to first derivative.

Then define a robust version of ls as

l̃s = −1
2

log |Σ̂θ| − 1
2
g

(√
(s− µ̂θ)TΣ̂θ(s− µ̂θ), d0

)

where d0 is the 99th percentile of the χ2
dim(s) distribution, for example. γ = 0.1 is quite effective. l̃s is exactly

ls for s not in the far tails of the distribution — i.e. if the model fits at all well. Otherwise l̃s decreases as θ

pushes s into the tails of the distribution of statistics, but the rate of decrease is much less than for ls itself. Using

l̃s to determine the acceptance probability, α, in the MCMC chain avoids the chain becoming stuck. ls itself is

still computed at each step, to be used for inference, of course. This robust approach is used for the demographic

stochasticity blowfly model and in the model comparison example in the supplementary material.

An alternative approach to getting the chain to move in difficult tail regions is to replace the Metropolis Hastings

acceptance probability by

min
[
1, exp

{
γls(θ[k+1])− γls(θ[k])

}]

where γ is a small positive constant less than 1. However, unlike the use of l̃s, this is inefficient when the model

actually fits well.

Transforming to improve normality of s

The preceding discussions show that exact multivariate normality of s is not required, especially if care is taken in

estimating µθ and Σθ. None the less, the closer s is to multivariate normal the better approximation (5) will be

(meaning that it will apply for s further from µθ). In particular the first neglected term in the expansion yielding

(6) will be even smaller if the statistics have symmetric distributions. The structure of the method allows complete

freedom to transform s to better achieve multivariate normality. See Krzanowski10, section 7.6, for a general

discussion of such transformation. Here one very simple approach is presented which focusses on improving

marginal normality.

1. Run a pilot MCMC chain, using untransformed statistics, to obtain an estimate θ̃ close to the MLE.

2. Simulate a large number, N , of replicate statistics vectors using θ̃.
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3. For each statistic, plot N quantiles of the standard normal against the ordered replicates of the statistic, and

find a piecewise linear approximation to the resulting plot. These piecewise linear approximations can be

used to transform each statistic to approximate normality.

4. Run the full model estimation and inference process with all statistics (observed and simulated) transformed

using the piecewise linear transforms from step 3.

Although this method can substantially improve the multivariate normality assumption, doing so seems to make

little practical difference to the results. However, gross violation of the normality assumption would presumably

require the transformation step.

Checking the normality assumption and goodness of fit

Several checks of the normality assumption, (5), are useful.

1. Plot the Nr ordered values of (s∗j − µ̂θ)TΣ̂−1
θ (s∗j − µ̂θ) against the quantiles of a χ2

dim(s) distribution (the

log scale is more useful than the raw scale here). Departure from a straightline relationship with slope 1

indicates a departure of the simulated statistics from multivariate normality. Note that departures in the

upper tail of this plot are expected, and unproblematic, given the preceding theoretical arguments.

2. Produce normal QQ-plots for each statistic, si, using Nr replicates produced for a θ near the MLE. This

checks the marginal normality of the statistics, under the model.

3. Produce a normal QQ plot for the standardized residuals Σ̂−1/2
θ (s − µ̂θ), for some θ near the MLE. This

checks the normality assumption for the observed statistics.

See Krzanowski10 for further discussion. Note that formal tests of normality are not useful here. The dimension

of s is usually far too small for formal tests applied to the observed s to have useful power. Conversely, tests

applied to the full set of Nr simulated statistics vectors, s∗j , will almost always reject normality if we make Nr

large enough. This is because they will be sensitive to the far tails of the distribution of s, which are not expected

or required to be well approximated by a multivariate normal.

It is also helpful to see where the goodness of fit statistic (s − µ̂θ)TΣ̂−1
θ (s − µ̂θ) lies on the vertical axis of

plot 1 (the s in this case is the observed vector of statistics). Ideally it should lie in the region of the plot where

the normality assumption is plausible. Too far into the upper tail of the plot would be a cause for concern: it might

indicate lack of fit, and suggest that the normality approximation may be poor. An observed value above the upper

tail of the distribution of the simulated values would certainly indicate lack of fit. A p-value could of be calculated,

for a formal fit test, but this provides less information than the plots.
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See the supplementary material for examples of the 3 plots discussed here.

Maximum likelihood estimation

For many inferential purposes the output of the MCMC chain used to investigate ls is sufficient, but it is sometimes

desirable to find maximum likelihood estimates, and the associated asymptotic covariance matrix. Given the output

of the chain this is straightforward. As an example, consider a problem with two parameters θ1 and θ2, and denote

the output from the converged MCMC chain as θ11, θ12, θ13, . . .; θ21, θ22, θ23, . . . and ls1, ls2, ls3, . . .. A quadratic

approximation to ls in the vicinity of its maximum can then be obtained by quadratic regression, i.e. by minimizing:

∑

i

(lsi − α− β1θ1i − β2θ2i − β3θ1iθ2i − β4θ
2
1i − β5θ

2
2i)

2

with respect to β. The resulting quadratic can then be maximized to find θ̂, while the hessian of ls can be computed

directly from the estimates of β. Clearly the approach given here generalizes trivially to any dimension for θ.
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