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Abstract

Partially observed Markov process (POMP) models, also known as hidden Markov
models or state space models, are ubiquitous tools for time series analysis. The R package
pomp provides a very flexible framework for Monte Carlo statistical investigations using
nonlinear, non-Gaussian POMP models. A range of modern statistical methods for POMP
models have been implemented in this framework including sequential Monte Carlo, it-
erated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation,
maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory match-
ing. In this paper, we demonstrate the application of these methodologies using some
simple toy problems. We also illustrate the specification of more complex POMP mod-
els, using a nonlinear epidemiological model with a discrete population, seasonality, and
extra-demographic stochasticity. We discuss the specification of user-defined models and
the development of additional methods within the programming environment provided by
pomp.
*This document is an updated version of Journal of Statistical Software 69(12): 1–43.
It has been revised substantially to reflect changes in pomp subsequent to the original
publication. It is provided under the Creative Commons Attribution License.

Keywords: Markov processes, hidden Markov model, state space model, stochastic dynamical
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Carlo, R.

1. Introduction

A partially observed Markov process (POMP) model consists of incomplete and noisy mea-
surements of a latent, unobserved Markov process. The far-reaching applicability of this class
of models has motivated much software development (Commandeur et al. 2011). It has been
a challenge to provide a software environment that can effectively handle broad classes of
POMP models and take advantage of the wide range of statistical methodologies that have
been proposed for such models. The pomp software package (King et al. 2022) differs from
previous approaches by providing a general and abstract representation of a POMP model.
Therefore, algorithms implemented within pomp are necessarily applicable to arbitrary POMP
models. Moreover, models formulated with pomp can be analyzed using multiple method-
ologies in search of the most effective method, or combination of methods, for the problem
at hand. However, since pomp is designed for general POMP models, methods that exploit
additional model structure have yet to be implemented. In particular, when linear, Gaussian
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approximations are adequate for one’s purposes, or when the latent process takes values in a
small, discrete set, methods that exploit these additional assumptions to advantage, such as
the extended and ensemble Kalman filter methods or exact hidden Markov model methods,
are available, but not yet as part of pomp. It is the class of nonlinear, non-Gaussian POMP
models with large state spaces upon which pomp is focused.

A POMP model may be characterized by the transition density for the Markov process and
the measurement density1. However, some methods require only simulation from the transi-
tion density whereas others require evaluation of this density. Still other methods may not
work with the model itself but with an approximation, such as a linearization. Algorithms
for which the dynamic model is specified only via a simulator are said to be plug-and-play
(Bretó et al. 2009; He et al. 2010). Plug-and-play methods can be employed once one has
“plugged” a model simulator into the inference machinery. Since many POMP models of
scientific interest are relatively easy to simulate, the plug-and-play property facilitates data
analysis. Even if one candidate model has tractable transition probabilities, a scientist will
frequently wish to consider alternative models for which these probabilities are intractable.
In a plug-and-play methodological environment, analysis of variations in the model can of-
ten be achieved by changing a few lines of the model simulator codes. The price one pays
for the flexibility of plug-and-play methodology is primarily additional computational effort,
which can be substantial. Nevertheless, plug-and-play methods implemented using pomp have
proved capable for state-of-the-art inference problems (e.g., King et al. 2008; Bhadra et al.
2011; Shrestha et al. 2011, 2013; Earn et al. 2012; Roy et al. 2012; Blackwood et al. 2013a,b;
He et al. 2013; Bretó 2014; Blake et al. 2014). The recent surge of interest in plug-and-play
methodology for POMP models includes the development of nonlinear forecasting (Ellner
et al. 1998), iterated filtering (Ionides et al. 2006, 2015), ensemble Kalman filtering (Shaman
and Karspeck 2012), approximate Bayesian computation (ABC; Sisson et al. 2007), particle
Markov chain Monte Carlo (PMCMC; Andrieu et al. 2010), probe matching (Kendall et al.
1999), and synthetic likelihood (Wood 2010). Although the pomp package provides a general
environment for methods with and without the plug-and-play property, development of the
package to date has emphasized plug-and-play methods.

The pomp package is philosophically neutral as to the merits of Bayesian inference. It en-
ables a POMP model to be supplemented with prior distributions on parameters, and several
Bayesian methods are implemented within the package. Thus pomp is a convenient environ-
ment for those who wish to explore both Bayesian and non-Bayesian data analyses.

The remainder of this paper is organized as follows. Section 2 defines mathematical notation
for POMP models and relates this to their representation as objects of class ‘pomp’ in the
pomp package. Section 3 introduces several of the statistical methods currently implemented
in pomp. Section 4 constructs and explores a simple POMP model, demonstrating the use of
the available statistical methods. Section 5 illustrates the implementation of more complex
POMPs, using a model of infectious disease transmission as an example. Finally, Section 6
discusses extensions and applications of pomp.

1We use the term “density” in this article to encompass both the continuous and discrete cases. Thus, in the
latter case, i.e., when state variables and/or measured quantities are discrete, one could replace “probability
density function” with “probability mass function”.
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2. POMP models and their representation in pomp

Let θ be a D-dimensional real-valued parameter, θ ∈ R
D. For each value of θ, let ¶X(t ;θ), t ∈

T♢ be a Markov process, with X(t ;θ) taking values in R
dim(X). The time index set T ⊂ R

may be an interval or a discrete set. Let ¶ti ∈ T, i = 1, . . . , N♢, be the times at which X(t ;θ)
is observed, and t0 ∈ T be an initial time. Assume t0 ≤ t1 < t2 < · · · < tN . We write
Xi = X(ti ;θ) and Xi:j = (Xi, Xi+1, . . . , Xj). The process X0:N is only observed by way of
another process Y1:N = (Y1, . . . , YN ) with Yn taking values in R

dim(Y ). The observable random
variables Y1:N are assumed to be conditionally independent given X0:N . The data, y∗

1:N =
(y∗

1, . . . , y∗
N ), are modeled as a realization of this observation process and are considered

fixed. We suppose that X0:N and Y1:N have a joint density fX0:N ,Y1:N
(x0:N , y1:N ;θ). The

POMP structure implies that this joint density is determined by the initial density, fX0(x0; θ),
together with the conditional transition probability density, fXn♣Xn−1

(xn ♣ xn−1 ;θ), and the
measurement density, fYn♣Xn

(yn ♣ xn ;θ), for 1 ≤ n ≤ N . In particular, we have

fX0:N ,Y1:N
(x0:N , y1:N ; θ) = fX0(x0; θ)

N
∏

n=1

fXn♣Xn−1
(xn♣xn−1; θ) fYn♣Xn

(yn♣xn; θ). (1)

Note that this formalism allows the transition density, fXn♣Xn−1
, and measurement density,

fYn♣Xn
, to depend explicitly on n.

2.1. Implementation of POMP models

pomp is fully object-oriented: in the package, a POMP model is represented by an S4 object
(Chambers 1998; Genolini 2008) of class ‘pomp’. Slots in this object encode the components
of the POMP model, and can be filled or changed using the constructor function pomp and
various other convenience functions. Methods for the ‘pomp’ class use these components to
carry out computations on the model. Table 1 gives the mathematical notation corresponding
to the elementary methods that can be executed on a class-‘pomp’ object.

The rprocess, dprocess, rmeasure, and dmeasure arguments specify the transition probabil-
ities fXn♣Xn−1

(xn ♣ xn−1 ;θ) and measurement densities fYn♣Xn
(yn ♣ xn ;θ). Not all of these ar-

guments must be supplied for any specific computation. In particular, plug-and-play method-
ology by definition never uses dprocess. An empty dprocess slot in a class-‘pomp’ object
is therefore acceptable unless a non-plug-and-play algorithm is attempted. In the package,
the data and corresponding measurement times are considered necessary parts of a class-
‘pomp’ object whilst specific values of the parameters and latent states are not. Applying
the simulate function to an object of class ‘pomp’ returns another class-‘pomp’ object, within
which the data y∗

1:N have been replaced by a stochastic realization of Y1:N , the corresponding
realization of X0:N is accessible via the states method, and the params slot has been filled
with the value of θ used in the simulation.

To illustrate the specification of models in pomp and the use of the package’s inference
algorithms, we will use a simple example. The Gompertz (1825) model can be constructed
via

R> library("pomp")

R> gomp <- gompertz()
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Method Argument to the Mathematical terminology
pomp constructor

rprocess rprocess Simulate from fXn♣Xn−1
(xn ♣ xn−1 ;θ)

dprocess dprocess Evaluate fXn♣Xn−1
(xn ♣ xn−1 ;θ)

rmeasure rmeasure Simulate from fYn♣Xn
(yn ♣ xn ;θ)

dmeasure dmeasure Evaluate fYn♣Xn
(yn ♣ xn ;θ)

rprior rprior Simulate from the prior distribution π(θ)
dprior dprior Evaluate the prior density π(θ)
rinit rinit Simulate from fX0(x0 ;θ)
timezero t0 t0

time times t1:N

obs data y∗
1:N

states — x0:N

coef params θ

Table 1: Constituent methods for class-‘pomp’ objects and their translation into mathematical
notation for POMP models. For example, the rprocess method is set using the rprocess

argument to the pomp constructor function.

which results in the creation of a class-‘pomp’ object, named gompertz, in the workspace. The
structure of this model and its implementation in pomp is described below, in Section 4. One
can view the components of gompertz listed in Table 1 by executing

R> obs(gomp)

R> states(gomp)

R> as.data.frame(gomp)

R> plot(gomp)

R> timezero(gomp)

R> time(gomp)

R> coef(gomp)

2.2. Initial conditions

In some experimental situations, fX0(x0 ;θ) corresponds to a known experimental initializa-
tion, but in general the initial state of the latent process will have to be inferred. If the
transition density for the dynamic model, fXn♣Xn−1

(xn ♣ xn−1 ;θ), does not depend on time
and possesses a unique stationary distribution, it may be natural to set fX0(x0 ;θ) to be this
stationary distribution. Otherwise, and more commonly in the authors’ experience, no clear
scientifically motivated choice of fX0(x0 ;θ) exists and one can proceed by treating the value
of X0 as a parameter to be estimated. In this case, fX0(x0 ;θ) concentrates at a point, the
location of which depends on θ.

2.3. Covariates

Scientifically, one may be interested in the role of a vector-valued covariate process ¶Z(t)♢
in explaining the data. Modeling and inference conditional on ¶Z(t)♢ can be carried out
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within the general framework for nonhomogeneous POMP models, since the arbitrary den-
sities fXn♣Xn−1

, fX0 and fYn♣Xn
can depend on the observed process ¶Z(t)♢. For example, it

may be the case that fXn♣Xn−1
(xn ♣ xn−1 ;θ) depends on n only through Z(t) for tn−1 ≤ t ≤ tn.

The covariate_table argument in the pomp constructor allows for time-varying covariates
measured at arbitrary times. An example using covariates is given in Section 5.

3. Methodology for POMP models

Data analysis typically involves identifying regions of parameter space within which a pos-
tulated model is statistically consistent with the data. Additionally, one frequently desires
to assess the relative merits of alternative models as explanations of the data. Once the
user has encoded one or more POMP models as class-‘pomp’ objects, the package provides a
variety of algorithms to assist with these data analysis goals. Table 2 provides an overview
of several inference methodologies for POMP models. Each method may be categorized as
full-information or feature-based, Bayesian or frequentist, and plug-and-play or not plug-and-
play.

Approaches that work with the full likelihood function, whether in a Bayesian or frequentist
context, can be called full-information methods. Since low-dimensional sufficient statistics
are not generally available for POMP models, methods which take advantage of favorable
low-dimensional representations of the data typically lose some statistical efficiency. We use
the term “feature-based” to describe all methods not based on the full likelihood, since such
methods statistically emphasize some features of the data over others.

Many Monte Carlo methods of inference can be viewed as algorithms for the exploration of
high-dimensional surfaces. This view obtains whether the surface in question is the likelihood
surface or that of some other objective function. The premise behind many recent method-
ological developments in Monte Carlo methods for POMP models is that generic stochastic
numerical analysis tools, such as standard Markov chain Monte Carlo and Robbins-Monro
type methods, are effective only on the simplest models. For many models of scientific interest,
therefore, methods that leverage the POMP structure are needed. Though pomp has suffi-
cient flexibility to encode arbitrary POMP models and methods and therefore also provides a
platform for the development of novel POMP inference methodology, pomp’s development to
date has focused on plug-and-play methods. However, the package developers welcome con-
tributions and collaborations to further expand pomp’s functionality in non-plug-and-play
directions also. In the remainder of this section, we describe and discuss several inference
methods, all currently implemented in the package.

3.1. The likelihood function and sequential Monte Carlo

The log likelihood for a POMP model is ℓ(θ) = log fY1:N
(y∗

1:N ;θ), which can be written as a
sum of conditional log likelihoods,

ℓ(θ) =
N
∑

n=1

ℓn♣1:n−1(θ), (2)

where

ℓn♣1:n−1(θ) = log fYn♣Y1:n−1
(y∗

n ♣ y∗
1:n−1 ;θ), (3)



6 pomp: Partially Observed Markov Processes in R

(a) Plug-and-play

Frequentist Bayesian

Full information Iterated filtering (mif2,
Section 3.2)

PMCMC (pmcmc, Section 3.3)

Feature-based Nonlinear forecasting (nlf,
Section 3.6),

ABC (abc, Section 3.5)

synthetic likelihood
(probe.match, Section 3.4)

(b) Not plug-and-play

Frequentist Bayesian

Full information EM and Monte Carlo EM, MCMC
Kalman filter

Feature-based Trajectory matching
(traj.match),

Extended Kalman filter

extended Kalman filter,
Yule-Walker equations

Table 2: Inference methods for POMP models. For those currently implemented in pomp,
the function name and a reference for description are provided in parentheses. Standard
expectation-maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms are not
plug-and-play since they require evaluation of fXn♣Xn−1

(xn ♣ xn−1 ;θ). The Kalman filter and
extended Kalman filter are not plug-and-play since they cannot be implemented based on a
model simulator. The Kalman filter provides the likelihood for a linear, Gaussian model. The
extended Kalman filter employs a local linear Gaussian approximation which can be used
for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate
Bayesian inference (by adding the parameters to the state vector). The Yule-Walker equations
for ARMA models provide an example of a closed-form method of moments estimator.

and we use the convention that y∗
1:0 is an empty vector. The structure of a POMP model

implies the representation

ℓn♣1:n−1(θ) = log

∫

fYn♣Xn
(y∗

n♣xn ;θ)fXn♣Y1:n−1
(xn ♣ y∗

1:n−1 ;θ) dxn (4)

(cf. Equation 1). Although ℓ(θ) typically has no closed form, it can frequently be computed
by Monte Carlo methods. Sequential Monte Carlo (SMC) builds up a representation of
fXn♣Y1:n−1

(xn ♣ y∗
1:n−1 ;θ) that can be used to obtain an estimate, ℓ̂n♣1:n−1(θ), of ℓn♣1:n−1(θ)

and hence an approximation, ℓ̂(θ), to ℓ(θ). SMC (a basic version of which is presented as
Algorithm 1), is also known as the particle filter, since it is conventional to describe the Monte
Carlo sample, ¶XF

n,j , j in 1:J♢ as a swarm of particles representing fXn♣Y1:n
(xn ♣ y∗

1:n ;θ). The
swarm is propagated forward according to the dynamic model and then assimilated to the next
data point. Using an evolutionary analogy, the prediction step (line 3) mutates the particles
in the swarm and the filtering step (line 7) corresponds to selection. SMC is implemented in
pomp in the pfilter function. The basic particle filter in Algorithm 1 possesses the plug-
and-play property. Many variations and elaborations to SMC have been proposed; these may
improve numerical performance in appropriate situations (Cappé et al. 2007) but typically
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Algorithm 1: Sequential Monte Carlo (SMC, or particle filter): pfilter( P, Np = J),
using notation from Table 1 where P is a class-‘pomp’ object with definitions for rprocess,
dmeasure, rinit, coef, and obs.

input: Simulator for fXn♣Xn−1
(xn ♣ xn−1 ;θ); evaluator for fYn♣Xn

(yn ♣ xn ;θ); simulator for
fX0(x0 ;θ); parameter, θ; data, y∗

1:N ; number of particles, J .

1 Initialize filter particles: simulate XF
0,j ∼ fX0 ( · ;θ) for j in 1:J .

2 for n in 1:N do
3 Simulate for prediction: XP

n,j ∼ fXn♣Xn−1

(

· ♣XF
n−1,j ; θ

)

for j in 1:J .

4 Evaluate weights: w(n, j) = fYn♣Xn
(y∗

n♣XP
n,j ;θ) for j in 1:J .

5 Normalize weights: w̃(n, j) = w(n, j)/
∑J

m=1 w(n, m).
6 Apply Algorithm 2 to select indices k1:J with P [kj = m] = w̃(n, m).
7 Resample: set XF

n,j = XP
n,kj

for j in 1:J .

8 Compute conditional log likelihood: ℓ̂n♣1:n−1 = log
(

J−1 ∑J
m=1w(n, m)

)

.

9 end

output: Log likelihood estimate, ℓ̂(θ) =
∑N

n=1 ℓ̂n♣1:n−1; filter sample, XF
n,1:J , for n in 1:N .

complexity: O(J)

Algorithm 2: Systematic resampling: Line 6 of Algorithm 1.

input: Weights, w̃1:J , normalized so that
∑J

j=1 w̃j = 1.

1 Construct cumulative sum: cj =
∑j

m=1 w̃m, for j in 1 : J .
2 Draw a uniform initial sampling point: U1 ∼ Uniform(0, J−1).
3 Construct evenly spaced sampling points: Uj = U1 + (j − 1)J−1, for j in 2 : J .
4 Initialize: set p = 1.
5 for j in 1 : J do
6 while Uj > cp do
7 Step to the next resampling index: set p = p + 1.
8 end
9 Assign resampling index: set kj = p.

10 end
output: Resampling indices, k1:J .
complexity: O(J)

lose the plug-and-play property. Arulampalam et al. (2002), Doucet and Johansen (2009),
and Kantas et al. (2015) have written excellent introductory tutorials on the particle filter
and particle methods more generally.

Basic SMC methods fail when an observation is extremely unlikely given the model. This
leads to the situation that at most a few particles are consistent with the observation, in
which case the effective sample size (Liu 2001) of the Monte Carlo sample is small and the
particle filter is said to suffer from particle depletion. Many elaborations of the basic SMC
algorithm have been proposed to ameliorate this problem. However, it is often preferable to
remedy the situation by seeking a better model. The plug-and-play property assists in this
process by facilitating investigation of alternative models.
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Algorithm 3: Iterated filtering: mif2(P, params = θ0, Nmif = M, Np = J, rw.sd =

σ0:N,1:D, cooling.fraction.50 = a), using notation from Table 1 where P is a class-‘pomp’
object with defined rprocess, dmeasure, rinit, and obs components.

input: Simulators for fX0(x0; θ) and fXn♣Xn−1
(xn♣xn−1; θ); evaluator for fYn♣Xn

(yn♣xn; θ);
data, y∗

1:N ; Number of iterations, M ; number of particles, J ; initial parameter
swarm, ¶Θ0

j , j = 1, . . . , J♢; random walk intensity, a D × D diagonal matrix Vn with
entries σ2

n,d; cooling fraction in 50 iterations, a.

1 for m in 1:M do

2 ΘF,m
0,j ∼ Normal

(

Θm−1
j , V0 a2m/50

)

for j in 1:J

3 XF,m
0,j ∼ fX0(x0; ΘF,m

0,j ) for j in 1:J

4 for n in 1:N do

5 ΘP,m
n,j ∼ Normal

(

ΘF,m
n−1,j , Vn a2m/50

)

for j in 1:J

6 XP,m
n,j ∼ fXn♣Xn−1

(xn♣XF,m
n−1,j ; ΘP,m

n,j ) for j in 1:J

7 wm
n,j = fYn♣Xn

(y∗
n♣XP,m

n,j ; ΘP,m
n,j ) for j in 1:J

8 Apply Algorithm 2 to draw k1:J with P [kj = i] = wm
n,i

/

∑J
u=1 wm

n,u

9 ΘF,m
n,j = ΘP,m

n,kj
and XF,m

n,j = XP,m
n,kj

for j in 1:J

10 end

11 Set Θm
j = ΘF,m

N,j for j in 1:J

12 end
output: Final parameter swarm, ¶ΘM

j , j = 1, . . . , J♢
complexity: O(JM)

In line 6 of Algorithm 1, systematic resampling (Algorithm 2) is used in preference to multi-
nomial resampling. Algorithm 2 reduces Monte Carlo variability while resampling with the
proper marginal probability. In particular, if all the particle weights are equal then Algo-
rithm 2 has the appropriate behavior of leaving the particles unchanged. As pointed out
by Douc et al. (2005), stratified resampling performs better than multinomial sampling and
Algorithm 2 is in practice comparable in performance to stratified resampling and somewhat
faster.

3.2. Iterated filtering

Iterated filtering techniques maximize the likelihood obtained by SMC (Ionides et al. 2006,
2011, 2015). The key idea of iterated filtering is to replace the model we are interested in
fitting—which has time-invariant parameters—with a model that is just the same except that
its parameters take a random walk in time. Over multiple repetitions of the filtering proce-
dure, the intensity of this random walk approaches zero and the modified model approaches
the original one. Adding additional variability in this way has four positive effects:

A1. It smooths the likelihood surface, which facilitates optimization.

A2. It combats particle depletion by adding diversity to the population of particles.

A3. Small perturbations preserve the mathematical property that, when the parameters are
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included in the model as latent states, recursive solution of the filtering equations con-
verges to their maximum likelihood estimate (MLE) (Ionides et al. 2015).

A4. It preserves the plug-and-play property, inherited from the particle filter.

By analogy with annealing, the random walk intensity can be called a temperature, which is
decreased according to a prescribed cooling schedule. One strives to ensure that the algorithm
will freeze at the maximum of the likelihood as the temperature approaches zero. Iterated
filtering is implemented in the mif2 function. Since pomp version 2.0, mif2 has superseded
the earlier IF1 algorithm (Ionides et al. 2006, 2011).

The perturbations on the parameters in lines 2 and 5 of Algorithm 3 follow a normal dis-
tribution, with each component of the parameter vector θ perturbed independently. Neither
normality nor independence are necessary for the convergence of the algorithm; the theory
allows for a broad class of perturbation kernels (Ionides et al. 2015). pomp does not make
use of all of this flexibility: it does allow arbitrary transformation of the parameter space,
providing the partrans argument for this purpose.

mif2 provides assistance in the specification of the collection of random talk intensities,
σ0:N,1:D, via the rw.sd function. A parameter d for which σ0:N,d is constant for n = 0 : N
is called a regular parameter (RP). A parameter d for which σ1:N,d = 0, so perturbations
happen only at time t0, is called an initial value parameter (IVP) since this choice is appro-
priate for parameters which determine only the initial state of the latent process. In general,
a parameter should be perturbed only during a time interval where it influences the transition
or measurement process. Iterated filtering can be understood by an evolutionary analogy in
parameter space, requiring both mutation and selection in order to increase the fitness of
the population. An example of a parameter which is neither an RP nor an IVP is a break-
point parameter which describes the time or magnitude of a change in the dynamics or the
measurement process.

Lines 5–9 of Algorithm 3 are exactly an application of SMC (Algorithm 1) to a modified
POMP model in which the parameters are added to the state space. This approach has
been used in a variety of previously proposed POMP methodologies (Kitagawa 1998; Liu and
West 2001; Wan and Merwe 2000) but iterated filtering is distinguished by having theoretical
justification for convergence to the maximum likelihood estimate (Ionides et al. 2015).
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Algorithm 4: Particle Markov chain Monte Carlo: pmcmc(P, params = θ0,

Nmcmc = M, Np = J, proposal = mvn.rw(V )), using notation from Table 1 where P is a class-
‘pomp’ object with defined methods for rprocess, dmeasure, rinit, dprior, and obs. The
supplied proposal samples from a symmetric, but otherwise arbitrary, MCMC proposal dis-
tribution, q(θP ♣ θ).

input: Starting parameter, θ0; simulator for fX0(x0 ♣ θ); simulator for
fXn♣Xn−1

(xn ♣ xn−1 ;θ); evaluator for fYn♣Xn
(yn ♣ xn ;θ); simulator for q(θP ♣ θ); data,

y∗
1:N ; number of particles, J ; number of filtering operations, M ; proposal variance

matrix, V ; evaluator for prior, fΘ(θ).

1 Initialization: compute ℓ̂(θ0) using Algorithm 1 with J particles.
2 for m in 1:M do
3 Draw a parameter proposal, θP

m ∼ Normal (θm−1, V ).

4 Compute ℓ̂(θP
m) using Algorithm 1 with J particles.

5 Generate U ∼ Uniform(0, 1).

6 Set
(

θm, ℓ̂(θm)
)

=











(

θP
m, ℓ̂(θP

m)
)

, if U <
fΘ(θP

m) exp(ℓ̂(θP
m))

fΘ(θm−1) exp(ℓ̂(θm−1))
,

(

θm−1, ℓ̂(θm−1)
)

, otherwise.

7 end
output: Samples, θ1:M , representing the posterior distribution, fΘ♣Y1:N

(θ ♣ y∗
1:N ).

complexity: O(JM)

3.3. Particle Markov chain Monte Carlo

Full information plug-and-play Bayesian inference for POMP models is enabled by particle
Markov chain Monte Carlo (PMCMC) algorithms (Andrieu et al. 2010). PMCMC methods
combine likelihood evaluation via SMC with MCMC moves in the parameter space. The sim-
plest and most widely used PMCMC algorithm, termed particle marginal Metropolis-Hastings
(PMMH), is based on the observation that the unbiased likelihood estimate provided by SMC
can be plugged into the Metropolis-Hastings update procedure to give an algorithm targeting
the desired posterior distribution for the parameters (Andrieu and Roberts 2009). PMMH
is implemented in pmcmc, as described in Algorithm 4. The proposal argument permits an
arbitrary symmetric proposal distribution, but our pseudocode corresponds to the situation
where the mvn.rw plug-in is used, to provide a Gaussian proposal with a specified covariance
matrix. Other plug-in functions include mvn.diag.rw and mvn.rw.adaptive, which provides
an adaptive proposal distribution.

In part because it gains only a single likelihood evaluation from each particle filtering op-
eration, PMCMC can be computationally relatively inefficient (Bhadra 2010; Ionides et al.
2015). Nevertheless, its invention introduced the possibility of full-information plug-and-play
Bayesian inferences in some situations where they had been unavailable.

3.4. Synthetic likelihood of summary statistics

Some motivations to estimate parameters based on features rather than the full likelihood
include:
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Algorithm 5: Synthetic likelihood evaluation: probe(P, nsim = J, probes = S), using
notation from Table 1 where P is a class-‘pomp’ object with defined methods for rprocess,
rmeasure, rinit, and obs.

input: Simulator for fXn♣Xn−1
(xn ♣ xn−1 ;θ); simulator for fX0(x0 ;θ); simulator for

fYn♣Xn
(yn ♣ xn ;θ); parameter, θ; data, y∗

1:N ; number of simulations, J ; vector of
summary statistics or probes, S = (S1, . . . ,SQ).

1 Compute observed probes: s∗ = S(y∗
1:N ).

2 Simulate J datasets: Y j
1:N ∼ fY1:N

( · ;θ) for j in 1:J .

3 Compute simulated probes: sj = S(Y j
1:N ) for j in 1:J .

4 Compute sample mean: µ = J−1∑J
j=1 sj .

5 Compute sample covariance: Viq = (J − 1)−1∑J
j=1(sij − µi)(sqj − µq) for i and q in 1:Q.

6 Compute the log synthetic likelihood:

ℓ̂S(θ) = −
1

2
(s∗ − µ)⊤V −1(s∗ − µ) −

1

2
log det V −

d

2
log(2π). (5)

output: Synthetic likelihood, ℓ̂S(θ).
complexity: O(J)

B1. Reducing the data to sensibly selected and informative low-dimensional summary statis-
tics may have computational advantages (Wood 2010).

B2. The scientific goal may be to match some chosen characteristics of the data rather than
all aspects of it. Acknowledging the limitations of all models, this limited aspiration may
be all that can reasonably be demanded (Kendall et al. 1999; Wood 2001).

B3. In conjunction with full-information methodology, consideration of individual features has
diagnostic value to determine which aspects of the data are driving the full-information
inferences (Reuman et al. 2006).

B4. Feature-based methods for dynamic models typically do not require the POMP model
structure. However, that benefit is outside the scope of the pomp package.

B5. Feature-based methods are typically doubly plug-and-play, meaning that they require
simulation, but not evaluation, for both the latent process transition density and the
measurement model.

When pursuing goal B1, one aims to find summary statistics which are as close as possible
to sufficient statistics for the unknown parameters. Goals B2 and B3 deliberately look for
features which discard information from the data; in this context the features have been
called probes (Kendall et al. 1999). The features are denoted by a collection of functions,
S = (S1, . . . ,SQ), where each Sq maps an observed time series to a real number. We write
S = (S1, . . . , SQ) for the vector-valued random variable with S = S(Y1:N ), with fS(s ;θ)
being the corresponding joint density. The observed feature vector is s∗ = S(y∗

1:N ); for any
parameter set one can look for parameter values for which typical features for simulated data
match the observed features. One can define a likelihood function, ℓS(θ) = fS(s∗ ;θ). Arguing
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Algorithm 6: Approximate Bayesian computation: abc(P, params = θ0, Nmcmc = M,

probes = S, scale = τ1:Q, proposal = mvn.rw(V ), epsilon = ϵ), using notation from Ta-
ble 1, where P is a class-‘pomp’ object with defined methods for rprocess, rmeasure, rinit,
dprior, and obs.

input: Starting parameter, θ0; simulator for fX0(x0 ;θ); simulator for
fXn♣Xn−1

(xn ♣ xn−1 ;θ); simulator for fYn♣Xn
(yn ♣ xn ;θ); data, y∗

1:N ; number of
proposals, M ; vector of probes, S = (S1, . . . ,SQ); proposal variance matrix, V ;
evaluator for prior, fΘ(θ); feature scales, τ1:Q; tolerance, ϵ.

1 Compute observed probes: s∗ = S(y∗
1:N ).

2 for m in 1:M do
3 Draw a parameter proposal, θP

m ∼ Normal (θm−1, V ).
4 Simulate dataset: Y1:N ∼ fY1:N

( · ;θP
m).

5 Compute simulated probes: s = S(Y1:N ).
6 Generate U ∼ Uniform(0, 1).

7 Set θm =















θP
m, if

Q
∑

q=1



sq − s∗
q

τq

2

< ϵ2 and U <
fΘ(θP

m)

fΘ(θm−1)
,

θm−1, otherwise.

8 end
output: Samples, θ1:M , representing the posterior distribution, fΘ♣S(θ ♣ s∗).
complexity: Nominally O(M), but performance will depend on the choice of ϵ, τq, and V ,

as well as on the choice of probes S.

that S should be approximately multivariate normal, for suitable choices of the features,
Wood (2010) proposed using simulations to construct a multivariate normal approximation
to ℓS(θ), and called this a synthetic likelihood.

Simulation-based evaluation of a feature matching criterion is implemented by probe (Algo-
rithm 5). The feature matching criterion requires a scale, and a natural scale to use is the
empirical covariance of the simulations. Working on this scale, as implemented by probe, there
is no substantial difference between the probe approaches of Kendall et al. (1999) and Wood
(2010). Numerical optimization of the synthetic likelihood is implemented by probe.match,
which offers the choice of either the subplex method (Rowan 1990; King 2022) or any method
provided by optim or the nloptr package (Johnson 2014; Ypma 2014).

3.5. Approximate Bayesian computation (ABC)

ABC algorithms are Bayesian feature-matching techniques, comparable to the frequentist
generalized method of moments (Marin et al. 2012). The vector of summary statistics S, the
corresponding random variable S, and the value s∗ = S(y∗

1:N ), are defined as in Section 3.4.
The goal of ABC is to approximate the posterior distribution of the unknown parameters
given S = s∗. ABC has typically been motivated by computational considerations, as in
point B1 of Section 3.4 (Sisson et al. 2007; Toni et al. 2009; Beaumont 2010). Points B2
and B3 also apply (Ratmann et al. 2009).

The key theoretical insight behind ABC algorithms is that an unbiased estimate of the like-
lihood can be substituted into a Markov chain Monte Carlo algorithm to target the required
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posterior, the same result that justifies PMCMC (Andrieu and Roberts 2009). However,
ABC takes a different approach to approximating the likelihood. The likelihood of the ob-
served features, ℓS(θ) = fS(s∗ ;θ), has an approximately unbiased estimate based on a single
Monte Carlo realization Y1:N ∼ fY1:N

( · ;θ) given by

ℓ̂ABC
S (θ) =















ϵ−QB−1
Q

Q
∏

q=1

τq, if
Q
∑

q=1



sq − s∗
q

τq

2

< ϵ2,

0, otherwise,

(6)

where BQ is the volume of the Q-dimensional unit ball and τq is a scaling chosen for the q-th
feature. The likelihood approximation in Equation 6 differs from the synthetic likelihood in
Algorithm 5 in that only a single simulation is required. As ϵ becomes small, the bias in
Equation 6 decreases but the Monte Carlo variability increases. The ABC implementation
abc (presented in Algorithm 6) is a random walk Metropolis implementation of ABC-MCMC
(Algorithm 3 of Marin et al. 2012). In the same style as iterated filtering and PMCMC, we
assume a Gaussian random walk in parameter space; the package supports alternative choices
of the proposal distribution.

3.6. Nonlinear forecasting

Nonlinear forecasting (NLF) uses simulations to build up an approximation to the one-step
prediction distribution that is then evaluated on the data. We saw in Section 3.1 that SMC
evaluates the prediction density for the observation, fYn♣Y1:n−1

(y∗
n ♣ y∗

1:n−1 ;θ), by first building
an approximation to the prediction density of the latent process, fXn♣Y1:n−1

(xn ♣ y∗
1:n−1 ;θ). By

contrast, NLF uses simulations to fit a linear regression of Yn on the L variables Yn−c1 , . . . ,
Yn−cL

, for some choice of positive lags c1:L. The prediction errors when this model is applied to
the data give rise to a quantity called the quasi-likelihood, which behaves for many purposes
like a likelihood (Smith 1993). The implementation in nlf maximizes the quasi-likelihood
computed in Algorithm 7, using the subplex method (Rowan 1990; King 2022) or any other
optimizer offerered by optim. The construction of the quasi-likelihood in nlf follows the
specific recommendations of Kendall et al. (2005). In particular, the choice of radial basis
functions, fk, in line 5 and the specification of mk and s in lines 3 and 4 were proposed
by Kendall et al. (2005) based on trial and error. The quasi-likelihood is mathematically
most similar to a likelihood when min(c1:L) = 1, so that ℓQ(θ) approximates the factorization
of the likelihood in Equation 2. With this in mind, it is natural to choose contiguous lags
c1:L = 1 : L. However, Kendall et al. (2005) found that a two-step prediction criterion, with
min(c1:L) = 2, led to improved numerical performance. It is natural to ask when one might
choose to use quasi-likelihood estimation in place of full likelihood estimation implemented
by SMC. Some considerations follow, closely related to the considerations for the synthetic
likelihood and ABC (Sections 3.4 and 3.5):

C1. NLF benefits from stationarity since (unlike SMC) it uses all time points in the simulation
to build a prediction rule valid at all time points. Indeed, NLF has not been considered
applicable for non-stationary models and, on account of this, nlf is not appropriate if the
model includes time-varying covariates. An intermediate scenario between stationarity
and full non-stationarity is seasonality, where the dynamic model is forced by cyclical
covariates, and this is supported by nlf (cf. B1 in Section 3.4).
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Algorithm 7: Simulated quasi log likelihood for NLF. Pseudocode for the quasi-
likelihood function returned by nlf_objfun( P, params = θ0, ti = ti, tf = tf , nrbf = K,

lags = c1:L). Using notation from Table 1, P is a class-‘pomp’ object with defined meth-
ods for rprocess, rmeasure, rinit, and obs.

input: Simulator for fXn♣Xn−1
(xn ♣ xn−1 ;θ); simulator for fX0(x0 ;θ); simulator for

fYn♣Xn
(yn ♣ xn ;θ); parameter, θ; data, y∗

1:N ; collection of lags, c1:L; sampling
frequency, ν; length of discarded transient, B = ν (ti − t0); length of simulation,
J = ν (tf − ti); number of radial basis functions, K.

1 Simulate long stationary time series: Y1:(B+J) ∼ fY1:(B+J)
( · ;θ).

2 Set Ymin = min¶Y(B+1):(B+J)♢, Ymax = max¶Y(B+1):(B+J)♢ and R = Ymax − Ymin.

3 Locations for basis functions: mk = Ymin + R × [1.2 × (k − 1)(K − 1)−1 − 0.1] for k in 1:K.
4 Scale for basis functions: s = 0.3 × R .
5 Define radial basis functions: fk(x) = exp¶(x − mk)2/2s2♢ for k in 1:K.

6 Define prediction function: H(yn−c1 , yn−c2 , . . . , yn−cL
) =

∑L
j=1

∑K
k=1 ajkfk(yn−cj

).

7 Compute ¶ajk : j ∈ 1:L, k ∈ 1:K♢ to minimize

σ̂2 =
1

J

B+J
∑

n=B+1

[

Yn − H(Yn−c1 , Yn−c2 , . . . , Yn−cL
)
]2

. (7)

8 Compute the simulated quasi log likelihood:

ℓ̂Q(θ) = −
N − c

2
log 2πσ̂2 −

N
∑

n=1+c

[

y∗
n − H(y∗

n−c1
, y∗

n−c2
, . . . , y∗

n−cL
)
]2

2σ̂2
, (8)

where c = max(c1:L).

output: Simulated quasi log likelihood, ℓ̂Q(θ).
complexity: O(B) + O(J)

C2. Potentially, quasi-likelihood could be preferable to full likelihood in some situations. It
has been argued that a two-step prediction criterion may sometimes be more robust than
the likelihood to model misspecification (Xia and Tong 2011) (cf. B2).

C3. Arguably, two-step prediction should be viewed as a diagnostic tool that can be used to
complement full likelihood analysis rather than replace it (Ionides 2011) (cf. B3).

C4. NLF does not require that the model be Markovian (cf. B4), although the pomp imple-
mentation, nlf, does.

C5. NLF is doubly plug-and-play (cf. B5).

C6. The regression surface reconstruction carried out by NLF does not scale well with the
dimension of the observed data. NLF is recommended only for low-dimensional time
series observations.

NLF can be viewed as an estimating equation method, and so standard errors can be com-
puted by standard sandwich estimator or bootstrap techniques (Kendall et al. 2005). The
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optimization in NLF is typically carried out with a fixed seed for the random number gen-
erator, so the simulated quasi-likelihood is a deterministic function. If rprocess depends
smoothly on the random number sequence and on the parameters, and the number of calls to
the random number generator does not depend on the parameters, then fixing the seed results
in a smooth objective function. However, some common components to model simulators,
such as rnbinom, make different numbers of calls to the random number generator depending
on the arguments, which introduces nonsmoothness into the objective function.

4. Model construction and data analysis: Simple examples

4.1. A first example: The Gompertz model

The plug-and-play methods in pomp were designed to facilitate data analysis based on com-
plicated models, but we will first demonstrate the basics of pomp using simple discrete-time
models, the Gompertz and Ricker models for population growth (Reddingius 1971; Ricker
1954). The Ricker model will be introduced in Section 4.5 and used in Section 4.6; the re-
mainder of Section 4 will use the Gompertz model. The Gompertz model postulates that the
density, Xt+∆t, of a population of organisms at time t + ∆t depends on the density, Xt, at
time t according to

Xt+∆t = K1−e−r ∆t

Xe−r ∆t

t εt. (9)

In Equation 9, K is the carrying capacity of the population, r is a positive parameter, and
the εt are independent and identically-distributed lognormal random variables with log εt ∼
Normal(0, σ2). Additionally, we will assume that the population density is observed with
errors in measurement that are lognormally distributed:

log Yt ∼ Normal


log Xt, τ2


. (10)

Taking a logarithmic transform of Equation 9 gives

log Xt+∆t ∼ Normal


1 − e−r ∆t


log K + e−r ∆t log Xt, σ2


. (11)

On this transformed scale, the model is linear and Gaussian and so we can obtain exact
values of the likelihood function by applying the Kalman filter. Plug-and-play methods are
not strictly needed; this example therefore allows us to compare the results of generally
applicable plug-and-play methods with exact results from the Kalman filter. Later we will
look at the Ricker model and a continuous-time model for which no such special tricks are
available.

The first step in implementing this model in pomp is to construct an R (R Core Team 2022)
object of class ‘pomp’ that encodes the model and the data. This involves the specification
of functions to do some or all of rprocess, rmeasure, and dmeasure, along with data and
(optionally) other information. The documentation (?pomp) spells out the usage of the pomp

constructor, including detailed specifications for all its arguments and links to several exam-
ples.

To begin, we will write a function that implements the process model simulator. This is a
function that will simulate a single step (t → t + ∆t) of the unobserved process (Equation 9).



16 pomp: Partially Observed Markov Processes in R

R> gompertz.rproc <- function(X, r, K, sigma, ..., delta.t) {

+ eps <- exp(rnorm(n = 1, mean = 0, sd = sigma))

+ S <- exp(-r * delta.t)

+ c(X = K^(1 - S) * X^S * eps)

+ }

The translation from the mathematical description (Equation 9) to the simulator is straight-
forward. When this function is called, the argument x contains the state at time t. The
parameters (including K, r, and σ) are passed in the argument params. Notice that x and
params are named numeric vectors and that the output must likewise be a named numeric
vector, with names that match those of x. The argument delta.t specifies the time-step size.
In this case, the time-step will be 1 unit; we will see below how this is specified.

Next, we will implement a simulator for the observation process, Equation 10.

R> gompertz.rmeas <- function(X, tau, ...) {

+ c(Y = rlnorm(n = 1, meanlog = log(X), sdlog = tau))

+ }

Again the translation from the measurement model Equation 10 is straightforward. When the
function gompertz.rmeas is called, the named numeric vector x will contain the unobserved
states at time t; params will contain the parameters as before. This return value will be a
named numeric vector containing a single draw from the observation process (Equation 10).

Complementing the measurement model simulator is the corresponding measurement model
density, which we implement as follows:

R> gompertz.dmeas <- function(tau, X, Y, ..., log) {

+ dlnorm(x = Y, meanlog = log(X), sdlog = tau, log = log)

+ }

We will need this later on for inference using pfilter, mif and pmcmc. When the function
gompertz.dmeas is called, y will contain the observation at time t, x and params will be as
before, and the parameter log will indicate whether the likelihood (log = FALSE) or the log
likelihood (log = TRUE) is required.

With the above in place, we build a class-‘pomp’ object via a call to pomp:

R> gomp <- pomp(data = data.frame(time = 1:100, Y = NA), times = "time",

+ t0 = 0, rprocess = discrete_time(step.fun = gompertz.rproc,

+ delta.t = 1), rmeasure = gompertz.rmeas, statenames = "X",

+ paramnames = c("r", "K", "sigma", "tau", "X_0"))

The first argument (data) specifies a data frame that holds the data and the times at which
the data were observed. Since this is a toy problem, we have as yet no data; in a moment,
we will generate some simulated data. The second argument (times) specifies which of the
columns of data is the time variable. The rprocess argument specifies that the process model
simulator will be in discrete time, with each step of duration delta.t taken by the function
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given in the step.fun argument. The rmeasure argument specifies the measurement model
simulator function. t0 fixes t0 for this model; here we have chosen this to be one time unit
prior to the first observation.

It is worth noting that implementing the rprocess, rmeasure, and dmeasure components as R

functions, as we have done above, leads to needlessly slow computation. As we will see below,
pomp provides facilities for specifying the model in C, which can accelerate computations
manyfold.

Before we can simulate from the model, we need to specify some parameter values. The
parameters must be a named numeric vector containing at least all the parameters referenced
by the functions gompertz.rproc and gompertz.rmeas. The parameter vector needs to
determine the initial condition X(t0) as well. Let us take our parameter vector to be

R> theta <- c(r = 0.1, K = 1, sigma = 0.1, tau = 0.1, X_0 = 1)

The parameters r, K, σ, and τ appear in gompertz.rproc and gompertz.rmeas. The initial
condition X0 is also given in theta. The fact that the initial condition parameter’s name
ends in _0 is significant: it tells pomp that this is the initial condition of the state variable X.
This use of the _0 suffix is the default behavior of pomp: one can however parameterize the
initial condition distribution arbitrarily using pomp’s optional rinit argument.

We can now simulate the model at these parameters:

R> gomp <- simulate(gomp, rinit = function(X_0, ...) {

+ c(X = X_0)

+ }, params = theta)

Now gomp is identical to what it was before, except that the missing data have been replaced
by simulated data. The parameter vector (theta) at which the simulations were performed
has also been saved internally to gomp. We can plot the simulated data via

R> plot(gomp, variables = "Y")

Figure 1 shows the results of this operation.

4.2. Computing the likelihood using SMC

As discussed in Section 3, some parameter estimation algorithms in the pomp package are
doubly plug-and-play in that they require only rprocess and rmeasure. These include the
nonlinear forecasting algorithm nlf, the probe-matching algorithm probe.match, and ap-
proximate Bayesian computation via abc. The plug-and-play full-information methods in
pomp, however, require dmeasure, i.e., the ability to evaluate the likelihood of the data given
the unobserved state. The gompertz.dmeas above does this, but we must fold it into the
class-‘pomp’ object in order to use it. We can do this with another call to pomp:

R> gomp <- pomp(gomp, dmeasure = gompertz.dmeas)
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Figure 1: Simulated data from the Gompertz model (Equations 9 and 10). This figure shows
the result of executing plot(gomp, variables = "Y").

The result of the above is a new class-‘pomp’ object gomp in every way identical to the one we
had before, but with the measurement-model density function dmeasure now specified.

To estimate the likelihood of the data, we can use the function pfilter, an implementation of
Algorithm 1. We must decide how many concurrent realizations (particles) to use: the larger
the number of particles, the smaller the Monte Carlo error but the greater the computational
burden. Here, we run pfilter with 1000 particles to estimate the likelihood at the true
parameters:

R> pf <- pfilter(gomp, params = theta, Np = 1000)

R> loglik.truth <- logLik(pf)

R> loglik.truth

[1] 35.74641

Since the true parameters (i.e., the parameters that generated the data) are stored within the
class-‘pomp’ object gomp and can be extracted by the coef function, we could have done

R> pf <- pfilter(gomp, params = coef(gomp), Np = 1000)

or simply
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R> pf <- pfilter(gomp, Np = 1000)

Now let us compute the log likelihood at a different point in parameter space, one for which
r, K, and σ are each 50% higher than their true values.

R> theta.guess <- theta.true <- coef(gomp)

R> theta.guess[c("r", "K", "sigma")] <- 1.5 * theta.true[c("r",

+ "K", "sigma")]

R> pf <- pfilter(gomp, params = theta.guess, Np = 1000)

R> loglik.guess <- logLik(pf)

R> loglik.guess

[1] 24.89781

In this case, the Kalman filter computes the exact log likelihood at the true parameters to
be 36.01, while the particle filter with 1000 particles gives 35.75. Since the particle filter
gives an unbiased estimate of the likelihood, the difference is due to Monte Carlo error in
the particle filter. One can reduce this error by using a larger number of particles and/or
by re-running pfilter multiple times and averaging the resulting estimated likelihoods. The
latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
we will demonstrate this in Section 4.3.

4.3. Maximum likelihood estimation via iterated filtering

Let us use the iterated filtering approach described in Section 3.2 to obtain an approximate
maximum likelihood estimate for the data in gomp. Since the parameters of Equations 9
and 10 are constrained to be positive, when estimating, we transform them to a scale on
which they are unconstrained. The following implements these transformations.

R> gomp <- pomp(gomp, partrans = parameter_trans(log = c("r", "K",

+ "sigma", "tau")), paramnames = c("r", "K", "sigma", "tau"))

The following code initializes the iterated filtering algorithm at several starting points around
theta.true and estimates the parameters r, τ , and σ.

R> estpars <- c("r", "sigma", "tau")

R> library("foreach")

R> mif1 <- foreach(i = 1:10, .combine = c) %dopar% {

+ theta.guess <- theta.true

+ theta.guess[estpars] <- rlnorm(n = length(estpars),

+ meanlog = log(theta.guess[estpars]), sdlog = 1)

+ mif2(gomp, Nmif = 100, params = theta.guess, Np = 2000,

+ cooling.fraction.50 = 0.7,

+ rw.sd = rw.sd(r=0.02, sigma=0.02,tau=0.02))

+ }

R> pf1 <- foreach(mf = mif1, .combine = c) %dopar% {

+ pf <- replicate(n = 10, logLik(pfilter(mf, Np = 10000)))
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+ logmeanexp(pf)

+ }

Note that the positivity of parameters is enforced by the transformations we have included
in gomp. Note also that we have used the foreach package (Kane et al. 2013; Revolution
Analytics and Weston 2014) to parallelize the computations.

Each of the 10 mif runs ends up with a different point estimate (Figure 2). We focus on that
with the highest estimated likelihood, having evaluated the likelihood several times to reduce
the Monte Carlo error in the likelihood evaluation. The particle filter produces an unbiased
estimate of the likelihood; therefore, we will average the likelihoods, not the log likelihoods.

R> mf1 <- mif1[[which.max(pf1)]]

R> theta.mif <- coef(mf1)

R> loglik.mif <- replicate(n = 10, logLik(pfilter(mf1, Np = 10000)))

R> loglik.mif <- logmeanexp(loglik.mif, se = TRUE)

R> theta.true <- coef(gomp)

R> loglik.true <- replicate(n = 10, logLik(pfilter(gomp, Np = 20000)))

R> loglik.true <- logmeanexp(loglik.true, se = TRUE)

For the calculation above, we have replicated the iterated filtering search, made a careful
estimation of the log likelihood, ℓ̂, and its standard error using pfilter at each of the resulting
point estimates, and then chosen the parameter corresponding to the highest likelihood as
our numerical approximation to the maximum likelihood estimate (MLE). Taking advantage
of the Gompertz model’s tractability, we also use the Kalman filter to maximize the exact log
likelihood, ℓ, and evaluate it at the estimated MLE obtained by mif. The resulting estimates
are shown in Table 3. Usually, the last row and column of Table 3 would not be available
even for a simulation study validating the inference methodology for a known POMP model.
In this case, we see that the mif procedure is successfully maximizing the likelihood up to an
error of about 0.1 log units.

4.4. Full information Bayesian inference via PMCMC

To carry out Bayesian inference we need to specify a prior distribution on unknown parame-
ters. The pomp constructor function provides the rprior and dprior arguments, which can be
filled with functions that simulate from and evaluate the prior density, respectively. Methods
based on random walk Metropolis-Hastings require evaluation of the prior density (dprior),
but not simulation (rprior), so we specify dprior for the Gompertz model as follows.

R> hyperparams <- list(min = coef(gomp)/10, max = coef(gomp) * 10)

R> gompertz.dprior <- function(r, K, sigma, tau, X_0, ..., log) {

+ f <- sum(dunif(c(r, K, sigma, tau, X_0), min = hyperparams$min,

+ max = hyperparams$max, log = TRUE))

+ if (log)
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Figure 2: Convergence plots can be used to help diagnose convergence of the iterated filtering
(IF) algorithm. These and additional diagnostic plots are produced when plot is applied to
a ‘mif’ or ‘mifList’ object.

+ f else exp(f)

+ }

The PMCMC algorithm described in Section 3.3 can then be applied to draw a sample from
the posterior. Recall that, for each parameter proposal, PMCMC pays the full price of a
particle filtering operation in order to obtain the Metropolis-Hastings acceptance probability.
For the same price, iterated filtering obtains, in addition, an estimate of the derivative and
a probable improvement of the parameters. For this reason, PMCMC is relatively inefficient
at traversing parameter space. When Bayesian inference is the goal, it is therefore advisable
to first locate a neighborhood of the MLE using, for example, iterated filtering. PMCMC
can then be initialized in this neighborhood to sample from the posterior distribution. The
following adopts this approach, running 5 independent PMCMC chains using a multivariate
normal random walk proposal (with diagonal variance-covariance matrix, see ?mvn.diag.rw).
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r σ τ ℓ̂ s.e. ℓ

Truth 0.1000 0.1000 0.1000 35.98 0.03 36.01
mif MLE 0.0324 0.0722 0.1180 37.85 0.04 37.84

Exact MLE 0.0322 0.0694 0.1170 37.89 0.02 37.88

Table 3: Results of estimating parameters r, σ, and τ of the Gompertz model (Equations 9
and 10) by maximum likelihood using iterated filtering (Algorithm 3), compared with the
exact MLE and with the true value of the parameter. The first three columns show the
estimated values of the three parameters. The next two columns show the log likelihood, ℓ̂,
estimated by SMC (Algorithm 1) and its standard error, respectively. The exact log likelihood,
ℓ, is shown in the rightmost column. An ideal likelihood-ratio 95% confidence set, not usually
computationally available, includes all parameters having likelihood within qchisq(0.95, df

= 3)/2 = 3.91 of the exact MLE. We see that both the mif MLE and the truth are in this
set. In this example, the mif MLE is close to the exact MLE, so it is reasonable to expect
that profile likelihood confidence intervals and likelihood ratio tests constructed using the mif

MLE have statistical properties similar to those based on the exact MLE.

R> pmcmc1 <- foreach(i = 1:5, .combine = c) %dopar% {

+ pmcmc(gomp, dprior = gompertz.dprior, params = theta.mif,

+ Nmcmc = 40000, Np = 100, proposal = mvn.diag.rw(c(r = 0.01,

+ sigma = 0.01, tau = 0.01)))

+ }

Comparison with the analysis of Section 4.3 reinforces the observation of Bhadra (2010) that
PMCMC can require orders of magnitude more computation than iterated filtering. Iterated
filtering may have to be repeated multiple times while computing profile likelihood plots,
whereas one successful run of PMCMC is sufficient to obtain all required posterior inferences.
However, in practice, multiple runs from a range of starting points is always good practice
since convergence cannot be reliably assessed on the basis of a single chain. To verify the
convergence of the approach or to compare the performance with other approaches, we can
use diagnostic plots produced by the plot methods (see Figure 3).

4.5. A second example: The Ricker model

In Section 4.6, we will illustrate probe matching (see Section 3.4) using a stochastic version
of the Ricker map (Ricker 1954). We switch models to allow direct comparison with Wood
(2010), whose synthetic likelihood computations are reproduced below. In particular, the
results of Section 4.6 demonstrate frequentist inference using synthetic likelihood and also
show that the full likelihood is both numerically tractable and reasonably well behaved,
contrary to the claim of Wood (2010). We will also take the opportunity to demonstrate
features of pomp that allow acceleration of model codes through the use of R’s facilities for
compiling and dynamically linking C code.

The Ricker model is another discrete-time model for the size of a population. The population
size, Nt, at time t is postulated to obey

Nt+1 = r Nt exp(−Nt + et), et ∼Normal


0, σ2


. (12)
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Figure 3: Diagnostic plots for the PMCMC algorithm. The trace plots in the left column show
the evolution of 5 independent MCMC chains after a burn-in period of length 20000. Kernel
density estimates of the marginal posterior distributions are shown in the right column. The
effective sample size of the 5 MCMC chains combined is lowest for the r variable, being equal
to 560: the use of 40000 proposal steps in this case is a modest number. The density plots at
right show the estimated marginal posterior distributions. The vertical line corresponds to
the true value of each parameter.

In addition, we assume that measurements, Yt, of Nt are themselves noisy, according to

Yt ∼Poisson(ϕ Nt), (13)

where ϕ is a scaling parameter. As before, we will need to implement the model’s state-
process simulator (rprocess). We have the option of writing these functions in R, as we did
with the Gompertz model. However, we can realize manyfold speed-ups by writing these in
C. In particular, pomp allows us to write snippets of C code that it assembles, compiles, and
dynamically links into a running R session. To begin the process, we will write snippets for
the rprocess, rmeasure, and dmeasure components.

R> ricker.rproc <- "

+ e = rnorm(0, sigma);

+ N = r * N * exp(-c * N + e);"

R> ricker.rmeas <- "

+ y = rpois(phi * N);"

R> ricker.dmeas <- "
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+ lik = dpois(y, phi * N, give_log);"

Note that, in this implementation, both N and e are state variables. The logical flag give_log

requests the likelihood when FALSE, the log likelihood when TRUE. Notice that, in these snip-
pets, we never declare the variables; pomp will construct the appropriate declarations auto-
matically.

In a similar fashion, we can add transformations of the parameters to enforce constraints.

R> log.trans <- "

+ T_r = log(r);

+ T_sigma = log(sigma);

+ T_phi = log(phi);"

R> exp.trans <- "

+ r = exp(T_r);

+ sigma = exp(T_sigma);

+ phi = exp(T_phi);"

Note that in the foregoing C snippets, the prefix T designates the transformed version of the
parameter. A full set of rules for using Csnippets, including illustrative examples, is given in
the package help system (?Csnippet).

Now we can construct a class-‘pomp’ object as before and fill it with simulated data:

R> rick <- simulate(times = seq(0,50,by=1), t0 = 0, seed=73691676L,

+ rprocess = discrete_time(step.fun = Csnippet(ricker.rproc), delta.t = 1),

+ rmeasure = Csnippet(ricker.rmeas), dmeasure = Csnippet(ricker.dmeas),

+ partrans = parameter_trans(toEst = Csnippet(log.trans),

+ fromEst = Csnippet(exp.trans)), paramnames = c("r", "c", "sigma",

+ "phi", "N_0", "e_0"), statenames = c("N", "e"), obsnames="y",

+ params = c(r = exp(3.8), sigma = 0.3, phi = 10, c=1, N_0 = 7, e_0 = 0))

4.6. Feature-based synthetic likelihood maximization

In pomp, probes are simply functions that can be applied to an array of real or simulated data
to yield a scalar or vector quantity. Several functions that create useful probes are included
with the package, including those recommended by Wood (2010). In this illustration, we will
make use of these probes: probe.marginal, probe.acf, and probe.nlar. probe.marginal

regresses the data against a sample from a reference distribution; the probe’s values are those
of the regression coefficients. probe.acf computes the auto-correlation or auto-covariance of
the data at specified lags. probe.nlar fits a simple nonlinear (polynomial) autoregressive
model to the data; again, the coefficients of the fitted model are the probe’s values. We
construct a list of probes:

R> plist <- list(probe.marginal("y", ref = obs(rick), transform = sqrt),

+ probe.acf("y", lags = c(0, 1, 2, 3, 4), transform = sqrt),

+ probe.nlar("y", lags = c(1, 1, 1, 2), powers = c(1, 2, 3,

+ 1), transform = sqrt))
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Each element of plist is a function of a single argument. Each of these functions can be
applied to the data in rick and to simulated data sets. Calling pomp’s function probe results
in the application of these functions to the data, and to each of some large number, nsim, of
simulated data sets, and finally to a comparison of the two. [Note that probe functions may
be vector-valued, so a single probe taking values in R

k formally corresponds to a collection of
k probe functions in the terminology of Section 3.4.] Here, we will apply probe to the Ricker
model at the true parameters and at a wild guess.

R> pb.truth <- probe(rick, probes = plist, nsim = 1000, seed = 803306074L)

R> guess <- c(r = 40, sigma = 0.5, phi = 12, N_0 = 7, e_0 = 0, c = 1)

R> pb.guess <- probe(rick, params = guess, probes = plist, nsim = 1000,

+ seed = 803306074L)

Results summaries and diagnostic plots showing the model-data agreement and correlations
among the probes can be obtained by

R> summary(pb.truth)

R> summary(pb.guess)

R> plot(pb.truth)

R> plot(pb.guess)

An example of a diagnostic plot (using a smaller set of probes) is shown in Figure 4. Among
the quantities returned by summary is the synthetic likelihood (Algorithm 5). One can attempt
to identify parameters that maximize this quantity; this procedure is referred to in pomp as
“probe matching”. Let us now attempt to fit the Ricker model to the data using probe-
matching.

R> pfun <- probe_objfun(pb.guess, est = c("r", "sigma", "phi"),

+ seed = 803306074L)

R> library("subplex")

R> pm <- subplex(fn = pfun, par = coef(pb.guess, c("r", "sigma",

+ "phi"), transform = TRUE), control = list(reltol = 1e-10))

R> pfun(pm$par)

This code runs optim’s Nelder-Mead optimizer from the starting parameters guess in an
attempt to maximize the synthetic likelihood based on the probes in plist. Both the starting
parameters and the list of probes are stored internally in pb.guess, which is why we need not
specify them explicitly here. While probe.match provides substantial flexibility in the choice
of the optimization algorithm, for situations requiring greater flexibility, pomp provides the
function probe.match.objfun, which constructs an objective function suitable for use with
arbitrary optimization routines.

To put the synthetic likelihood approach into context, let us compare the results of estimating
the Ricker model parameters using probe-matching and using iterated filtering (IF), which is
based on the likelihood. The following code runs 600 IF iterations starting at guess:
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Figure 4: Results of plot on a ‘probed.pomp’ object. Above the diagonal, the pairwise
scatterplots show the values of the probes on each of the 1000 data sets. The red lines
show the values of each of the probes on the data. The panels along the diagonal show the
distributions of the probes on the simulated data, together with their values on the data and
two-sided p values. The numbers below the diagonal are the Pearson correlations between
the corresponding pairs of probes.

R> mf <- mif2(pb.guess, Nmif = 100, Np = 1000, cooling.fraction.50 = 0.08,

+ rw.sd = rw.sd(r = 0.1, sigma = 0.1, phi = 0.1))

R> mf <- continue(mf, Nmif = 500)
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r σ ϕ ℓ̂ s.e.(ℓ̂) ℓ̂S s.e.(ℓ̂S)

Guess 40.0 0.500 12.0 -156.7 0.04 16.4 0.04
Truth 44.7 0.300 10.0 -139.0 0.05 17.7 0.02
MLE 45.2 0.227 10.1 -137.4 0.04 18.0 0.03

MSLE 39.3 0.217 11.8 -149.8 0.04 20.2 0.03

Table 4: Parameter estimation by means of maximum synthetic likelihood (Algorithm 5) vs.
by means of maximum likelihood via iterated filtering (Algorithm 3). The row labeled “guess”
contains the point at which both algorithms were initialized. That labeled “truth” contains the
true parameter value, i.e., that at which the data were generated. The rows labeled “MLE”
and “MSLE” show the estimates obtained using iterated filtering and maximum synthetic
likelihood, respectively. Parameters r, σ, and ϕ were estimated; all others were held at their
true values. The columns labeled ℓ̂ and ℓ̂S are the Monte Carlo estimates of the log likelihood
and the log synthetic likelihood, respectively; their Monte Carlo standard errors are also
shown. While likelihood maximization results in an estimate for which both ℓ̂ and ℓ̂S exceed
their values at the truth, the value of ℓ̂ at the MSLE is smaller than at the truth, an indication
of the relative statistical inefficiency of maximum synthetic likelihood.

Table 4 compares parameters, Monte Carlo likelihoods (ℓ̂), and synthetic likelihoods (ℓ̂S, based
on the probes in plist) at each of (a) the guess, (b) the truth, (c) the MLE from mif, and
(d) the maximum synthetic likelihood estimate (MSLE) from probe.match. These results
demonstrate that it is possible, and indeed not difficult, to maximize the likelihood for this
model, contrary to the claim of Wood (2010). Since synthetic likelihood discards some of the
information in the data, it is not surprising that Table 4 also shows the statistical inefficiency
of the maximum synthetic likelihood relative to that of the likelihood.

4.7. Bayesian feature matching via ABC

Whereas the synthetic likelihood approach carries out many simulations for each likelihood
estimation, ABC (as described in Section 3.5) uses only one. Each iteration of ABC is
therefore much quicker, essentially corresponding to the cost of SMC with a single particle or
the synthetic likelihood approach with a single simulation. A consequence of this is that ABC
cannot determine a good relative scaling of the features within each likelihood evaluation and
this must be supplied in advance. One can imagine an adaptive version of ABC which modifies
the scaling during the course of the algorithm, but here we do a preliminary calculation to
accomplish this. We return to the Gompertz model to faciliate comparison between ABC and
PMCMC.

R> plist <- list(probe.mean(var = "Y", transform = sqrt),

+ probe.acf("Y", lags = c(0, 5, 10, 20)),

+ probe.marginal("Y", ref = obs(gomp)))

R> psim <- probe(gomp, probes = plist, nsim = 500)

R> scale.dat <- apply(psim@simvals, 2, sd)

R> abc1 <- foreach(i = 1:5, .combine = c) %dopar% {

+ abc(pomp(gomp, dprior = gompertz.dprior), Nabc = 4e6,

+ probes = plist, epsilon = 2, scale = scale.dat,
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Figure 5: Marginal posterior distributions using full information via pmcmc (solid line) and
partial information via abc (dashed line). Kernel density estimates are shown for the posterior
marginal densities of the three estimated paramters. The vertical lines indicate the true values
of each parameter.

+ proposal = mvn.diag.rw(c(r = 0.01, sigma = 0.01, tau = 0.01)))

+ }

The effective sample size of the ABC chains is lowest for the r parameter (as was the case
for PMCMC) and is 140, as compared to 560 for pmcmc in Section 4.4. The total computa-
tional effort allocated to abc here matches that for pmcmc since pmcmc used 100 particles for
each likelihood evaluation but is awarded 100 times fewer Metropolis-Hastings steps. In this
example, we conclude that abc mixes somewhat more rapidly (as measured by total com-
putational effort) than pmcmc. Figure 5 investigates the statistical efficiency of abc on this
example. We see that abc gives rise to somewhat broader posterior distributions than the
full-information posteriors from pmcmc. As in all numerical studies of this kind, one cannot
readily generalize from one particular example: even for this specific model and dataset, the
conclusions might be sensitive to the algorithmic settings. However, one should be aware of
the possibility of losing substantial amounts of information even when the features are based
on reasoned scientific argument (Shrestha et al. 2011; Ionides 2011). Despite this loss of sta-
tistical efficiency, points B2–B5 of Section 3.4 identify situations in which ABC may be the
only practical method available for Bayesian inference.

4.8. Parameter estimation by simulated quasi-likelihood

With the pomp package, it is fairly easy to try a quick comparison to see how nlf (Sec-
tion 3.6) compares with mif (Section 3.2) on the Gompertz model. Carrying out a simulation
study with a correctly specified POMP model is appropriate for assessing computational and
statistical efficiency, but does not contribute to the debate on the role of two-step prediction
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criteria to fit misspecified models (Xia and Tong 2011; Ionides 2011). The nlf implementation
we will use to compare to the mif call from Section 4.3 is

R> nlf1 <- nlf_objfun(gomp, ti = 100, tf = 4000, lags = c(2, 3),

+ start = c(r = 1, K = 2, sigma = 0.5, tau = 0.5, X.0 = 1),

+ est = c("r", "sigma", "tau"))

R> subplex(par = c(r = 0.2, sigma = 0.15, tau = 0.08), fn = nlf1,

+ control = list(reltol = 0.0001)) -> nlf1_out

R> nlf1(nlf1_out$par)

where the first argument is the class-‘pomp’ object, start is a vector containing model pa-
rameters at which nlf’s search will begin, est contains the names of parameters nlf will
estimate, and lags specifies which past values are to be used in the autoregressive model.
The transform = TRUE setting causes the optimization to be performed on the transformed
scale, as in Section 4.3. In the call above lags = c(2, 3) specifies that the autoregressive
model predicts each observation, yt using yt−2 and yt−3, as recommended by Kendall et al.
(2005). The quasi-likelihood is optimized numerically, so the reliability of the optimization
should be assessed by doing multiple fits with different starting parameter values: the results
of a small experiment (not shown) indicate that, on these simulated data, repeated optimiza-
tion is not needed. nlf defaults to optimization by the subplex method (Rowan 1990; King
2022), though all optimization methods provided by optim are available as well. nasymp sets
the length of the simulation on which the quasi-likelihood is based; larger values will give less
variable parameter estimates, but will slow down the fitting process. The computational de-
mand of nlf is dominated by the time required to generate the model simulations, so efficient
coding of rprocess is worthwhile.

Figure 6 compares the true parameter, θ, with the maximum likelihood estimate (MLE), θ̂,
from mif and the maximized simulated quasi-likelihood (MSQL), θ̃, from nlf. Figure 6A
plots ℓ̂(θ̂) − ℓ̂(θ) against ℓ̂(θ̃) − ℓ̂(θ), showing that the MSQL estimate can fall many units
of log likelihood short of the MLE. Figure 6B plots ℓ̂Q(θ̂) − ℓ̂Q(θ) against ℓ̂Q(θ̃) − ℓ̂Q(θ),
showing that likelihood-based inference is almost as good as nlf at optimizing the simulated
quasi-likelihood criterion which nlf targets. Figure 6 suggests that the MSQL approach may
be inefficient, since it can give estimates with poor behavior according to the statistically
efficient criterion of likelihood. Another possibility is that this particular implementation
of nlf was unfortunate. Each mif optimization took 9 sec to run, compared to 5.2 sec
for nlf, and it is possible that extra computer time or other algorithmic adjustments could
substantially improve either or both estimators. It is hard to ensure a fair comparison between
methods, and in practice there is little substitute for some experimentation with different
methods and algorithmic settings on a problem of interest. If the motivation for using NLF
is preference for 2-step prediction in place of the likelihood, a comparison with SMC-based
likelihood evaluation and maximization is useful to inform the user of the consequences of
that preference.

5. A more complex example: Epidemics in continuous time
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Figure 6: Comparison of mif and nlf for 10 simulated datasets using two criteria. In
both plots, the maximum likelihood estimate (MLE), θ̂, obtained using iterated filtering is
compared with the maximum simulated quasi-likelihood (MSQL) estimate, θ̃, obtained using
nonlinear forecasting. (A) Improvement in estimated log likelihood, ℓ̂, at the point estimate
over that at the true parameter value, θ. (B) Improvement in simulated log quasi-likelihood
ℓ̂Q, at the point estimate over that at the true parameter value, θ. In both panels, the diagonal
line is the 1–1 line.

5.1. A stochastic, seasonal SIR model

A mainstay of theoretical epidemiology, the SIR model describes the progress of a contagious,
immunizing infection through a population of hosts (Kermack and McKendrick 1927; An-
derson and May 1991; Keeling and Rohani 2008). The hosts are divided into three classes,
according to their status vis-à-vis the infection (Figure 7). The susceptible class (S) contains
those that have not yet been infected and are thereby still susceptible to it; the infected class
(I) comprises those who are currently infected and, by assumption, infectious; the removed
class (R) includes those who are recovered or quarantined as a result of the infection. In-
dividuals in R are assumed to be immune against reinfection. We let S(t), I(t), and R(t)
represent the numbers of individuals within the respective classes at time t.

It is natural to formulate this model as a continuous-time Markov process. In this process, the
numbers of individuals within each class change through time in whole-number increments as
discrete births, deaths, and passages between compartments occur. Let NAB be the stochastic
counting process whose value at time t is the number of individuals that have passed from
compartment A to compartment B during the interval [t0, t), where t0 is an arbitrary starting
point not later than the first observation. We use the notation N·S to refer to births and NA·
to refer to deaths from compartment A. Let us assume that the per capita birth and death
rates, and the rate of transition, γ, from I to R are constants. The S to I transition rate, the
so-called force of infection, λ(t), however, should be an increasing function of I(t). For many
infections, it is reasonable to assume that the λ(t) is jointly proportional to the fraction of
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Figure 7: Diagram of the SIR epidemic model. The host population is divided into three
classes according to infection status: S, susceptible hosts; I, infected (and infectious) hosts;
R, recovered and immune hosts. Births result in new susceptibles and all individuals have a
common death rate µ. Since the birth rate equals the death rate, the expected population
size, P = S +I +R, remains constant. The S→I rate, λ, called the force of infection, depends
on the number of infectious individuals according to λ(t) = β I/N . The I→R, or recovery,
rate is γ. The case reports, C, result from a process by which new infections are recorded with
probability ρ. Since diagnosed cases are treated with bed-rest and hence removed, infections
are counted upon transition to R.

the population infected and the rate at which an individual comes into contact with others.
Here, we will make these assumptions, writing λ(t) = β I(t)/P , where β is the transmission
rate and P = S + I + R is the population size. We will go further and assume that birth and
death rates are equal and independent of infection status; we will let µ denote the common
rate. A consequence is that the expected population size remains constant.

The continuous-time Markov process is fully specified by the infinitesimal increment proba-
bilities. Specifically, writing ∆N(t) = N(t + h) − N(t), we have

P
[

∆N·S(t)=1 ♣ S(t), I(t), R(t)
]

= µ P (t) h + o(h),

P [∆NSI(t)=1 ♣ S(t), I(t), R(t)] = λ(t) S(t) h + o(h),

P [∆NIR(t)=1 ♣ S(t), I(t), R(t)] = γ I(t) h + o(h),

P
[

∆NS·(t)=1 ♣ S(t), I(t), R(t)
]

= µ S(t) h + o(h),

P
[

∆NI·(t)=1 ♣ S(t), I(t), R(t)
]

= µ I(t) h + o(h),

P
[

∆NR·(t)=1 ♣ S(t), I(t), R(t)
]

= µ R(t) h + o(h),

(14)

together with statement that all events of the form

¶∆NAB(t) > 1♢ and ¶∆NAB(t)=1, ∆NCD(t)=1♢

for A, B, C, D with (A, B) ̸= (C, D) have probability o(h). The counting processes are
coupled to the state variables (Bretó and Ionides 2011) via the following identities

∆S(t) = ∆N·S(t) − ∆NSI(t) − ∆NS·(t),

∆I(t) = ∆NSI(t) − ∆NIR(t) − ∆NI·(t),

∆R(t) = ∆NIR(t) − ∆NR·(t).

(15)

Taking expectations of Equations 14 and 15, dividing through by h, and taking the limit as
h ↓ 0, one obtains a system of nonlinear ordinary differential equations which is known as the
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deterministic skeleton of the model (Coulson et al. 2004). Specifically, the SIR deterministic
skeleton is

dS

dt
= µ (P − S) − β

I

P
S,

dI

dt
= β

I

P
S − γ I − µ I,

dR

dt
= γ I − µ R.

(16)

It is typically impossible to monitor S, I, and R, directly. It sometimes happens, however,
that public health authorities keep records of cases, i.e., individual infections. The number of
cases, C(t1, t2), recorded within a given reporting interval [t1, t2) might perhaps be modeled
by a negative binomial process

C(t1, t2) ∼ NegBin(ρ ∆NSI(t1, t2), θ), (17)

where ∆NSI(t1, t2) is the true incidence (the accumulated number of new infections that have
occured over the [t1, t2) interval), ρ is the reporting rate, (the probability that an infection is
observed and recorded), θ is the negative binomial “size” parameter, and the notation is meant
to indicate that EC(t1, t2) ♣ ∆NSI(t1, t2) = H = ρ H and VARC(t1, t2) ♣ ∆NSI(t1, t2) = H =
ρ H + ρ2 H2/θ. The fact that the observed data are linked to an accumulation, as opposed to
an instantaneous value, introduces a slight complication, which we discuss below.

5.2. Implementing the SIR model in pomp

As before, we will need to write functions to implement some or all of the SIR model’s
rprocess, rmeasure, and dmeasure components. As in Section 4.5, we will write these
components using pomp’s Csnippets. Recall that these are snippets of C code that pomp

automatically assembles, compiles, and dynamically loads into the running R session.

To start with, we will write snippets that specify the measurement model (rmeasure and
dmeasure):

R> rmeas <- Csnippet("cases = rnbinom_mu(theta, rho * H);")

R> dmeas <- Csnippet("lik = dnbinom_mu(cases, theta, rho * H, give_log);")

Here, we are using cases to refer to the data (number of reported cases) and H to refer to
the true incidence over the reporting interval. The negative binomial simulator rnbinom_mu

and density function dnbinom_mu are provided by R. The logical flag give_log requests the
likelihood when FALSE, the log likelihood when TRUE. Notice that, in these snippets, we
never declare the variables; pomp will ensure that the state variable (H), observable (cases),
parameters (theta, rho), and likelihood (lik) are defined in the contexts within which these
snippets are executed.

For the rprocess portion, we could simulate from the continuous-time Markov process exactly
(Gillespie 1977); the pomp function gillespie implements this algorithm. However, for
practical purposes, the exact algorithm is often prohibitively slow. If we are willing to live
with an approximate simulation scheme, we can use the so-called “tau-leap” algorithm, one
version of which is implemented in pomp via the euler plug-in. This algorithm holds the
transition rates λ, µ, γ constant over a small interval of time ∆t and simulates the numbers
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of births, deaths, and transitions that occur over that interval. It then updates the state
variables S, I, R accordingly, increments the time variable by ∆t, recomputes the transition
rates, and repeats. Naturally, as ∆t → 0, this approximation to the true continuous-time
process becomes better and better. The critical feature from the inference point of view,
however, is that no relationship needs to be assumed between the Euler simulation interval
∆t and the reporting interval, which itself does not even need to be the same from one
observation to the next.

Under the above assumptions, the number of individuals leaving any of the classes by all
available routes over a particular time interval is a multinomial process. For example, if
∆NSI and ∆NS are the numbers of S individuals acquiring infection and dying, respectively,
over the Euler simulation interval [t, t + ∆t), then

(∆NSI, ∆NS, S − ∆NSI − ∆NS) ∼ Multinom (S(t); pS→I , pS→, 1 − pS→I − pS→) , (18)

where

pS→I =
λ(t)

λ(t) + µ



1 − e−(λ(t)+µ) ∆t


,

pS→ =
µ

λ(t) + µ



1 − e−(λ(t)+µ) ∆t


.
(19)

By way of shorthand, we say that the random variable (∆NSI, ∆NS) in Equation 18 has
an Euler-multinomial distribution. pomp provides convenience functions for such distribu-
tions, which arise with some frequency in compartmental models. Specifically, the functions
reulermultinom and deulermultinom respectively draw random deviates from, and evaluate
the probability mass function of, such distributions. As the help pages relate, reulermultinom

and deulermultinom parameterize the Euler-multinomial distributions by the size (S(t) in
Equation 18), rates (λ(t) and µ), and time interval ∆t. Obviously, the Euler-multinomial
distributions generalize to an arbitrary number of exit routes.

The help page (?euler) informs us that to use euler, we need to specify a function that
advances the states from t to t + ∆t. Again, we write this in C to realize faster run-times:

R> sir.step <- Csnippet("

+ double rate[6];

+ double dN[6];

+ double P;

+ P = S + I + R;

+ rate[0] = mu * P; // birth

+ rate[1] = Beta * I / P; // transmission

+ rate[2] = mu; // death from S

+ rate[3] = gamma; // recovery

+ rate[4] = mu; // death from I

+ rate[5] = mu; // death from R

+ dN[0] = rpois(rate[0] * dt);

+ reulermultinom(2, S, &rate[1], dt, &dN[1]);

+ reulermultinom(2, I, &rate[3], dt, &dN[3]);

+ reulermultinom(1, R, &rate[5], dt, &dN[5]);

+ S += dN[0] - dN[1] - dN[2];

+ I += dN[1] - dN[3] - dN[4];
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+ R += dN[3] - dN[5];

+ H += dN[1];")

R> rinit <- Csnippet("

+ S = nearbyint(popsize*S_0 / (S_0+I_0+R_0));

+ I = nearbyint(popsize*I_0 / (S_0+I_0+R_0));

+ R = nearbyint(popsize*R_0 / (S_0+I_0+R_0));

+ H = 0;")

As before, pomp will ensure that the undeclared state variables and parameters are defined
in the context within which the snippet is executed. Note, however, that in the above we
do declare certain local variables. In particular, the rate and dN arrays hold the rates and
numbers of transition events, respectively. Note too, that we make use of pomp’s C interface
to reulermultinom, documented in the package help pages (?reulermultinom). The package
help system (?Csnippet) includes instructions for, and examples of, the use of Csnippets.

Two significant wrinkles remain to be explained. First, notice that in sir.step, the variable H

simply accumulates the numbers of new infections: H is a counting process that is nondecreas-
ing with time. In fact, the incidence within an interval [t1, t2) is ∆NSI(t1, t2) = H(t2) − H(t1).
This leads to a technical difficulty with the measurement process, however, in that the data
are assumed to be records of new infections occurring within the latest reporting interval,
while the process model tracks the accumulated number of new infections since time t0. We
can get around this difficulty by re-setting H to zero immediately after each observation. We
cause pomp to do this via the pomp function’s zeronames argument, as we will see in a mo-
ment. The section on “accumulator variables” in the pomp help page (?pomp) discusses this
in more detail.

The second wrinkle has to do with the initial conditions, i.e., the states S(t0), I(t0), R(t0).
By default, pomp will allow us to specify these initial states arbitrarily. For the model to
be consistent, they should be positive integers that sum to the population size N . We can
enforce this constraint by customizing the parameterization of our initial conditions. We do
this by furnishing a custom rinit in the call to pomp. Let us construct it now and fill it with
simulated data.

R> sir1 <- simulate(times =seq(0,10,by=1/52), t0 = -1/52,

+ dmeasure = dmeas, rmeasure = rmeas, rinit = rinit,

+ rprocess = euler(step.fun = sir.step, delta.t = 1/52/20),

+ statenames = c("S", "I", "R", "H"), accumvars="H", obsnames="cases",

+ paramnames = c("gamma", "mu", "theta", "Beta", "popsize", "rho",

+ "S_0", "I_0", "R_0"), params = c(popsize = 500000, Beta = 400,

+ gamma = 26, mu = 1/50, rho = 0.1, theta = 100, S_0 = 26/400,

+ I_0 = 0.002, R_0 = 1), seed = 1914679908L)

Notice that we are assuming here that the data are collected weekly and use an Euler step-size
of 1/20 wk. Here, we have assumed an infectious period of 2 wk (1/γ = 1/26 yr) and a basic
reproductive number, R0 of β/(γ + µ) ≈ 15. We have assumed a host population size of
500,000 and 10% reporting efficiency. Figure 8 shows one realization of this process.
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Figure 8: Result of plot(sir1). The class-‘pomp’ object sir1 contains the SIR model with
simulated data.

5.3. Incorporating additional model complexity

To illustrate the flexibility afforded by pomp’s plug-and-play methods, let us add a bit of
real-world complexity to the simple SIR model. We will modify the model to take four facts
into account:

1. For many infections, the contact rate is seasonal: β = β(t) varies in more or less periodic
fashion with time.

2. The host population may not be truly closed: imported infections arise when infected
individuals visit the host population and transmit.

3. The host population does not need to be constant in size. If we have data, for example,
on the numbers of births occurring in the population, we can incorporate this directly
into the model.

4. Stochastic fluctuation in the rates λ, µ, and γ can give rise to extrademographic stochas-
ticity, i.e., random process variability beyond the purely demographic stochasticity we
have included so far.

To incorporate seasonality, we would like to assume a flexible functional form for β(t). Here,
we will use a three-coefficient Fourier series:

log β(t) = b0 + b1 cos 2πt + b2 sin 2πt. (20)
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There are a variety of ways to account for imported infections. Here, we will simply assume
that there is some constant number, ι, of infected hosts visiting the population. Putting this
together with the seasonal contact rate results in a force of infection λ(t) = β(t) (I(t) + ι) /N .

To incorporate birth-rate information, let us suppose we have data on the number of births
occurring each month in this population and that these data are in the form of a data frame
birthdat with columns time and births. We can incorporate the varying birth rate into
our model by passing it as a covariate to the simulation code. When we pass birthdat as
the covar argument to pomp, we cause a look-up table to be created and made available to
the simulator. The package employs linear interpolation to provide a value of each variable
in the covariate table at any requisite time: from the user’s perspective, a variable births

will simply be available for use by the model codes.

Finally, we can allow for extrademographic stochasticity by allowing the force of infection to
be itself a random variable. We will accomplish this by assuming a random phase in β:

λ(t) =



β(Φ(t))
I(t) + ι

N



, (21)

where the phase Φ satisfies the stochastic differential equation

dΦ = dt + σ dWt, (22)

where dW (t) is a white noise, specifically an increment of standard Brownian motion. This
model assumption attempts to capture variability in the timing of seasonal changes in trans-
mission rates. As σ varies, it can represent anything from a very mild modulation of the
timing of the seasonal progression to much more intense variation.

Let us modify the process-model simulator to incorporate these complexities.

R> seas.sir.step <- Csnippet("

+ double rate[6];

+ double dN[6];

+ double Beta;

+ double dW;

+ Beta = exp(b1 + b2 * cos(M_2PI * Phi) + b3 * sin(M_2PI * Phi));

+ rate[0] = births; // birth

+ rate[1] = Beta * (I + iota) / P; // infection

+ rate[2] = mu; // death from S

+ rate[3] = gamma; // recovery

+ rate[4] = mu; // death from I

+ rate[5] = mu; // death from R

+ dN[0] = rpois(rate[0] * dt);

+ reulermultinom(2, S, &rate[1], dt, &dN[1]);

+ reulermultinom(2, I, &rate[3], dt, &dN[3]);

+ reulermultinom(1, R, &rate[5], dt, &dN[5]);

+ dW = rnorm(dt, sigma * sqrt(dt));

+ S += dN[0] - dN[1] - dN[2];

+ I += dN[1] - dN[3] - dN[4];

+ R += dN[3] - dN[5];
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+ P = S + I + R;

+ Phi += dW;

+ H += dN[1];

+ noise += (dW - dt) / sigma;")

R>

R> seas.rinit <- Csnippet("

+ S = nearbyint(popsize*S_0 / (S_0+I_0+R_0));

+ I = nearbyint(popsize*I_0 / (S_0+I_0+R_0));

+ R = nearbyint(popsize*R_0 / (S_0+I_0+R_0));

+ P = popsize;

+ H = Phi = noise = 0;")

R>

R> sir2 <- simulate(sir1, dmeasure = dmeas, rmeasure = rmeas,

+ rprocess = euler(seas.sir.step, delta.t = 1/52/20),

+ covar = covariate_table(birthdat, order="linear", times = "time"),

+ rinit = seas.rinit, accumvars = c("H", "noise"),

+ statenames = c("S", "I", "R", "H", "P", "Phi", "noise"),

+ paramnames = c("gamma", "mu", "popsize", "rho", "theta", "sigma",

+ "S_0", "I_0", "R_0", "b1", "b2", "b3", "iota"),

+ params = c(popsize = 500000, iota = 5, b1 = 6, b2 = 0.2, b3 = -0.1,

+ gamma = 26, mu = 1/50, rho = 0.1, theta = 100, sigma = 0.3,

+ S_0 = 0.055, I_0 = 0.002, R_0 = 0.94), seed = 619552910L)

Figure 9 shows the simulated data and latent states. The sir2 object we have constructed
here contains all the key elements of models used within pomp to investigate cholera (King
et al. 2008), measles (He et al. 2010), malaria (Bhadra et al. 2011), pertussis (Blackwood
et al. 2013a; Lavine et al. 2013), pneumococcal pneumonia (Shrestha et al. 2013), rabies
(Blackwood et al. 2013b), and Ebola virus disease (King et al. 2015).

6. Conclusion

The pomp package is designed to be both a tool for data analysis based on POMP models
and a sound platform for the development of inference algorithms. The model specification
language provided by pomp is very general. Implementing a POMP model in pomp makes
a wide range of inference algorithms available. Moreover, the separation of model specifica-
tion from the inference algorithm facilitates objective comparison of alternative models and
methods. The examples demonstrated in this paper are relatively simple, but the package
has been instrumental in a number of scientific studies (e.g., King et al. 2008; Bhadra et al.
2011; Shrestha et al. 2011; Earn et al. 2012; Roy et al. 2012; Shrestha et al. 2013; Blackwood
et al. 2013a,b; Lavine et al. 2013; He et al. 2013; Bretó 2014; King et al. 2015).

As a development platform, pomp is particularly convenient for implementing algorithms with
the plug-and-play property, since models will typically be defined by their rprocess simulator,
together with rmeasure and often dmeasure, but can accommodate inference methods based
on other model components such as dprocess and skeleton (the deterministic skeleton of the
latent process). As an open-source project, the package readily supports expansion, and the
authors invite community participation in the pomp project in the form of additional infer-
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Figure 9: One realization of the SIR model with seasonal contact rate, imported infections,
and extrademographic stochasticity in the force of infection.

ence algorithms, improvements and extensions of existing algorithms, additional model/data
examples, documentation contributions and improvements, bug reports, and feature requests.

Complex models and large datasets can challenge computational resources. With this in
mind, key components of the pomp package are written in C, and pomp provides facilities for
users to write models either in R or, for the acceleration that typically proves necessary in
applications, in C. Multi-processor computing also becomes necessary for ambitious projects.
The two most common computationally intensive tasks are the assessment of Monte Carlo
variability and the investigation of the roles of starting values and other algorithmic settings
on optimization routines. These analyses require only embarrassingly parallel computations
and need no special discussion here.

The package contains more examples, which can be used as templates for implementation of
new models; the R and C codes underlying these examples are provided with the package.
Further documentation and an introductory tutorial are provided with the package and on
the pomp website, https://kingaa.github.io/pomp.

https://kingaa.github.io/pomp
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