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-is short note studies the problem of piecewise affine system identification, being a special nonlinear system based on our
previous contribution on it. Two different identification strategies are proposed to achieve our mission, such as centralized
identification and distributed identification. More specifically, for centralized identification, the total observed input-output data
are used to estimate all unknown parameter vectors simultaneously without any consideration on the classification process. But
for distributed identification, after the whole observed input-output data are classified into their own right subregions, then part
input-output data, belonging to the same subregion, are applied to estimate the unknown parameter vector. Whatever the
centralized identification and distributed identification, the final decision is to determine the unknown parameter vector in one
linear form, so the recursive least squares algorithm and its modified formwith the dead zone are studied to deal with the statistical
noise and bounded noise, respectively. Finally, one simulation example is used to compare the identification accuracy for our
considered two identification strategies.

1. Introduction

Over the past few decades, the rapid evolution of computing,
communication, and sensor technologies has brought about
the proliferation of new dynamic systems, mostly techno-
logical and often highly complex. When to control these new
dynamics systems, we must need some prior knowledge
about them, i.e., their corresponding mathematical models
or equations are firstly constructed for the latter controller
design. -e concept of the system and model is the basis of
the engineering disciplines, where one is generally interested
in a quantitative assessment of the behavior of a dynamical
system. -erefore, it is necessary to obtain a mathematical
description of it. Starting from the model, it is necessary to
develop formal tools of analysis and synthesis. Basically,
there are two ways of constructingmathematical models, i.e.,
mathematical modeling and system identification. More
specifically, mathematical modeling is an analytic approach,
and prior knowledge and physical insight about the con-
sidered system are used to describe the dynamic behavior of
a system. System identification is an experimental approach,

for which some experiments are performed on the con-
sidered system in order to learn a mathematical model from
the collected input-output data by means of parameter
estimation.

-e goal of system identification is to derive one ap-
propriate mathematical model or equation for the consid-
ered unknown system; then, this constructed mathematical
model is a reference basis for the next controller design.
During these years, lots of research studies exist on linear
system identification, but the linear system is one ideal case
in practice, as we all know that all phenomena are nonlinear
in nature. -e research direction corresponds to the linear
system identification; then, the obtained results for linear
system identification are tried to extend to more general
case-nonlinear system identification. -e most difficulty for
nonlinear system identification is about which nonlinear
form is used to describe the considered nonlinear phe-
nomenon. After extending the nonlinear phenomenon as
one detailed expression, then all the obtained results about
linear system identification are modified to be suited for
nonlinear system identification. One more widely used way
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to extend the nonlinear phenomenon is that orthonormal
function expansion or its generalized form. As the neural
network can approximate the nonlinear system with low
approximation error, this nice property of the neural net-
work attracts lots of researchers in studying nonlinear
system identification based on orthonormal function ex-
pansion and neural network. -e detailed description based
on nonlinear system identification is omitted due to space
limitations. Our mission in above explanation is to show
research on nonlinear system identification is worth, and it is
more suited for practical phenomenon in nature.

To apply the obtained or existed results on linear system
identification to nonlinear system identification well, the
nonlinear phenomenon is formulated as almost one special
linear form, i.e., this special linear form has not only linear
form but also some properties, coming from nonlinearity.
-is special linear form is our considered piecewise affine
system here, which shows one nonlinear form in the whole
region, but one linear form in each subregion. It is a trade-off
between the linear system and nonlinear system. Further-
more, if we can determine which region it belongs to, then it
reduces to linear system identification. It means all results on
linear system identification are applied directly, such as
identification algorithm, optimal input design, and model
structure validation.

Due to the trade-off for this piecewise affine system, it
bridges the closed relation between linear system identifi-
cation and nonlinear system identification, so the identifi-
cation for this piecewise affine system is widely studied in
these recent years. For example, one convex optimization
strategy-mixed integer programming is introduced to
identify the piecewise affine system in [1]. Nonlinear auto-
regressive with exogenous input model [2] is an input-
output description, often used in piecewise affine system
identification. -e current output is obtained by means of a
nonlinear functional expansion of lagged inputs, which
outputs elementary terms [3]. -e piecewise affine system
reduces the number of model terms and combinations of
elementary terms, with respect to other parametric class,
such as Volterra series [4]. -is peculiarity is very important
when the model structure is unknown since it allows to
reduce the number of possible candidate structures [5], and
the idea of piecewise affine means switching linear too [6].
-e computational complexity on piecewise affine system
identification [7] is analyzed from the point of complexity
theory. Although the piecewise affine system could be in the
principle done in the linear case, it is not feasible in the
nonlinear one since the number of possible model terms
increases rapidly with the number [8]. One recursive
multiple least squares algorithm is proposed to identify
piecewise affine regression [9], where multicategory dis-
crimination is deemed for data clustering in case of sto-
chastic noise, i.e., zero mean white Gaussian and mutually
uncorrelated. Moreover, for unknown but bounded noise,
existing in the piecewise affine system, a bounded error
approach can achieve the identification goal in [10], where
one guaranteed interval is yielded to include the parameter
estimation, and the center of this guaranteed interval is
chosen as the final estimation. Furthermore, other aspects

are studied in detail for the piecewise affine system, such as
its input-output representation [11], recursive identification
algorithm [12], and statistical clustering technique [13]. -e
detailed review of piecewise affine system identification can
be seen [14], where the similarity between our considered
piecewise affine system and hybrid system is also analyzed.
-e classical observability and controllability of the linear
system are extended for the piecewise affine system and
hybrid system in [15], where observability and controlla-
bility analysis are two important factors for regulating the
future state converge to its stable point. In the year, research
on piecewise affine system identification are still done, for
example, Federico Bianchi Valentina Breschi [16] develops a
general framework to alternate between parameter estima-
tion and sample mode assignment. In [17], given a set of
input-output data, the identification of a switched nonlinear
system for the underlying system involves the simultaneous
identification of the mode sequence. Our previously pub-
lished paper [18] proposes one zonotope parameter iden-
tification algorithm to identify the unknown parameter
vector in each separated region in presence of unknown but
bounded external noise. -e identification idea can be
combined with optimal control theory; then, the data-driven
control is yielded [19]. -e difference between system
identification and data driven control is that the system
identification is to identify the unknown plant from ob-
served data, but the data-driven control is to apply the
observed data to design the considered controller. As lots of
information are included in observed data, the control task
concerns on extracting these useful information from data
[20]. As the number of published works on piecewise affine
system identification is vast, we cannot list all of them here,
but only main works in recent years. Le Quang et al. [21]
investigate the identification of continuous piecewise affine
systems in state space form with jointly unknown partition
and subsystem matrices. A novel online fault detection and
identification strategy was established for a class of con-
tinuous piecewise affine systems, namely, bimodal and tri-
modal piecewise affine systems in [22], where the recursive
nature of the proposed scheme and the consideration of
parametric uncertainties in both partitions and in subsys-
tems parameters were proposed there.

Based on abovementioned works and our previous
contribution on piecewise affine system identification, this
technical note continues to do it deep. As the nice property
of the piecewise affine system is that the linear form holds
during each subregion, which combines the whole consid-
ered region. It means the whole considered region is divided
into many subregions, and in these subregions, the form is
the special linear form. Based on this explanation on the
piecewise affine system, the first step for piecewise affine
system identification is to classify the observed input-output
data into their own subregion, as the observed data are
included in different subregion. After classifying all observed
input-output data, then least squares algorithm can be ap-
plied to identify the unknown parameter vector in each
subregion. More precisely, assume the whole considered
region is divided into M different subregions, i.e., the
number of unknown parameter vectors is M. Our mission
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for piecewise affine system identification is to estimate these
M parameter vectors by using the observed input-output
data. -e identification process of applying all observed
input-output data to estimate all M unknown parameter
vectors corresponds to previous centralized identification,
which does not care any subregion without any classifica-
tion. For this centralized identification, all unknown pa-
rameter vectors are obtained simultaneously. On the
contrary, the other identification process of combining
classification and parameter estimation is the distributed
identification. For this distributed identification, firstly all
observed input-output data are classified into their own
subregion; then, secondly, the classified data are dealt with to
estimate the unknown parameter vector in each subregion.
-e reason about why we study these two different iden-
tification strategy is that through comparing them, we find if
the number of subregions is low, i.e., M � 2 or 3, the
previous centralized identification can give a nice identifi-
cation results. But when M> 3, we need the distributed
identification to complete our given identification accuracy,
and it means the centralized identification is useless for the
case of M> 3.

-e main contributions of this short note are listed as
follows. (1) Two different identification strategies are pro-
posed to identify the special piecewise affine system re-
spectively, i.e., centralized identification and distributed
identification. (2) Comparisons are given for these two
identification strategies. (3) One novel least squares algo-
rithm with the dead zone is proposed in the identification
process. Generally, these two identification strategies and
least squares algorithm with the dead zone can be widely
applied in other research fields, such as signal processing,
spectral estimation, and adaptive control.

-is short note is organized as follows. In Section 2, the
basic piecewise affine system is presented, and its identifi-
cation problem is also given. In Section 3, the previous
centralized identification is proposed to estimate all un-
known parameter vectors simultaneously, through intro-
ducing one discrete variable and least squares algorithm.
Furthermore, the distributed identification is given to
classify the observed data and estimate the unknown pa-
rameter vectors step by step in Section 4. To complete the
drawback of our previous work, one lease squares algorithm
with the dead zone is proposed to consider the unknown but
bounded noise. Section 5 gives one example to compare
these above identification strategies and illustrate our pro-
posed theory. Finally, conclusions and comments about next
work are presented in Section 6.

2. Problem Statement

2.1. Piecewise Affine System. Consider the following linear
form, existing in linear system identification many times as

y(t) � −∑na
i�1

aiy(t − i) +∑
nb

j�1

biu(t − j) + e(t), (1)

where, in equation (1), u(t) and y(t) are the corresponding
input and output signal at time instant t.

Parameters ai{ }nai�1 and bj{ }nb
j�1

are the unknown pa-
rameters, which are needed to identify in the latter study.
Twomodel orders na and nb are given or prior known. e(t) is
one external noise or disturb, and it may be one statistical
noise or bounded noise. To apply the existing identification
algorithm in estimating these two kinds of unknown pa-
rameters ai{ }nai�1 and bj{ }nb

j�1
, linear form (1) is always re-

written as one single linear regressor form, i.e.,

y(t) � ϕT(t)θ + e(t), (2)

where regressor vector ϕ(t) and parameter vector θ are
defined as follows:

ϕ(t) � −y(t − 1), . . . ,−y t − na( ), u(t − 1), . . . , u t − nb( )[ ],
θ � a1, . . . , ana, b1, . . . , bnb[ ].

(3)
In regressor vector ϕ(t), na and nb are also named as time

delay.
When to extend classical linear regressor form (2) into

our considered piecewise affine system, we observe equation
(2) is always time invariant within the whole region. -en,
we divide the whole region intoM different subregions, so in
each subregion, parameter vector θ is not the same with each
other. -is property makes us reformulate the original linear
regressor form (2) as the other piecewise affine form, i.e.,

y(t) � ϕT(t)θi + e(t), ϕ(t) ∈ Ri, i � 1, 2, · · ·M, (4)

where in equation (4), M is the number of subregions, i.e.,
R � R1 ∪R2 ∪ · · · ∪RM.

Equation (4) means firstly we need to know which
subregion the regressor vector ϕ(t) belongs to; then, sec-
ondly, one approximated parameter vector θi is used to
correspond it. Comparing the original linear regressor form
(2) and its extended piecewise affine system (4), the com-
putational complexity about the identification process is
increased, as only one constant parameter vector θ exists in
equation (2), but M different parameter vectors θi{ }Mi�1 are
needed to be identified in equation (4).

2.2. Main Mission. -ose M subregions Ri{ }Mi�1 constitute
the whole considered region R. From a practical point of
view, these M subregions Ri{ }Mi�1 are always assumed to be
convex and connected, i.e., their closely relations are shown
in Figure 1, where R � R1 ∪R2 ∪ · · · ∪R8 and Ri ∩Rj �
line or space. As all regions have one common equilibrium
point, i.e., origin point, and this origin point means all el-
ements in that regressor vector correspond to zero, i.e.,
ϕ(t) � 0, it is no useful in analyzing, so we always delete this
special original point to let ϕ(t)≠ 0.

From above description about the piecewise affine sys-
tem, our mission is to estimate these M different unknown
parameter vectors θi{ }Mi�1 by using only the input-output data
u(t), y(t){ }Nt�1, where N is the number of observed input-
output data. -en, this short note proposes two identifi-
cation strategies-centralized identification and distributed
identification to combine the least squares algorithm.
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3. Centralized Identification

Observing that piecewise affine system (4), we must know
which subregion the regressor variable belongs to; then, its
corresponding unknown parameter vector is used. -e
above process means one data clustering process in machine
learning. Here, one centralized identification is introduced
without the above data clustering process, i.e., all observed
input-output data are used to estimate those unknown
parameter vectors θi{ }Mi�1 simultaneously.

Introduce one discrete variable δi ∈ 0, 1{ }, satisfying

δi �
0, if ϕ(t) ∉ Ri,

1, if ϕ(t) ∈ Ri,
 (5)

using this defined discrete variable δi ∈ 0, 1{ }; then, equation
(4) is rewritten as follows:

y(t) �∑M
i�1

δi ϕT(t)θi + e(t)[ ]
� δ1 ϕT(t)θ1 + e(t)[ ] + δ2 ϕT(t)θ2 + e(t)[ ]
+ · · · + δM ϕT(t)θM + e(t)[ ].

(6)

Reformulating equation (6) as follows:

y(t) � δ1ϕ(t) δ2ϕ(t) · · · δMϕ(t)[ ]
θ1

θ2

⋮

θM




+∑M
i�1

δie(t)

� δ1 δ2 · · · δM[ ]ϕ(t)
θ1

θ2

⋮

θM




+ e(t)

� ϕT1 (t)θ + e(t),

(7)
where the new ϕ1(t) and θ are defined as follows:

ϕT1 (t) � δ1 δ2 · · · δM[ ]ϕ(t),

θ �

θ1

θ2

⋮
θM


.

(8)

Based on our defined discrete variable δi ∈ 0, 1{ }, then
piecewise affine system (4) can be also reformulated as one
linear regressor form (7). -e unknown parameter vector θ,
existing in equation (7), can be obtained easily through the
classical least squares algorithm, i.e., the parameter esti-
mation θ̂ is given as that

θ̂ � ∑N
t�1

ϕT1 (t)ϕ1(t) − 1 ∑N
t�1

ϕT1 (t)y(t)
 , (9)

whereN denotes the number of observed input-output data.
Furthermore, to increase the computational speed, its re-
cursive least squares algorithm is that

P− 1
(t) �∑N

t�1

ϕT1 (t)ϕ1(t),

L(t) �
P(t − 1)ϕ1(t)

1 + ϕT1 (t)P(t − 1)ϕ1(t)
,

P(t) � P(t − 1) −
P(t − 1)ϕT1 (t)ϕ1(t)P(t − 1)

1 + ϕT1 (t)P(t − 1)ϕ1(t)
,

θ̂(t) � θ̂(t − 1) + L(t)y(t) − ϕT1 (t)θ̂(t − 1),

(10)

where θ̂(t) and θ̂(t − 1) are the parameter estimations at
time instant t and t − 1, respectively.

To start the above recursive least squares algorithm, the
initial parameter value θ̂(0) can be chosen as

θ̂(0) �
1

2
I, (11)

where I is a column vector with element 1.
From equation (8), we see that the computational

complexity of this centralized identification is vast, as the
dimensions of the regressor and parameter vector isMn (n is
the dimension of each parameter vector θi), so ifM and n are
all small, then this centralized identification holds.

4. Distributed Identification

Distributed identification is different from centralized
identification, as the observed input-output data are used to
estimate each unknown parameter vector θi, not the total
unknown parameter vector θ � [θ1, θ2, . . . , θM]. But one
obvious problem appears, it is about which parameter vector
θi is determined by the observed input-output data, and we
must be sure that the observed input-output data, used to
estimate that unknown parameter vector θi, belong to that
corresponding subregion Ri, so firstly one additional process
is added here.

R2

R3

R4

R5

R6

R7

R8
R1

Figure 1: An example of separated subregions.
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Let

z(t) �[y(t), u(t)]T

�y(t),−y(t − 1), . . . ,−y t − na( ), u(t − 1), . . . , u t − nb( )T.
(12)

When given one observed data z(t){ }
N
t�1, we need to

classify it in its right subregion, through computing its
projection on each subregion or set, i.e.,

dist z(t), Ri( ) � inf
zi(t)

z(t) − zi(t)




 





zi(t)
∈ Ri{ }, i � 1, 2, · · ·M,

(13)
where ‖‖ denotes one norm.

Identify its minimal component and treat this index of
this observed data as our guess from the number of the class
to which z(t) belongs, i.e.,

Ri � argmini z1(t), z2(t), . . . , zM(t){ }. (14)

-en, we regard the following fact:

z(t) ∈ Ri. (15)

By the way the idea case is one index, satisfying
z(t) � z1(t), it means

dist z(t), Ri( ) � inf
zi(t)

z(t) − zi(t)




 





zi(t)
∈ Ri{ }

� 0.

(16)

After we divide all observed input-output data into their
right subregions, then we describe the considered piecewise
affine system as follows:

y(t) � ϕT(t)θ1 + e(t), ϕ(t) ∈ R1, z(t){ }
N1
t�1,

y(t) � ϕT(t)θ2 + e(t), ϕ(t) ∈ R2, z(t){ }
N2

t�N1+1
,

⋮
y(t) � ϕT(t)θM + e(t), ϕ(t) ∈ RM, z(t){ }

N
t�NM+1

,

(17)

where number N satisfies

N � N1 +N2 + · · · +NM. (18)

Based on above clustering or classifying process, then
some observed input-output data, belonging to its

corresponding subregion, are applied to estimate only one
corresponding unknown parameter vector. For notational
convergence only, we use the observed input-output data

z(t){ }
N1

t�1 to estimate the unknown parameter vector θ1. It is
rewritten as follows:

y(t) � ϕT(t)θ1 + e(t), ϕ(t) ∈ R1, z(t){ }
N1
t�1. (19)

Least squares algorithm (9) and its recursive form (10)
are applied to identify the unknown parameter vector θ1.

From the existing results in linear system identification,
the identification result is nice in case of noise e(t). It means
when external noise e(t) is a white noise, then the parameter
estimation θ̂1 is unbiased and consistent. But this nice result
does not hold for bounded noise. Our previously work [18]
proposes zonotope parameter identification in case of
bounded noise. As knowledge of zonotope is little for some
readers, so here we modify the recursive least squares al-
gorithm (10) into one new least squares algorithm with the
dead zone.

As that external noise e(t) is bounded, without loss of
generality, assume that sup|e(t)|≤Δ, where Δ is one upper
bound. -is new least squares algorithm with the dead zone
is listed as follows:

θ̂1(t) � θ̂1(t − 1) +
a(t)ϕ(t)

c + ϕT(t)ϕ(t)
y(t) − ϕT(t)θ̂1(t − 1)[ ],

(20)
where coefficient c> 0 and

a(t) �
1, y(t) − ϕT(t)θ̂1(t − 1)

∣∣∣∣∣ ∣∣∣∣∣> 2Δ,
0, otherwise.

 (21)

-e above iterative algorithm is terminated by a(t). After
subtracting the true parameter vector θ1 on both sides of
equation (20), we have

θ̃1(t) � θ̂1(t) − θ1,

θ̃1(t) � θ̃1(t − 1) −
a(t)ϕ(t)

c + ϕT(t)ϕ(t)
ϕT(t)θ̃1(t − 1) + e(t)[ ],

(22)
where θ̃1(t) and θ̃1(t − 1) are parameter errors at time in-
stant t and t − 1. Due to the definition of a(t), it holds that

θ̃1(t)




 



2 � θ̃1(t − 1)





 



2 − 2a(t)w(t) − e(t)w(t)

c + ϕT(t)ϕ(t)
+
a2(t)ϕT(t)ϕ(t)w2

(t)

c + ϕT(t)ϕ(t)[ ]2

≤ θ̃1(t − 1)




 



2 + a(t)

c + ϕT(t)ϕ(t)
[2w(t)e(t)] −

a(t)w2
(t)

c + ϕT(t)ϕ(t)
,

(23)

where in equation (23), w(t) is one model error, i.e.,
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w(t) � y(t) − ϕT(t)θ̂1(t − 1)

� −ϕT(t)θ̃1(t − 1) + e(t),
(24)

From an applied point of view, for any t, we have

θ̃1(t)




 



2 � θ̃1(t − 1)





 



2 − a(t)w2
(t)

c + ϕT(t)ϕ(t)
+
a(t)ϕT(t)ϕ(t)w2

(t)

c + ϕT(t)ϕ(t)[ ]2
w2
(t)

2
+ 2w2

(t)[ ]

≤ θ̃1(t − 1)




 



2 − 1

2

a(t)w2
(t)

c + ϕT(t)ϕ(t)
+

2a(t)Δ2

c + ϕT(t)ϕ(t)
.

(25)
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0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10
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Figure 2: Input signal.
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Figure 3: Output signal.
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Figure 4: Identification result for two identification strategies.
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Figure 5: Comparisons of the output for centralized identification.
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Figure 6: Comparisons of the output for distributed identification.
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Based on our above mathematical derivation, we see
‖θ̃1(t)‖

2 is a decreasing sequence, and it also satisfies that

θ̂1(t) − θ1




 



≤ θ̂1(t − 1) − θ1





 



≤ · · · ≤ θ̂1(0) − θ1




 





t≥ 1.
(26)

It means the parameter estimation θ̂1(t), obtained by the
new least squares algorithm with the dead zone, converges to
its true parameter value θ1 with the iterative step increases.
-e parameter error is one decreasing sequence, not related
with the upper bound Δ.

5. Simulation Example

In this simulation part, one example is used to prove the
efficiency of our proposed theories in this short note. -e
piecewise affine system is defined as follows:

y(t) � ϕT(t)θi + e(t)

� e(t) +

0.35u(t) u(t) ∈ [0, 15]
0.25u(t) u(t) ∈ [15, 30]
0.18u(t) u(t) ∈ [30, 50]

.


(27)

It means

M � 3, R1 �[0, 15], R2 �[15, 30], R3 �[30, 50]

ϕ(t) � u(t), θ1 � 0.35, θ2 � 0.25, θ3 � 0.18,
(28)

or

θ � θ1, θ2, θ3[ ] �[0.35, 0.25, 0.18]. (29)

Firstly, the centralized identification strategy is studied
to estimate the parameter vector θ � [0.35, 0.25, 0.18] si-
multaneously through the observed input-output data. Si-
nusoidal signal is used to excite the above piecewise affine
system, and Figure 2 shows our chosen sinusoidal signal. We
measure the corresponding output data by some physical
devices or sensors; then, the observed output signal is plotted
in Figure 3. Combining our observed input-output data in
Figures 2 and 3, three unknown parameters θ � [0.35,
0.25, 0.18] are identified by the recursive least squares al-
gorithm in case of a white noise, and the corresponding
identification result for the centralized identification strategy
is shown in Figure 4, where the true parameters and their
estimations correspond to each other. It tells us when the
number of subregions is 3, the identification result for the
centralized identification strategy is tolerable.

Secondly, an additional subregion is added in equation
(24), i.e.,

y(t) � ϕT(t)θi + e(t)

� e(t) +

0.35u(t) u(t) ∈ [0, 15]

0.25u(t) u(t) ∈ [15, 30]

0.18u(t) u(t) ∈ [30, 50]

0.5u(t) u(t) ∈ [50, 70]

.


(30)

-e observed input-output data are also seen in Figures 2
and 3, where the number of subregion is 4. To compare our
mentioned two identification strategies for estimating these
four unknown parameters, we simulate them in the
framework of bounded noise, i.e., |e(t)| ≤ 1. For this case of
bounded noise in the piecewise affine system with four
subregions, the least squares algorithm for centralized
identification and least squares algorithm with the dead zone
for distributed identification are all considered to estimate
those four unknown parameters. We do not plot the pa-
rameter estimations; just like in Figure 4, here we substitute
the parameter estimations into the original piecewise affine
system to get the identified model, and the original system is
named as the true model. Two identification results are
plotted in Figure 4, where the black dotted line and red line
are for centralization identification and distributed identi-
fication, respectively. -eir output responses correspond to
the true output and identified output. Figure 5 and 6 show
the comparisons between the true output and identified
output for centralized identification and distributed iden-
tification, respectively.

More specifically in Figure 5, the black curve is the true
output and red curve is the identified output from cen-
tralized identification. -en, we see the deviation error
between these two curves is not accepted due to the large
deviation error. But for the distributed identification in
Figure 6, the blue curve denotes the identified output. -en,
these two curves are very closely to each other, it means their
deviation error is little, and the parameter estimations
converge to their corresponding true values. Furthermore,
from Figures 5 and 6, if the number of subregions does not
exceed to 3, then centralized identification is efficient. But on
the contrary, it is better to apply that distributed identifi-
cation to complete our identification task.

6. Conclusion

As the piecewise affine system is one trade-off between the
linear system and nonlinear system, further analysis on the
piecewise affine system is considered here. From the point of
knowledge about classification process or not, centralized
identification and distributed identification are studied in
detail. To deal with statistical noise and bounded noise, the
recursive least squares algorithm and its modified form with
the dead zone are applied to estimate the unknown pa-
rameter vector. As this short note is our continuous con-
tribution on piecewise affine system identification, the
detailed computational complexity of our considered two
identification strategies is our next ongoing work.
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