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STATISTICAL INFERENCE FOR SEMIPARAMETRIC
VARYING-COEFFICIENT PARTIALLY LINEAR MODELS

WITH ERROR-PRONE LINEAR COVARIATES
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Shanghai University of Finance and Economics, Chinese Academy
of Sciences and University of Rochester

We study semiparametric varying-coefficient partially linear models
when some linear covariates are not observed, but ancillary variables are
available. Semiparametric profile least-square based estimation procedures
are developed for parametric and nonparametric components after we cali-
brate the error-prone covariates. Asymptotic properties of the proposed esti-
mators are established. We also propose the profile least-square based ratio
test and Wald test to identify significant parametric and nonparametric com-
ponents. To improve accuracy of the proposed tests for small or moderate
sample sizes, a wild bootstrap version is also proposed to calculate the crit-
ical values. Intensive simulation experiments are conducted to illustrate the
proposed approaches.

1. Introduction. Various efforts have been made to balance the interpreta-
tion of linear models and flexibility of nonparametric models. Important results
from these efforts include semiparametric varying-coefficient partially linear mod-
els (SVCPLM), in which the response variable Y depends on variables Z, X and
U in the form of

Y = �TZ + αT(U)X + ε,(1.1)

where � is a p-dimensional vector of unknown parameters, α(·) is a q-variate vec-
tor of unknown functions, U is a vector of nonparametric components that may be
multivariate and the model error ε has mean zero and finite variance. For notational
simplicity, we assume that U is scalar. αT(U)X is referred to as a nonparametric
component since α(U) is nonparametric.

Model (1.1) permits the interaction between the covariates U and X in such
a way that a different level of covariate U is associated with a different linear
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model about �TZ, and allows one to examine the extent to which covariates X
interact. This model presents a novel and general structure, which indeed cov-
ers many well-studied, important semiparametric regression models. For example,
when Z = 0, (1.1) reduces to varying-coefficient models, which were originally
proposed by Hastie and Tibshirani (1993) and studied by Fan and Zhang (1999),
Xia and Li (1999) and Cai, Fan and Li (2000). When q = 1 and X = 1, (1.1) re-
duces to well-known partially linear models, in which Y depends on Z in a linear
way but is related to another independent variable U in an unspecified form. There
is a great deal of literature on the study of partially linear models [e.g., Engle et
al., Robinson (1986, 1988) and Speckman (1988)]. A survey of partially linear
models was given by Härdle, Liang and Gao (2000). The study of SVCPLM has
been investigated by Zhang, Lee and Song (2002) and Fan and Huang (2005),
among others. Zhang, Lee and Song (2002) developed the procedures for estima-
tion of the linear and nonparametric parts of the SVCPLM. Fan and Huang (2005)
proposed a profile likelihood technique for estimating parametric components and
established the asymptotic normality of their proposed estimator.

All studies of the SVCPLM are limited to considerations of exactly observed
data. However, in biomedical research observations are measured with error. Sim-
ply ignoring measurement errors, known as the naive method, will result in bi-
ased estimators. Various attempts have been made to correct for such bias, see
Fuller (1987) and Carroll et al. (2006) for extensive discussions and examples of
linear and nonlinear models with measurement errors. In this paper, we are con-
cerned with the situation where some components (ξ ) of Z are unobserved directly,
but auxiliary information is available to remit ξ . Let Z = (ξT,WT)T, where ξ is a
p1 × 1 vector and W is a vector of the remaining observed components. We as-
sume that ξ is related to observed η and V through the relationship ξ = E(η|V).
Thus, we study the following model:{

Y = βTξ + θTW + αT(U)X + ε,

η = ξ(V) + e,
(1.2)

where E(ε|Z,X,U) = 0, E(ε2|Z,X,U) = σ 2(Z,X,U) and e is an error with
mean zero and positive finite covariance matrix �e = E(eeT). The four covari-
ates V, W, X and U are different. In our structure, we allow that V and (X,W,U)

may overlap. Model (1.2) is flexible enough to include a variety of models of in-
terest. We give three examples to illustrate its flexibility:

EXAMPLE 1 (Errors-in-variable models with validation data). Z is a p-variate
variable vector and is not observed. Z̃ is an another p-variate vector and is
observed associated with vector Z. Assume that we have primary observa-
tions {Yj , Z̃j ,Uj , j = 1, . . . , n}, and n0 independent validation observations
{Zj , Z̃j ,Ui, i = n + 1, . . . , n + n0}, which are independent of the primary ob-
servations. Let V = (Z̃T,U)T. The partial errors-in-variable model with validation
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data is written as {
Y = βTE(Z|V) + α(U) + ε,

ε = e + βT{Z − E(Z|V)}.(1.3)

This model has been studied by Sepanski and Lee (1995), Sepanski and Car-
roll (1993) and Sepanski, Knickerbocker and Carroll (1994). Taking X = 1, θ = 0,
η = Z and ξ = E(Z|V) in (1.2), we know that (1.3) is a sub-model of (1.2).

EXAMPLE 2 (De-noise linear model). The relation between the response vari-
able Y and covariates (ξ ,W) is described by Y = βTξ + θTW + ε, where β and θ
are parametric vectors, respectively. The covariate ξ is measured with error since,
instead of observing ξ directly, we observe its surrogate η. This forms a de-noise
linear model: {

Y = βTξ + θTW + ε,

η = ξ + e,
(1.4)

where ξ = ξ(t) is subject to measurement error at time t and the measurement
errors ε and e are independent of each other at each time t .

Cai, Naik and Tsai (2000) used this model to estimate the relationship between
awareness and television rating points of TV commercials for certain products.
Cui, He and Zhu (2002) proposed an estimator of the coefficients and estab-
lished asymptotic results of the proposed estimator. It is easy to see that (1.2)
includes (1.4).

EXAMPLE 3 (Rational expectation model). Consider the following rational
expectation model:

Yt = γ TSt + ζT{ηt − E(ηt |Vt )} + εt ,(1.5)

where ηt −E(ηt |Vt ) is the expectation payoff for price variable ηt given historical
information Vt . In this model, (Yt ,St ,ηt , Vt ) except E(ηt |Vt ) can be observed
directly.

Besides estimation and inference of γ and ζ , within the econometric commu-
nity, the following model is of interest:

Yt = γ TSt + ζTηt − βTE(ηt |Vt ) + εt .(1.6)

It is worthy to note that (1.6) is a sub-model of (1.2). An interesting question is to
test whether the (1.6) satisfies the rational expectation model (1.5), that is, to test
following hypothesis:

H0 :β = ζ VS H1 :β �= ζ .(1.7)
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In the econometric literature, the regression of unobserved covariates is also
called generated regression. This topic has been widely studied. Pagan (1984)
gave a comprehensive review on the estimation of parametric models with gen-
erated regression. Ai and Mcfadden (1997) presented a procedure for analyzing
a partially specified nonlinear regression model in which the nuisance parame-
ter is an unrestricted function of a subset of regressors. Ahn and Powell (1993)
and Powell (1987) considered the case with the generated regressors in the non-
parametric part of the model. Li (2002) considered the problems of estimating a
semiparametric partially linear model for dependent data with generated regres-
sors. Their models are special cases of the rational expectation model.

Various procedures similar to generated regression have been proposed to re-
duce the bias due to mismeasurement. Regression calibration and simulation
extrapolation have been developed for measurement errors models Carroll et
al. (2006). Liang, Härdle and Carroll (1999) studied a special case of (1.2), par-
tially linear errors-in-variables models, and proposed an attenuated estimator of the
parameter based on the semiparametric likelihood estimate. Wang and Pepe (2000)
used a pseudo-expected estimating equation method to estimate the parameter in
order to correct the estimation bias.

In an attempt to develop a unified estimation procedure for (1.2), we propose a
profile-based procedure, which is similar to regression calibration method in spirit.
The procedure consists of two steps. In the first step, we calibrate the error-prone
covariate ξ by using ancillary information and applying nonparametric regression
techniques. In the second step, we use profile least-square-based principle for es-
timating the parametric and nonparametric components. Under the mild assump-
tions, we derive the asymptotic representives of the proposed estimators, and use
the representives to establish asymptotic normality. We also propose the profile
least-square-based ratio test and Wald test for the parametric part of (1.2), and
a goodness-of-fit test for the varying coefficients in the nonparametric part. The
asymptotic distribution of the proposed test statistics are derived. Wild bootstrap
versions are introduced to calculate the critical values for those tests.

The paper is organized as follows: In Section 2, we focus on the estimation
of the parameters and nonparametric functions, and on the development of as-
ymptotic properties of the resulting estimators. The error-prone covariates are first
calibrated. Bandwidth selection strategy is also discussed. In Section 3, we de-
velop profile least-square-based ratio tests for parametric and nonparametric com-
ponents. Wild bootstrap methods are proposed to calculate the critical values. The
results of applications to simulated and real data are reported in Section 4. Sec-
tion 5 gives a conclusion. Regularity assumptions and technical proofs are rele-
gated to the Appendix.

2. Estimation of the parametric and nonparametric components. When ξ

is observed, estimators of β and α(u) and associated tests have been developed
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to study (1.2). These estimators and tests cannot be used directly when ξ is unob-
servable. We first need to calibrate ξ by using ancillary variables η and V because
a direct replacement of ξ by η will result in bias.

2.1. Covariate calibration. For notational simplicity, we assume V is uni-
variate in the remainder of this paper. Let ηi,k be the kth entry of vector η, and
Lb(·) = L(·/b)/b, b = bk (k = 1,2, . . . , p1) is a bandwidth for the kth component
of η. Assume throughout the paper that ξk(v) has r + 1 derivatives and we approx-
imate ξk(v) by an r-order polynomial within the neighborhood of v0 via Taylor
expansion

ξk(v) ≈ ξk(v0) + ξ ′
k(v0)(v − v0) + · · · + ξ

(r)
k (v0)

r! (v − v0)
r =

r∑
j=0

aj,k(v − v0)
j .

Denote

Vv =
⎡⎢⎣1 (V1 − v) · · · (V1 − v)r

...
... · · · · · ·

1 (Vn − v) · · · (Vn − v)r

⎤⎥⎦ , η(k) =
⎛⎜⎝ η1k

...

ηnk

⎞⎟⎠ ,

Wv = diag{Lb(V1 −v), . . . ,Lb(Vn −v)}. The local polynomial estimator [Fan and
Gijble (1996)] of (a0,k, . . . , ar,k)

T can be expressed as âT
k = (VT

vWvVv)
−1VT

v ×
Wvη

(k). As a consequence, ξk(v) is estimated by ξ̂k(v) = ζT
1 (VT

vWvVv)
−1VT

v ×
Wvη

(k), for k = 1, . . . , p1, where ζ1 is a (r + 1) × 1 vector with 1 in the first
position and 0 in other positions.

In what follows, denote A⊗2 = AAT, μj = ∫
ujL(u)du, νj = ∫

ujL2(u) du,
Su = (μj+l)0≤j,l≤r and cp = (μr+1, . . . ,μ2r+1)

T. fv(v) is the density function
of V .

Under the assumptions given in the Appendix, we can prove [Fan and Gijbels
(1996), pages 101–103 or Carroll et al. (1997), page 486] that

ξ̂(v) − ξ(v) = ζ1S
−1
u cpbr+1

(r + 1)! ξ (r+1)(v) + 1

nfv(v)

n∑
i=1

Lb(Vi − v)ei

(2.1)
+ o

(
br+1 + logb−1/

√
nb
)
,

uniformly on v ∈ V . This fact will be used for proving the main results in the
Appendix.

2.2. Estimation of the parametric component. Let (Yi,ηi ,Vi ,Wi ,Xi ,Ui),
i = 1,2, . . . , n, be the observations from (1.2). The unknown covariates ξ i are
substituted by their estimators given in the above section. We therefore have fol-
lowing “new” model:{

Yi = βTξ̂ i + θTWi + αT(Ui)Xi + ε̂i ,

ε̂i = εi + βT{ξ i − ξ̂(Vi)},
i = 1, . . . , n,(2.2)
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where {ε̂i}ni=1 are still treated as errors. If ξ̂ i would be an unbiased estimator of ξ i ,
then Eε̂i = 0.

Approximate αj (U) within the neighbors of u by aj (u) + bj (u)(U − u) for

j = 1, . . . , q . Write Ẑi = (ξ̂
T
i ,WT

i )T and � = (βT, θT)T. Following the profile
likelihood-based procedure proposed by Fan and Huang (2005), our profile least-
square-based estimator of � is defined as

�̂n = {Z̃TZ̃}−1Z̃T(I − S)Y,(2.3)

where Z̃ = (I − S)Ẑ, I is the n × n identity matrix,

S =
⎛⎜⎝ (XT

1 0T
q ) (DT

u1
Wu1Du1)

−1DT
u1

Wu1

...

(XT
n 0T

q ) (DT
un

WunDun)
−1DT

un
Wun

⎞⎟⎠
n×2q

,

Du =
⎛⎜⎝XT

1 h−1(U1 − u)XT
1

...
...

XT
n h−1(Un − u)XT

n

⎞⎟⎠
n×2q

and Y = (Y1, . . . , Yn)
T, Wu = diag{Kh(U1 − u), . . . ,Kh(Un − u)}n×n, Ẑ =

(Ẑ1, . . . , Ẑn)
T, 0q is the q × 1 vector with all the entries being zero, K(·) is a

kernel function, h is a bandwidth and Kh(·) = K(·/h)/h.
We now give a representation of �̂n. This representation can be used to obtain

the asymptotic distribution of
√

n(�̂n − �), which we give in Theorem 2. This
result extends the method of Fan and Huang (2005) to a SVCPLM with generated
regressors.

Let �(U) = E(XZT|U), �(U) = E(XXT|U), ψ(Z,X,U) = Z − �T(U) ×
�−1(U)X, B(V) = E[{Z−�T(U)�−1(U)X}|V] and 	 = E(ZZT)−E{�T(U)×
�−1(U)�(U)}.

THEOREM 1. Under Assumptions 1–5 in the Appendix, we have

�̂n − � = 	−1

[
1

n

br+1

(r + 1)!ζ
T
1 S−1

u cp

n∑
i=1

ψ(Zi ,Xi ,Ui)
{
ξ (r+1)(Vi )

}T
β0

+ 1

n

n∑
j=1

�(Vj )eT
j β0 + 1

n

n∑
i=1

ψ(Zi ,Xi ,Ui)εi

]

× {1 + oP(1)},
where �(Vj ) = 1

n

∑n
i=1 ψ(Zi ,Xi ,Ui)Lb(Vj − Vi)/fv(Vi).

THEOREM 2. Let nb2(r+1) → 0. Under Assumptions 1–5 in the Appendix,√
n(�̂n − �) converges to a normal distribution with mean zero and covari-

ance matrix 	1, where 	1 = 	−1D	−1, D = E[σ 2(X,Z,U){ψ(X,Z,U)}⊗2] +
E[(eTβ)2{B(V)}⊗2] + βTE{E(eε|Z,X,U,V){B(V)}⊗2}.
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Furthermore, if e is independent of ε given (Z,X,U,V), and ε is indepen-
dent of (Z,X,U), the asymptotic covariance can be simplified as 	−1(σ 2	 +
E[(eTβ)2{B(V)}⊗2])	−1. If e is also independent of V, the asymptotic covari-
ance can further be simplified as σ 2	−1 + βT�eβ	−1E{B(V)}⊗2	−1.

The proof of Theorem 2 can be completed by using Theorem 1. We omit the
details.

The asymptotic variance has a similar structure to that of Das (2005). The first
term of asymptotic variance can be viewed as the variance from the first stage es-
timation without measurement error/missing data, the second one is the variance
of the second stage for estimating unobserved variables and the third one is the
covariance of two-stage estimators. If e = 0 in (1.2), that is, the covariate can be
exactly observed, the variance of �̂n is the same as that of Fan and Huang (2005).
To achieve the root-n estimator of �, Theorem 2 indicates that undersmoothing is
required in estimating ξ(v) and the optimal bandwidth does not satisfy the condi-
tion of Theorem 2.

EXAMPLE 1 (cont.). Let β̂n be the estimator of β in (1.3). Assume n0/n → λ.

Checking the conditions of Theorem 2, we can conclude that
√

n(β̂n − β0)
L→

N(0,	�), where 	� = 	−1(σ 2 + λβTE[E{Z − E(Z|U)|V}]⊗2β) and 	 =
E[{ξ − E(ξ |U)}⊗2].

EXAMPLE 2 (cont.). For the de-noised models introduced in Section 1, we
apply Theorem 2 to derive the asymptotic distribution of the estimator, �̂ =
(β̂

T
, θ̂T)T, given by Cui, He and Zhu (2002), and obtain that

√
n(�̂ − �)

L→
N{0,	−1(σ 2 + βT	eβ)}.

The asymptotic covariance of �̂n can be consistently estimated by 	̂n =
n	̂

−1
σ̂ 2 + 	̂

−1
Q̂	̂

−1
, where 	̂

−1 = {(Z̃TZ̃)−1Z̃T(I − S)T}⊗2, Q̂ = 1
n

∑n
i=1(ηi −

Ẑi )
T�̂n{B̂(Vi)}⊗2, σ̂ 2 = 1

n

∑n
i=1{Yi − α̂(Ui)Xi − �̂

T
Ẑ}2, B̂(v) = Ẑ −

Ê{�T(U)�−1(U)X|V = v} and Ê{�T(U)�−1(U)X|V = v} is a nonparametric
regression estimator of �T(U)�−1(U)X on V. α̂(·) will be given in the next sec-
tion.

Generally 	̂n is difficult to calculate. However, implementation will be-
come simpler in some cases. For example, in the errors-in-variables model with
validation data, a direct simplification yields B(V) = Z − �T(U)�−1(U)X,

D = {βTE(eeT|V)β}	 and the asymptotic covariance matrix equals 	−1{σ 2 +
λβTE(eeT|V)β}. This matrix can be estimated by a standard sandwich proce-
dure. The similar situation also applies for the asymptotic covariance matrix,
	−1{σ 2 + βTE(eeT|V)β}, of the de-noise model.
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2.3. Estimation of the nonparametric components. After obtaining esti-
mates �̂n, we can estimate aj (u) and bj (u) for j = 1, . . . , q , and then αj (u).
Write 
(u) = {a1(u), . . . , aq(u), b1(u), . . . , bq(u)}T. An estimator of the nonpara-
metric components 
(u) is defined as


̂(u) = H−1(DT
uWuDu)

−1DT
uWu(Y − Ẑ�̂n).(2.4)

Correspondingly, a(u) is estimated by â(u) = (Iq,0q)(DT
uWuDu)

−1DT
uWu (Y −

Ẑ�̂n), where Iq is the q × q identity matrix, H = diag(1, h) ⊗ Iq . We have the
following asymptotic representation for the resulting estimator:

THEOREM 3. Under Assumptions 1–5 given in the Appendix, we have√
nhH{
̂(u0) − 
(u0)}

= n1/2h5/2

2(μ2 − μ2
1)

(
(μ2

2 − μ1μ3)

(μ3 − μ1μ2)

)
α′′(u0)

−
√

nhbr+1

(r + 1)! ζT
1 S−1

u cp

(
�−1(u0)E

[
X
{
ξ (r+1)(V)

}T
β0|U = u0

]
0

)
+ o(n1/2h5/2 + n1/2h1/2br+1)

+
√

nh�−1(u)

nfu(u)(μ2 − μ2
1)

n∑
i=1

Kh(Ui − u){Xiεi + E(Xi |Vi )eT
i β}

⊗
(

μ2 − μ1(Ui − u)/h

(Ui − u)/h − μ1

)
{1 + oP(1)}.

Based on this representation, we can derive the asymptotic normality of the
proposed nonparametric estimators of the varying coefficient functions. The proof
is straightforward but tedious. We omit the details.

For notational simplicity, we assume that ε is independent of (Z,X,U) and e is
independent of (V,U) in the remaining part of this paper.

THEOREM 4. Under Assumptions 1–5, we have

√
nh

[
H{
̂(u0) − 
(u0)} − h2

2(μ2 − μ2
1)

(
(μ2

2 − μ1μ3)α
′′(u0)

(μ3 − μ1μ2)α
′′(u0)

)

− br+1

(r + 1)!ζ
T
1 S−1

u cp

×
(

�−1(u0)E
[
X
{
ξ (r+1)(V)

}T
β0|U = u0

]
0

)
+ o(h2 + br+1)

]
L→ N(0,	2),



SEMIPARAMETRIC PARTIALLY LINEAR MODELS 435

as n → ∞, where 	2 = f −1
u (u0){σ 2�−1(u0) + �−1(u0)	

∗
1�

−1(u0)} ⊗ G,

G = 1

(μ2 − μ2
1)

2

×
(

μ2
2ν0 − 2μ1μ2ν1 + μ2

1ν2 (μ2
1 + μ2)ν1 − μ1μ2ν0 − μ1ν2

(μ2
1 + μ2)ν1 − μ1μ2ν0 − μ1ν2 ν2 − μ1(2ν1 + μ1ν0)

)
,

	∗
1 = βT�eβ�(u0), �(u0) = (E[{E(X|V)}|U = u0])⊗2, q0 = μ2/(μ2 − μ1),

q1 = −μ1/(μ2 − μ2
1).

Furthermore, if nhb2r+2 → 0, then

√
nh

{
α̂(u) − α(u) − h2

2

μ2
2 − μ1μ3

μ2 − μ2
1

α′′(u) + o(h2 + br+1)

}
L→ N(0,	∗

2),

where 	∗
2 = σ 2(q2

0ν0 + 2q0q1ν1 + q2
1ν2){�−1(u0) + �−1(u0)	

∗
1�

−1(u0)}/fu(u).

The first term of 	2 is the asymptotic covariance of the usual profile likelihood
estimator of Cai, Fan and Li (2000), when ξj is observed. The second term is
attributed to calibrating the error-prone covariates. In the error-in-variable model
with validation data, if X is independent of V and E(X) = 0, the measurement
errors have no impact on the effect of the covariance 	2. Theorem 4 also indi-
cates that if n1/2 max(h5/2, br+1) → 0, the bias of α̂(u) tends to zero and α̂(u) is
asymptotically normally distributed with rate (nh)1/2.

After obtaining �̂n and α̂(u), one can easily give an estimator of the variance σ 2

of the error ε:

σ̂ 2
n = 1

n

n∑
i=1

{Yi − β̂
T
ξ̂

T
n(Vi) − θ̂

T
nWi − α̂T(Ui)Xi}2.

In our simulation, a simple version of σ̂ 2
n is used. Note that S depends only on the

observations {(Ui,Xi)}ni=1, and we can derive a “synthetic linear model,” that is,
Y − Z� = M + ε, where M = αT(U)X. A straightforward derivation yields (I −
S)Y = (I − S)Z�+ (I − S)ε. Standard regression gives the least-square estimates
�̂ and then M̂ = S(Y − Z�̂). Note that Z is not always observed. Replacing Z by
its estimates, we obtain a consistent estimator M̂ of M; that is, M̂ = S(Y − Ẑ�̂).

A consistent estimator σ 2 may be defined as σ̂ 2
n = 1

n

∑n
i=1(Yi − �̂

T
Ẑi − M̂i)

2,

where M̂i is the ith element of M̂.

2.4. Bandwidth selection. The proposed procedure involves two bandwidths,
h and b, to be selected. To derive asymptotic distributions of the proposed esti-
mators, we theoretically impose the rates of convergence for the bandwidths. It is
worthwhile to point out that undersmoothing is necessary when we estimate ξ and
the optimal bandwidth for b is then violated.
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As mentioned before, the optimal bandwidth for b cannot be obtained because
undersmoothing the nonparametric estimators of the covariates is necessary. The
consequence of undersmoothing ξ is that the bias is kept small and precludes the
optimal bandwidth for b. The asymptotic variances of the proposed estimators
for constant coefficients depend on neither the bandwidth nor the kernel function.
Hence, we can use the similar method of mixture of higher-order theoretical ex-
pansions, proposed by Sepanski, Knicherbocker and Carroll (1994) or the typical
curves approach by Brookmeyer and Liao (1992) to select the bandwidth b. As
done by Sepanski, Knickerbocker and Carroll (1994), the suitable bandwidth is
b = Cn−1/3, where C is a constant depending on unknown function ξ(v) and its
twice derivatives. In practice, one can use a plug-in rule to estimate the constant C.
A useful and simple candidate C is σ̂V , the sample deviation of V . This method is
fairly effective and easy to implement. In our simulation example, the bandwidth
is b = σ̂vn

−1/3. Based on the asymptotic analysis and empirical experience for
the fixed time case (i.e., de-noise models), we suggest a simple rule of thumb as
follows: The smoothing parameter b is so chosen that intervals of size 2b would
contain around 5 points for n up to 100 and between 8−1n1/3 and 4−1n1/3 points
for larger n.

We use the “leave one sample out” method to select the bandwidth h. This
method has been widely applied in practice; for example, Cai, Fan and Li (2000)
and Fan and Huang (2005). We define the cross-validation score for h as CV (h) =
n−1∑n

i=1{Yi − α̂T
h,−i (Ui)Xi − �̂

T
n,−iẐi}2, where �̂n,−i is the estimated profile

least-square-based estimator defined by (2.3), computed from the data with mea-
surements of the ith observation deleted, and α̂h,−i (·) is the estimator defined
in (2.4) with �̂n replaced by �̂n,−i . The likelihood cross-validation smoothing
parameter hcv is the minimizer of CV (h). That is, hcv = arg minh CV (h).

3. Tests for parametric and nonparametric components.

3.1. Test for parametric components. An interesting question is to consider
the following hypothesis:

H0 : A� = 0 VS H1 : A� �= 0,(3.1)

where A is a given l × p full rank matrix.

Let �̂0 = (β̂
T
0 , θ̂

T
0 )T be the estimators of � and α̂0(·) be the estimator of α(u)

under the null hypothesis. Denote RSS0 =∑n
i=1{Yi − β̂

T
0 ξ̂

T
i − θ̂

T
0 Wi − α̂T

0 (Ui)Xi}2.

RSS0 can be further expressed as
∑n

i=1{Yi − β̂
T
0 ξ̂

T
i − θ̂

T
0 Wi − S(Y − Ẑ�̂0)}2,

where �̂0 = �̂ − (Z̃TZ̃)−1AT{A(Z̃TZ̃)−1AT}−1A�̂, and �̂ = (Z̃TZ̃)−1Z̃TỸ, an
estimator of � without the restriction, with Z̃ = (I − S)Ẑ and Ỹ = (I − S)Ŷ.

Similar, let �̂1 = (β̂
T
1 , θ̂

T
1 )T and α̂1(·) be the estimators of � and α(·) under the

alternative hypothesis, respectively. Denote RSS1 = ∑n
i=1{Yi − β̂

T
1 ξ̂ i − θ̂

T
1 Wi −
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α̂T
1 (Ui)Xi}2, which can be expressed as

∑n
i=1{Yi − β̂

T
1 ξ̂ i − θ̂

T
1 Wi −S(Y − Ẑ�̂1)}2.

Following Fan and Huang (2005), we define a profile least-square-based ratio test
by

Tn = n

2
(RSS0 − RSS1)/RSS1.

Under their set-up, Fan and Huang (2005) showed that statistic Tn is the profile
likelihood ratio when the error distribution is normally distributed. In the present
situation, because of the effect of measurement error on variables, no central
X2-distribution similar to that of Fan and Huang (2005) is available. However,
we can still prove that 2Tn has the asymptotic noncentral χ2 distribution under the
alternative hypothesis of (3.1), which we summarize in the following theorem.

THEOREM 5. Suppose that Assumptions 1–5 in the Appendix are satisfied and
nb2r+2 → 0, as n → ∞. Under the alternative hypothesis of (3.1),

2Tn − nσ−2�TAT(A	−1AT)−1A�
L→

l∑
i=1

ωiχ
2
i1

where ωi for 1 ≤ i ≤ l are the eigenvalues of (σ 2A	−1AT)−1(A	−1
1 AT) and χ2

i1

is the central χ2 distribution with 1 degree of freedom. Furthermore, let 	̂1

and 	̂ be the consistent estimators of 	1 and 	, respectively. Then 2�nTn
L→

χ2
(l)(λ), where �n = l/ tr{(σ 2A	̂

−1
AT)−1(A	̂

−1
1 AT)}, χ2

(l)(λ) is the noncen-

tral χ2 distribution with l degree of freedom, and the noncentral parameter
λ = σ−2� limn→∞ n�TAT(A	−1AT)−1A� with � = l/ tr{(σ 2A	−1AT)−1 ×
(A	−1

1 AT)}.

In a similar way, we may construct the Wald test for hypothesis (3.1) as Wn =
�̂

T
AT(A	̂1AT)−1A�̂, and demonstrate that Wn and 2�nTn have the same asymp-

totic distribution under the alternative hypothesis. These properties can therefore
be used to calculate the power of the proposed tests.

EXAMPLE 3 (cont.). Generalize (1.6) to a more flexible model:

Yt = βTE(η|Vt ) + ζTη + γ TSt + α(Ut)Xt + εt .

Write � = (βT, ζT,γ T)T and Z = {E(ηT|V),ηT,ST
t }T. The hypothesis (1.7) is

equivalent to

A� = 0 VS H1 : A� �= 0,(3.2)

where A = (1p1,−1p1,0), 1p1 is p1-variate vector with all entries 1. This is an ex-
pression of (3.1). As a consequence, the proposed profile least-square-based ratio
test and Wald test can be applied to test this hypothesis.
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For hypothesis (3.2), one may also propose a Wald-type statistic: Wn(h) =
�̂

T
AT(A	̂hAT)−1A�̂, where 	̂h = �̂−1(σ̂ 2 + β̂

T
�̂eβ̂). It can be proved that

2�nTn and Wn have the same asymptotic X2 distribution.

3.2. Tests for the nonparametric part and wild bootstrap version. It is also
of interest to check whether the varying-coefficient functions α(u) in (1.2) are
parametric functions. Specifically speaking, we consider the following hypothesis:

H0 :αi(U) = αi(U,γ ) VS H1 :αi(U) �= αi(U,γ ), i = 1,2, . . . , q,

where γ is an unknown vector, αi(·, ·) is a known function and i = 1,2, . . . , q .
For simplicity of presentation, we test the homogeneity:

H0 :α1(U) = α1, . . . , αq(U) = αq.

Let α̃1, . . . , α̃q and �̃ be the profile estimator under H0. The weighted residual

sum of squares under H0 is RSS(H0) = ∑n
i=1 wi(Yi − ∑q

j=1 α̃jXij − �̃
T

Ẑi )
2,

where wi(·) are weighted functions such that
∑n

i=1 wi = 1, and wi ≥ 0. In general,
the weight function w has a compact support, designed to reduce the boundary
effects on the test statistics. When σ 2(Z,X,U) = v(Z,X,U)σ 2 for some known
function v(Z,X,U), we may choose wi = v−1(Zi ,Xi ,Ui). See Fan, Zhang and
Zhang (2001) and Fan and Jiang (2007) for a similar argument.

Under the general alternative that all the varying-coefficient functions are al-
lowed to be varying of random variable U , we use the local likelihood method to
obtain estimator β̂ and α̂(U). Therefore, the corresponding weighted residual sum
of squares is

RSS(H1) =
n∑

i=1

wi

{
Yi −

q∑
j=1

α̂j (Ui)Xij − �̂
T

Ẑi

}2

.

In a similar way to that used in Section 3.1, we propose a generalized likelihood
ratio (GLR) statistic: TGLR = {RSS(H0) − RSS(H1)}/RSS(H1). Under mild as-
sumptions, one can derive the asymptotic distribution of TGLR. This distribution
can be used to gain the empirical level. See Fan, Zhang and Zhang (2001) for a
related discussion.

These arguments can be applied to the following partially parametric null hy-
pothesis: H0 :α1(U) = α1, . . . , αl(U) = αr, r < q. The difference is only the def-
inition of RSS(H0), for which we use the profile likelihood procedure to estimate
the constant coefficient αi , i = 1,2, . . . , r and �, and use the profile linear pro-
cedure to estimate the nonparametric component αi(·), i = r + 1, . . . , q under the
null hypothesis.

Although the asymptotic level of TGLR is available, TGLR may not perform well
when sample sizes are small. For this reason and for practical purposes, we sug-

gest using a bootstrap procedure. To be specific, let ε̂i = Yi −�̂
T

Ẑi − α̂T
(Ui)Xi be
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the residuals based on estimators (2.3) and (2.4) for parametric and nonparamet-
ric parts, respectively. We use the Wild bootstrap [Wu (1986), Härdle and Mam-
men (1993)] method to calculate the critical values for test TGLR. Let τ be a ran-
dom variable with a distribution function F(·) such that Eτ = 0, Eτ 2 = 1 and
E|τ |3 < ∞. We generate the bootstrap residual ε∗

i = ε̂iτi , where τi is indepen-
dent of ε̂i . Define bootstrap version T ∗

GLR like TGLR based on the bootstrap sample
(Y ∗

i ,Xi , Ẑi ,Ui), where Y ∗
i = �̂Ẑi + α̂(Ui)Xi + ε∗

i for i = 1,2, . . . , n. On a ba-
sis of the distribution of T ∗

GLR, we have the (1 − α) quantile t∗1−α and reject the
parametric hypothesis if TGLR > t∗1−α .

4. Numerical examples.

4.1. Performance of the proposed estimators. In this section, we conducted
simulation experiments to illustrate the finite sample performances of the proposed
estimators and tests. Our simulated data were generated from the following model:{

Y = β1ξ + β2W1 + β3W2 + α1(U)X1 + α2(U)X2 + ε,

ξ = ξ(V ), η = ξ(V ) + e.
(4.1)

W1 and W2 are bivariate normal with marginal mean zero, marginal variance 1
and correlation 1/

√
5, while X1 and X2 are independent and normal with mean

zero and variance 0.8. The unobserved covariate ξ is related to auxiliary variable
(η,V ) through ξ(V ) = 3V −2 cos(4πV ) and η = ξ(V )+e. V is a uniform random
variable on [0,1] and U is a uniform random variable on [0,3]. The errors ε and e

are independent of each other and normal variables with mean 0 and variances σ 2
ε

and σ 2
e , respectively. The varying-coefficient functions are

α1(U) = exp(−U2) + sin(πU) or(4.2)

α̃1(U,�) = m + �{α1(U) − m},(4.3)

α2(U) = 1
2U2 − cos(2πU),(4.4)

where m = ∫ 3
0 α1(t) dt/3, and � is chosen one from the set {0.0,0.2,0.5,0.7,1.0}.

The sample size was 100. We generated 500 data sets in each case, applying to
each simulated sample the bootstrap test proposed for the parametric part based on
500 bootstrap repetitions. The Gaussian kernel has been used in this example. The
optimal bandwidth h was chosen by the leave one out cross-validation method de-
scribed in Section 2.4 and the bandwidth b was selected as b = σvn

−1/3, where σv

is the sample deviation of V .
We consider four scenarios. In the first three scenarios σ 2

ε = 1 and σ 2
e = 2.

(i) β = (0, c − 1,1)T for c ∈ {0,0.1,0.2,0.25,0.5,0.7,1.0} and α1(u) and
α2(u) are given in (4.2) and (4.4);

(ii) β = (0,−0.8,1)T and α1(u) and α2(u) are given in (4.3) and (4.4) with
� ∈ {0.0,0.2,0.5,0.7,1.0};

(iii) β = (0.2,−1,1)T and α1(u) and α2(u) are the same as in (ii);
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(iv) The setting is the same as that of (iii). But the signal-noise ratio (r =
σ 2

ξ /(σ 2
ξ + σ 2

e )) varies from 0.3 to 0.8 by 0.1.

The corresponding results are presented in Tables 1–4, in which we display the
estimated values and associated standard errors, standard derivations, and cover-
age probabilities based on the benchmark estimator (i.e., all covariates measured
exactly), the proposed estimator and the naive estimator (ηi directly used as the
covariates). We summarize our findings as follows:

When β1 = 0 [scenario (i) and (ii)], all estimates are close to the true values re-
gardless of the nonparametric functions α1(u) and α2(u). The differences among
the estimated values based on three methods are slight and can be ignored. How-
ever, when β1 = 0.2, the estimates of β1 based on the naive method have severe
biases and the associated coverage probabilities are also substantially smaller than
0.95. These biases were not improved when the sample size was increased (not
listed here). But the proposed estimation procedure performs well. On the other
hand, the estimates of β2 and β3 are similar based on the three methods. From
Table 4, we can see that the naive estimator of β1 has zero coverage probabilities
when r = 0.3, while the proposed estimator has fairly reasonable coverage proba-
bilities. With an increase of r , it is readily seen that coverage probabilities of the
proposed estimator are closer to the nominal level, which indicates the proposed
method is promising.

4.2. Performance of the proposed tests. We now explore the numerical perfor-
mance of the proposed tests. First, we want to test a hypothesis of the parametric
component of form:

H0 :Aβ = 0 VS H1 :Aβ = c,(4.5)

where A = (1,1,1)T, c is a value from the set {0,0.1,0.2, . . . ,0.7,1}, β =
(0.2, c − 1.2,1)T and α1(·) and α1(·) are the same as those in scenario (i). The
same models and error distribution as in Section 4.1 are used.

The power to detect H1 was calculated by using the critical values from the
chi-squared approximation and the wild bootstrap approximation. To compare test
performances, the powers of the tests based on the benchmark estimator, the pro-
posed estimator and the naive estimator are presented. In implementing the wild
bootstrap method, we generated 500 bootstrap samples from the model{

Y ∗
i = β̂1ξ̂i + β̂2W1i + β̂3W2i + α̂1(Ui)Z1i + α̂2(Ui)Z2i + ε∗

i ,

ξ̂i = ξ̂ (Vi),

where, ε∗
i is a wild bootstrap residual; that is, ε∗

i = τi ε̂i , with ε̂i = Yi − {β̂1ξ̂i +
β̂2W1i + β̂3W2i + α̂1(Ui)Z1i + α̂2(Ui)Z2i}, τi = −(

√
5 − 1)/2 with probability

(
√

5 + 1)/(2
√

5) and τi = (
√

5 + 1)/2 with 1 − (
√

5 + 1)/(2
√

5). Using this boot-
strap sample (Y ∗

i , ξ̂i ,Wi ,Zi ,Ui), we can calculate the T ∗
n and W ∗

n , and get the
95 percentiles as the critical values for the proposed tests at the significance level
0.05.
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TABLE 1
Results of simulation study for scenario (i)

β1 β2 β3

 Est. SE SD COV Est. SE SD COV Est. SE SD COV

0 B −0.000 0.030 0.027 0.912 −0.990 0.133 0.125 0.938 1.000 0.138 0.126 0.924
P −0.001 0.031 0.028 0.918 −0.990 0.133 0.125 0.936 1.000 0.139 0.126 0.930
N −0.001 0.026 0.024 0.904 −0.990 0.133 0.125 0.940 0.999 0.138 0.126 0.926

0.1 B 0.002 0.028 0.027 0.920 −0.890 0.139 0.126 0.910 1.003 0.129 0.126 0.936
P 0.003 0.030 0.028 0.938 −0.890 0.139 0.126 0.912 1.003 0.129 0.126 0.938
N 0.003 0.025 0.024 0.938 −0.890 0.140 0.126 0.912 1.004 0.129 0.126 0.938

0.2 B 0.000 0.029 0.027 0.936 −0.802 0.144 0.126 0.894 0.991 0.138 0.126 0.932
P −0.000 0.030 0.028 0.934 −0.802 0.145 0.126 0.898 0.991 0.138 0.126 0.940
N −0.001 0.027 0.024 0.912 −0.801 0.145 0.126 0.896 0.992 0.138 0.125 0.934

0.25 B −0.001 0.029 0.027 0.930 −0.749 0.128 0.127 0.936 0.990 0.138 0.127 0.940
P −0.000 0.031 0.028 0.928 −0.748 0.129 0.127 0.938 0.990 0.139 0.127 0.938
N −0.000 0.024 0.024 0.948 −0.749 0.128 0.126 0.938 0.990 0.138 0.126 0.940

0.5 B −0.002 0.029 0.027 0.926 −0.513 0.143 0.126 0.918 1.000 0.131 0.126 0.936
P −0.002 0.031 0.028 0.928 −0.513 0.143 0.126 0.920 1.001 0.131 0.126 0.936
N −0.001 0.026 0.024 0.926 −0.513 0.143 0.126 0.918 1.001 0.131 0.126 0.936

0.7 B 0.000 0.029 0.027 0.936 −0.299 0.140 0.127 0.916 0.996 0.138 0.127 0.924
P 0.001 0.029 0.028 0.930 −0.298 0.140 0.127 0.920 0.997 0.138 0.127 0.926
N 0.001 0.025 0.024 0.934 −0.299 0.140 0.126 0.914 0.996 0.138 0.126 0.926

1 B 0.001 0.030 0.027 0.934 0.002 0.137 0.127 0.942 1.008 0.144 0.127 0.908
P 0.001 0.031 0.028 0.934 0.002 0.137 0.127 0.938 1.008 0.145 0.127 0.906
N 0.001 0.026 0.024 0.928 0.002 0.138 0.127 0.938 1.007 0.144 0.127 0.908

Note: “Est” is the simulation mean; “SE” is the mean of the estimated standard error; “SD” is the mean of the estimated standard deviation; and “COV” is
the coverage probability of a nominal 95% confidence interval. The methods used are “B” for the benchmark method, “P” for the proposed method, and
“N” for the naive method.
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TABLE 2
Results of simulation study for scenario (ii)

β1 β2 β3

 Est. SE SD COV Est. SE SD COV Est. SE SD COV

0 B 0.000 0.034 0.033 0.920 −0.795 0.154 0.153 0.948 0.995 0.160 0.154 0.946
P 0.001 0.036 0.035 0.922 −0.795 0.154 0.154 0.950 0.995 0.159 0.154 0.950
N 0.000 0.030 0.029 0.928 −0.794 0.154 0.153 0.948 0.994 0.160 0.154 0.950

0.05 B 0.002 0.028 0.027 0.920 −0.790 0.139 0.125 0.910 1.003 0.129 0.126 0.936
P 0.003 0.030 0.028 0.938 −0.790 0.139 0.125 0.908 1.004 0.129 0.126 0.938
N 0.003 0.025 0.024 0.938 −0.790 0.140 0.125 0.908 1.004 0.129 0.126 0.938

0.1 B 0.000 0.029 0.027 0.936 −0.802 0.144 0.126 0.894 0.991 0.138 0.125 0.928
P −0.000 0.030 0.028 0.936 −0.802 0.144 0.126 0.898 0.991 0.138 0.126 0.938
N −0.001 0.027 0.024 0.916 −0.801 0.145 0.125 0.896 0.992 0.138 0.125 0.932

0.15 B −0.001 0.029 0.027 0.932 −0.799 0.128 0.126 0.936 0.990 0.138 0.126 0.938
P −0.000 0.031 0.028 0.930 −0.798 0.128 0.126 0.938 0.990 0.138 0.126 0.938
N −0.000 0.024 0.024 0.950 −0.799 0.128 0.126 0.938 0.990 0.138 0.126 0.936

0.2 B −0.002 0.029 0.027 0.926 −0.813 0.143 0.126 0.918 1.001 0.131 0.126 0.934
P −0.002 0.031 0.028 0.932 −0.813 0.143 0.126 0.918 1.001 0.131 0.126 0.934
N −0.001 0.026 0.024 0.924 −0.813 0.143 0.126 0.916 1.001 0.131 0.126 0.934

0.5 B 0.000 0.029 0.027 0.936 −0.799 0.140 0.126 0.916 0.996 0.138 0.126 0.924
P 0.001 0.029 0.028 0.930 −0.798 0.140 0.126 0.922 0.997 0.138 0.127 0.926
N 0.001 0.025 0.024 0.934 −0.799 0.140 0.126 0.914 0.996 0.138 0.126 0.926

0.7 B 0.001 0.030 0.027 0.932 −0.798 0.137 0.127 0.942 1.008 0.144 0.127 0.906
P 0.001 0.031 0.028 0.934 −0.798 0.137 0.127 0.938 1.008 0.145 0.127 0.906
N 0.001 0.026 0.024 0.930 −0.798 0.138 0.126 0.938 1.007 0.144 0.126 0.908
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TABLE 3
Results of simulation study for scenario (iii)

β1 β2 β3

 Est. SE SD COV Est. SE SD COV Est. SE SD COV

0 B 0.200 0.034 0.035 0.936 −0.995 0.154 0.162 0.956 0.995 0.160 0.163 0.964
P 0.195 0.038 0.038 0.920 −0.995 0.158 0.167 0.958 0.994 0.163 0.168 0.958
N 0.156 0.031 0.030 0.684 −0.995 0.158 0.160 0.952 0.995 0.165 0.160 0.946

0.05 B 0.202 0.028 0.029 0.948 −0.990 0.139 0.138 0.938 1.003 0.129 0.138 0.950
P 0.197 0.032 0.032 0.944 −0.994 0.144 0.144 0.938 1.004 0.139 0.144 0.948
N 0.159 0.026 0.025 0.602 −0.991 0.149 0.133 0.910 1.004 0.140 0.133 0.926

0.1 B 0.200 0.029 0.029 0.950 −1.002 0.144 0.138 0.924 0.991 0.138 0.138 0.956
P 0.194 0.032 0.033 0.948 −1.005 0.151 0.144 0.922 0.991 0.147 0.144 0.954
N 0.155 0.028 0.025 0.560 −1.004 0.153 0.133 0.904 0.991 0.148 0.133 0.912

0.15 B 0.199 0.029 0.029 0.950 −0.999 0.128 0.138 0.960 0.990 0.138 0.138 0.960
P 0.194 0.033 0.032 0.938 −0.998 0.135 0.144 0.958 0.986 0.144 0.144 0.956
N 0.155 0.025 0.025 0.542 −0.997 0.138 0.133 0.938 0.989 0.145 0.133 0.948

0.2 B 0.198 0.029 0.029 0.948 −1.013 0.143 0.138 0.942 1.001 0.131 0.138 0.958
P 0.193 0.033 0.032 0.936 −1.012 0.148 0.144 0.938 0.997 0.136 0.144 0.954
N 0.155 0.027 0.025 0.536 −1.016 0.154 0.133 0.920 0.998 0.141 0.133 0.932

0.5 B 0.200 0.029 0.029 0.956 −0.999 0.140 0.138 0.954 0.996 0.138 0.138 0.944
P 0.195 0.032 0.032 0.952 −1.000 0.147 0.144 0.954 0.993 0.144 0.144 0.956
N 0.157 0.026 0.025 0.582 −1.000 0.153 0.133 0.898 0.996 0.145 0.133 0.920

0.7 B 0.201 0.030 0.029 0.952 −0.998 0.137 0.139 0.958 1.008 0.144 0.139 0.938
P 0.196 0.033 0.033 0.946 −0.997 0.143 0.145 0.962 1.008 0.146 0.145 0.956
N 0.157 0.028 0.025 0.594 −1.000 0.146 0.134 0.932 1.006 0.151 0.134 0.912
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TABLE 4
Results of simulation study for scenario (iv)

β1 β2 β3

 Est. SE SD COV Est. SE SD COV Est. SE SD COV

0.30 B 0.194 0.038 0.046 0.970 −0.987 0.145 0.159 0.980 1.005 0.149 0.156 0.980
P 0.173 0.040 0.042 0.850 −0.986 0.150 0.152 0.970 1.005 0.150 0.149 0.970
N 0.073 0.025 0.025 0.000 −0.976 0.159 0.137 0.920 0.996 0.153 0.135 0.920

0.40 B 0.199 0.043 0.044 0.950 −1.002 0.123 0.147 0.970 1.002 0.131 0.147 0.980
P 0.185 0.045 0.041 0.890 −1.003 0.124 0.144 0.970 0.999 0.130 0.144 0.980
N 0.096 0.029 0.028 0.060 −1.002 0.127 0.134 0.970 1.002 0.135 0.134 0.960

0.50 B 0.199 0.043 0.042 0.960 −0.981 0.134 0.142 0.960 1.020 0.122 0.143 0.970
P 0.190 0.044 0.040 0.920 −0.981 0.133 0.139 0.950 1.019 0.127 0.141 0.950
N 0.116 0.033 0.030 0.200 −0.988 0.137 0.133 0.930 1.020 0.132 0.135 0.930

0.60 B 0.194 0.035 0.040 0.970 −0.993 0.136 0.141 0.950 1.025 0.137 0.138 0.930
P 0.192 0.038 0.040 0.950 −0.994 0.140 0.140 0.950 1.025 0.138 0.137 0.910
N 0.131 0.028 0.032 0.450 −0.998 0.152 0.137 0.910 1.020 0.138 0.134 0.940

0.70 B 0.198 0.038 0.039 0.960 −1.018 0.137 0.133 0.970 1.004 0.140 0.131 0.930
P 0.194 0.040 0.038 0.950 −1.017 0.138 0.132 0.960 1.004 0.142 0.131 0.930
N 0.152 0.038 0.033 0.660 −1.021 0.142 0.130 0.920 1.004 0.144 0.128 0.920

0.80 B 0.203 0.036 0.038 0.950 −1.001 0.142 0.132 0.930 1.005 0.136 0.132 0.960
P 0.203 0.038 0.038 0.950 −1.002 0.143 0.131 0.940 1.005 0.135 0.132 0.960
N 0.172 0.035 0.035 0.870 −1.002 0.147 0.131 0.920 1.000 0.136 0.131 0.930
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TABLE 5
Empirical power of profile least-square ratio test Tn and the Wald test Wn at level 0.05 for
hypothesis (4.5). Data were generated from models (4.1) with β = (0.2, c − 1.2,1)T and

c ∈ {0,0.1,0.2,0.25,0.5,0.7,1} and α1(u) and α2(u) given by (4.2) and (4.4), respectively. The
methods used are “Asm” for the asymptotic version, and “Boot” for the bootstrap version

Tn Wald

c B P N B P N

0 Aym 0.060 0.070 0.080 0.050 0.050 0.080
Boot 0.050 0.060 0.060 0.060 0.060 0.060

0.10 Aym 0.150 0.140 0.150 0.130 0.130 0.150
Boot 0.130 0.100 0.080 0.130 0.120 0.080

0.20 Aym 0.190 0.220 0.120 0.150 0.150 0.120
Boot 0.170 0.160 0.080 0.190 0.180 0.080

0.25 Aym 0.350 0.340 0.240 0.320 0.310 0.240
Boot 0.290 0.280 0.180 0.310 0.300 0.180

0.50 Aym 0.740 0.710 0.530 0.670 0.660 0.530
Boot 0.700 0.630 0.500 0.720 0.630 0.500

0.70 Aym 0.940 0.940 0.870 0.930 0.920 0.870
Boot 0.920 0.890 0.800 0.930 0.890 0.800

1.00 Aym 1.000 1.000 1.000 0.990 0.990 1.000
Boot 0.990 0.990 0.960 0.990 0.990 0.960

The power of Tn associated to scenario (iii) is presented in Table 5 for β1 =
0.2. Note that the power is actually the empirical level when c = 0. All empirical
levels close nominal level 0.05 and the empirical level based on the wild bootstrap
procedure are consistently smaller than those based on the X2 approximation and
are closer to the nominal level. These facts apply for β1 = 0 (not listed here). As
c increases to 0.7, the powers of two tests based on X2 approximation are greater
than 0.92. Similar conclusions can be drawn for the Wald test, whose simulation
results are also given in Table 5.

We further study the numerical performance of the test by checking the non-
parametric component. We consider the following hypothesis:

H0 :α1(u) = m VS α1(u) = α1(u,�) given by (4.3).(4.6)

The simulation results obtained by using the wild bootstrap approximation method
to choose critical value are shown in Table 6. When � = 0, the results are the
empirical levels, which are close to the nominal level. The power is greater than
0.99 when � = 0.5. Table 6 also indicates that the power is a monotone increasing
function of �.

4.3. Real data example. To illustrate the proposed estimation method, we con-
sider a dataset from a Duchenne Muscular Dystrophy (DMD) study. See Andrews
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TABLE 6
Empirical power of level 0.05 for hypothesis (4.6) using

the wild bootstrap procedure. Data were generated from (4.1) and (4.3)
with β = (0.2,−1,1)T and � ∈ {0,0.5,0.10,0.15,0.5,0.7}

 B P N

0 0.060 0.050 0.080
0.05 0.110 0.140 0.160
0.10 0.240 0.260 0.250
0.15 0.410 0.360 0.360
0.20 0.520 0.510 0.500
0.50 0.990 0.990 1.000
0.70 1.000 1.000 1.000

and Herzberg (1985) for a detailed discussion on the dataset. The dataset contains
209 observations corresponding to blood samples on 192 patients (17 patients have
two samples) collected from a project to develop a screening program for female
relatives of boys with DMD. The program’s goal was to inform a woman of her
chances of being a carrier based on serum markers as well as her family pedigree.
Another question of interest is whether age should be taken into account in the
analysis. Enzyme levels were measured in known carriers (75 samples) and in a
group of noncarriers (134 samples). The serum marker creatine kinase (ck) is inex-
pensive to obtain, while the marker lactate dehydrogenase (ld) is very expensive to
obtain. It is of interest to predict the value ld by using the level of ck, carrier status
and age of patient.

We consider the following model: Y = β0 + β1Z1 + β2Z2 + g(U), where
Z1 = ck is measured with errors and Z2 = carrier status is exactly measured,
U is age and Y denotes the observed level of lactate dehydrogenase. We justify
the measurement error of Z1 by regressing Z1 on U . The estimates and asso-
ciated standard errors based on the naive and proposed methods are as follows:
β̂0,naive = 4.6057(0.113), β̂1,naive = 0.1509(0.027) and β̂2,naive = 0.2269(0.055);
β̂0,n = 4.4296(0.329), β̂1,n = 0.1775(0.042) and β̂2,n = 0.3702(0.050). The es-
timated curves of the nonparametric function g(u) are provided in Figure 1. Ac-
counting for measurement errors, the estimate of β1 increases about 17.2%, and
the associated standard error also increases 55%. The estimate of β2 also increases
when measurement errors are taken into account. The patterns of the nonparamet-
ric curve are similar, and show a slight difference.

5. Discussion. We developed estimation and inference procedures for the
SVCPLM when parts of the parametric components are unobserved. The proce-
dures are derived by incorporating ancillary information to calibrate the mismea-
sured variables and by applying the profile least-square-based principle.
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FIG. 1. Estimated curves of the nonparametric function for the DMD study. The solid, dotted lines
were obtained using the naive and proposed methods, respectively.

In some cases we may not have an auxiliary variable η, but we can observe two
or more independent replicates of V. For instance, when two measurements V1
and V2, which satisfy that V1 = ξ + u1 and V2 = ξ + u2, and E(u1|V2) = 0 and
E(u2|V1) = 0, are available, we can estimate ξ by

ξ̂(v) =
∑n

i=1{Vi1Kh(Vi2 − v) + Vi1Kh(Vi1 − v)}∑n
i=1{Kh(Vi2 − v) + Kh(Vi1 − v)} ,

because E(V1|V2 = v) = E(V2|V1 = v) = E(ξ |V = v). The proposed procedure
applies to this situation as well, and similar results to those presented in this paper
can be obtained for the resulting estimator.

It is of interest to extend the proposed methodology to a more general semipara-
metric model: E(Y |Z,X,U) = G{�TZ+αT(U)X}, where G(·) is a link function.
The study of this model with mismeasured components of Z needs further investi-
gation and is beyond the scope of this paper.

APPENDIX

In this Appendix, we list assumptions and outline proofs of the main results.
The following technical assumptions are imposed:

A.1. Assumptions.

1. The random variable U has a bounded support U. Its density function fu(·)
is Lipschitz continuous and bounded away from 0 on its support. The den-
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sity function of random variable V, fv(v), is continuously differentiable
and bounded away from 0 and infinite on its finite support V . {αi(u), i =
1,2, . . . , q} have a continuous second derivative.

2. The q ×q matrix E(ZZT|U) is nonsingular for each U ∈ U. All elements of the
matrices E(ZZT|U), E(ZZT|U)−1 and E(ZXT|U) are Lipschitz continuous.

3. The kernel functions K(·) and L(·) are density functions with compact support
[−1,1].

4. There is an s > 2 such that E‖Z‖2s < ∞ and E‖X‖2s < ∞ and for some
δ < 2 − s−1 such that n2δ−1h → ∞, n2δ−1bk → ∞ and nhb

(2r+2)
k → 0,

k = 1,2, . . . , p1, where bk is the bandwidth parameter in the polynomial es-
timator ξ̂k(·) of ξk(·).

5. nh8 → 0 and nh2/(logn)2 → ∞.

A.2. Preliminary lemmas. Write cn1 = (
logh
nh

)1/2 + h2, cn2 = (
logb
nb

)1/2 +
br+1, cn = cn1 + cn2.

LEMMA A.1. Suppose that (Zi ,Xi ,Ui), i = 1,2, . . . , n are an i.i.d. random
vector. E|g(X,Z,U)| < ∞ and E[g(·, ·, u)|U = u] have a continuous second
derivative on u. Further assume that E(|g(X,Z,U)|s |Z = z,X = x) < ∞. Let
K be a bounded positive function with a bounded support satisfying the Lipschitz
condition. Given that n2δ−1h → ∞ for some δ < 1 − s−1, then we have

sup
u∈U

∣∣∣∣∣1n
n∑

i=1

Kh(Ui − u)

(
Ui − u

h

)k

g(Xi,Zi ,Ui) − f (u)E{g(X,Z, u)|U = u}μk

∣∣∣∣∣
= O(cn1) a.s.

Furthermore, assume that E[εi |Zi ,Xi ,Ui] = 0, E[|εi |s |Zi ,Xi ,Ui)] < ∞, then

sup
u∈U

∣∣∣∣∣1n
n∑

i=1

Kh(Ui − u)g(Xi ,Zi,Ui)εi

∣∣∣∣∣= O(cn1) a.s.

PROOF. The first result follows an argument similar to that of Lemma A.2 of
Fan and Huang (2005). The second result follows the first result and an argument
similar to Xia and Li (1999). �

LEMMA A.2. Suppose that E[g(Z,X, u)|U = u] has a continuous second
derivative on u and E|g(X,Z,U)|s < ∞. Under Assumptions 1–5, we have

sup
u∈U

∣∣∣∣∣1n
n∑

i=1

Kh(Ui − u)

(
Ui − u

h

)k

g(Xi ,Zi ,Ui)ξ̂
T
i

− f (u)E{g(X,Z, u)ξT|U = u}μk

∣∣∣∣∣= O(cn) a.s.
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and

sup
u∈U

∣∣∣∣∣1n
n∑

i=1

Kh(Ui − u)g(Xi ,Zi ,Ui)h(ξ̂ i )εi

∣∣∣∣∣= O(cn),

where h(·) is a twice continuous differentiable function.

PROOF. Note that 1
n

∑n
i=1 Kh(Ui − u)(Ui−u

h
)kg(Xi ,Zi ,Ui)ξ̂

T
i can be decom-

posed as

1

n

n∑
i=1

Kh(Ui − u)

(
Ui − u

h

)k

g(Xi ,Zi ,Ui)ξ
T
i

+ 1

n

n∑
i=1

Kh(Ui − u)

(
Ui − u

h

)k

g(Xi ,Zi ,Ui)(ξ̂ i − ξ i )
T.

By Lemma A.1, the first term equals fu(u)E{g(X,Z, u)ξ |U = u}μk +O(cn1) uni-
formly on u ∈ U in probability. Recalling the asymptotic expression given in (2.1)
and using Lemma A.1, one can show that the second term is O(cn2). This com-
pletes the proof of Lemma 2. �

LEMMA A.3. g(·, ·, u) has a continuous second derivative on u and E|g(X,

Z,U)| < ∞. Under Assumptions 1–5, n−1∑n
i=1(Ẑi − Zi )Ẑl

ig(Xi ,Zi ,Ui) is of
order O(cn) a.s., where l = 0,1.

PROOF. The proof follows from (2.1) and arguments similar to Lem-
ma A.2. �

LEMMA A.4. Under Assumptions 1–5, we have

(Z̃TZ̃)−1Z̃T(I − S)Z

= 	−1

(
ζ1S

−1
u cpbr+1

n(r + 1)!
n∑

i=1

ψ(Zi ,Xi ,Ui)
[{

ξ (r+1)(Vi)
}T

,0
]

+ 1

n2

n∑
i=1

n∑
j=1

1

fv(Vi )
ψ(Zi ,Xi ,Ui)Lb(Vj − Vi)(eT

j ,0)

)
{1 + o(1)}

in probability.

PROOF. We first prove that

1

n
Z̃TZ̃ → 	.(A.1)
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A direct calculation yields

DT
uWuDu = nfu(U)�(U) ⊗

(
1 μ1
μ1 μ2

)
{1 + OP(cn1)}.(A.2)

On the other hand, Lemma A.3 implies

DT
uWuẐ = nfu(U)�(U) ⊗ (1,μ1)

T{1 + OP(cn)}.(A.3)

A combination of (A.2) and (A.3) implies

(XT,0)(DT
uWuDu)

−1DT
uWuẐ = XT�−1(U)�(U){1 + OP(cn)}(A.4)

and then

Z̃i = Ẑi − �T(Ui)�
−1(Ui)Xi{1 + OP(cn)}, i = 1,2, . . . , n.(A.5)

It follows from these arguments that n−1Z̃TZ̃ = 1
n

∑n
i=1{ψ(Zi ,Xi ,Ui)}⊗2{1 +

OP(cn)}, and (A.1) follows.
Note that Z̃T(I−S)(Z− Ẑ) = ZT(I−S)T(I−S)(Z− Ẑ)− (Z− Ẑ)T(I−S)T(I−

S)(Z − Ẑ)
def= J1 − J2. The second term, J2, is OP(c2

n) by Lemma A.3. Write Z̃∗ =
(I − S)Z. We have J1 = Z̃T∗ (Z − Ẑ) − Z̃T∗S(Z − Ẑ). It follows from (2.1) that

DuWu(Z − Ẑ)

= ζ1S
−1
u cpbr+1

(r + 1)!
n∑

i=1

Kh(Ui − U)Xiξ
(r+1)(Vi ) ⊗

(
1 0

Ui − U

h
0

)

+ 1

n2

n∑
i=1

n∑
j=1

f −1
v (Vi)Kh(Ui − U)Lb(Vj − Vi)XieT

j ⊗
(

1 0
Ui − U

h
0

)

+ o
(
br+1 + logb−1/

√
nb
)
.

By an argument similar to that of (A.5), we derive

Z̃T∗S(Z − Ẑ)

= 1

n

n∑
l=1

ρ̃(Zl ,Xl,Ul)

×
n∑

i=1

{
ζ1S

−1
u cpbr+1

(r + 1)! Kh(Ui − Ul)Xiξ
(r+1)(Vi ) ⊗

(
1 0

Ui − Ul

h
0

)

+ 1

n

n∑
j=1

f −1
v (Vi)Kh(Ui − Ul)Lb(Vj − Vi)XieT

j

⊗
(

1 0
Ui − Ul

h
0

)}
× {1 + oP(1)},
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where ρ̃(Zl ,Xl,Ul) can be expressed as

ψ(Zl ,Xl ,Ul){1 + OP(cn)}(XT
l ,0)

×
{
fu(Ul)�(Ul) ⊗

(
1 μ1
μ1 μ2

)
{1 + OP(cn)}

}−1

= 1

fu(Ul)
{ψ(Zl ,Xl,Ul)

TXT
l ,0}

×
{
�−1(Ul) ⊗

(
1 μ1
μ1 μ2

)−1
}
{1 + OP(cn)}

= ψ(Zl ,Xl,Ul)XT
l

fu(Ul)(μ2 − μ2
1)

�−1(Ul) ⊗ (μ2,−μ1){1 + OP(cn)}.

Denote by ρ(Zl ,Xl,Ul) the main term of the right-hand side of the above formula.
Note that E{ρ(Zl ,Xl,Ul)|Ul} = 0. By Lemma 3 of Chen, Choi and Zhou (2005)
we have

1

n3

n∑
i=1

n∑
j=1

n∑
l=1

Kh(Ui − Ul)Lb(Vj − Vi)ρ(Zl ,Xl,Ul)
XieT

j

fv(Vi)

(A.6)
= OP(cnn

−1/2).

Furthermore, we can show in a similar way as that for (A.6), that

ζ1S
−1
u cpb2(r+1)

n2(r + 1)!
n∑

i=1

n∑
l=1

Kh(Ui − Ul)ρ(Zl ,Xl,Ul)Xi

{
ξ (r+1)(Vi)

}T = OP(c2
n).

These arguments imply that

n−1Z̃T∗S(Z − Ẑ) = OP(c2
n).(A.7)

We now deal with the term Z̃T∗ (Z−Ẑ). Note that Z̃T∗ (Z−Ẑ) equals
∑n

i=1 ψ(Zi ,Xi ,

Ui){(ξ i − ξ̂ i )
T,0}, which can be further decomposed as

ζ1S
−1
u cpbr+1

(r + 1)!
n∑

i=1

ψ(Zi ,Xi ,Ui)
[{

ξ (r+1)(Vi)
}T

,0
]

+ 1

n

n∑
i=1

n∑
j=1

1

fv(Vi)
ψ(Zi ,Xi ,Ui)Lb(Vj − Vi)(eT

j ,0) + oP(cn).

This completes the proof of Lemma A.4. �

LEMMA A.5. Under Assumptions 1–5, we have Z̃T(I − S)(I − S)TZ̃/n → 	
in probability and 	̂ = n(Z̃TZ̃)−1Z̃T(I − S)(I − S)Z̃(Z̃TZ̃T)−1 → 	.
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PROOF. The proof of the first result can be finished by arguments similar to
those of Lemmas A.2–A.4, while the second one can be proved by arguments
similar to Lemma 7.3 of Fan and Huang (2005). �

LEMMA A.6. Under Assumptions 1–5, we have Z̃T(I − S)M/n = OP(c2
n).

PROOF. The proof follows (A.5) and an argument similar to that of Lemma 7.4
of Fan and Huang (2005). �

LEMMA A.7. g(·) and h(·) are two continuous function vectors. Under As-
sumptions 1–5, we have 1√

n

∑n
i=1(Ẑi − Zi )g(Zi )εi → 0 and 1√

n

∑n
i=1(Ẑi −

Zi )XT
i h(Ui)εi → 0 in probability.

PROOF. The proof follows from arguments similar to those of Lem-
ma A.2. �

LEMMA A.8. Under Assumptions 1–5, we have

Z̃T(I − S)ε =
n∑

i=1

ψ(Zi ,Xi ,Ui)Xi{1 + oP(1)}εi + o(n1/2),

where ε = (ε1, . . . , εn)
T.

PROOF. Note that Z̃T(I − S)ε = ∑n
i=1 Z̃i{εi − (Xi ,0)(Dui

Wui
Dui

)−1Dui
×

Wui
ε}. By the same argument as those for (A.3), we have

n−1DT
uWuε = n−1

n∑
i=1

( Xi

Ui − U

h
Xi

)
Kh(Ui − U)εi = fu(U)E(X|U)OP(cn).

This formula along with (A.2) yields

(XT,0)(DT
uWuDu)

−1DuWuε = XT�−1(U)E(X|U)OP(cn).

A combination of these arguments with Lemma A.7 finishes the proof of
Lemma A.8. �

PROOF OF THEOREM 1. Note that �̂n can be expressed as (Z̃TZ̃)−1Z̃T(I −
S)Z� + (Z̃TZ̃)−1Z̃T(I − S)M + (Z̃TZ̃)−1Z̃T(I − S)ε. By Lemma A.8, the third
term equals 	−1n−1∑n

i=1 ψ(Zi ,Xi ,Ui)εi{1 + oP(1)} + oP(n−1/2). The first term
equals, via Lemma A.4,

	−1

[
ζ1S

−1
u cpbr+1

n(r + 1)!
n∑

i=1

ψ(Zi ,Xi ,Ui)
{
ξ (r+1)(Vi)

}T
β0

+ 1

n2

n∑
i=1

n∑
j=1

1

fv(Vi)
ψ(Zi ,Xi ,Ui)Lb(Vj − Vi)eT

j β0

]
.

By Lemma A.6 and (A.1), it follows that the second term of �̂n’s expression is of
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order O(c2
n) in probability. These arguments imply that

�̂n − �0

= 	−1

[
ζ1S

−1
u cpbr+1

n(r + 1)!
n∑

i=1

ψ(Zi ,Xi ,Ui)
{
ξ (r+1)(Vi)

}T
β0

+ 1

n2

n∑
i=1

n∑
j=1

1

fv(Vi)
ψ(Zi ,Xi ,Ui)Lb(Vj − Vi)eT

j β0

+ 1

n

n∑
i=1

ψ(Zi ,Xi ,Ui)εi

]
{1 + oP(1)}.

This completes the proof of Theorem 1. �

PROOF OF THEOREM 3. By the definition of 
̂(u), we have

H
̂ = (DT
uWuDu)

−1DT
uWu(Y − Ẑ�̂n)

= I1 + (DT
uWuDu)

−1DT
uWu(Z − Ẑ)�

+ (DT
uWuDu)

−1DT
uWuZ(� − �̂n) + Rn,

where I1 = (DT
uWuDu)

−1DuWu(Y − Z�) and Rn = (DT
uWuDu)

−1DuWu(Z −
Ẑ)(� − �̂n). It is easy to show that Rn = o(n−1/2) in probability. Note that

DT
uWu(Z − Ẑ)� =

{
ζ1S

−1
u cpbr+1

(r + 1)!
n∑

i=1

Kh(Ui − u)

×
(

Xi

{
ξ (r+1)(Vi)

}T
β

h−1(Ui − u)Xi

{
ξ (r+1)(Vi)

}T
β

)

+ 1

n

n∑
i=1

n∑
j=1

f −1
v (Vi)Kh(Ui − u)Lb(Vj − Vi)

×
(

XieT
j β

h−1(Ui − u)XieT
j β

)}
{1 + oP(1)}

def= I ′
1 + I ′

2.

It follows from (A.2) that

(DT
uWuDu)

−1I ′
1

= ζ1S
−1
u cpbr+1

(r + 1)!
{
fu(u)�−1(u) ⊗

(
1 μ1
μ1 μ2

)}−1

(A.8)

×
n∑

i=1

{
Kh(Ui − u)Xi

{
ξ (r+1)(Vi)

}T
β

Kh(Ui − u)Xih
−1(U1 − u)

{
ξ (r+1)(Vi)

}T
β

}
{1 + oP(1)}
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and

(DT
uWuDu)

−1I ′
2

= 1

n2

n∑
j=1

n∑
i=1

{
fu(u)�(u) ⊗

(
1 μ1
μ1 μ2

)}−1

Kh(Ui − u)

×
{

E(Xi |V = Vj )eT
j β

h−1(Ui − u)E(Xi |V = Vj )eT
j β

}
{1 + oP(1)}

= �−1(u)

nfu(u)(μ2 − μ2
1)

n∑
i=1

Kh(Ui − u)E(Xi |V = Vi)eT
i β

⊗
(

μ2 − μ1(Ui − u)/h

(Ui − u)/h − μ1

)
{1 + oP(1)}.

Furthermore, (A.3) implies that

(DT
uWuDu)

−1DT
uWuZ(� − �̂n)

=
{
fu(u)�(u) ⊗

(
1 μ1
μ1 μ2

)}−1

(A.9)
× {nfu(u)�(u) ⊗ (1,μ1)

T}(� − �̂n){1 + oP(1)}
= {�−1(u)�(u) ⊗ (1,0)T}(� − �̂n){1 + oP(1)}.

We therefore have I1 = (DT
uWuDu)

−1DT
uWuMu + (DT

uWuDu)
−1DT

uWuε, where
Mu = α(u)TX.

By the Taylor expansion and a direct simplification, we have

M =
⎛⎜⎝XT

1α(u) + (U1 − u)XT
1α′(u) + 2−1(U1 − u)2XT

1α′′(u)
...

XT
nα(u) + (Un − u)XT

nα′(u) + 2−1(Un − u)2XT
nα′′(u)

⎞⎟⎠+ o(h2)

= Du

(
α(u)

hα′(u)

)
+ 1

2

⎛⎜⎝ (U1 − u)2XT
1α′′(u)

...

(Un − u)2XT
nα′′(u)

⎞⎟⎠+ o(h2).

Hence,

I1 =
{(

α(u)

hα(u)

)
+ 1

2(DT
uWuDu)

−1DT
uWu

(A.10)

×
⎛⎜⎝ (U1 − u)2XT

1α′′(u)
...

(Un − u)2XT
nα′′(u)

⎞⎟⎠+ (DT
uWuDu)

−1DT
uWuε

}
{1 + oP(h2)}.
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It follows from (A.8)–(A.10) that
√

nhH{
̂(u0) − 
(u0)} can be represented as

√
nh

[
br+1

n(r + 1)!
ζT

1 S−1
u cp

(μ2 − μ2
1)fu(u)

�−1(U)

n∑
i=1

Kh(Ui − u)

⊗
( {μ2 − μ1(Ui − u)/h}Xi{ξ (r+1)(Vi)}Tβ0

{(Ui − u)/h − μ1}Xi{ξ (r+1)(Vi)}Tβ0

)

+ �−1(U)

2(μ2 − μ2
1)fu(u)

n∑
i=1

Kh(Ui − u)(Ui − u)2α′′(u)

⊗
( {μ2 − μ1(Ui − u)/h}XiXT

i{(Ui − u)/h − μ1}XiXT
i

)
+ o(h2 + br+1) + O(n−1/2)

]

+ √
nh(DT

uWuDu)
−1D−1

u Wuε

+
√

nh�−1(u)

nfu(u)(μ2 − μ2
1)

n∑
i=1

Kh(Ui − u)

× E(Xi |V = Vi)eT
i β ⊗

(
μ2 − μ1(Ui − u)/h

(Ui − u)/h − μ1

)
× {1 + oP(1)}.

By an argument similar to that of Lemma A.8, we have

(DT
uWuDu)

−1D−1
u Wuε

= �−1(u)

nfu(u)(μ2 − μ2
1)

n∑
i=1

Kh(Ui − u)Xiεi

⊗
(

μ2 − μ1(Ui − u)/h

(Ui − u)/h − μ1

)
{1 + oP(1)}.

The proof of Theorem 3 is completed. �

PROOF OF THEOREM 5. The proof is similar to Theorems 3.1 and 3.2 of
Fan and Huang (2005). We only give a sketch. We first prove that n−1RSS1 =
σ 2{1 + oP(1)}.

By a procedure similar to that of Theorem 3.2 in Fan and Huang (2005), we

can obtain that n−1RSS10 = n−1∑n
i=1(Yi − M̂i0 − �̂

T
Zi )

2 = σ 2{1 + oP(1)},
where M̂i0 is the ith element of M̂0 = S(Y − Z�̂). A direct calculation yields



456 Y. ZHOU AND H. LIANG

that

n−1(RSS1 − RSS10)

= n−1
n∑

i=1

�̂
T
(Ẑi − Zi ){(Yi − M̂i − �̂

T
Ẑi ) + (Yi − M̂i0 − �̂

T
Zi )}

(A.11)

+ n−1
n∑

i=1

(M̂i − M̂i0){(Yi − M̂i − �̂
T

Ẑi )

+ (Yi − M̂i0 − �̂
T

Zi )}.
By (2.1), Theorem 2 and the Jensen inequality, we know that the first term in the
right-hand side of (A.11) is bounded by

max
1≤i≤n

�̂
T |Ẑi − Zi |

[{
n−1

n∑
i=1

(Yi − M̂i0 − �̂
T

Zi )
2

}1/2

(A.12)

+ max
1≤i≤n

{|M̂i − M̂i0| + �̂
T |Ẑi − Zi |}

]
,

which is oP(1). A similar argument can show that the second term in the right-hand
side of (A.11) is also oP(1). We therefore have n−1RSS1 = σ 2{1 + oP(1)}.

Furthermore, RSS0 can be decomposed as {Y − M̂ − Ẑ�̂ + Z̃(�̂ − �̂0)}T{Y −
M̂ − Ẑ�̂ + Z̃(�̂ − �̂0)} def= RSS1 + Q1 + Q2 + Q3, where Q1 = {Z̃(�̂ −
�̂0)}T{Z̃(�̂ − �̂0)}, Q2 = (Y − M̂ − Ẑ�̂){Z̃(�̂ − �̂0)} and Q3 = {Z̃(�̂ −
�̂0)}T(Y − M̂ − Ẑ�̂).

Recalling the expression of �̂0 and the result given in (A.1), we know
that n−1Z̃TZ̃ → 	 in probability, and Q1 − n�TAT{A	−1AT}−1A� → σ 2 ×∑l

i=1 ωiχ
2
i1 in distribution. In an analogous way, we can show that Q2 and Q3

are asymptotic negligible in probability. These statements, along with the Slutsky
theorem, imply that 2Tn − nσ−2�TAT{A	−1AT}−1A� →∑l

i=1 ωiχ
2
i1 in distri-

bution. Finally, following the lines of Rao and Scott (1981), we can prove that the
distribution of �n

∑l
i=1 ωiχ

2
i1 has the same approximate distribution as χ2

l , and
complete the proof of Theorem 5. �
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