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Abstract

We derive the asymptotic sampling distribution of various estimators fre-
quently used to order distributions in terms of poverty, welfare and inequal-
ity. This includes estimators of most of the poverty indices currently in use,
as well as estimators of the curves used to infer stochastic dominance of any
order. These curves can be used to determine whether poverty, inequality
or social welfare is greater in one distribution than in another for general
classes of indices. We also derive the sampling distribution of the max-
imal poverty lines (or income censoring thresholds) up to which we may
con�dently assert that poverty or social welfare is greater in one distribu-
tion than in another. The sampling distribution of convenient estimators
for dual approaches to the measurement of poverty is also established. The
statistical results are established for deterministic or stochastic poverty lines
as well as for paired or independent samples of incomes. Our results are
briey illustrated using data for 6 countries drawn from the Luxembourg
Income Study data bases.

On �etudie les propri�et�es asymptotiques de plusieurs estimateurs fr�equem-
ment utilis�es pour ordonner les r�epartitions de revenus en termes de pau-
vret�e, bien-être social et in�egalit�e. Ces estimateurs incluent les estimateurs
de la plupart des indices de pauvret�e couramment en usage ainsi que les esti-
mateurs des courbes utiles pour l'inf�erence de la dominance stochastique de
n'importe quel ordre. Ces courbes nous permettent de d�eterminer si la pau-
vret�e, l'in�egalit�e ou le bien-être social sont plus �elev�es dans une r�epartition
que dans une autre pour des classes g�en�erales d'indices. On �etudie aussi la
distribution �echantillonnale des seuils maximum de pauvret�e ou de censure
des revenus jusqu'auxquels on peut a�rmer sans ambigu��t�e que la pau-
vret�e ou le bien-être social sont plus �elev�es dans une r�epartition de revenus
que dans une autre. La distribution �echantillonnale d'estimateurs pour
l'approche duale �a la mesure de la pauvret�e est aussi d�eriv�ee. Les r�esultats
statistiques s'appliquent �a des seuils d�eterministes ou stochastiques et �a
des �echantillons d�ependants ou ind�ependants. On illustre bri�evement nos
r�esultats �a l'aide de donn�ees sur 6 pays tir�ees des banques de donn�ees du
Luxembourg Income Study.

Keywords Stochastic Dominance, Poverty, Inequality, Relative and Crit-
ical Poverty Lines, Distribution-free statistical inference.

Mots cl�es Dominance stochastique, Pauvret�e, In�egalit�e, Seuils de pau-
vret�e relatifs et critiques, Inf�erence statistique robuste.

JEL classi�cation C14, C40, D31, D63



1. Introduction

Since the inuential work of Atkinson (1970), considerable e�ort has been
devoted to making comparisons of welfare distributions more ethically ro-
bust, by making judgements only when all members of a wide class of
inequality indices or social welfare functions lead to the same conclusion,
rather than concentrating on some particular index. More recently, (Atkin-
son (1987), Foster and Shorrocks (1988a,b), and Howes (1993)), it has
been pointed out that similar robustness is desirable for poverty measure-
ment. For instance, Sen (1976) criticises the popular headcount and average
poverty gap measures for not taking into account the intensity and the in-
equality of poverty, respectively.

In this paper, we study estimation and inference in the context of inequal-
ity, welfare, and poverty orderings. Our main objective is to show how to
estimate orderings which are robust over classes of indices and ranges of
poverty lines, and how to perform statistical inference on them.1 Stochastic
dominance, at various orders, allows one to infer whether one population
has more or less poverty, welfare, or inequality than another, according to
speci�c wide classes of indices, and so we focus on the asymptotic distribu-
tions of estimates of the functions in terms of which stochastic dominance
is expressed.

In the next section, we de�ne the various indices in which we are interested
in terms of the population distributions to which they apply, and we note
some of the relations among them. Many of them can be de�ned in terms of
the functions, which we denote Ds(x), used to de�ne stochastic dominance
at order s. For poverty indices, we are interested in stochastic dominance
only up to some poverty line. Further, when we compare populations, it is
often desirable to use di�erent poverty lines for each population. The use
of di�erent poverty lines also leads to the de�nition of \relative" poverty
indices, in which poverty gaps are normalised by the poverty line and with
which relative equality dominance can be inferred. Another instrument
useful in comparisons is the maximum common poverty line up to which
there is more poverty in one population than another, according to the
di�erent classes of indices we consider. There exist dual approaches to
stochastic dominance, often called p--approaches. We mention the recently
developed Cumulative Poverty Gap curve in this context (see Shorrocks
(1995a)), and extend it to the case in which di�erent poverty lines are used
with di�erent populations.

1 Work on these lines can be found in, for instance, Beach and Davidson, (1983),

Beach and Richmond (1985), Bishop et al (1989), Howes (1993), Davidson and

Duclos (1997).
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In Section 3, we study estimators of these indices, based on samples drawn
from the populations, and we derive their asymptotic distributions. In par-
ticular, we discuss the statistical consequences of using estimated poverty
lines. We also provide estimates of the thresholds up to which one popula-
tion stochastically dominates another at a given order, and of cumulative
poverty gap curves. Our results provide as a corollary the distributions
of the two most popular classes of poverty indices, both for deterministic
and for sample-dependent poverty lines. The �rst is the class of additive
poverty indices, which include the Foster et al (1984) indices, which them-
selves include the headcount and average poverty gap measures, the Clark
et al (1981), Chakravarty (1983), and Watts (1968) indices. The second
is the class of linear poverty indices, which can be expressed as weighted
areas underneath CPG curves. Members of that linear class include the
poverty indices of Sen (1976), Takayama (1979), Thon (1979), Kakwani
(1980), Hagenaars (1987), Shorrocks (1995a), and Chakravarty (1997).

Since our various estimators can be expressed asymptotically as sums of in-
dependently and identically distributed variables, our results apply equally
either to the case of observations drawn from independent distributions, and
to the case in which dependent observations are drawn from a joint distri-
bution. Dependence would arise, for instance, between paired observations
of gross and net incomes, or between paired observations of consumption
and income, or among observations of the same individual across time when
panel data are used.

Finally, in Section 4, we provide a brief illustration of our techniques using
cross-country data from the Luxembourg Income Study data bases. Most
of the proofs are relegated to the appendix.

2. Stochastic Dominance and Poverty Indices

Consider two distributions of incomes, FA and FB , with support contained
in the nonnegative real line. We use the term \income" throughout the
paper to signify a measure of individual welfare, which need not be money
income. Let D1

A
(x) = FA(x) and

Ds

A
(x) =

Z x

0

D
(s�1)

A
(y) dy; (1)

for any integer s � 2, and let Ds

B
(x) be de�ned analogously. It is easy to

check inductively that we can express Ds(x) for any order s as

Ds(x) =
1

(s� 1)!

Z
x

0

(x� y)s�1 dF (y): (2)
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Distribution B is said to dominate distribution A stochastically at order s
if Ds

A
(x) � Ds

B
(x) for all x 2 R. For strict dominance, the inequality

must hold strictly over some interval of positive measure. Suppose that
a poverty line is established at an income level z > 0. Then we will say
that B (stochastically) dominates A at order s up to the poverty line if
Ds

A
(x) � Ds

B
(x) for all x � z.

First-order stochastic dominance of A by B up to a poverty line z implies
that FA(x) � FB(x) for all x � z. This is equivalent to the statement that
the headcount of individuals below the poverty line is always greater in A

than in B for any poverty line not exceeding z.

Second-order dominance of A by B up to a poverty line z implies that
D2
A
(x) � D2

B
(x), that is, that

Z x

0

(x� y) dFA(y) �

Z x

0

(x� y) dFB(y) (3)

for all x � z. When the poverty line is z, the poverty gap for an individual
with income y is de�ned as

g(z; y) = (z � y)+ = max(z � y; 0) = z � y� (4)

The notation x+ will be used throughout the paper to signify max(x; 0).
In addition, censored income y� is de�ned for a given poverty line z as
min(y; z). We can see from (3) that stochastic dominance at order 2 up
to z implies that the average poverty gap in A, D2

A
(x), is greater than that

in B, D2
B
(x), for all poverty lines x less than or equal to z. The approach

is easily generalised to any desired order s.

Ravallion (1994) and others have called the graph of D1(x) a poverty in-
cidence curve, that of D2(x) a poverty de�cit curve (see also Atkinson
(1987)), and that of D3

A
(x) a poverty severity curve. D1(x) is shown in

Figure 1 for two distributions A and B. Distribution B dominates A for all
common poverty lines below z. The area underneath D1(x) for x between
0 and z equals the average poverty gap D2(z), which is clearly greater for A
than for B.

Following Atkinson (1987), we consider the class of poverty indices, de�ned
over poverty gaps, that take the form

�(z) =

Z z

0

�
�
g(z; y)

�
dF (y): (5)

First, we focus on the class P 1 of indices de�ned using di�erentiable, strictly
increasing functions � with �(0) = 0. If we compare two distributions A
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and B, then, using de�nition (4) of the poverty gap, integrating by parts,
and changing variables, we �nd that the di�erence between �A and �B for
� in P 1 is given by:

�A(z)��B(z) =

Z z

0

�0(x)
�
FA(z � x)� FB(z � x)

�
dx (6)

This di�erence will necessarily be positive for any � with �0 > 0 if and only
if

FA(z � x)� FB(z � x) � 0 (7)

for all x 2 [0; z] with strict inequality for some interval of x, that is, if B
strictly stochastically dominates A at �rst order up to z. �A(x)� �B(x)
will then be non-negative for all x � z and for all members of P 1.

The headcount index does not fall into the class P 1, because for it � is
a constant function equal to unity everywhere. As such it is not strictly
increasing, and it does not satisfy �(0) = 0. However, it is easy to see
directly that �A ��B > 0 for the headcount index if FA(z) > FB(z).

We now consider the class of measures P 2 for which � is convex, so that
�00 > 0, and such that �(0) = �0(0) = 0. This is analogous to using social
evaluation functions that obey the Dalton principle of transfers (see the
discussion of this in Atkinson (1987)). By integrating (6) by parts once
more, and noting that the inde�nite integral of F (z � x) with respect to x
is �D2(z � x), by (1), we �nd that

�A(z)��B(z) =

Z
z

0

�00(x)
�
D2
A
(z � x)�D2

B
(z � x)

�
dx:

This will be positive for any strictly convex � if and only if:

D2
A
(z � x)�D2

B
(z � x) � 0 (8)

for all x 2 [0; z] with strict inequality on some subinterval, that is, if B
strictly dominates A at second order up to z. �A(x)��B(x) will then be
non-negative for all x � z and for all members of P 2. It is clear that this
sort of reasoning can be extended to any desired order s, thus de�ning the
class P s of poverty indices, by considering functions � such that �(s)(x) > 0
for x > 0, and �(i)(0) = 0 for 0 � i < s. A poverty comparison can then
be performed by considering the di�erence Ds

A
(z�x)�Ds

B
(z�x) over the

relevant interval, that is, by examining stochastic dominance at order s up
to z.2

2 For s = 1; 2, Foster and Shorrocks (1988b) show how these dominance relation-

ships can be extended to poverty indices (or censored social welfare functions)

that may be non-additive.
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A useful concept for the analysis of poverty and stochastic dominance is
the maximum common poverty line zs (or censoring point) up to which
B stochastically dominates A at order s, so that all the indices in P s will
unanimously indicate that poverty in A is greater than in B if and only if
the poverty line z is no greater than zs.

If B stochastically dominates A for low thresholds z, then either B dom-
inates A everywhere (in which case we have �rst-order welfare dominance
in the sense of Foster and Shorrocks (1988b)), or else there is a reversal at
the value z1 de�ned by

z1 = inf fx jFA(x) � FB(x)g: (9)

z1 is illustrated in Figure 1. If z1 is below the maximal possible income, we
can repeat the exercise at order 2. Either B dominates A at second order
everywhere,3 or there exists z2 de�ned by

z2 = inf fx jD2
A
(x) � D2

B
(x)g: (10)

This procedure can be continued until stochastic dominance at some or-
der s is achieved everywhere, or until zs has become greater than what
is seen as a reasonable maximum possible value for the poverty line (or
welfare censoring threshold) z. It is shown in Lemma 1 in the Appendix
that stochastic dominance of A by B everywhere will be achieved for some
suitably large value of s.

Comparing poverty across time, societies, or economic environments often
involves using di�erent poverty lines for di�erent income distributions. This
may be because the relative prices of the goods which must be consumed
to maintain a minimum standard of living di�er across the distributions,
implying a di�erent minimum level of nominal income for one not to be
poor, or because nutritional, taste, physiological or climatic factors vary
across societies, or simply because the poverty line is deemed to be relative
to the distribution of living standards in which the poor happen to live.4

This last feature is particularly common in studies of poverty in developed
economies where a proportion of median or average incomes is often used
as a \poverty line" to make cross-country comparisons.5

3 This is equivalent to Generalised Lorenz dominance of the distribution of incomes

in B over that in A, and to second-order welfare dominance.

4 See, for instance, Greer and Thorbecke (1986) and Ravallion and Bidani (1994),

where poverty lines are estimated for di�erent socio-economic groups, and Sen

(1981, p.21) on the issue of comparing poverty of two societies with either common

or di�erent \standards of minimum necessities".

5 On this, see, for instance, Smeeding et al (1990), Van den Bosch et al (1993),

Gustafsson and Nivorozhkina (1996), or Atkinson (1995).
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We therefore also wish to discuss whether poverty in a distribution A is
greater than in a distribution B when separate poverty lines are used for
each distribution. We continue to de�ne the classes of poverty indices P s

as above, but now, in order to compare two distributions, A and B, we use
two di�erent poverty lines zA and zB . In order for there to be at least as
much poverty in A than in B according to all indices in the class P s, it is
necessary and su�cient that Ds

A
(zA�x)�D

s

B
(zB�x) � 0 for all x > 0. Of

course, this relation no longer constitutes stochastic dominance at order s.

The popular FGT (see Foster et al (1984)) class of additive poverty indices
is de�ned by6

��(z) =

Z
z

0

(z � y)��1 dF (y) =

Z
1

0

g(z; y)��1 dF (y): (11)

These indices are clearly related to the criteria for stochastic dominance,
as was noted by Foster and Shorrocks (1988a,b). In fact, if � is an integer,
it follows from (2) that

��(x) = (�� 1)!D�(x):

For any one member of the FGT class of indices, there may be a range of
common poverty lines for which poverty in A is greater than in B. For any
such line z, the index �s shows more poverty in A than in B if Ds

A
(x) �

Ds

B
(x) > 0 for x = z, but not necessarily for all x < z. Hence, it could

be that, for a given range of z, we �nd dominance of A by B according
to �1 and �3, but also �nd dominance of B by A according to �2, a
reversal which would not be possible with stochastic dominance relations.
We could then de�ne the thresholds z�

s
and z+

s
, such that B dominates A

according to �s only for z 2 [z�
s
; z+
s
].

If we use only one member of the FGT class, and are interested only in
poverty lines lying in some restricted range, then we need check whether
Ds

A
(x) � Ds

B
(x) only for x in that range. For s = 1 or s = 2, this is the re-

stricted stochastic dominance de�ned in Atkinson (1987) for the headcount
ratio and the mean poverty gap respectively (see his Conditions 1 and 2).
It is clear that such restricted dominance conditions can be applied and
generalised to any order s of the FGT index.

Other poverty indices can also be expressed in the additive form of (2), that
is, as

A(z) �

Z
1

0

�(y; z) dF (y): (12)

6 The original FGT indices are normalised by z��1. We return to the interpretation

of this normalisation below.
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This is the case for the Clark et al (1981) second family of indices, for the
Chakravarty (1983) index, for which �(y; z) = (y�)e for 0 < e < 1, and for
the Watts (1968) index, where �(x; y) = log y�. Bourguignon and Fields
(1997) also propose an additive index that allows for discontinuities at the
poverty line, with �(x; y) = g(z; y)�1�1 + �2I(y � z).

Stochastic dominance at �rst and second order can also be expressed in
terms of quantiles. This is called the p--approach to dominance. In order
for there to be at least as much poverty in A than in B according to all
indices in P 1, it is necessary and su�cient that

(zA �QA(p))+ � (zB �QB(p))+ � 0 (13)

for all 0 � p � 1. Here QA(p) and QB(p) are the p--quantiles of the
distributions A and B respectively. If zA = zB , condition (13) simpli�es to
checking if the quantiles of B's censored distribution are never smaller than
those of A. If this condition is not satis�ed for all poverty lines, we may seek
the maximum common censoring point z1 up to which QB(p)�QA(p) � 0,
for all p 2 [0; 1]. This is given by z1 de�ned in (9) and shown in Figure 1.

There also exists a p--approach to second-order dominance. To see this,
de�ne the cumulative poverty gap (CPG) curve (also called poverty gap
pro�le by Shorrocks (1995b) and TIP curve by Jenkins and Lambert (1997))
by

G(p; z) =

Z Q(p)

0

g(z; y) dF (y): (14)

It is clear that G(p; z)=p is the average poverty gap of the 100p% poorest
individuals. Typical CPG curves are shown in Figure 2. For values of p
greater than F (z), the CPG curve saturates and becomes horizontal. Since
F (z) = D1(z), the abscissa at which the curve becomes horizontal is the
headcount ratio. The ordinate for values of p such that F (z) � p � 1 is
readily seen to be D2(z), the average poverty gap.

To make the link with second-order stochastic dominance, we quote a result
of Shorrocks (1995b) and Jenkins and Lambert (1997). They show that,
for two distributions A and B and a common poverty line z, it is necessary
and su�cient for the stochastic dominance of A by B at second order up
to z that GA(p; z) � GB(p; z) for all p 2 [0; 1]. The more general case with
di�erent poverty lines can be easily derived from Theorem 2 in Shorrocks
(1983), if the income distribution in Shorrocks' framework is replaced by
the poverty gap distribution in ours. Using Shorrocks' result, we �nd that
poverty is greater in A than in B according to all indices in the class P 2

if and only if the CPG curve for A (using zA) everywhere dominates the
CPG curve for B (using zB); see also Jenkins and Lambert (1998).
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CPG curves can be related to generalised Lorenz curves GL(p), de�ned by
(see Shorrocks (1983)):

GL(p) =

Z
Q(p)

0

y dF (y):

As shown in Figure 2, for p � D1(z), G(p; z) is the vertical distance between
the straight line z � p and GL(p). When p � D1(z), G(p; z) is the vertical
distance between the line z �p and its tangent to GL(p) at D1(z). This link
between GL(p) and G(p; z) shows that the critical second-order poverty line
z2 de�ned in (10) equals the slope of the line that is simultaneously tangent
to both of the generalised Lorenz curves (at points a and b in Figure 2).

A popular class of poverty measures that are linear in incomes can be
easily obtained from G(p; z). To see this, let �(z) measure a weighted area
beneath the CPG curve

�(z) =
1

�(z) � z

Z
q(z)

0

�(p)G(p; z) dp (15)

�(z) is linear in incomes since G(p; z) is itself a linear (cumulative) function
of incomes.7 Sen's (1976) index is given by setting �(p) = 2, �(z) = D1(z),
and q(z) = D1(z). �(p) = 2, �(z) = D2(z) and q(z) = 1 yield the Takayama
(1979) index. �(p) = 2, �(z) = 1 and q(z) = 1 give Thon's (1979),
Shorrocks' (1995a) and Chakravarty's (1997) poverty indices. Kakwani's

(1980) index is obtained with �(p) =
�
k(k + 1)

��
D1(z)� p

�k�1
=(D1(z))k,

with k > 0, �(z) = 1, and q(z) = D1(z). More generally, we can de�ne any
linear poverty index �(z) by de�ning �(p) as some particular non-negative
function of p. As for the FGT indices, we might also wish to infer the
restricted ranges [z�; z+] over which the additive or linear indices A(z) and
�(z) show more poverty in A than in B.

In the literature on the measurement of poverty, the poverty gap (4), as we
remarked above for the case of the FGT indices, is sometimes normalised
by the poverty line.8 We may do this here by replacing absolute poverty
gaps g(z; y) by relative poverty gaps gr(z; y) de�ned by9

gr(z; y) = g(z; y)=z (16)

7 This is analogous to the de�nition of the class of linear inequality indices in

Mehran (1976).

8 Although this normalisation is frequently applied, it is not clear that it is desirable

when poverty lines di�er across groups or societies. For a discussion of this, see

Atkinson (1991), p.7 and footnote 3.

9 For a discussion of absolute versus relative poverty gaps and indices, see Blackorby

and Donaldson (1980).
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in the de�nitions of the poverty indices de�ned in (5). We may further
de�ne classes P s

r
of relative poverty indices analogously to the classes P s,

but with gr(z; y) in place of g(z; y) The stochastic dominance conditions
are obviously unchanged if poverty lines are common. By using (16) in (5)
and then by successive integrations by parts, we may check that there will
be more poverty in A than in B for all indices in P s

r
if and only if

Ds

A
(zAx)

zs�1
A

�
Ds

B
(zBx)

zs�1
B

� 0 (17)

for all x 2 [0; 1].

The theoretically equivalent p--approach for class P 1
r is given by checking

whether �
zA �QA(p)

�
+

zA
�

�
zB �QB(p)

�
+

zB
� 0: (18)

For second-order dominance, the p--approach can be derived by rede�ning
the CPG curve in terms of relative poverty gaps as follows:

Gr(p) =

Z p

0

 �
z �Q(q)

�
+

z

!
dq (19)

and checking whether Gr

A
(p)�Gr

B
(p) � 0 for all 0 < p < 1.

Finally, for indices for the measurement of relative inequality, we �rst posit
two generally accepted axioms:

Axiom 1: (Atkinson (1970)) When two distributions have the same
mean, the rankings in terms of equality dominance are the same as the
stochastic or welfare dominance rankings (see also Shorrocks (1983)).

Axiom 2: (Relative equality) Whenever a distribution A can be obtained
from a distribution B by multiplying all incomes in B by the same fac-
tor k > 0, relative income equality in A is necessarily judged to be the
same as relative income equality in B (see, inter alia, Blackorby and Don-
aldson (1978)).

The �rst axiom implies that Ds(x) can be used to check both equality and
welfare dominance when means are the same. The second axiom implies
that when A and B have di�erent means, we can study equality dominance
by comparing the mean-normalised distributions FA(x�A) and FB(x�B).
This implies checking :

Ds

A
(�Ax)

�s�1
A

�
Ds

B
(�Bx)

�s�1
B

� 0 (20)

for all x > 0. For s = 2, this is equivalent to checking Lorenz dominance
(the Lorenz curve is de�ned as L(p) = GL(p)=�).
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3. Estimation and Inference

Suppose that we have a random sample of N independent observations yi,
i = 1; : : : ; N , from a population. Then it follows from (2) that a natural
estimator of Ds(x) (for a nonstochastic x) is

D̂s(x) =
1

(s� 1)!

Z
x

0

(x� y)s�1 dF̂ (y)

=
1

N(s� 1)!

NX
i=1

(x� yi)
s�1I(yi � x)

=
1

N(s� 1)!

NX
i=1

(x� yi)
s�1
+

(21)

where F̂ denotes the empirical distribution function of the sample and I(�) is
an indicator function equal to 1 when its argument is true and 0 otherwise.
For s = 1, (21) simply estimates the population CDF by the empirical
distribution function. For arbitrary s, it has the convenient property of
being a sum of IID variables.

When comparing two distributions in terms of stochastic dominance, two
kinds of situations typically arise. The �rst is when we consider two inde-
pendent populations, with random samples from each. In that case,

var
�
D̂s

A(x)� D̂s

B(x
0)
�
= var

�
D̂s

A(x)
�
+ var

�
D̂s

B(x
0)
�
: (22)

The other typical case arises when we have N independent drawings of
paired incomes, yA

i
and yB

i
, from the same population. For instance, yA

i

could be before-tax income, and yB
i
after-tax income for the same individ-

ual i, i = 1; : : : ; N . The following theorem allows us to perform statistical
inference in both of these cases.

Theorem 1: Let the joint population moments of order 2s�2 of
yA and yB be �nite. Then N1=2(D̂s

K
(x)�Ds

K
(x)) is asymptotically

normal with mean zero, for K = A;B, with asymptotic covariance
structure given by (K;L = A;B)

lim
N!1

N cov
�
D̂s

K(x); D̂
s

L(x
0)
�

=
1�

(s� 1)!
�2E �(x� yK)s�1+ (x0 � yL)s�1+

�
�Ds

K
(x) Ds

L
(x0):

(23)

Proof: For each distribution, the existence of the population moment of
order s�1 lets us apply the law of large numbers to (21), thus showing that
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D̂s(x) is a consistent estimator of Ds(x). Given also the existence of the
population moment of order 2s�2, the central limit theorem shows that the
estimator is root-N consistent and asymptotically normal with asymptotic
covariance matrix given by (23). This formula clearly applies not only
for yA and yB separately, but also for the covariance of D̂s

A
and D̂s

B
.

If A and B are independent populations, the sample sizes NA and NB may
be di�erent. Then (23) applies to each with N replaced by the appropriate
sample size. The covariance across the two populations is of course zero.

The asymptotic covariance (23) can readily be consistently estimated in
a distribution-free manner by using sample equivalents. Thus Ds(x) is
estimated by D̂s(x), and the expectation in (23) by

1

N

NX
i=1

(x� yK
i
)s�1+ (x0 � yL

i
)s�1+ : (24)

In Theorem 1, it was assumed that the argument x of the functions Ds(x)
was nonstochastic. In applications one often wishes to deal with Ds(z�x),
where z is the poverty line. In the next Theorem, we deal with the case in
which z is estimated on the basis of sample information.

Theorem 2: Let the joint population moments of order 2s � 2
of yA and yB be �nite. If s = 1, suppose in addition that FA and
FB are di�erentiable and let D0(x) = F 0(x). Assume �rst that N
independent drawings of pairs (yA; yB) have been made from the
joint distribution of A and B. Also, let the poverty lines zA and zB
be estimated by ẑA and ẑB respectively, where these estimates are
expressible asymptotically as sums of IID variables drawn from the
same sample, so that

ẑA = N�1

NX
i=1

�A(y
A

i ) + o(1) as N !1; (25)

and similarly for B. Then N1=2(D̂s

K
(ẑK � x)�Ds

K
(zK � x)), K =

A;B, is asymptotically normal with mean zero, and with covariance
structure given by (K;L = A;B)

lim
N!1

N cov
�
D̂s

K(ẑK � x); D̂s

L(ẑL � x0)
�
=

cov
�
Ds�1
K

(zK � x)�K(y
K) +

�
(s� 1)!

�
�1
(zK � x� yK)s�1+ ;

Ds�1
L

(zL � x0)�L(y
L) +

�
(s� 1)!

�
�1
(zL � x0 � yL)s�1+

�
:

(26)
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If yA and yB are independently distributed, and if NA and NB IID
drawings are respectively made of these variables, then, for K = L,
NK replaces N in (26), while for K 6= L, the covariance is zero.

Proof: See appendix.

The sampling distribution of �s(x) (see (11)) with a �xed x was already
derived in Kakwani (1993), Bishop et al (1995) and Rongve (1997). The
sampling distribution of the headcount when the poverty line is set to a
proportion of a quantile is derived in Preston (1995), using results on the
joint sampling distribution of quantiles. More generally, the sampling dis-
tribution of additive indices when the poverty line is expressed as a sum of
IID variables is independently derived in Zheng (1997).

Estimates of the poverty lines may be independent of the sample used to
estimate the Ds(z�x), as for example if they are estimated using di�erent
data. In that case, the right-hand side of (26) becomes

Ds�1
K

(zK � x)Ds�1
L

(zL � x0) cov
�
N1=2(ẑK � zK); N

1=2(ẑL � zL)
�

+cov
��
(s� 1)!

�
�1
(zK � x� yK)s�1+ ;

�
(s� 1)!

�
�1
(zL � x0 � yL)s�1+

�
: (27)

For indices based on relative poverty gaps, one needs the distribution
of D̂s(ẑx) for positive x; see (17) and (20). The result of Theorem 2 can be
used by �rst eliminating the additive x in that result, and then replacing ẑ
by ẑx.

The covariance (26) can, as usual, be consistently estimated in a distri-
bution-free manner, by the expression

N�1

NX
i=1

��
D̂s�1
K

(ẑK � x)�K(y
K

i
) +

�
(s� 1)!

�
�1
(ẑK � x� yK

i
)s�1+

�

�

�
D̂s�1
L

(ẑL � x0)�L(y
L

i
) +

�
(s� 1)!

�
�1
(ẑL � x0 � yL

i
)s�1+

��

�

�
N�1

NX
i=1

�
D̂s�1
K

(ẑK � x)�K(y
K

i ) +
�
(s� 1)!

�
�1
(ẑK � x� yKi )s�1+

�

�

�
N�1

NX
i=1

�
D̂s�1
L

(ẑL � x0)�L(y
L

i
) +

�
(s� 1)!

�
�1
(ẑL � x0 � yL

i
)s�1+

�
:

The most popular choices of population dependent poverty lines are frac-
tions of the population mean or median, or quantiles of the population
distribution. Clearly any function of a sample moment can be expressed
asymptotically as an average of IID variables, and the same is true of func-
tions of quantiles, at least for distributions for which the density exists,
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according to the Bahadur (1966) representation of quantiles. For ease of
reference, this result is cited as Lemma 2 in the Appendix. The result im-
plies that Q̂(p) is root-N consistent, and that it can be expressed asymptot-
ically as an average of IID variables. When the poverty line is a proportion
k of the median, for instance, we have that:

�(yi) = �k

 
I
�
yi < Q(0:5)

�
� 0:5

F 0
�
Q(0:5)

�
!
;

where Q(0:5) denotes the median. When z is k times average income, we
have

�(yi) = kyi:

This IID structure makes it easy to compute asymptotic covariance struc-
tures for sets of quantiles of jointly distributed variables.

We turn now to the estimation of the threshold z1 de�ned in (9). Assume
that F̂A(x) is greater than F̂B(x) for some bottom range of x. If F̂A(x) is
smaller than F̂B(x) for larger values of x, a natural estimator ẑ1 for z1 can
be de�ned implicitly by

F̂A(ẑ1) = F̂B(ẑ1):

If F̂A(x) > F̂B(x) for all x � z, for some prespeci�ed poverty line z, then
we arbitrarily set ẑ1 = z. If ẑ1 is less than the poverty line z, we may de�ne
ẑ2 by

D̂2
A
(ẑ2) = D̂2

B
(ẑ2)

if this equation has a solution less than z, and by z otherwise. And so on
for ẑs for s > 2: either we can solve the equation

D̂s

A
(ẑs) = D̂s

B
(ẑs); (28)

or else we set ẑs = z. Note that the second possibility is a mere mathemat-
ical convenience used so that ẑs is always well de�ned { we may set z as
large as we wish. The following theorem gives the sampling distribution of
ẑs.

Theorem 3: Let the joint population moments of order 2s � 2
of yA and yB be �nite. If s = 1, suppose further that FA and FB
are di�erentiable, and let D0(x) = F 0(x). Suppose that zs can be
de�ned by the equation

Ds

A(zs) = Ds

B(zs);

and that Ds

A
(x) > Ds

B
(x) for all x < zs. Assume that zs is a simple

zero, so that the derivative Ds�1
A

(zs)�Ds�1
B

(zs) is nonzero. In the
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case in which we consider N independent drawings of pairs (yA; yB)
from one population in which yA and yB are jointly distributed,
N1=2(ẑs�zs) is asymptotically normally distributed with mean zero,
and asymptotic variance given by:

lim
N!1

var
�
N1=2(ẑs � zs)

�
=�

(s� 1)!
�
Ds�1
A

(zs)�Ds�1
B

(zs)
���2

�
var
�
(zs � yA)s�1+

�
+ var

�
(zs � yB)s�1+

�
�

2 cov
�
(zs � yA)s�1+ ; (zs � yB)s�1+

��
:

If yA and yB are independently distributed, and if NA and NB

IID drawings are respectively made of these variables, where the
ratio r � NA=NB remains constant as NA and NB tend to in�nity,

then N
1=2

A
(ẑs � zs) is asymptotically normal with mean zero, and

asymptotic variance given by

lim
NA!1

var
�
N

1=2

A
(ẑ � z)

�
=

var
�
(z � yA)s�1+

�
+ r var

�
(z � yB)s�1+

�
�
(s� 1)!

�
Ds�1
A

(z)�Ds�1
B

(z)
��2 ;

Proof: See appendix.

The results of Theorems 1, 2 and 3 can naturally be extended to the additive
poverty indices A(z) of (12) by using A(x) in place of Ds(x), �(y; x) for�
(s� 1)!

�
�1
(x� y)s�1+ , and A0(x) for Ds�1(x).

In order to perform statistical inference for p--approaches, we now consider
the estimation of the ordinates of the cumulative poverty gap curve G(p; z)
de�ned in (14). The natural estimator, for a possibly estimated poverty
line ẑ, is

Ĝ(p; ẑ) = N�1

NX
i=1

(ẑ � yi)+ I
�
yi � Q̂(p)

�

where Q̂(p) is the empirical p--quantile. The asymptotic distribution of this
estimator is given in the following theorem.

Theorem 4: Let the joint population second moments of yA and
yB be �nite, and let FA and FB be di�erentiable. Let ẑA and ẑB be
expressible asymptotically as sums of IID variables, as in Theorem 2.
If N independent drawings of pairs (yA; yB) are made from the
joint distribution of A and B, then N1=2(ĜK(p; ẑ)�GK(p; z)), for
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K = A;B, is asymptotically normal with mean zero, and asymptotic
covariance structure given by

lim
N!1

N cov
�
ĜK(p; ẑK) ; ĜL(p

0; ẑL)
�
=

cov

��
I
�
yK � QK(p)

� �
(zK � yK)+ � (zK �QK(p))+

�
+ �K(y

K) min
�
p; FK(zK)

��
;�

I
�
yL � QL(p

0)
� �
(zL � yL)+ � (zL �QL(p

0))+
�

+ �L(y
L) min

�
p0; FL(zL)

���
: (29)

If yA and yB are independently distributed, and if NA and NB IID
drawings are respectively made of these variables, then, for K = L,
NK replaces N in (29). For K 6= L, the covariance is zero.

Proof: See appendix.

If ẑA and ẑB are independent of the drawings (yA; yB), then the right-hand
side of (29) can be modi�ed as in (27).

The arguments used in the proof of Theorem 4 can be used to obtain the
asymptotic distribution of all those indices considered in the previous sec-
tion not already covered by the earlier theorems. First, when z is determin-
istically set to a level exceeding the highest income in the sample, Theorem 4
yields the sampling distribution of the generalised Lorenz curves, and of the
ordinary Lorenz curves when we also take into account the asymptotic dis-
tribution of �̂. Second, for the �rst-order p--approach, based on quantiles
(see (13)), the asymptotic covariance structure is easy to derive because
the quantiles can be expressed asymptotically as averages of IID variables,
by Bahadur's Lemma, as can the estimated poverty lines, by (25). Third,
for the indices based on relative poverty gaps, inference on the expressions
in (17), (18), (19) and (20) can be performed by using the asymptotic
joint distributions of objects like D̂s(x), ẑ � Q̂(p), ẑ and �̂. Fourth, the
asymptotic distribution of estimates �̂(ẑ) of the linear indices (15) can be
readily obtained using the arguments of the proof of Theorem 4. Finally,
the asymptotic distribution of estimators of critical poverty lines z (for
z = z�; z+) for the linear indices �(z) can be obtained from Theorem 3
by replacing (s � 1)�2 var

�
(zs � yK)s�1+

�
by limN!1N var

�
�̂K(z)

�
and

Ds�1
K

(zs) by �
0

K
(z), K = A;B.
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4. Illustration

We illustrate our results using data drawn from the Luxembourg Income
Study (LIS) data sets10 of the USA, Canada, Italy, the Netherlands, Finland
and Norway. These countries were partly selected because of their presence
in the 1991 LIS data sets. The raw data were essentially treated in the same
manner as in Gottschalk and Smeeding (1997). We take household income
to be disposable income (i.e., post-tax-and-transfer income) and we apply
purchasing power parities drawn from the Penn World Tables11 to convert
national currencies into 1991 US dollars. As in Gottschalk and Smeeding
(1997), we divide household income by an adult-equivalence scale de�ned
as h0:5, where h is household size, so as to allow comparisons of the welfare
of individuals living in households of di�erent sizes. Hence, all incomes are
transformed into 1991 adult-equivalent US$. All household observations
are also weighted by the LIS sample weights \hweight" times the number
of persons in the household. Finally, negative incomes are set to 0.

Table 1 shows the estimates of the means and medians of the derived in-
dividual income variables for the six countries, along with their asymp-
totic standard errors. Table 2 shows the headcount D1(x) for the six LIS
countries and for poverty lines varying between US $2,000 and US $35,000
(again, in adult-equivalent units). In the following discussion, by \signif-
icant" we mean signi�cant at the 5% level. Comparing the US with the
other countries, we �nd that �rst-order dominance never holds everywhere.
Canada has a signi�cantly lower headcount for all x less than or equal to
$30,000 (that is, a poverty line of $60,000 for a family of 4); in other words,
Canada has less poverty than the US for all poverty lines below $30,000,
and for all P 1 poverty indices. The American headcount is signi�cantly
lower than Italy's only for those x no less than $6,000. A similar comment
applies to Finland and Norway ($15,000 for both). As for the Netherlands,
its headcount is initially signi�cantly greater than that of the US (for x
equal to $2,000), it is lower than for the US for x between $4,000 and
$8,000, and it is greater again subsequently.

Table 3 displays similar statistics and results for the average poverty gap
D2(x). The major di�erence from Table 2 is that Canada now signi�cantly
dominates the US for all values of x, and thus we �nd second-order welfare
dominance. As for Italy, Finland and Norway, the initial ranges of x over
which they dominate the US are (as expected) greater for s = 2 than

10 See http://lissy.ceps.lu for detailed information on the structure of these data.

11 See Summers and Heston (1991) for the methodology underlying the computation

of these parities, and http://www.nber.org/pwt56.html for access to the 1991

�gures.
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they are in Table 2 for s = 1. Compared to the US, the Netherlands
have a signi�cantly greater average poverty gap for x equal to $2,000, a
statistically indistinguishable average poverty gap for x = $4; 000, a lower
one for x between $6,000 and $10,000, and a greater average poverty gap
for x above $15,000.

Table 4 shows estimates of the thresholds zs for dominance relations, and
[z�s ; z

+
s ] for restricted dominance relations, between the US and the other

�ve LIS countries, with asymptotic standard errors again shown in paren-
theses. We �nd that Canada stochastically dominates the US at the �rst
order up to a censoring threshold of $27,840, with a standard error on that
threshold of $1,575. As found in the previous table, Canada dominates the
US everywhere at the second order. For Italy, Finland and Norway, dom-
inance everywhere is never obtained, even when the order of dominance s
increases from 1 to 4, but the critical censoring threshold does move in the
expected direction (for Italy, it increases from $5,340 for s = 1 to $11,042
for s = 4, with a standard error relative to the estimates of about 3% to
4%). Looking at the estimates for the comparisons of the Netherlands and
of the US, we can conclude that there is �rst-order dominance of the US for
all poverty lines below $2,958 (with a standard error of $193), that there
is restricted �rst-order poverty dominance by the Netherlands over the US
for poverty lines between $2,958 and $8,470, and restricted �rst-order dom-
inance by the US over the Netherlands for poverty lines above $8,470 (with
a standard error of $203).

Table 5 presents poverty rankings for the US, Canada and the Netherlands
when the poverty line is set to half median income in each country. For
s = 1, the US has signi�cantly more poverty than in either of the other
two countries, whereas the rankings of Canada and the Netherlands switch
twice as x approaches 0. For s = 2, the USA continues to be dominated (as
expected), but poverty then becomes signi�cantly greater in Canada than
in the Netherlands for all P 2 indices.

Table 6 con�rms the second-order dominance relations of Table 5 by means
of the CPG curves for a poverty line set to half median income for the US,
Canada and the Netherlands. The CPG point estimates are (as expected)
all numerically greatest for the US, followed by those for Canada, and are
smallest for the Netherlands. These rankings are everywhere statistically
signi�cant, except for values of p equal to or below 0.03.12

12 At these low values of p, the imprecision associated with the estimation of the

p-quantiles is su�ciently large to prevent a clear statistical ordering of the dis-

tributions. This precision problem seems less important in the use of the Ds(x)

approach, as seen in the previous table. Which of the two approaches is generally

more statistically e�cient remains, however, a topic for future research.
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Tables 7 (for s = 2) and 8 (for s = 3) present the estimates for the relative
equality dominance rankings of Italy, Canada, the US and the Netherlands
for values of x ranging between 0.25 and 2.5. For poverty dominance using
relative poverty gaps (and when the poverty line is set to mean income),
the same estimates can be used, but one then needs to focus on values of x
between 0 and 1. In Table 7, it is not possible to rank Canada, Italy and
the Netherlands unambiguously in terms of equality: the ranks change with
the values of x. The USA is signi�cantly less equal than Canada and Italy
for almost all values of x, except when x rises above 2.0.13 It is, however,
possible to infer that the US has more poverty than Canada and Italy for
all P 2

r
poverty indices, although for x = 0:25, we cannot infer that the US

has more poverty than the Netherlands. For s = 3 (Table 8), unambiguous
equality dominance of Canada and Italy over the US can now be inferred
for all values of x, although there is still ambiguity for x = 0:25 between the
US and the Netherlands. And, even at this third-order level of dominance,
ambiguity still remains in the equality rankings of Canada, Italy and the
Netherlands.

Appendix

Lemma 1: If B dominates A strictly for s = 1 up to w > 0,
then for any �nite threshold z, B dominates A at order s up to z

for s su�ciently large.

Proof: We have FA(x)�FB(x) > 0 for x < w. Let a = min(FA(x)�FB(x))
over the range [0; w=2], say, so that a > 0 strictly. We wish to show that,
for large s, Ds

A
(x)�Ds

B
(x) > 0 for x < z, that is,

Z
x

0

�
1�

y

x

�s�1 �
dFA(y)� dFB(y)

�
> 0 (30)

for x < z. For ease in the sequel, we have multiplied Ds(x) by (s�1)!=xs�1,
which does not a�ect the inequality we wish to demonstrate.

Now the left-hand side of (30) can be integrated by parts to yield

s� 1

x

Z x

0

�
FA(y)� FB(y)

��
1�

y

x

�s�2
dy:

We split this integral in two parts: the integral from 0 to w=2, and then
from w=2 to x. We may bound the absolute value of the second part: since

13 The values of D2(� �x)=� will inevitably coincide for all countries when x is large

enough, since D2(� � x)=� then always tends to x � 1. The existence of this

common limiting value is analogous to the convergence to 1 of the Lorenz curve

of any distribution as p approaches 1.
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jFA(y)� FB(y)j � 1 for any y, we have

�����
Z

x

w=2

�
FA(y)� FB(y)

��
1�

y

x

�s�2
dy

����� �
�����
Z

x

w=2

�
1�

y

x

�s�2
dy

�����
=

x

s� 1

�
1�

w

2x

�s�1
: (31)

The �rst part is greater than

a
s� 1

x

Z w=2

0

�
1�

y

x

�s�2
dy = a

�
1�

�
1�

w

2x

�s�1�
: (32)

We can make s large enough that, for all w < x < z, (1 � w=2x)s�1 <

a=3. Then, by (31) and (32), (30) is greater than a=3 for all w < x < z.
For x < w, the dominance at �rst order up to w implies dominance at any
order s > 1 up to w. The result is therefore proved.

Lemma 2: (Bahadur, 1966). Suppose that a population is char-
acterised by a twice di�erentiable distribution function F . Then, if
the p--quantile of F is denoted by Q(p), and the sample p--quantile
from a sample of N independent drawings yi from F by Q̂(p), we
have

Q̂(p)�Q(p) = �
1

Nf
�
Q(p)

� NX
i=1

�
I
�
yi < Q(p)

�
��
�
+O

�
N�3=4(logN)3=4

�
;

where f = F 0 is the density.

Proof of Theorem 2:

For distributions A and B, we have

(s� 1)! D̂s(ẑ � x) =

Z ẑ�x

0

(ẑ � x� y)s�1dF̂ (y) and

(s� 1)!Ds(z � x) =

Z
z�x

0

(z � x� y)s�1dF (y):
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Thus

(s� 1)!
�
D̂s(ẑ � x)�Ds(z � x)

�
=Z

ẑ�x

z�x

�
(ẑ � x� y)s�1 � (z � x� y)s�1

�
dF̂ (y)

+

Z
ẑ�x

z�x

(z � x� y)s�1 d(F̂ � F )(y)

+

Z ẑ�x

z�x

(z � x� y)s�1 dF (y)

+

Z z�x

0

�
(ẑ � x� y)s�1 � (z � x� y)s�1

�
d(F̂ � F )(y)

+

Z z�x

0

�
(ẑ � x� y)s�1 � (z � x� y)s�1

�
dF (y)

+

Z
z�x

0

(z � x� y)s�1 d(F̂ � F )(y):

(33)

It follows from (25) that ẑ � z = O(N�1=2), and by standard properties of
the empirical distribution, F̂ � F = O(N�1=2). Thus the �rst two terms
and the fourth are of order N�1, and the others are of order N�1=2.

The third term can be expressed as:

Z
ẑ�x

z�x

(z � x� y)s�1 dF (y) =

Z
z�ẑ

0

us�1dF (z � x� u) = O(N�s=2);

from which we see that it contributes asymptotically only if s = 1. In that
case, the term is

F (ẑ � x)� F (z � x) = D0(z � x)(ẑ � z) +O(N�1);

since we made the de�nition D0 = F 0.

The �fth term is obviously zero for s = 1. For s > 1, it can be expressed as

(ẑ � z)

Z
z�x

0

s�2X
k=0

(ẑ � x� y)k(z � x� y)s�2�k dF (y) =

(ẑ � z)(s� 1)

Z
z�x

0

(z � x� y)s�2 dF (y) +O(N�1) =

(ẑ � z)(s� 1)! Ds�1(z � x) +O(N�1): (34)

We see that expression (34) serves for the �fth term when s > 1 and for
the third when s = 1.
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Finally, the sixth term is

Z
z�x

0

(z � x� y)s�1 d(F̂ � F )(y)

=
1

N

NX
i=1

�
(z � x� yi)

s�1
+ �E

�
(z � x� y)s�1+

��
;

and so it is the average of N IID variables of mean zero. Multiplying (33)
by N1=2, we see that

N1=2
�
D̂s(ẑ � x)�Ds(z � x)

�
= Ds�1(z � x)N1=2(ẑ � z)

+
1

(s� 1)!
N�1=2

NX
i=1

�
(z � x� yi)

s�1
+ �E

�
(z � x� y)s�1+

��
:

(35)

The result of the theorem follows from (35) by simple calculation.

Proof of Theorem 3:

Consider the general problem in which, for some population, a value z is
de�ned implicitly by h(z) = 0, where the function h is de�ned in terms
of the population distribution. For instance, if Q(p) is the p--quantile of a
distribution with CDF F , we have F (Q(p)) = p, and we can set h(z) =
F (z)� p.

For zs, the de�ning relationship, in terms of the populations A and B,
is Ds

A
(zs) = Ds

B
(zs), with Ds

A
(x) > Ds

B
(x) for all x < zs. Thus we set

h(x) = Ds

A
(x)�Ds

B
(x). According to (28), ẑs is de�ned in terms of ĥ(x) �

D̂s

A
(x) � D̂s

B
(x). Under the assumption that zs exists in the population

and is less than the poverty line z, ẑs is clearly a consistent estimator of zs,
and, in particular, we need not consider the possibility that ẑs = z, since
this will happen with vanishingly small probability as N !1.

The proof is similar for all values of s, and so we drop s from our notations.
Since h(z) = 0, we have by Taylor expansion that

h(ẑ) = h0(~z)(ẑ � z) (36)

for some ~z such that j~z � zj < jẑ � zj. We will show later that

ĥ(z) + h(ẑ) = o(N�1=2): (37)

It was assumed that h0(z) 6= 0, and, in fact, since h(x) > 0 for x < z, and
h(z) = 0, it follows that h0(z) < 0. Since ẑ ! z as N ! 1, we have that
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~z ! z as N ! 1 as well. Thus for large enough N , h0(~z) 6= 0. It follows
from (36) and (37) that

ẑ � z = �
ĥ(z)

h0(~z)
+ o(N�1=2): (38)

Suppose �rst that the populations A and B are independent, and that we
have NA drawings from one and NB drawings from the other. For the
purposes of the asymptotic analysis, we assume that the ratio r = NA=NB

remains constant as NA and NB tend to in�nity. We have that

E
�
(z � yA)s�1+

�
= (s� 1)!Ds

A(z) = (s� 1)!Ds

B(z) = E
�
z � yB)s�1+

�
because h(z) = 0. It follows that

N
1=2

A
ĥ(z) =

1

(s� 1)!

�
N
�1=2

A

NAX
i=1

�
(z � yA

i
)s�1+ � E

�
(z � yA)s�1+

��

� r1=2N
�1=2

B

NBX
j=1

�
(z � yBj )

s�1
+ �E

�
z � yB)s�1+

���
: (39)

The expression (39) consists of two independent sums of IID variables to
which we may apply the central limit theorem since moments of order

2s� 2 are assumed to exist. It follows immediately that N
1=2

A
ĥ(z) = O(1)

in probability, and, from (38), that ẑ�z = O(N�1=2). In addition, from (1),

h0(z) = Ds�1
A

(z)�Ds�1
B

(z): (40)

If s = 1, (40) remains correct because we de�ned D0
A
(z) = F 0

A
(z), the

density associated with the CDF FA. We now see from (38) and (39) that

lim
NA!1

var
�
N

1=2

A
(ẑ � z)

�
=

var
�
(z � yA)s�1+

�
+ r var

�
(z � yB)s�1+

�
��
Ds�1
A

(z)�Ds�1
B

(z)
�
(s� 1)!

�2 ; (41)

Next, suppose that we have N paired observations yA
i

and yB
i

from one
single population. (39) continues to hold withNA = N and r = 1. However,
the two sums of IID variables are no longer independent in general, and so
(41) must be replaced by

lim
N!1

var
�
N1=2(ẑ � z)

�
=

var
�
(z � yA)s�1+

�
+ var

�
(z � yB)s�1+

�
� 2 cov

�
(z � yA)s�1+ ; (z � yB)s�1+

�
��
Ds�1
A

(z)�Ds�1
B

(z)
�
(s� 1)!

�2 :

(42)
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It remains to prove (37). Note that, because ĥ(ẑ) = h(z) = 0,

�
�
ĥ(z) + h(ẑ)

�
= ĥ(ẑ)� ĥ(z)�

�
h(ẑ)� h(z)

�
: (43)

Consider the expression

ĥ(z + �)� ĥ(z)�
�
h(z + �)� h(z)

�
: (44)

for nonrandom �. In the case of just one population and N paired drawings
of yA and yB, we can write

ĥ(z + �)� ĥ(z) =
1

N(s� 1)!

� NX
i=1

(z + � � yA)s�1+ � (z + � � yB)s�1+

� (z � yA)s�1+ + (z � yB)s�1+

�
:

The expectation of this is h(z + �) � h(z), and so (44) is the average of
bounded IID variables with mean zero and �nite variance of order �2. Con-
sequently, by the central limit theorem, (44) times N1=2 has mean zero and
variance of order �2. Since ẑ� z = O(N�1=2) in probability, it follows that
(43) times N1=2 tends to zero in mean square, and hence in probability.

An exactly similar argument applies when there are two populations.

Proof of Theorem 4:

We have for both distributions A and B that

Ĝ(p; ẑ) =

Z
1

0

(z � y)I(y < ẑ) I(y < Q̂(p)) dF̂ (y)

+ (ẑ � z)

Z
1

0

I(y < ẑ) I(y < Q̂(p)) dF̂ (y): (45)

The second term on the right-hand side of this is

(ẑ � z)F̂
�
min(ẑ; Q̂(p))

�
= (ẑ � z)min

�
F̂ (ẑ); p

�
= (ẑ � z)min

�
F (z); p

�
+ O(N�1);

and the �rst term is Z
Q̂(p)

0

(z � y)+ dF̂ (y):

This kind of integral can be expressed asymptotically as a sum of IID
variables using a technique developed in Davidson and Duclos (1997). The
term becomes

p
�
z�Q(p)

�
+
+N�1

NX
i=1

I
�
yi < Q(p)

��
(z� yi)+ � (z�Q(p))+

�
+O(N�1);
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which to leading order is a deterministic term plus an average of IID random
variables. We can combine the two terms in (45) using (25) to get

Ĝ(p; ẑ) = p(z �Q(p))+ +N�1

NX
i=1

�
I
�
yi < Q(p)

��
(z � yi)+ � (z �Q(p))+

�
+
�
�(yi)� z

�
min

�
F (z); p

��
+O(N�1): (46)

If z is known and not estimated, we can just set �(yi) = z, and the last
term in the sum will vanish.

It is easy to check that, whether z < Q(p) or z > Q(p), the expecta-
tion of the leading term of the above expression is just G(p; z). The fact
that ĜA(p; ẑA) and ĜB(p; ẑB) are sums of independently and identically
distributed random variables with �nite second moments leads to their
asymptotic normality by the central limit theorem. The covariance struc-
ture is obtained by simple calculation.
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Table 1

Sample means and medians (in 1991 equivalised US dollars)

(asymptotic standard errors)

USA Canada Italy Finland Norway Netherlands

Mean 18589

( 95 )

19807

( 76 )

12699

( 82 )

15182

( 61)

13902

( 87 )

15820

( 137)

Median 16320

(  110 )

17883

( 77 )

11356

(  85 )

14306

( 60 )

12532

( 79 )

14836

( 107 )

Standard

deviation

12098 11231 7440 6574 7881 9058

Number of

LIS sample

observations

16052 21647 8188 11749 8073 4378



Table 2

Headcounts for various poverty lines

(asymptotic standard errors)

 Estimates of D1(x)

x USA Canada Italy Finland Norway Netherlands

  2000 0.0184
(0.001)

0.0071
(0.0006)

0.0089
(0.001)

0.0031
(0.0005)

0.0059
(0.0009)

0.0234
(0.002)

  4000 0.0461
(0.002)

0.0162
(0.0009)

0.0349
(0.002)

0.0096
(0.0009)

0.0122
(0.001)

0.0332
(0.003)

  6000 0.104
(0.002)

0.042
(0.001)

0.124
(0.004)

0.034
(0.002)

0.026
(0.002)

0.061
(0.004)

  8000 0.176
(0.003)

0.089
(0.002)

0.276
(0.005)

0.091
(0.003)

0.086
(0.003)

0.159
(0.006)

10000 0.250
(0.003)

0.149
(0.002)

0.408
(0.005)

0.184
(0.004)

0.173
(0.004)

0.310
(0.007)

15000 0.451
(0.004)

0.366
(0.003)

0.707
(0.005)

0.553
(0.004)

0.511
(0.006)

0.660
(0.007)

20000 0.625
(0.004)

0.584
(0.003)

0.879
(0.004)

0.830
(0.003)

0.796
(0.004)

0.856
(0.005)

25000 0.761
(0.003)

0.751
(0.003)

0.949
(0.002)

0.936
(0.002)

0.927
(0.003)

0.944
(0.003)

30000 0.854
(0.003)

0.859
(0.002)

0.979
(0.002)

0.972
(0.002)

0.970
(0.002)

0.973
(0.002)

35000 0.908
(0.002)

0.923
(0.002)

0.988
(0.001)

0.987
(0.001)

0.984
(0.001)

0.985
(0.002)



Table 3

Average poverty gaps for various poverty lines

(asymptotic standard errors)

Estimates of D2(x)

x USA Canada Italy Finland Norway Netherlands

  2000 23.0
(1.5)

8.7
(0.8)

8.6
(1.3)

2.9
(0.6)

8.5
(1.3)

34.7
(3.7)

  4000 81.2
(3.7)

31.4
(2.0)

47.4
(3.6)

13.8
(1.7)

27.4
(3.2)

90.0
(8.2)

  6000 227.7
(6.9)

86.7
(3.7)

188.7
(7.7)

52.1
(3.5)

64.7
(5.6)

177.4
(13.4)

  8000 505.5
(11.1)

216.8
(6.2)

588.8
(14.1)

170.8
(6.7)

172.1
(9.1)

374.8
(19.8)

10000 933
(16)

453
(10)

1274
(22)

439
(11)

429
(14)

843
(28)

15000 2694
(31)

1714
(21)

4109
(42)

2246
(27)

2101
(33)

3313
(54)

20000 5397
(45)

4112
(33)

8120
(56)

5785
(40)

5447
(50)

7153
(74)

25000 8884
(58)

7478
(44)

12714
(64)

10250
(48)

9811
(60)

11702
(85)

30000 12941
(60)

11531
(53)

17539
(69)

15036
(53)

14581
(65)

16506
(92)

35000 17362
(75)

16004
(58)

22461
(72)

19940
(55)

19468
(69)

21410
(97)



Table 4

Estimates of the thresholds zs for dominance
of five LIS countries over the US distribution

(asymptotic standard errors)

s CANADA ITALY FINLAND NORWAY NETHERLANDS
[z-

s , z
+

s]

s = 1 27840
(1575)

5340
(161)

12387
(164)

13190
(197)

[2958, 8470]
(193)  (203)

s = 2 - 6976
(207)

18038
(287)

19708
(389)

[4504, 11095]
(486)   (389)

s = 3 - 8930
(346)

25092
(562)

28051
(791)

[6128, 13835]
(741)  (716)

s = 4 - 11042
(471)

33081
(897)

37533
(1299)

[7839, 16530]
(1071)  (1145)



Table 5

Poverty ranking [based on Ds(z-x)] with poverty line equal
to half of median income for the USA, Canada, and the Netherlands

(asymptotic standard errors)

s = 1 s = 2

x Most
Poverty

Medium
Poverty

Least
Poverty

Most
Poverty

Medium
Poverty

Least
Poverty

7000
USA
0.012

(0.001)

CAN
0.0070

(0.0006)

NL
0
(-)

USA
0.2

(1.1)

CAN
8.2

(0.8)

NL
0
(-)

6000
USA
0.020

(0.001)

NL
0.012

(0.002)

CAN
0.0108

(0.0007)

USA
26.1
(2.1)

CAN
17.3
(1.4)

NL
3.1

(0.8)

5000
USA
0.030

(0.002)

NL
0.021

(0.002)

CAN
0.016

(0.001)

USA
50.0
(3.4)

CAN
30.4
(2.1)

NL
18.8
(2.5)

4000
USA
0.502

(0.002)

CAN
0.027

(0.001)

NL
0.024

(0.002)

USA
88.9
(5.3)

CAN
51.2
(3.0)

NL
41.0
(4.6)

3000
USA
0.077

(0.003)

CAN
0.041

(0.002)

NL
0.028

(0.003)

USA
152.1

(7.7)

CAN
84.2
(4.2)

NL
67.4
(6.8)

2000
USA
0.160

(0.004)

CAN
0.065

(0.002)

NL
0.035

(0.003)

USA
245
(11)

CAN
136.1

(5.8)

NL
99.1
(9.3)

1000
USA
0.144

(0.004)

CAN
0.088

(0.002)

NL
0.045

(0.004)

USA
372
(14)

CAN
211.6

(7.7)

NL
139
(12)

0
USA
0.181

(0.005)

CAN
0.116

(0.003)

NL
0.067

(0.005)

USA
534
(18)

CAN
312.8

(9.9)

NL
194
(15)



Table 6
CPG Curve  [G(p;z)] for a poverty line, z,

equal to half of median income
(asymptotic standard errors)

p USA CAN NL

0.01 80
(11)

77.5
(4.7)

62.7
(3.4)

0.02 146
(11)

129.4
(5.2)

119.6
(4.2)

0.03 201
(11)

170.8
(5.7)

157.2
(8.2)

0.04 247
(11)

204.3
(6.2)

178.3
(11)

0.05 289
(12)

232.6
(6.6)

189
(13)

0.06 327
(12)

256
(7.0)

194
(15)

0.07 362
(12)

275.6
(7.4)

194
(15)

0.08 392
(13)

290.5
(8.0)

194
(15)

0.09 419
(13)

301.5
(8.5)

194
(15)

0.10 444
(14)

308.6
(9.1)

194
(15)

0.11 465
(14)

312.2
(9.6)

194
(15)

0.12 483
(15)

312.8
(9.9)

194
(15)

0.13 499
(15)

312.8
(9.9)

194
(15)

0.14 511
(16)

312.8
(9.9)

194
(15)

0.15 521
(16)

312.8
(9.9)

194
(15)

0.16 528
(17)

312.8
(9.9)

194
(15)

0.17 532
(17)

312.8
(9.9)

194
(15)

0.18 534
(18)

312.8
(9.9)

194
(15)

0.19 534
(18)

312.8
(9.9)

194
(15)



Table 7

Relative equality ranking
for dominance of the second order

Based on estimates of D2(µ⋅x)/µ

(asymptotic standard errors)

x
MOST

EQUALITY
SECOND MOST

EQUALITY
SECOND LEAST

EQUALITY
LEAST

EQUALITY

0.25
IT

0.0020
(0.0002)

CAN
0.0026

(0.0002)

NL
0.0053

(0.0005)

USA
0.0063

(0.0003)

0.5
IT

0.0186
(0.0009)

NL
0.0178

(0.0012)

CAN
0.0221

(0.0005)

USA
0.0412

(0.0009)

0.75
NL

0.0707
(0.0026)

CAN
0.0838

(0.0009)

IT
0.0856

(0.0016)

USA
0.120

(0.001)

1,0
NL

0.189
(0.003)

CAN
0.202

(0.001)

IT
0.206

(0.002)

USA
0.245

(0.001)

1.25
NL

0.361
(0.004)

CAN
0.368

(0.001

IT
0.373

(0.002)

USA
0.408

(0.002)

1.5
NL

0.568
(0.004)

CAN
0.570

(0.002)

IT
0.574

(0.003)

USA
0.601

(0.003)

1.75
CAN
0.792

(0.002)

NL
0.796

(0.005)

IT
0.797

(0.004)

USA
0.815

(0.004)

2.0
CAN
1.027

(0.003)

IT
1.031

(0.006)

NL
1.034

(0.007)

USA
1.042

(0.005)

2.25
CAN
1.268

(0.004)

IT
1.271

(0.007)

NL AND USA
1.277                           1.277

(0.009)                         (0.006)

2.5
CAN
1.513

(0.005)

IT
1.516

(0.009)

USA
1.518

(0.007)

NL
1.523

(0.012)



Table 8

Relative equality ranking
for dominance of the third order

Based on estimates of D3(µ⋅x)/µ2

(asymptotic standard errors)

x
MOST

EQUALITY
SECOND MOST

EQUALITY
SECOND LEAST

EQUALITY
LEAST

EQUALITY

0.25
IT

0.00016
(0.00003)

CAN
0.00021

(0.000015)

NL
0.00046

(0.00006)

USA
0.00051

(0.00003)

0.5
IT

0.0021
(0.0001)

CAN
0.0027

(0.00009)

NL
0.0032

(0.0003)

USA
0.0056

(0.0002)

0.75
NL

0.0129
(0.0006)

IT
0.0139

(0.0004)

CAN
0.0148

(0.0002)

USA
0.0248

(0.0004)

1,0
NL

0.044
(0.001)

IT AND CAN
0.0493                         0.0493

(0.0007)                       (0.0004)

USA
0.0696

(0.0006)

1.25
NL

0.112
(0.002)

CAN
0.1197

(0.0008)

IT
0.121

(0.001)

USA
0.150

(0.001)

1.5
NL

0.227
(0.003)

CAN
0.236

(0.001)

IT
0.239

(0.002)

USA
0.276

(0.002)

1.75
NL

0.397
(0.005)

CAN
0.406

(0.002)

IT
0.410

(0.004)

USA
0.452

(0.003)

2.0
NL

0.626
(0.008)

CAN
0.633

(0.004)

IT
0.638

(0.006)

USA
0.684

(0.006)

2.25
NL

0.915
(0.012)

CAN
0.920

(0.006)

IT
0.926

(0.009)

USA
0.974

(0.008)

2.5
NL

1.265
(0.0018)

CAN
1.268

(0.008)

IT
1.274

(0.014)

USA
1.323

(0.012)


