
JOURNAL OF APPLIED ECONOMETRICS, VOL. 9, S123-S144 (1994) 

STATISTICAL INFERENCE IN CALIBRATED MODELS 

FABIO CANOVA 
Department of Economics, Universitat Pompeu Fabra, Balmes 132, 08008 Barcelona, Spain 

and Department of Economics, Universitd di Catania, 95100 Catania, Italy, and CEPR 

SUMMARY 
This paper describes a Monte Carlo procedure to assess the performance of calibrated dynamic general 
equilibrium models. The procedure formalizes the choice of parameters and the evaluation of the model 
and provides an efficient way to conduct a sensitivity analysis for perturbations of the parameters within a 
reasonable range. As an illustration the methodology is applied to two problems: the equity premium 
puzzle and how much of the variance of actual US output is explained by a real business cycle model. 

1. INTRODUCTION 

The current macroeconometrics literature has proposed two ways to confront general 
equilibrium rational expectations models with data. The first, an estimation approach, is the 
direct descendant of the econometric methodology proposed 50 years ago by Haavelmo (1944). 
The second, a calibration approach, finds its justification in the work of Frisch (1933) and is 
closely linked to the computable general equilibrium literature surveyed e.g. in Shoven and 
Whalley (1984). 

The two methodologies share the same strategy in terms of model specification and solution. 
Both approaches start from formulating a fully specified general equilibrium dynamic model 
and in selecting convenient functional forms for preferences, technology, and exogenous 
driving forces. They then proceed to find a decision rule for the endogenous variables in terms 
of the exogenous and predetermined variables (the states) and the parameters. When the model 
is nonlinear, closed-form expressions for the decision rules may not exist and both approaches 
rely on recent advantages in numerical methods to find an approximate solution which is valid 
either locally or globally (see e.g. the January 1990 issue of the Journal of Business and 
Economic Statistics for a survey of the methods and Christiano, 1990, and Dotsey and Mao, 
1991, for a comparison of the accuracy of the approximations). 

It is when it comes to choosing the parameters to be used in the simulations and in evaluating 
the performance of the model that several differences emerge. The first procedure attempts to 
find the parameters of the decision rule that best fit the data either by maximum likelihood (ML) 
(see e.g. Hansen and Sargent, 1979, or Altug, 1989) or generalized method of moments, (GMM) 
(see e.g. Hansen and Singleton, 1983, or Burnside et al., 1993). The validity of the specification 
is examined by testing restrictions, by general goodness of fit tests or by comparing the fit of 
two nested models. The second approach 'calibrates' parameters using a set of alternative rules 
which includes matching long-run averages, using previous microevidence or a priori selection, 
and assesses the fit of the model with an informal distance criterion. 

These differences are tightly linked to the questions the two approaches ask. Roughly 
speaking, the estimation approach asks the question 'Given that the model is true, how false is 

CCC 0883-7252/94/OSOS123-22 Received July 1992 
( 1994 by John Wiley & Sons, Ltd. Revised August 1994 



F. CANOVA 

it?' while the calibration approach asks 'Given that the model is false, how true is it?' Implicit 
in the process of estimation is in fact the belief that the probability structure of a model is 
sufficiently well specified to provide an accurate description of the data. Because economic 
models are built with an emphasis on tractability, they are often probabilistically underspecified 
so that measurement errors or unobservable shocks are added at the estimation stage to complete 
their probability structure (see e.g. Hansen and Sargent, 1980, or Altug, 1989). By testing the 
model, a researcher takes the model seriously as a data-generating process (DGP) and examines 
what features of the specification are at variance with the data. A calibrationist takes the 
opposite view: the model, as a DGP for the data, is false. That is, as the sample size grows, it is 
known that the data are generated by the model will be at increasingly greater variance with the 
observed time series. An economic model is seen, at best, as an approximation to the true DGP 
which need not be either accurate or realistic and, as such, should not be regarded as a null 
hypothesis to be statistically tested (see Prescott, 1991, p. 5). In confronting the model with the 
data, a calibrationist wants to indicate the dimensions where the approximation is poor and 
suggest modifications to the theoretical model in order to obtain a better approximation. 

Both methodologies have weak points. Model estimation involves a degree of arbitrariness in 
specifying which variables are unobservable or measured with error. In the limit, since all 
variables are indeed measured with error, no estimation seems possible and fruitful. In addition, 
tests of the model's restrictions may fail to indicate how to alter the specification to obtain a 
better fit. The limitations of the calibration approach are also well known. First, the selection 
criterion for parameters which do not measure long-run averages is informally specified and 
may lead to contradictory choices. Information used in different studies may in fact be 
inconsistent (e.g. a parameter chosen to match labour payments from firms in national account 
data may not equal the value chosen to match the labour income received by households) and 
the range of estimates for certain parameters (e.g. risk aversion parameter) is so large that 
selection biases may be important. Second, the outcomes of the simulations typically depend on 
the choice of unmeasured parameters. However, although some authors (see e.g. Prescott, 1991, 
p. 7, or Kydland, 1992, p. 478) regard a calibration exercise as incomplete unless the sensitivity 
of the results to reasonable perturbations of the parameters selected a priori or not well tied to 
the data is reported, such an analysis is not often performed. Third, because the degree of 
confidence in the results depends on both the degree of confidence in the theory and in the 
underlying measurement of the parameters and because either parameter uncertainty is 
disregarded or, when a search is undertaken, the number of replications typically performed is 
small, we must resort to informal techniques to judge the relevance of the theory. 

This paper attempts to eliminate some of the weaknesses of calibration procedures while 
maintaining the general analytical strategy employed in calibration exercises. The focus is on 
trying to formalize the selection of the parameters and the evaluation process and in designing 
procedures for meaningful robustness analysis on the outcomes of the simulations. The 
technique we propose shares features with those recently described by Gregory and Smith 
(1991) and Kwan (1990), has similarities with stochastic simulation techniques employed in 
dynamic nonlinear large scale macro models (see e.g. Fair, 1991), and generalizes techniques on 
randomized design for strata existing in the static computable general equilibrium literature (see 
e.g. Harrison and Vinod, 1989). 

The idea of the technique is simple. We would like to reproduce features of actual data, 
which is taken to be the realization of an unknown vector stochastic process, with an 'artificial 
economy' which is almost surely the incorrect generating mechanism for the actual data. The 
features we may be interested in include conditional and unconditional moments (or densities), 
the autocovariance function of the data, functions of these quantities (e.g. measures of relative 
volatility), or specific events (e.g. a recession). A model is simulated repeatedly using a Monte 
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Carlo procedure which randomizes over both the exogenous stochastic processes and the 

parameters. Parameters are drawn from a data-based density which is consistent with the 
information available t a simulator (which may include both time-series and cross-sectional 
aspects). We judge the validity of a model on its ability to reproduce a number of 'stylized 
facts' of the actual economy (see Friedman, 1959). The metric used to evaluate the discrepancy 
of the model from the data is probabilistic. We construct the simulated distribution of the 
statistics of interest and, taking the actual realization of the statistic as a critical value, examine 
(1) in what percentile of the simulated distribution the actual value lies and (2) how much of the 
simulated distribution is within a k% region centred around the critical value. Extreme values 
for the percentile (say, below a% or above (1 - a)%) or a value smaller than k for the second 
probability indicates a poor fit in the dimensions examined. 

The approach has several appealing features. First, it accounts for the uncertainty faced by a 
simulator in choosing the parameters of the model in a realistic way. Second, it has a built-in 
feature for global sensitivity analysis on the support of the parameter space and allows for other 
forms of conditional or local sensitivity analysis. Third, it provides general evaluation criteria 
and a simple and convenient framework to judge the relevance of the theory. 

The paper is divided into six sections. The next section introduces the technique, provides a 
justification for the approach and describes the details involved in the implementation of the 
procedure. Section 3 deals with robustness analysis. Section 4 spells out the relationship with 
existing techniques. Two examples describing the potential of the technique for problems of 
practical interest appear in Section 5. Section 6 presents conclusions. 

2. THE TECHNIQUE 

A General Framework of Analysis 

We assume that a researcher is faced with an m x 1 vector of time series x, which are the 
realizations of a vector stochastic process X, and that she is interested in reproducing features of 
X, using a dynamic general equilibrium model. X, is assumed to have a continuous but unknown 
distribution and moments up to the nth. For the sake of presentation we assume that the 
unconditional distribution of X, is independent of t but shifts in the unconditional distribution of 
X, at known points can easily be handled. X, may include macro variables like GNP, 
consumption, interest rates, etc. We also assume that dynamic economic theory gives us a model 
expressing the endogenous variables X, as a function of exogenous and predetermined variables 
Z, (the states of the problem) and of the parameters ,f. Z, may include objects like the existing 
capital stock, exogenous fiscal, and monetary variables or shocks to technologies and 
preferences. We express the model's functional relation as X, =f(Z,, ,/). Under specific 
assumptions about the structure of the economy (e.g. log or quadratic preferences, 
Cobb-Douglas production function, full depreciation of the capital stock in the one-sector 
growth model), f can be computed analytically either by value function iteration or by solving 
the Euler equations of the model subject to the transversality condition (see e.g. Hansen and 
Sargent, 1979). In general, however, f cannot be derived analytically from the primitives of the 

problem. A large body of current literature has concentrated on the problem of finding 
approximations which are either locally or globally close to f for a given metric.1 

'These include linear or log-linear expansions of f around the steady state (Kydland and Prescott, 1982; and King 
et al., 1988), backward-solving methods (Sims, 1984; Novales, 1990), global functional expansions in polynomials 
(Marcet, 1992; Judd, 1992), piecewise linear interpolation methods (Coleman, 1989; Baxter, 1991) and quadrature 
techniques (Tauchen and Hussey, 1991). 
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Here we assume that either f is available analytically or that one of the existing numerical 
procedures has been employed to obtain a functional 9 which approximates f in some sense, i.e. 
1 i9(Z,, y)-f(Z,, ) II|| < E, where y= t(fl) and I . II is a given norm. Given the model f, an 
approximation procedure 9, a set of parameters /3, and a probability distribution for Z, (denoted 
by K(Z,)), we can infer the model-based probability distribution for X,. 

Let 'i(X, I /3, f) be the density of the X, vector, conditional on the parameters / and the model 
f, let ir(, I o, f) be the density of the parameters, conditional on the information set : available 
to the simulator and the model f, and let Xe(X,, , I f, f) be the joint density of simulated data 
and of parameters. (XX,1 ,f, f) represents the probability that a particular path for the 
endogenous variables will be drawn given a parametric structure for the artificial economy and a 
set of parameters, while nr(fB I , f) summarizes the information on the parameters available to a 
researcher. Note that 8 is assumed to be independent of I and n may depend on f, i.e. if we are 
using a GE model we may want to use only estimates obtained with similar GE models. For a 
given s, X, is random because Z is random, i.e. (X, I , f) is a deterministic transformation of 
K(Z). 

Throughout this paper we are interested in studying the behaviour of functions of simulated 
data (denoted by ,u(X,)) under the predictive density p(Xt I ,f)=le(X, I f, )d d, i.e. 
evaluating objects of the form: 

E(u(Xt) , f s, I C) = f t p(X)p( Xt, f ) dXS 

=JJIS I (Xt)N(Xt,/ 1,f) df dX (1) 

where 4 c 2 and 2 is the parameter space and is the support of the exogenous variables. Let 
h(x) be the corresponding vector of functions of the actual data. 

The problem of measuring the fit of the model can be summarized as follows. How likely is 
the model to generate h(x,)? To answer note that from equation (1) we can compute 
probabilities of the form P(v(X,) E D), where D is a bounded set and v(X,) includes moments 
and other statistics of the simulated data. To do this let ,u(X,) = x(X,, [X,: v(Xt) E D]) where 
x(X,, S) is the indicator function, i.e. x(X, S) = 1 if v(X,) E S and zero otherwise. Similarly, 
we can construct quantiles q(X,) by appropriately choosing D (see e.g. Geweke, 1989). Finally, 
we can also find a h satisfying P[v(X) h] = v for any given vector v, by appropriately 
selecting the indicator function. 

Model evaluation then consists of several types of statements which are interchangeable and 
differ only in the criteria used to measure distance. First, we can compute P[v(X,) < h(t)]. In 
other words, we can examine the likelihood of an event (the observed realization of the 
summary statistics in the actual data) from the point of view of the model. Extreme values for 
this probability indicate a poor 'fit' in the dimensions examined. Alternatively, if we can 
measure the sampling variability of h(x,), we can then choose the set D to include the actual 
realization of h(xt) plus one or two standard deviations and either check whether h is in D or 
calculate P[v(X,) D]. 

Implementation 

There are four technical implementation issues which deserve some discussion. The first 
concerns the computation of integrals like those in equation (1). When the (f3, Z,) vector is of 
high-dimension simple discrete grid approximations, spherical or quadrature rules quickly 
become infeasible since the number of function evaluations increases exponentially with the 
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dimension of ,3 and Z,. In addition, unless the contours of We(X,, 3 I , f) (and of p(X, |I , f)) 
are of ellipsoidal forms, grid evaluations may explore this density inefficiently. There are 
several feasible alternatives: one is the Monte Carlo procedure described in Geweke (1989), 
another is the data-augmentation procedure of Tanner and Wong (1987), a third is the 'Gibbs 
sampler' discussed in Gelfand and Smith (1990). Finally, we could use one of the quasi-random 
procedures proposed by Niederreiter (1988). 

In this paper we adopt a Monte Carlo approach. After drawing with replacement i.i.d. ,3 
vectors and Z, paths, we substitute sums over realizations for the integrals appearing in equation 
(1) and appeal to the strong law of large numbers for functions of i.i.d. random variables to 
obtain 

1 
N a.s. 

N Zi(xt) - > E((Xt)) (2) 

where N is the number of replications. Note that, although We (and p) are, in general, unknown, 
sampling from them can be conveniently accomplished by simulating the model repeatedly for 
random (Z,, ,/), i.e. randomly drawing exogenous forces and selecting a parameter vector and 
using the decision rule to compute time paths for X,. 

Second, since in most cases the function f is unknown, 8 itself becomes unknown and the 
direct computation of equation (1) is infeasible. If the approximation ; to f is accurate, we 
could simply neglect the error and proceed using I(X,, /B | , 9i) in place of Ne(X,, PB \I , f) where 
J is the joint density of simulated data and parameters using the information set I and the 

approximation rule i;. However, since only little is known about the properties of approximation 
procedures and some have only local validity (see e.g. Christiano, 1990; Dotsey and Mao, 
1991), we may want to explicitly account for the existence of an approximation error in 
conducting inference. In this case, following Geweke (1989), we would replace equation (1) 
with: 

E(,u(Xt) l f,, 4 P /C)= I | (Xt, p l T, )(p,f, i) dp dX, (3) 

where T(,3, f, 9i) are weights which depend on the 'true' density We(X,, I 1§, f) and on the 
approximation density 2(X,, 83 I , s). For example, if a quadratic approximation around the 
steady state is used, the density _ can be chosen so that draws of Z, inducing paths of X, which 
are in the tails of J (i.e. paths which are very far away from steady states) receive a very small 
weight in the calculation of the statistics of interest. 

Third, we must specify a density for the parameters of the model. We could select it on the 
basis of one specific data set and specify 7r(, I 1, f) to be the asymptotic distribution of a GMM 
estimator (as in Bumside et al., 1993), of a simulated method of moments (SMM) estimator (as 
in Canova and Marrinan, 1993), or of a ML estimator of ,3 (as in Phillips, 1991). The 
disadvantage of these approaches is that the resulting density measures the uncertainty 
surrounding ,3 present in a particular data set and does not necessarily reflect the uncertainty 
faced by a researcher in choosing the parameters of the model. As Larry Christiano has pointed 
out to the author, once a researcher chooses the moments to match, the uncertainty surrounding 
estimates of fB is small. The true uncertainty lies in the choice of moments to be matched and in 
the sources of data to be used to compute estimates. 

A better approach would be to select rn( I \, f) so as to summarize efficiently all existing 
information, which may include point estimates of ,3 obtained from different estimation 

techniques, data sets, or model specifications. El-Gamal (1993a,b) has formally solved the 
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problem of finding such a jr(, I |, f) using Bayesian methods. The resulting 7n(3 I \, f) is the 
least informative pseudo-posterior density on the parameter space which is consistent with a set 
of constraints describing the information contained in various estimation experiments. El-Gamal 
suggests a Gibbs sampler algorithm to compute this density but, in practice, there are simpler 
ways to construct empirical approximations to this type of density. One would be to count 
estimates of ,3 previously obtained in the literature and construct n(, | 1, f) by smoothing the 
resulting histogram. For example, if one of the elements of the ,3 vector is the risk aversion 
parameter, counting estimates obtained over the last 15 years from fully specified general 
equilibrium models and smoothing the resulting histogram, we would obtain a truncated (below- 
zero) bell-shaped density, centred around two and very small massabove four. Alternatively, we 
could take what the profession regards as a reasonable range for ,3 and assume more or less 
informative densities on the support depending on available estimates. If theoretical arguments 
suggest that the maximum range for e.g. the risk aversion parameter is [0, 20], we can put 
higher weights on the interval [1, 3] where most of the estimates lie. If for some parameters 
previous econometric evidence is scant, measurement is difficult, or there are no reasons to 
expect that one value is more likely than others, we could assume uniform densities on the 
chosen support. 

Available estimates of fi are not necessarily independent (the same data set is used in many 
cases) and some are less reliable than others. Non-independent estimates are legitimate 
candidates to enter the information set as long as they reflect sampling variability or different 
estimation techniques. The influence of less reliable estimates or of estimates obtained with 
different model specifications can be discounted by giving them a smaller weight in constructing 
histograms (see also El-Gamal, 1993a,b). 

Finally, in many applications the joint density of the parameter vector can be factored into the 
product of lower-dimensional densities. If no relationship across estimates of the various 
parameters exists, 7r(/ I 8) is the product of univariate densities. If estimates of certain 
parameters are related (e.g. in the case of the discount factor and the risk aversion parameter in 
asset pricing models), we can choose multivariate densities for these dimensions and maintain 
univariate specifications for the densities of the other parameters. 

To summarize, to implement the procedure we need to do the following: 

* Select a reasonable (data-based) density rz(f I , f), where I represents the information set 
available to a researcher, and a density K(Z,) for the exogenous processes. 

* Draw vectors ,B from t(fB I 1, f) and z, from K(Z,). 
* For each draw of ,3 and z,, generate I x, },1 and compute ,u(x,) using the model x, =f(z,, Bf) or 

the approximation x, = (z,, y). 
* Repeat the two previous steps N times. 
* Construct the frequency distribution of ,u(x,), compute probabilities, quantiles and other 

measures of interest. 

An Interpretation 

The proposed framework of analysis lends itself to a simple Bayesian interpretation. In this case 
we treat 7n(3 I \,f) as the prior on the parameters. The function 86 is entirely analogous to a 
classical likelihood function for X, in a standard regression model. The difference is that 8 need 
not be the correct likelihood for X, and need not have a closed form. Then equation (1) is the 
conditional expectation of ,u(X,) under the predictive density of the model and probability 
statements based on equation (1) can be justified using the arguments contained in Box (1980). 
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There is also a less orthodox interpretation of the approach which exchanges the role of 
;7(p I 1, f) and '(X, I ,/, f) and is nevertheless reasonable. In this case '(X, I ,B, f) is the prior 
and represents the a priori degree of confidence posed by the researcher on the time path 
generated by the model given the parameters while 7t(lB I , ,f) summarizes the information 
contained in the data. Then equation (1) is a 'pseudo-posterior' statement about the model's 
validity once the empirical evidence on the parameters is taken into account. 

It is useful to note that, if we follow the first approach, we can relate the proposed 
construction of t(,B \I , f) to the data-based priors employed in Meta-Analysis (see Wolf, 1986) 
and in the 'consensus literature' (see e.g. Genest and Zideck, 1986). El-Gamal (1993a) spells 
out in detail the connection with these two strands of literature. 

3. ROBUSTNESS ANALYSIS 

If we adopt a Monte Carlo approach to compute simulated densities for the statistics of interest, 
an automatic and efficient global sensitivity analysis is performed on the support of the 
parameter space as a by-product of the simulations. Sensitivity analysis, however, can take other 
more specific forms. For example, we may be interested in examining how likely ,u(X,) is to be 
close to h(xt) when /B is fixed at some prespecified value B. This would be the case, for 
example, if /B includes parameters which can be controlled by the government and h(x,) is e.g. 
the current account balance of that country. In this case we could choose a path for Z, and 
analyse the conditional distribution of ,u(X,) for the selected value(s) of ,6. Alternatively, we 
might wish to assess the maximal variation in ,(X,) consistent, say, with fi being within two 
standard deviations of a particular value. Here we choose a path for Z, and construct paths for 
,u(X,) for draws of P3 in the range. Finally, we may be interested in knowing which dimensions 
of P are responsible for particular features of the distribution of ,u(X,). For example, if the 
simulated distribution of ,u(X,) has a large spread or fat tails, a researcher may be interested in 
knowing whether technology or preference parameters are responsible for this feature. In this 
case we would partition PB into [B1, 82] and compute the simulated distribution of jt(X,) 
conditional on 12 = P2, where 12 is a prespecified value (or set of values. 

So far, we have examined the robustness of the results to variations of the parameters within 
their support. In some cases it is necessary to study the sensitivity of the results to local 
perturbations of the parameters. For example, we may be interested in determining how robust 
the simulation results are to changes of the parameters in a small neighbourhood of a particular 
vector of calibrated parameters. To undertake this type of analysis we can take a numerical 
version of the average derivative of ,u(X,) in the neighbourhood of a calibrated vector (see 
Pagan and Ullah, 1991). Because global and local analyses aim at examining the sensitivity of 
the outcomes to perturbations in the parameters of different size they provide complementary 
information and should both be used as specification diagnostics for models whose parameters 
are calibrated. 

4. A COMPARISON WITH EXISTING METHODOLOGIES 

The framework of analysis in Section 2 is general enough to include simulation undertaken after 
the parameters are both calibrated and estimated via method of moments as special cases. To 
show this it is convenient to recall that We(X,, 3 I | ,f) is a deterministic transformation of 
Q (Zt, P I |, f) = 7z( I , f) K(Zt). The two procedures can then be recovered by imposing 
restrictions on the shape and the location of jn(8 I |, f) and, in some cases, also on the shape 
and the location of K(Z,). 
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Calibration exercises impose a point mass for 7rz( I \, f) on a particular value of ,B (say, ,P). 
One interpretation of this density selection is that a simulator is perfectly confident in the vector 
,B used and does not worry about the cross-study or time-series uncertainty surrounding 
estimates of P3. In certain situations a path for the vector of exogenous variables is also selected 
in advance either by drawing only one realization from their distribution or by choosing a z, on 
the basis of extraneous information, e.g. inputting Solow's residuals in the model, so that K(Z,) 
is also a singleton. In this instance, the density of ,u(X,) has a point mass and because the 
likelihood of the model to produce any event is either 0 or 1, we must resort to informal 
techniques to assess the discrepancy of simulated and actual data. In some studies the 
randomness in Z, is explicitly considered, repeated draws for the exogenous variables are made 
for a fixed P, and moments of the statistics of interest are computed by averaging the results 
over a number of simulations (see e.g. Backus et al., 1989). 

Simulation exercises undertaken with estimation of the parameters are also special cases of 
the above framework. Here jr(/ I 1) has a point mass at #/*, where #,* is either the GMM 
estimator, the SMM estimator (see Lee and Ingram, 1991), or the simulated quasi-maximum 
likelihood (SQML) estimator of /B (see Smith, 1993). Simulations are typically performed by 
drawing one realization from 9(X, I P/*, f, 1) and standard errors for ,u(X,) are computed using 
the asymptotic standard errors of /B* and the functional form for ,u. In some cases, (/3B I ) 
is taken to be the asymptotic distribution of one of the above estimators (e.g. Canova 
and Marrinan, 1993). In this case, simulations are performed by drawing from 
'8(X, I/*, f, )rc(,* I 1) and the distance of simulated and actual data is computed using 
measures of discrepancy like the ones proposed here. 

In assessing the model's performance this last set of procedures has two advantages over 
calibration. First, they allow formal statements on the likelihood of selected parameter values to 
reproduce the features of interest. For example, if a four standard deviations range around the 
point estimate of the AR(1) parameter for the productivity disturbance is [0-84, 092], then it is 
highly unlikely (with a probability higher than 99%) that a unit root productivity disturbance is 
needed to match the data. Second, they provide a set-up where sensitivity analysis can easily be 
undertaken (although not often performed). 

These procedures, however, have also two major shortcomings. First, they impose a strong 
form of ignorance which does not reflect available a priori information. The vector /B may 
include meaningful economic parameters which can be bounded on the basis of theoretical 
arguments but the range of possible /B with GMM, SMM, or SQML procedures is [-00, oo]. By 
appropriately selecting a hypercube for their densities a researcher can make 'unreasonable' 
parameter values unlikely and avoid a posteriori adjustments. Second, simulations conducted 
after parameters are estimated may not constitute an independent way to validate the model 
because the parameter estimates are obtained from the same data set which is used later to 
compare results. 

Simulation procedures where parameters are selected using a mixture of calibration and 
estimation strategies have recently been employed by e.g. Heaton (1993) and Burnside et al. 
(1993). Here some parameters are fixed using extraneous information while others are formally 
estimated using moment (or simulated moment) conditions. Although these strategies allow a 
more formal evaluation of the properties of the model than pure calibration procedures, they 
face two problems. First, as in the case when the parameters are all selected using GMM, SMM, 
and SQML procedures, the evaluation of the model is problematic because measures of 
dispersion for the statistics of interest are based on one data set and do not reflect the uncertainty 
faced by a simulator in choosing the unknown features of the model. Second, as Gregory and 
Smith (1989) have pointed out, the small-sample properties of estimators obtained from these 
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strategies may be far from reasonable unless calibrated parameters consistently estimate the true 
parameters. When this condition is not satisfied, estimates of the remaining parameters are 
sensitive to errors in pre-setting and results are misleading. 

The Monte Carlo methodology we employ to evaluate the properties of the model is related to 
those of Kwan (1990) and Gregory and Smith (1991) but several differences need to be 
emphasized. First, Gregory and Smith take the model as a testable null hypothesis while this is 
not the case here. Second, they do not account for parameter uncertainty in evaluating the 
outcomes of the model. Third, because they take a calibrated version of the model as the 'truth', 
they conduct sensitivity analysis inefficiently, by replicating experiments for different calibrated 
values of the parameters. Kwan (1990) allows for parameter uncertainty in his simulation 
scheme, but, following an orthodox Bayesian approach, he chooses a subjective prior density 
for the parameters. In addition, he evaluates the outcomes of the model in relative terms by 
comparing two alternative specifications using a posterior-odds ratio: a model is preferred to 
another if it maximizes the probability that the simulated statistics are in a prespecified set. 

The procedure for sensitivity analysis we proposed extends the approach that Harrison and 
Vinod (1989) used in deterministic computable general equilibrium models. The major 
difference is that in a stochastic framework parameter uncertainty is only a part of the 
randomness entering the model and the uncertainty characterizing the exogenous processes is 
important in determining the randomness of the outcomes. 

To conclude, we should mention that, parallel to the literature employing Monte Carlo 
methods to evaluate calibrated models, there is also a branch of the literature which uses 
alternative tools to examine the fit of calibrated models. This is the case e.g. of Smith (1993), 
Watson (1993), and Canova et al. (1993) which assess the relevance of theoretical models with 
regression R2's, tests based on restricted and unrestricted VARs, and encompassing procedures. 

5. TWO EXAMPLES 

The Equity Premium Puzzle 

Mehra and Prescott (1985) suggest that an asset-pricing model featuring complete markets and 
pure exchange cannot simultaneously account for the average risk-free rate and the average 
equity premium experienced by the US economy over the sample 1889-1978 with reasonable 
values of the risk aversion parameter and of the discount factor. 

The model they consider is a frictionless Arrow-Debreu economy with a single 
representative agent, one perishable consumption good produced by a single productive unit or a 
'tree', and two assets, an equity share and a risk-free asset. The tree yields a random dividend 
each period and the equity share entitles its owner to that dividend in perpetuity. The risk-free 
asset entitles its owner to one unit of the consumption good in the next period only. The agent 
maximizes: 

EoZOt t--1 (4) 
t=O 

subject to: 

ct = y,et-, + pe(e,t- - e,) +-f, - p,f, (5) 

where Eo is the mathematical expectation operator conditional on information at time zero, 0 is 
the subjective discount factor, co is the risk aversion parameter, c, is consumption, y, is the 
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tree's dividend, pe and pf are the prices of the equity and the risk-free asset, and e, andf, are the 
agent's equity and risk-free asset holding at time t, Production evolves according to yt+1 = x,,, y, 
where x,, the gross growth rate, follows a two-state ergodic Markov chain with probability 
P(x,+l = xj I x, = xi) = 0 ij. Defining the states of the problem as (c, i) where y, = c and x, = Ai, 
the period t equilibrium asset prices are 

2 

p (C, i) = 0 E qi,I(/C) [P(c, J) + C]C (6) 
j=1 

2 

pfc, i) = 0 E i,i (7) 
j=1 

When the current state is (c, i), the expected equity return and the risk-free rate are: 

2 tpe(ijc Je)+A 
' i, -1 (8) 

j=l pe(C, i) 

f 1 
Ri= -1 (9) 

pf(c, i) 

The unconditional (average) expected returns on the two assets are Re= E2=l iRie, 
Rf = ,21 tiRf, and the average equity premium is EP = R - Rf, where 7i are the Markov chain 
stationary probabilities, satisfying r = p T' and Eitri = 1, where p T= j,i- 

Mehra and Prescott specified the two states for consumption (output) to be Ai = 1 + ,/ + v; 
i2 = 1 + u - v and restricted 01, = 1= 2,= 0 and , 2 = 02,1 = 1- 0. They calibrated the three 
technology parameters so that the mean, the standard deviation, and the AR(1) coefficient of the 
model's consumption match those of the growth rate of annual US consumption over the period 
1889-1978 and searched for combinations of the preference parameters (0, o) in a prespecified 
interval to obtain values for the risk-free rate and the equity premium. Given that the average, 
the standard deviations, and the AR(1) coefficient of annual growth rate of US consumption are 
1.018, 0-036, and -0-14, the implied values of ,u, v, and 0 are 0.018, 0.036, and 0-43, 
respectively. The range for o was selected to be [0, 10] and this choice was justified citing a 
number of empirical estimates of this parameter (see Mehra and Prescott, 1985, p. 154). The 
range for 0 was chosen to be [0, 1], but simulations which produced a risk-free rate in excess of 
4% were eliminated on the grounds that 4% constitutes an upper bound consistent with historical 
experience. The puzzle is that the largest equity premium generated by the model is 0*35%, 
which occurred in conjunction with a real risk-free rate of about 4%, while the US economy for 
the period 1889-1978 experienced an annual average equity premium of 6 18% and an average 
real risk-free rate of 0 80%. 

Two hidden assumptions underlie Mehra and Prescott's procedure. First, they believe that 

technology parameters can be tightly estimated while the uncertainty surrounding the choice of 

preference parameters is substantial. Consequently, while the sensitivity of the results is 

explored to variations in 0 and w within the range, no robustness check is made for 

perturbations of the technology parameters. Second, by providing only the largest value 

generated, they believe that it is a sufficient statistic to characterize the puzzle. 
Here we repeat their exercise with three tasks in mind: first, to study whether the uncertainty 

present in the selection of the technology parameters is important in determining the magnitude 
of the puzzle; second, to formally measure the discrepancy of the model from the data using a 
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variety of statistics based on the probability distribution of outcomes of the model; third, to 
evaluate the contribution of two alleged solutions to the equity premium puzzle proposed in the 
literature. 

This first example is particularly simple since we have an exact solution for the endogenous 
variables of the model. In addition, because the model produces values for the mean of Rf and 
EP, variations in X, are entirely determined by variations in /B, so that Xe(X,, I |, f) is 
proportional to 7r(/B I J, f). Therefore, once we have selected jr(/B I J, f), we can immediately 
determine the distribution of simulated means of the Rf-EP pair. 

To select the density for the five parameters of the model we proceed in two steps. First, we 
choose a maximum range for the support of ,/ on the basis of theoretical considerations. 

Table I. Equity premium puzzle 

(A) Parameter values 

Basic case 

0 Truncated normal, range [0.9523, 1 000], mode at 0-9708 
w X2(2) range [0, 10] 
,u -0-0025 0.0044 0-0148 0.0183 0-0219 0-0230 0-0237 0-0241 
v Uniform 0.0528 0.0307 0.0100 0.0357 0.0252 0-0490 0-0100 0.0140 
0 _-0-0700 -0-0500 -0-0100 0.1100 -0-1800 0-0600 -0-0400 0.0400 

Experiment 1 

Experiment 2 
5 

0-0255 0.0300 
0-0531 0.0397 
0.0700 0-1100 

Truncated normal, range [0-9523, 1.040], mode at 0.9708 

Exponential, range [0-0001, 0-2] 

1 v with prob 0; 1 - v with prob 1 - 0 - 5; 1 - -- with prob 
1+y/ 1+/ 1+/ 

(B) Statistics of the simulated distribution 

M-P case Basic case Alternative Experiment 1 Experiment 2 
EP R EP R EP R EP R EP R 

Mean 0-0094 0-0913 0-0035 0.0702 0-0015 0.0670 0.032 -0-061 0.1087 -0-1519 
S.D. 0-0067 0.0379 0-0073 0.0470 0-0032 0-0433 0.0066 0-0419 0.1808 0.3327 
Skewness 0-35 -0-15 2-66 1.15 3.32 1.18 2.68 1-14 1-58 -1-57 
Kurtosis -1-08 -0-86 6-67 0-42 12-95 0-42 6.83 0-39 1-03 0-86 
Maximum 0.022 0-167 0.034 0.215 0-022 0-203 0-031 0-061 0-747 0-224 
5% 0.0005 0-028 0-00001 0.023 0-00001 0.023 0.00001 -0-107 0-00002 -0-938 
Median 0-0084 0.094 0-0002 0.051 0-0001 0.0499 0.0001 -0-008 0-0098 0.022 
95% 0.021 0-150 0-022 0.170 0.0079 0-159 0-019 0.020 0-511 0-068 
Mode 0-0094 0-110 0.0008 0.052 0-0001 0.0478 0.0001 -0-074 0-007 -0-018 

Pr 1 0-736 0-817 0-803 0-855 0-727 
Pr 2 0-99 0-99 0.99 0.95 0-62 
Pr 3 Q1 0-994 0.994 1-000 0-927 0.577 
Pr 3 Q2 0.000 0-000 0.000 0.000 0-295 
Pr 3 Q3 0-006 0-006 0-000 0.073 0-126 
Pr3 Q4 0.000 0-000 0-000 0.000 0-002 

Note: 
Pr 1 refers to the frequency of simulations for which the pair (Rf, EP) is in a classical 95% region around the actual values. Pr 2 reports 
the percentile of the simulated distribution where the actual (Rf, EP) pair lies. Pr 3 reports the probability that the model generates 
values in each of the four quadrants delimited by the actual pair of (Re, EP). Q1 is the region where R' > Rf and EP' < EP, Q2 is the 
region where R' > Rf and EP' > EP, Q3 is the region where Rr' < Rf and EP < EP and Q4 is the region where Rf' < Rf and EP) > EP. 
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Second, we specify the joint density to be the product of five univariate densities and select each 
univariate density to be a smoothed version of the frequency distribution of estimates existing in 
the literature. The densities and their support are in panel A of Table I. Therange for o is the 
same as that of Mehra and Prescott and the chosen X2 density has a mode at 2, where most of 
the estimates of this parameter lie, and a low mass (smaller than 5%) for values exceeding 6. 
The range for 0 reflects the results of several estimation studies which obtained values for the 
steady-state real interest rate in the range [-0.005, 0.04] (see e.g. Altug, 1989; Dunn and 
Singleton, 1986; or Hansen and Singleton, 1983) and of simulation exercises which have a 
steady-state real interest rate in the range [0, 0.05] (see e.g. Kandel and Stambaugh, 1990; or 
Mehra and Prescott, 1985). The density for 0 is skewed to express the idea that a steady-state 
real interest rate of 2-3% or lower is more likely than a steady-state interest rate in excess of 
4%. Note that although we assume that the densities of 0 and o are independent, many 
estimates of these two parameters are not. However, the rank correlation coefficient for the pairs 
of estimates is small and none of the results we present depends on this simplifying assumption. 

To provide a density for ,f, v and 0 we experimented with two procedures. The first, which is 
used in the basic experiment, involves taking the 10 sub-sample estimates of the mean, of the 
standard deviation, and of the AR(1) coefficient of the growth rate of consumption over 10-year 
samples contained in Mehra and Prescott (1985, p. 147) as characterizing reasonable 
consumption processes and then constructing a uniform discrete density over these triplets. The 
second involves dividing the growth rates of consumption over the 89 years of the sample into 
two states (above and below the mean), estimating a measure of dispersion for the first two 
moments and for the AR(1) coefficient of the growth rate of consumption in each state and 
directly inputting these estimates into the model. In this case simulations are performed by 
assuming a joint normal density for the mean, the standard deviation, and AR(1) coefficient in 
each state centred around the point estimate of the parameters and maximum support within two 
standard deviations of the estimate. 

Figures 1-4 present scatterplots of the simulated pairs (Rf, EP) when 10,000 simulations are 
performed. We summarize the features of the joint distribution in panel B of Table I using a 

0.18 

0.16 - 

o 4. . 
0.12- * * 

0.1 I 

0.14-t . * . 
' * * 

' 
,.'. .. 

0.08- . :''. 
, 

.. 

0.06-. 

. 

' 
;: 

0.04 1 .' . _ 

0.02 ' ... 

0 00 15 02 0.025 

Equity Premium 

Figure 1. Scatterplot risk-free rate-equity premium: Mehra-Prescott case 
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Figure 2. Scatterplot risk-free rate-equity premium: basic case 
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Figure 3. Scatterplot risk-free rate-equity premium: beta > 1 case 
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Figure 4. Scatterplot risk-free rate-equity premium: Reitz case 

number of statistics. To evaluate the discrepancy of the model from the data we report (1) the 
probability that the model generates values for (Rf, EP) which fall within a two standard 
deviation band of the actual mean, (2) the percentile contour of the simulated distribution where 
the actual means of (Rf, EP) lies, and (3) the probability that the simulated pair is in each of the 
four quadrants of the space delimited by the actual means of (Rf, EP). 

Figure 1 reports the scatterplot obtained with the Mehra and Prescott specification (i.e. when 
technology parameters are fixed and we draw replications from the densities of 0 and co only). It 
is necessary to check that the maximum value of the equity premium consistent with a risk free- 
rate not exceeding 4% is only 0.0030, confirming Mehra and Prescott's conclusion. Also for 
this specification,the distribution of the model's outcomes is uniform and the mode of the joint 
distribution (the most likely value from the point of view of the model) is at Rf= 0110, 
EP= 00094. The probabilistic measures of discrepancy suggest that a large portion of the 
simulations are in the region where the simulated Rf exceeds the mean of Rf and the simulated 
EP is below the mean of EP we find in the data, that about 73% of the simulations produce pairs 
within a classical 95% ball around the actual means of (Rf, EP), and that the actual mean pair is 
outside the 99 percentile contour. 

Figure 2 reports the scatterplot obtained with the basic specification of the model. Also in this 
case, the puzzle, as defined by Mehra and Prescott, is evident: if we set a 4% upper bound to the 
risk-free rate, the maximum equity premium generated is only 0.0038. However, with this 
specification, the distribution is bimodal and most of the simulated pairs lie on a ridge parallel to 
the Rf axis. The probability that the model generates values in a ball centred around the actual 
means of (Rf, EP) is now 81.4%. However, in 100% of the cases the simulated risk-free rate 
exceeds the actual mean and the simulated equity premium is below the actual mean and the 
actual pair still lies outside the 99 percentile contour of simulated distribution. 

To examine whether the selection of the density for the technology parameters has effects on 
the results, we also conducted simulations using the alternative distribution for these parameters. 
No substantial changes emerge. For example, the probability that the model generates pairs in a 
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ball centred around the actual means of (Rf, EP) is 80.3% and the maximum value for EP 
compatible with a Rf not exceeding 4% is 0.0025. 

Several conclusions can be drawn from this first set of exercises. First, even after taking into 
account the uncertainty surrounding estimates of the technology parameters, the puzzle remains 
regardless of the way it is defined (maximum values, modes, or contour probabilities): the 
model cannot generate (Rf, EP) pairs which match what we see in the data. Second, once the 
uncertainty surrounding estimates of the technology parameters is taken into account, the 
simulated distributions are bimodal, highly left skewed, and have a fat left tail, indicating that 
lower than average values are more probable and that very small values have nonnegligible 
probability. Third, the simulated risk-free rate is always in excess of the actual one, a result that 
Weil (1990) has termed the risk-free rate puzzle. Fourth, while the model fails to generate 
values for (Rf, EP) which replicate the historical experience, in more than 80% of the 
simulations it produces pairs which are within two standard deviations of the actual means. 

Next, we conduct two exercises designed to examine the contribution of the modifications 
suggested by Kocherlakota (1990), Benninga and Protopapadakis (1990), and Rietz (1988) to 
the solution of the puzzle. The first experiment allows the discount factor 0 to take on values 
greater than 1. The justification is that, in a growing economy, reasonable values for the steady- 
state real interest rate can be obtained even with 0 greater than 1. In this experiment we still 
maintain the truncated normal density for 0 used in the baseline case but increase the upper 
value for its range to 1.04 and allow about 10% of the density in the region above 1.0. 

The second experiment assumes the presence of a third unlikely crash state where 
consumption falls substantially.2 The justification for including a third state is that in the Great 
Depression consumption fell substantially and excluding such a state may have important 
implications on the results (a conclusion denied by Mehra and Prescott, 1988). With this 
specification there are two new parameters which cannot be measured from available data: m, 
the probability of a crash state and n, the percentage fall in consumption in the crash state. Rietz 
(1988) searched over the a priori ranges of [0*0001, 0.2] and [u/(l +,u), 1 - v/(l +,u)] and 
examined the magnitude of the maximum simulated equity premium that the model consistent 
with a simulated risk-free rate below 4%. We maintain these ranges in our experiment and 
assume on these supports an exponential density for 5 and a three-point discrete density for t 

summarizing the three cases examined by Rietz. 
Allowing the discount factor to take on values greater than 1 goes a long way towards 

reducing the discrepancy of the model from the data (see Figure 3) since it shifts the univariate 
distribution of Rf towards negative values (the minimum and maximum values of Rf are now 
(-0.084, 0.0.092). For example, the probability that the model generates pairs in a ball centred 
around the actual means of (Rf, EP) is now 85.7% and in only 7*4% of the cases is the 
simulated risk-free rate in excess of the actual means. Because of this shift in the univariate 
distribution of Rf, the maximum value of EP consistent with a risk-free rate below 4% is now 

0*031. Despite these differences, the location and the shape of the univariate distribution of EP 
are unaffected. Hence, although the equity premium puzzle is 'solved' when defined in terms of 
the maximum simulated EP consistent with a simulated Rf below 4%, it is still very evident 
when we look at the distributional properties of the simulated EP. 

2The three consumption states are A, = 1 + u + v, A2 = 1 + u - v, A3 = - * (1 + u) and the transition matrix has elements: 
,=02,2= 0; 012= 02,1 

= 1 - 0 -, 01,3 
= 

02.3 
= 

, 
= 03,2 = 

0.5, 03 3= 0.0. Note that the experiment is 
conceptually different from the previous ones since there are two extra degrees of freedom (the new parameters 5 and 
5) and no extra moments to be matched. 
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The second modification is much less successful (see Figure 4). It does shift the univariate 
distribution of EP to the right (the mode of 0.035) and increases the dispersion of simulated 
EPs but it achieves this at the cost of shifting the distribution of Rf towards unrealistic negative 
value (the mean is -0-15 and the 90% range is [-0.940, 0.068]) and of scattering the simulated 
(Rf, EP) pairs all over the place. For example, the probability that the simulated pair is in a ball 
centred around the actual means of (Rf, EP) decreases to 72.7% and the probabilities that the 
model generates values in each of thefour quadrants delimited by the actual means of (Rf, EP) 
are almost identical. Finally, the maximum EP consistent with a Rf below 4% is 0.747. 
Therefore, adding a crash state shifts the mode and stretches and tilts the shape of the joint 
simulated distribution. Roughly speaking, too many (Rf, EP) configurations now have equal 
probability, and this weakens the ability of the theory to provide a coherent answer to the 
question posed. 

Technology Shocks and Cyclical Fluctuations in GNP 

Kydland and Prescott (1982) showed that a one-sector growth model driven by technology 
shocks calibrated to reproduce the statistical properties of Solow residuals explains about 70% 
of the variance of per capita US output. This result has spurred much of the subsequent 
literature which tries to account for business cycle regularities in models where monetary 
impulses play no role (the so-called real business cycle literature). Kydland and Prescott's initial 
estimate has been refined by adding and subtracting features to the basic model (see Hansen, 
1985) but the message of their experiment remains: a model where technology shocks are the 
only source of disturbance explains a large portion of the variability of per capita US output. 

Recently, Eichenbaum (1991) has questioned this assertion because 'decisions based solely 
on the point estimate of Ay are whimsical (where Ay = var(ys)/var(y,) and var(ys) and var(y,) are 
the variance of the cyclical component of simulated and actual output) and suggests that 'the 
model and the data, taken together, are almost completely uninformative about the role of 
technology shocks in generating fluctuations in US output' (pp. 614-615). Using an exactly 
identified GMM procedure to estimate the free parameters, he finds that the model explains 
anywhere between 5% and 200% of the variance of per capita US output. 

In this section we repeated Eichenbaum's exercise with three goals in mind. First, we are 
interested in knowing that is the most likely value of Ay from the point of view of the model 
(i.e. in locating the mode of the simulated distribution). Second, we want to provide confidence 
bands for Ay which reflect the uncertainty faced by a researcher in choosing the parameters of 
the model (not the uncertainty present in the data, as in Eichenbaum). Third, we wish to verify 
whether normal confidence bands appropriately describes the uncertainty surrounding point 
estimates of Ay and examine which feature of the model make deviations from normality more 
evident. 

The model is the same as Eichenbaum's and is a simple variation of Hansen's (1985) model 
which allows for deterministic growth via labour-augmenting technological progress. The social 
planner of this economy maximizes 

Eo E t[log(ct) + V(T- ht)] (10) 
t=0 

subject to: 

c, + k,t+ - (1 - 6)k, < A,k -a(yth,)a 
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where c, is per capital consumption, T- h, is leisure, and k, the capital stock. When 6 is 
different from 1, a closed-form stationary solution to the problem does not exist. Here we 
compute an approximate decision rule for the endogenous variables using a loglinear expansion 
around the steady state after variables have been linearly detrended as in King et al. (1988), but 
we neglect the approximation error in constructing probability statements on the outcomes of the 
model (i.e. we use <(X,, fB 1 3, i) and no weighting). 

There are seven parameters in the model, five deep (6, the depreciation rate of capital; ,/, the 
subjective discount rate; 4p, leisure's weight in the utility function; a, labour's share in output; 
y, the constant unconditional growth rate of technology) and two which appear only because of 
the auxiliary assumptions we made on the stochastic process for technology shocks (p, the AR 
parameter and a the standard deviation of the shock). Hansen (1985) calibrated these seven 
parameters (the values are in the first column of panel A of Table II) and found that Ay = 1. 
Eichenbaum (1991) estimated all parameters except fB (which is calibrated) using a method of 
moments estimator (estimates and standard deviations are in the second column of panel A of 
Table I) and found (1) a point estimate of Ay of 0-80, (2) a large standard deviation about the 
point estimate of Ay due primarily to the uncertainty surrounding estimates of p and a, and (3) a 
strong sensitivity of the point estimate of Ay to small perturbations in the parameter vector used. 

Table II. Technology shocks and cyclical fluctuations in GNP 

(A) Parameter values 

Hansen (1985) Eichenbaum (1991) Canova (1994) 

0 0-99 0.9926 Truncated normal, range [0-9855; 1-002], mode 0.9926 
2-60 3.6779 (0-0003) Endogenous 

a 0-64 0.6553 (0-0570) Uniform [0-50; 0-75] 
y 1-00 1.0041 (0-0003) Normal (1-0002, 0-001) 
6 0.25 0.0209 (0-0003) Uniform [0-02; 0.03] 
p 0.95 0-9772 (0-0289) Normal (0-95, 0.01) 
a 0-00712 0.0072 (0-0012) Truncated x2, range [0; 0.0091], mean 0-0073 

(B) Statistics of the simulated distribution 

Mean 0-8775 
S.D. 0.7635 
Skewness 1.9802 
Kurtosis 4-4083 
Minimum 0.1566 
Maximum 7.2355 
5% 0.2261 
Median 0.5949 
95% 2-6018 
Mode 0.9046 

Pr 1 0.427 
Pr2 0-673 

Note: 
Estimated standard errors are in parentheses. Pr 1 refers to the frequency of simulations for which the variance of 
simulated output is in a classical 95% region around the actual value of the variance of detrended output. Pr 2 reports 
the percentile of the simulated distribution where the point estimate of the actual variance of output lies. 
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In the exercise we conduct, we assume that 7a(ft I , f) is the product of seven univariate 
densities. Their specification appear in the third column of panel A of Table II. The range for 
the quarterly discount factor corresponds to the one implied by the annual range used in the 
previous example and the density is the same. 6 is chosen so that the annual depreciation rate of 
the capital stock is uniformly distributed between 8% and 12% per year. The range is selected 
because in simulation studies 6 is commonly set to 0-025, which corresponds to a 10% annual 
depreciation rate, while estimates of this parameter lie around this value (e.g. McGratten et al., 
1991, have a quarterly value of 0 0310 and a standard deviation of 0 0046, while Bumside et 
al., 1993, have a quarterly value of 0 0209 and a standard deviation of 0 0003). The range for 
a reflects calculations appearing in Christiano (1988) where, depending on how proprietors' 
income is treated, the share of total output paid to capital varies between 0-25 and 0-43, and the 
estimate obtained, among others, in McGratten et al. (1991). We chose the densities for p and a 
as in Eichenbaum because the econometric evidence on these two parameters is scant andthe 
values used in most simulation studies fall within a one standard deviation band around the 
mean of the assumed density (see e.g. Kydland and Prescott, 1982; Hansen, 1985). Finally, T is 
fixed at 1369 hours per quarter, the density for y matches the quarterly distribution of 
unconditional quarterly growth rates of US output for the period 1950-1990, and ?t is 
endogenously chosen so that the representative household spends between one sixth and one 
third of its time working in the steady state. 

We performed 1000 simulations with time series of length T= 124 and filtered both 
simulated and actual GNP data with the Hodrick and Prescott filter.3 The results appear in panel 
B of Table II and in Figure 5, where we present a smoothed version of the simulated distribution 
of AY. The distribution is scaled so that with the point estimates of the parameters used by 
Eichenbaum Ay = 0-80. The implied value of Ay using Hansen's parameters is 0-84. 
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Figure 5. Density of variance ratio: HP filtered data 

3We use the Hodrick and Prescott filter to maintain comparability with previous work. The results obtained when the 
data are linearly detrended or first-order differenced are not substantially different. 
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The mode of the distribution of Ay is at 0-9046, the mean at 0-8775, and the median at 
0-5949. The dispersion around these measures of location is very large. For example, the 
standard deviation is 0-7635 and the 90% range of the distribution is [0-2261, 2*6018]. The 
simulated distribution is far from normal and its right tail tends to be very long. Hence the range 
of reasonable values of Ay is very large, and, as in Eichenbaum, small perturbations in the 
parameter vector induce large variations in the variance ratio. In addition, normal confidence 
bands do not appropriately characterize the uncertainty surrounding the outcomes of the model. 

Several other features of the simulated distribution are worth mentioning. First, in 67-3% of 
the cases the variance of simulated output is smaller than the variance of actual output. Second, 
in 42-7% of the simulations the variance of simulated output is within a 95% confidence interval 
centred around the estimate of the variance of actual output. Third, if we select v = 0-5 and look 
for the A satisfying Pr(Ai < A) = 0-5, i.e. A is the median of the simulated distribution, we find 
that the median value of the variance of simulated GNP is outside the 95% normal confidence 
interval for the variance of actual GNP. 

When we ask which parameter is responsible for the wide dispersion in the estimates of Ay, 
we find that it is the location and width of the support of p which induce this feature in the 
distribution of Ay. For example, assuming that the density of p has a point mass at 0-94 and 
maintaining the same densities for the other parameters, we find that location measures of the 
simulated distribution of Ay decrease (the mode is now at 0-792) and the standard deviation 
drops to 0-529. Similar conclusions are obtained by shifting the range of p towards 0-90 or by 
cutting the range of possible p in half without changing the mean value. Hence, as in 
Eichenbaum, we find that it is the uncertainty present in the choice of the parameters of the 
exogenous processes rather than the uncertainty present in the selection of the deep parameters 
of the model that is responsible for the large spread in the distribution of Ay. 

6. CONCLUSIONS 

This paper describes a Monte Carlo procedure to evaluate the properties of calibrated general 
equilibrium models. The procedure formalizes the choice of the parameters and the evaluation 
of the properties of the model while maintaining the basic approach used in calibration 
exercises. It also realistically accounts for the uncertainty faced by a simulator in choosing the 
parameters of the model. The methodology allows for global sensitivity analysis for parameters 
chosen within the range of existing estimates and evaluates the discrepancy of the model from 
the data by attaching probabilities to events a simulator is interested in characterizing. The 
approach is easy to implement and includes calibration and simulation exercises conducted after 
the parameters are estimated by simulation and GMM techniques as special cases. We illustrate 
the usefulness of the approach as a tool to evaluate the performance of theoretical models with 
two examples which have received much attention in the recent macroeconomic literature: the 
equity premium puzzle and the ability of a real business cycle model to reproduce the variance 
of actual US output. Finally, it is worth noting that for problems of moderate size, the 
computational complexity of the procedure is limited. For both examples presented the entire 
Monte Carlo routine required about a minute on a 486-33 MHz machine using RATS386 
programs. 
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