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SUMMARY

This paper describes a Monte Carlo procedure to assess the performance of calibrated dynamic general
equilibrium models. The procedure formalizes the choice of parameters and the evaluation of the model
and provides an efficient way to conduct a sensitivity analysis for perturbations of the parameters within a
reasonable range. As an illustration the methodology is applied to two problems: the equity premium
puzzle and how much of the variance of actual US output is explained by a real business cycle model.

1. INTRODUCTION

The current macroeconometrics literature has proposed two ways to confront general
equilibrium rational expectations models with data. The first, an estimation approach, is the
direct descendant of the econometric methodology proposed 50 years ago by Haavelmo (1944).
The second, a calibration approach, finds its justification in the work of Frisch (1933) and is
closely linked to the computable general equilibrium literature surveyed e.g. in Shoven and
Whalley (1984).

The two methodologies share the same strategy in terms of model specification and solution.
Both approaches start from formulating a fully specified general equilibrium dynamic model
and in selecting convenient functional forms for preferences, technology, and exogenous
driving forces. They then proceed to find a decision rule for the endogenous variables in terms
of the exogenous and predetermined variables (the states) and the parameters. When the model
is nonlinear, closed-form expressions for the decision rules may not exist and both approaches
rely on recent advantages in numerical methods to find an approximate solution which is valid
either locally or globally (see e.g. the January 1990 issue of the Journal of Business and
Economic Statistics for a survey of the methods and Christiano, 1990, and Dotsey and Mao,
1991, for a comparison of the accuracy of the approximations).

It is when it comes to choosing the parameters to be used in the simulations and in evaluating
the performance of the model that several differences emerge. The first procedure attempts to
find the parameters of the decision rule that best fit the data either by maximum likelihood (ML)
(see e.g. Hansen and Sargent, 1979, or Altug, 1989) or generalized method of moments: (GMM)
(see e.g. Hansen and Singleton, 1983, or Burnside et al., 1993). The validity of the specification
is examined by testing restrictions, by general goodness of fit tests or by comparing the fit of
two nested models. The second approach ‘calibrates’ parameters using a set of alternative rules
which includes matching long-run averages, using previous microevidence or a priori selection,
and assesses the fit of the model with an informal distance criterion.

These differences are tightly linked to the questions the two approaches ask. Roughly
speaking, the estimation approach asks the question ‘Given that the model is true, how false is
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it?’ while the calibration approach asks ‘Given that the model is false, how true is it?’ Implicit
in the process of estimation is in fact the belief that the probability structure of a model is
sufficiently well specified to provide an accurate description of the data. Because economic
models are built with an emphasis on tractability, they are often probabilistically underspecified
so that measurement errors or unobservable shocks are added at the estimation stage to complete
their probability structure (see e.g. Hansen and Sargent, 1980, or Altug, 1989). By testing the
model, a researcher takes the model seriously as a data-generating process (DGP) and examines
what features of the specification are at variance with the data. A calibrationist takes the
opposite view: the model, as a DGP for the data, is false. That is, as the sample size grows, it is
known that the data are generated by the model will be at increasingly greater variance with the
observed time series. An economic model is seen, at best, as an approximation to the true DGP
which need not be either accurate or realistic and, as such, should not be regarded as a null
hypothesis to be statistically tested (see Prescott, 1991, p. 5). In confronting the model with the
data, a calibrationist wants to indicate the dimensions where the approximation is poor and
suggest modifications to the theoretical model in order to obtain a better approximation.

Both methodologies have weak points. Model estimation involves a degree of arbitrariness in
specifying which variables are unobservable or measured with error. In the limit, since all
variables are indeed measured with error, no estimation seems possible and fruitful. In addition,
tests of the model’s restrictions may fail to indicate how to alter the specification to obtain a
better fit. The limitations of the calibration approach are also well known. First, the selection
criterion for parameters which do not measure long-run averages is informally specified and
may lead to contradictory choices. Information used in different studies may in fact be
inconsistent (e.g. a parameter chosen to match labour payments from firms in national account
data may not equal the value chosen to match the labour income received by households) and
the range of estimates for certain parameters (e.g. risk aversion parameter) is so large that
selection biases may be important. Second, the outcomes of the simulations typically depend on
the choice of unmeasured parameters. However, although some authors (see e.g. Prescott, 1991,
p.7, or Kydland, 1992, p. 478) regard a calibration exercise as incomplete unless the sensitivity
of the results to reasonable perturbations of the parameters selected a priori or not well tied to
the data is reported, such an analysis is not often performed. Third, because the degree of
confidence in the results depends on both the degree of confidence in the theory and in the
underlying measurement of the parameters and because either parameter uncertainty is
disregarded or, when a search is undertaken, the number of replications typically performed is
small, we must resort to informal techniques to judge the relevance of the theory.

This paper attempts to eliminate some of the weaknesses of calibration procedures while
maintaining the general analytical strategy employed in calibration exercises. The focus is on
trying to formalize the selection of the parameters and the evaluation process and in designing
procedures for meaningful robustness analysis on the outcomes of the simulations. The
technique we propose shares features with those recently described by Gregory and Smith
(1991) and Kwan (1990), has similarities with stochastic simulation techniques employed in
dynamic nonlinear large scale macro models (see e.g. Fair, 1991), and generalizes techniques on
randomized design for strata existing in the static computable general equilibrium literature (see
e.g. Harrison and Vinod, 1989).

The idea of the technique is simple. We would like to reproduce features of actual data,
which is taken to be the realization of an unknown vector stochastic process, with an ‘artificial
economy’ which is almost surely the incorrect generating mechanism for the actual data. The
features we may be interested in include conditional and unconditional moments (or densities),
the autocovariance function of the data, functions of these quantities (e.g. measures of relative
volatility), or specific events (e.g. a recession). A model is simulated repeatedly using a Monte
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Carlo procedure which randomizes over both the exogenous stochastic processes and the
parameters. Parameters are drawn from a data-based density which is consistent with the
information available to a simulator (which may include both time-series and cross-sectional
aspects). We judge the validity of a model on its ability to reproduce a number of ‘stylized
facts’ of the actual economy (see Friedman, 1959). The metric used to evaluate the discrepancy
of the model from the data is probabilistic. We construct the simulated distribution of the
statistics of interest and, taking the actual realization of the statistic as a critical value, examine
(1) in what percentile of the simulated distribution the actual value lies and (2) how much of the
simulated distribution is within a k% region centred around the critical value. Extreme values
for the percentile (say, below a% or above (1 — a)%) or a value smaller than k for the second
probability indicates a poor fit in the dimensions examined.

The approach has several appealing features. First, it accounts for the uncertainty faced by a
simulator in choosing the parameters of the model in a realistic way. Second, it has a built-in
feature for global sensitivity analysis on the support of the parameter space and allows for other
forms of conditional or local sensitivity analysis. Third, it provides general evaluation criteria
and a simple and convenient framework to judge the relevance of the theory.

The paper is divided into six sections. The next section introduces the technique, provides a
justification for the approach and describes the details involved in the implementation of the
procedure. Section 3 deals with robustness analysis. Section 4 spells out the relationship with
existing techniques. Two examples describing the potential of the technique for problems of
practical interest appear in Section 5. Section 6 presents conclusions.

2. THE TECHNIQUE

A General Framework of Analysis

We assume that a researcher is faced with an m x 1 vector of time series X,, which are the
realizations of a vector stochastic process X, and that she is interested in reproducing features of
X, using a dynamic general equilibrium model. X, is assumed to have a continuous but unknown
distribution and moments up to the nth. For the sake of presentation we assume that the
unconditional distribution of X, is independent of ¢ but shifts in the unconditional distribution of
X, at known points can easily be handled. X, may include macro variables like GNP,
consumption, interest rates, etc. We also assume that dynamic economic theory gives us a model
expressing the endogenous variables X, as a function of exogenous and predetermined variables
Z, (the states of the problem) and of the parameters 8. Z, may include objects like the existing
capital stock, exogenous fiscal, and monetary variables or shocks to technologies and
preferences. We express the model’s functional relation as X,=f(Z, B8). Under specific
assumptions about the structure of the economy (e.g. log or quadratic preferences,
Cobb-Douglas production function, full depreciation of the capital stock in the one-sector
growth model), f can be computed analytically either by value function iteration or by solving
the Euler equations of the model subject to the transversality condition (see e.g. Hansen and
Sargent, 1979). In general, however, f cannot be derived analytically from the primitives of the
problem. A large body of current literature has concentrated on the problem of finding
approximations which are either locally or globally close to f for a given metric.'

'These include linear or log-linear expansions of f around the steady state (Kydland and Prescott, 1982; and King
et al., 1988), backward-solving methods (Sims, 1984; Novales, 1990), global functional expansions in polynomials
(Marcet, 1992; Judd, 1992), piecewise linear interpolation methods (Coleman, 1989; Baxter, 1991) and quadrature
techniques (Tauchen and Hussey, 1991).
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Here we assume that either f is available analytically or that one of the existing numerical
procedures has been employed to obtain a functional ¥ which approximates f in some sense, i.e.
| %(Z,, v)-f(Z, B) |l <&, where y=1(B) and ||.|| is a given norm. Given the model f, an
approximation procedure %, a set of parameters S, and a probability distribution for Z, (denoted
by x(Z,)), we can infer the model-based probability distribution for X,.

Let 9(X, | B, f) be the density of the X, vector, conditional on the parameters 8 and the model
£, let ®(B |3, f) be the density of the parameters, conditional on the information set $ available
to the simulator and the model f, and let #(X,, 8 | f, $) be the joint density of simulated data
and of parameters. 9(X, | B, f) represents the probability that a particular path for the
endogenous variables will be drawn given a parametric structure for the artificial economy and a
set of parameters, while (8 | %, f) summarizes the information on the parameters available to a
researcher. Note that G is assumed to be independent of $ and = may depend on f, i.e. if we are
using a GE model we may want to use only estimates obtained with similar GE models. For a
given B, X, is random because Z, is random, i.e. 4(X, | B, f) is a deterministic transformation of
x(Z,).

Throughout this paper we are interested in studying the behaviour of functions of simulated
data (denoted by w(X,)) under the predictive density p(X,|$, f)=[%(X,, B|f, $)dB, ie.
evaluating objects of the form:

E(uX)\ £, 9, 0, €)= [ uX)p(X,, 3.f) X,

= [ [ pyecx,, 813, ) 0 ax, M

where o c R and % is the parameter space and € is the support of the exogenous variables. Let
h(x,) be the corresponding vector of functions of the actual data.

The problem of measuring the fit of the model can be summarized as follows. How likely is
the model to generate A(X,)? To answer note that from equation (1) we can compute
probabilities of the form P(v(X,) e D), where D is a bounded set and v(X,) includes moments
and other statistics of the simulated data. To do this let u(X,) = x(X,, [X,: v(X,) € D]) where
x(X,, S) is the indicator function, i.e. y(X,, §)=1 if v(X,)e S and zero otherwise. Similarly,
we can construct quantiles g(X,) by appropriately choosing D (see e.g. Geweke, 1989). Finally,
we can also find a A satisfying P[v(X,)<A]=v for any given vector v, by appropriately
selecting the indicator function.

Model evaluation then consists of several types of statements which are interchangeable and
differ only in the criteria used to measure distance. First, we can compute P[v(X,) < A(%,)]. In
other words, we can examine the likelihood of an event (the observed realization of the
summary statistics in the actual data) from the point of view of the model. Extreme values for
this probability indicate a poor ‘fit’ in the dimensions examined. Alternatively, if we can
measure the sampling variability of A(X,), we can then choose the set D to include the actual
realization of h(X,) plus one or two standard deviations and either check whether hisin D or
calculate P[v(X,) e D].

Implementation

There are four technical implementation issues which deserve some discussion. The first
concerns the computation of integrals like those in equation (1). When the (8, Z,) vector is of
high-dimension simple discrete grid approximations, spherical or quadrature rules quickly
become infeasible since the number of function evaluations increases exponentially with the
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dimension of 8 and Z,. In addition, unless the contours of #(X,, 8| %, f) (and of p(X, |9, f))
are of ellipsoidal forms, grid evaluations may explore this density inefficiently. There are
several feasible alternatives: one is the Monte Carlo procedure described in Geweke (1989),
another is the data-augmentation procedure of Tanner and Wong (1987), a third is the ‘Gibbs
sampler’ discussed in Gelfand and Smith (1990). Finally, we could use one of the quasi-random
procedures proposed by Niederreiter (1988).

In this paper we adopt a Monte Carlo approach. After drawing with replacement i.i.d. 8
vectors and Z, paths, we substitute sums over realizations for the integrals appearing in equation
(1) and appeal to the strong law of large numbers for functions of i.i.d. random variables to
obtain

w(X) —> E(u(X,) @)

M=

1
N

—

i=

where N is the number of replications. Note that, although ¥ (and p) are, in general, unknown,
sampling from them can be conveniently accomplished by simulating the model repeatedly for
random (Z,, 8), i.e. randomly drawing exogenous forces and selecting a parameter vector and
using the decision rule to compute time paths for X,.

Second, since in most cases the function f is unknown, % itself becomes unknown and the
direct computation of equation (1) is infeasible. If the approximation ¥ to f is accurate, we
could simply neglect the error and proceed using $(X,, B | $, F) in place of #(X,, B | %, f) where
$ is the joint density of simulated data and parameters using the information set $ and the
approximation rule &. However, since only little is known about the properties of approximation
procedures and some have only local validity (see e.g. Christiano, 1990; Dotsey and Mao,
1991), we may want to explicitly account for the existence of an approximation error in
conducting inference. In this case, following Geweke (1989), we would replace equation (1)
with:

EuX)\ £, 9, 0,9 = [ nx)5(x, Bl 9, PILB. £, 9) 4B ax, ®3)

where £(8, f, ¥) are weights which depend on the ‘true’ density #(X,, 8|9, f) and on the
approximation density $(X,, 8|9, %). For example, if a quadratic approximation around the
steady state is used, the density £ can be chosen so that draws of Z, inducing paths of X, which
are in the tails of $ (i.e. paths which are very far away from steady states) receive a very small
weight in the calculation of the statistics of interest.

Third, we must specify a density for the parameters of the model. We could select it on the
basis of one specific data set and specify (8 | %, f) to be the asymptotic distribution of a GMM
estimator (as in Burnside et al., 1993), of a simulated method of moments (SMM) estimator (as
in Canova and Marrinan, 1993), or of a ML estimator of 8 (as in Phillips, 1991). The
disadvantage of these approaches is that the resulting density measures the uncertainty
surrounding S present in a particular data set and does not necessarily reflect the uncertainty
faced by a researcher in choosing the parameters of the model. As Larry Christiano has pointed
out to the author, once a researcher chooses the moments to match, the uncertainty surrounding
estimates of § is small. The true uncertainty lies in the choice of moments to be matched and in
the sources of data to be used to compute estimates.

A better approach would be to select (8| 4, f) so as to summarize efficiently all existing
information, which may include point estimates of S obtained from different estimation
techniques, data sets, or model specifications. El-Gamal (1993a,b) has formally solved the
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problem of finding such a (8| 9, f) using Bayesian methods. The resulting (8 | %, f) is the
least informative pseudo-posterior density on the parameter space which is consistent with a set
of constraints describing the information contained in various estimation experiments. El-Gamal
suggests a Gibbs sampler algorithm to compute this density but, in practice, there are simpler
ways to construct empirical approximations to this type of density. One would be to count
estimates of S previously obtained in the literature and construct 7z(8 | , f) by smoothing the
resulting histogram. For example, if one of the elements of the 8 vector is the risk aversion
parameter, counting estimates obtained over the last 15 years from fully specified general
equilibrium models and smoothing the resulting histogram, we would obtain a truncated (below-
zero) bell-shaped density, centred around two and very small massabove four. Alternatively, we
could take what the profession regards as a reasonable range for § and assume more or less
informative densities on the support depending on available estimates. If theoretical arguments
suggest that the maximum range for e.g. the risk aversion parameter is [0, 20], we can put
higher weights on the interval [1, 3] where most of the estimates lie. If for some parameters
previous econometric evidence is scant, measurement is difficult, or there are no reasons to
expect that one value is more likely than others, we could assume uniform densities on the
chosen support.

Available estimates of § are not necessarily independent (the same data set is used in many
cases) and some are less reliable than others. Non-independent estimates are legitimate
candidates to enter the information set as long as they reflect sampling variability or different
estimation techniques. The influence of less reliable estimates or of estimates obtained with
different model specifications can be discounted by giving them a smaller weight in constructing
histograms (see also El-Gamal, 1993a,b).

Finally, in many applications the joint density of the parameter vector can be factored into the
product of lower-dimensional densities. If no relationship across estimates of the various
parameters exists, sz(f8|9%) is the product of univariate densities. If estimates of certain
parameters are related (e.g. in the case of the discount factor and the risk aversion parameter in
asset pricing models), we can choose multivariate densities for these dimensions and maintain
univariate specifications for the densities of the other parameters.

To summarize, to implement the procedure we need to do the following:

e Select a reasonable (data-based) density (8| 9, f), where $ represents the information set
available to a researcher, and a density x(Z,) for the exogenous processes.

e Draw vectors 8 from z(8 | 4, f) and z, from x(Z,).

e For each draw of 8 and z,, generate {x,}7, and compute u(x,) using the model x, = f(z,, 8) or
the approximation x, = ¥(z,, y).

e Repeat the two previous steps N times.

e Construct the frequency distribution of u(x,), compute probabilities, quantiles and other
measures of interest.

An Interpretation

The proposed framework of analysis lends itself to a simple Bayesian interpretation. In this case
we treat 71(8 | 9, f) as the prior on the parameters. The function % is entirely analogous to a
classical likelihood function for X, in a standard regression model. The difference is that ¢ need
not be the correct likelihood for X, and need not have a closed form. Then equation (1) is the
conditional expectation of u(X,) under the predictive density of the model and probability
statements based on equation (1) can be justified using the arguments contained in Box (1980).
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There is also a less orthodox interpretation of the approach which exchanges the role of
(B9, f)and 94(X, | B, f) and is nevertheless reasonable. In this case 4(X, | 8, f) is the prior
and represents the a priori degree of confidence posed by the researcher on the time path
generated by the model given the parameters while 7(8 | 4, f) summarizes the information
contained in the data. Then equation (1) is a ‘pseudo-posterior’ statement about the model’s
validity once the empirical evidence on the parameters is taken into account.

It is useful to note that, if we follow the first approach, we can relate the proposed
construction of (8 | 9, f) to the data-based priors employed in Meta-Analysis (see Wolf, 1986)
and in the ‘consensus literature’ (see e.g. Genest and Zideck, 1986). El-Gamal (1993a) spells
out in detail the connection with these two strands of literature.

3. ROBUSTNESS ANALYSIS

If we adopt a Monte Carlo approach to compute simulated densities for the statistics of interest,
an automatic and efficient global sensitivity analysis is performed on the support of the
parameter space as a by-product of the simulations. Sensitivity analysis, however, can take other
more specific forms. For example, we may be interested in examining how likely x(X,) is to be
close to h(x,) when B is fixed at some prespecified value 8. This would be the case, for
example, if S includes parameters which can be controlled by the government and A(%,) is e.g.
the current account balance of that country. In this case we could choose a path for Z, and
analyse the conditional distribution of u(X,) for the selected value(s) of B. Alternatively, we
might wish to assess the maximal variation in u#(X,) consistent, say, with § being within two
standard deviations of a particular value. Here we choose a path for Z, and construct paths for
u(X,) for draws of S in the range. Finally, we may be interested in knowing which dimensions
of B are responsible for particular features of the distribution of u(X,). For example, if the
simulated distribution of u(X,) has a large spread or fat tails, a researcher may be interested in
knowing whether technology or preference parameters are responsible for this feature. In this
case we would partition 8 into [B,, B,] and compute the simulated distribution of wu(X,)
conditional on 3, =f5,, where j, is a prespecified value (or set of values.

So far, we have examined the robustness of the results to variations of the parameters within
their support. In some cases it is necessary to study the sensitivity of the results to local
perturbations of the parameters. For example, we may be interested in determining how robust
the simulation results are to changes of the parameters in a small neighbourhood of a particular
vector of calibrated parameters. To undertake this type of analysis we can take a numerical
version of the average derivative of u(X,) in the neighbourhood of a calibrated vector (see
Pagan and Ullah, 1991). Because global and local analyses aim at examining the sensitivity of
the outcomes to perturbations in the parameters of different size they provide complementary
information and should both be used as specification diagnostics for models whose parameters
are calibrated.

4. A COMPARISON WITH EXISTING METHODOLOGIES

The framework of analysis in Section 2 is general enough to include simulation undertaken after
the parameters are both calibrated and estimated via method of moments as special cases. To
show this it is convenient to recall that #(X,, 8|9, f) is a deterministic transformation of
QZ,B|%H=a(B|3 f)x(Z). The two procedures can then be recovered by imposing
restrictions on the shape and the location of 7(8 |9, f) and, in some cases, also on the shape
and the location of x(Z,).
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Calibration exercises impose a point mass for z(8 | $, f) on a particular value of A (say, A).
One interpretation of this density selection is that a simulator is perfectly confident in the vector
B used and does not worry about the cross-study or time-series uncertainty surrounding
estimates of 8. In certain situations a path for the vector of exogenous variables is also selected
in advance either by drawing only one realization from their distribution or by choosing a z, on
the basis of extraneous information, e.g. inputting Solow’s residuals in the model, so that x(Z,)
is also a singleton. In this instance, the density of u(X,) has a point mass and because the
likelihood of the model to produce any event is either O or 1, we must resort to informal
techniques to assess the discrepancy of simulated and actual data. In some studies the
randomness in Z, is explicitly considered, repeated draws for the exogenous variables are made
for a fixed ,3, and moments of the statistics of interest are computed by averaging the results
over a number of simulations (see e.g. Backus et al., 1989).

Simulation exercises undertaken with estimation of the parameters are also special cases of
the above framework. Here m(8 | $) has a point mass at 8*, where 8* is either the GMM
estimator, the SMM estimator (see Lee and Ingram, 1991), or the simulated quasi-maximum
likelihood (SQML) estimator of B (see Smith, 1993). Simulations are typically performed by
drawing one realization from 4(X, | 8%, f, $) and standard errors for u(X,) are computed using
the asymptotic standard errors of B* and the functional form for u. In some cases, m(8 | %)
is taken to be the asymptotic distribution of one of the above estimators (e.g. Canova
and Marrinan, 1993). In this case, simulations are performed by drawing from
GX, | B* f, $)7w(B* | $) and the distance of simulated and actual data is computed using
measures of discrepancy like the ones proposed here.

In assessing the model’s performance this last set of procedures has two advantages over
calibration. First, they allow formal statements on the likelihood of selected parameter values to
reproduce the features of interest. For example, if a four standard deviations range around the
point estimate of the AR(1) parameter for the productivity disturbance is [0-84, 0-92], then it is
highly unlikely (with a probability higher than 99%) that a unit root productivity disturbance is
needed to match the data. Second, they provide a set-up where sensitivity analysis can easily be
undertaken (although not often performed).

These procedures, however, have also two major shortcomings. First, they impose a strong
form of ignorance which does not reflect available a priori information. The vector S may
include meaningful economic parameters which can be bounded on the basis of theoretical
arguments but the range of possible § with GMM, SMM, or SQML procedures is [—co, o]. By
appropriately selecting a hypercube for their densities a researcher can make ‘unreasonable’
parameter values unlikely and avoid a posteriori adjustments. Second, simulations conducted
after parameters are estimated may not constitute an independent way to validate the model
because the parameter estimates are obtained from the same data set which is used later to
compare results.

Simulation procedures where parameters are selected using a mixture of calibration and
estimation strategies have recently been employed by e.g. Heaton (1993) and Burnside et al.
(1993). Here some parameters are fixed using extraneous information while others are formally
estimated using moment (or simulated moment) conditions. Although these strategies allow a
more formal evaluation of the properties of the model than pure calibration procedures, they
face two problems. First, as in the case when the parameters are all selected using GMM, SMM,
and SQML procedures, the evaluation of the model is problematic because measures of
dispersion for the statistics of interest are based on one data set and do not reflect the uncertainty
faced by a simulator in choosing the unknown features of the model. Second, as Gregory and
Smith (1989) have pointed out, the small-sample properties of estimators obtained from these
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strategies may be far from reasonable unless calibrated parameters consistently estimate the true
parameters. When this condition is not satisfied, estimates of the remaining parameters are
sensitive to errors in pre-setting and results are misleading.

The Monte Carlo methodology we employ to evaluate the properties of the model is related to
those of Kwan (1990) and Gregory and Smith (1991) but several differences need to be
emphasized. First, Gregory and Smith take the model as a testable null hypothesis while this is
not the case here. Second, they do not account for parameter uncertainty in evaluating the
outcomes of the model. Third, because they take a calibrated version of the model as the ‘truth’,
they conduct sensitivity analysis inefficiently, by replicating experiments for different calibrated
values of the parameters. Kwan (1990) allows for parameter uncertainty in his simulation
scheme, but, following an orthodox Bayesian approach, he chooses a subjective prior density
for the parameters. In addition, he evaluates the outcomes of the model in relative terms by
comparing two alternative specifications using a posterior-odds ratio: a model is preferred to
another if it maximizes the probability that the simulated statistics are in a prespecified set.

The procedure for sensitivity analysis we proposed extends the approach that Harrison and
Vinod (1989) used in deterministic computable general equilibrium models. The major
difference is that in a stochastic framework parameter uncertainty is only a part of the
randomness entering the model and the uncertainty characterizing the exogenous processes is
important in determining the randomness of the outcomes.

To conclude, we should mention that, parallel to the literature employing Monte Carlo
methods to evaluate calibrated models, there is also a branch of the literature which uses
alternative tools to examine the fit of calibrated models. This is the case e.g. of Smith (1993),
Watson (1993), and Canova et al. (1993) which assess the relevance of theoretical models with
regression R’s, tests based on restricted and unrestricted VARs, and encompassing procedures.

5. TWO EXAMPLES

The Equity Premium Puzzle

Mehra and Prescott (1985) suggest that an asset-pricing model featuring complete markets and
pure exchange cannot simultaneously account for the average risk-free rate and the average
equity premium experienced by the US economy over the sample 1889—1978 with reasonable
values of the risk aversion parameter and of the discount factor.

The model they consider is a frictionless Arrow—Debreu economy with a single
representative agent, one perishable consumption good produced by a single productive unit or a
‘tree’, and two assets, an equity share and a risk-free asset. The tree yields a random dividend
each period and the equity share entitles its owner to that dividend in perpetuity. The risk-free
asset entitles its owner to one unit of the consumption good in the next period only. The agent
maximizes:

l-w

o0 Cl -0 _ 1
Ey Y. 0'{—'-*—} @)
t=0
subject to:

G=ye + pf(el—l - er) +fr—l - pffl (5)

where E, is the mathematical expectation operator conditional on information at time zero, 6 is
the subjective discount factor, w is the risk aversion parameter, ¢, is consumption, y, is the
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tree’s dividend, p¢ and p! are the prices of the equity and the risk-free asset, and e, and f, are the
agent’s equity and risk-free asset holding at time ¢, Production evolves according to y,,; = X,., Y,
where x,, the gross growth rate, follows a two-state ergodic Markov chain with probability
P(x,, = x; | x,=x;)= ¢ ;. Defining the states of the problem as (c, i) where y,=c and x,=4,,
the period ¢ equilibrium asset prices are

2
P, =0 ¢, o) “Ip°Uyc, ) + Aicle” ©)
Jj=1
¢ 2
ple=0) ¢ 4" )
j=1
When the current state is (c, i), the expected equity return and the risk-free rate are:
)4 (A €, ) +Aic
R} = Z¢, ,( - 1) @)
p*(c, i)
=L -1 ©)
p(ci)

The unconditional (average) expected returns on the two assets are R°= Zz R},
R'=X, n,R], and the average equity premlum is EP=R°— R, where 7, are the Markov chain
statlonary probabilities, satisfying 7= ¢ 7 and X,7,=1, where ¢ "= ¢ .

Mehra and Prescott specified the two states for consumption (output) tobe A, =1+u+v;
A,=1+pu—v and restricted ¢, ,=¢,,=¢ and ¢,,=¢,, =1-¢. They calibrated the three
technology parameters so that the mean, the standard deviation, and the AR(1) coefficient of the
model’s consumption match those of the growth rate of annual US consumption over the period
1889—1978 and searched for combinations of the preference parameters (6, w) in a prespecified
interval to obtain values for the risk-free rate and the equity premium. Given that the average,
the standard deviations, and the AR(1) coefficient of annual growth rate of US consumption are
1-018, 0-036, and —0-14, the implied values of u, v, and ¢ are 0-018, 0-036, and 0-43,
respectively. The range for w was selected to be [0, 10] and this choice was justified citing a
number of empirical estimates of this parameter (see Mehra and Prescott, 1985, p. 154). The
range for 6 was chosen to be [0, 1], but simulations which produced a risk-free rate in excess of
4% were eliminated on the grounds that 4% constitutes an upper bound consistent with historical
experience. The puzzle is that the largest equity premium generated by the model is 0-35%,
which occurred in conjunction with a real risk-free rate of about 4%, while the US economy for
the period 1889—1978 experienced an annual average equity premium of 6-18% and an average
real risk-free rate of 0-80%.

Two hidden assumptions underlie Mehra and Prescott’s procedure. First, they believe that
technology parameters can be tightly estimated while the uncertainty surrounding the choice of
preference parameters is substantial. Consequently, while the sensitivity of the results is
explored to variations in 6 and @ within the range, no robustness check is made for
perturbations of the technology parameters. Second, by providing only the largest value
generated, they believe that it is a sufficient statistic to characterize the puzzle.

Here we repeat their exercise with three tasks in mind: first, to study whether the uncertainty
present in the selection of the technology parameters is important in determining the magnitude
of the puzzle; second, to formally measure the discrepancy of the model from the data using a
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variety of statistics based on the probability distribution of outcomes of the model; third, to
evaluate the contribution of two alleged solutions to the equity premium puzzle proposed in the
literature.

This first example is particularly simple since we have an exact solution for the endogenous
variables of the model. In addition, because the model produces values for the mean of Rf and
EP, variations in X, are entirely determined by variations in B, so that #(X,, 8|9, f) is
proportional to 7 (B | %, f). Therefore, once we have selected (8 | 4, f), we can immediately
determine the distribution of simulated means of the R*—EP pair.

To select the density for the five parameters of the model we proceed in two steps. First, we
choose a maximum range for the support of S on the basis of theoretical considerations.

Table I. Equity premium puzzle

(A) Parameter values

Basic case

4 Truncated normal, range [0-9523, 1-000], mode at 0-9708

w 2%(2) range [0, 10]

u -0-0025 0-0044 0-0148 0-0183 0-0219 0-0230 0-0237 0-0241 0-0255 0-0300
v Uniform 0-0528 0-0307 0-0100 0-0357 0-0252 0-0490 0-0100 0-0140 0-0531 0-0397
¢ -0-0700 -0-0500 -0-0100 0-1100 -0-1800 0-0600 -0-0400 0-0400 0-0700 0-1100
Experiment 1

B Truncated normal, range [0-9523, 1.:040], mode at 0-9708

Experiment 2

Exponential, range [0-0001, 0-2]

13 1--~ withprob¢;1—_uwithprobl—¢—§;1——”—withprob§
1+u 1+u 1+u

(B) Statistics of the simulated distribution

M-P case Basic case Alternative Experiment 1 Experiment 2

EP R EP R EP R EP R EP R
Mean 0-0094 0-0913 0-0035 0-0702 0-0015 0-0670 0-032 -0-061 0-1087 -0-1519
S.D. 0-0067 0-0379 0-0073 0-0470 0-0032 0-0433 0-0066 0-0419 0-1808 03327
Skewness 035 -0-15 2-66 1-15 3.32 1-18 2-68 1-14 1-58 -1.57
Kurtosis -1.08 -0-86 6-67 0-42 12-95 0-42 6-83 0-39 1-03 0-86
Maximum 0-022 0-167 0-034 0-215 0-022  0-203 0-031 0-061 0-747 0-224
5% 0-0005 0-028 0-00001 0-023 0-00001 0-023 0-00001 -0-107 0-00002 -0-938
Median 0-0084 0-094 0-0002 0-051 0-0001 0-0499 0-0001 -0-008 0-0098 0-022
95% 0-021  0-150 0-022 0-170 0-0079 0-159 0-019 0-020 0-511 0-068
Mode 0-0094 0-110 0-0008 0-052  0-0001 0-0478 0-0001 -0-074 0-007 " -0-018
Pr1 0-736 0-817 0-803 0-855 0.727
Pr2 0-99 0-99 0-99 0-95 0-62
Pr3Ql 0-994 0-994 1-000 0-927 0-577
Pr3Q2 0-000 0-000 0-000 0-000 0-295
Pr3Q3 0-006 0-006 0-000 0-073 0-126
Pr3Q4 0-000 0-000 0-000 0-000 0-002

Note:

Pr 1 refers to the frequency of simulations for which the pair (R', EP) is in a classical 95% region around the actual values. Pr 2 reports
the percentile of the simulated distribution where the actual (R, EP) pair lies. Pr 3 reports the probability that the model generates
values in each of the four quadrants delimited by the actual pair of (R, EP). Q1 is the region where R"> R’ and EP*< EP, Q2 is the
region where R"> R and EP* > EP, Q3 is the region where R" < R and EP* < EP and Q4 is the region where R"< R and EP*> EP.
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Second, we specify the joint density to be the product of five univariate densities and select each
univariate density to be a smoothed version of the frequency distribution of estimates existing in
the literature. The densities and their support are in panel A of Table I. Therange for w is the
same as that of Mehra and Prescott and the chosen y? density has a mode at 2, where most of
the estimates of this parameter lie, and a low mass (smaller than 5%) for values exceeding 6.
The range for 0 reflects the results of several estimation studies which obtained values for the
steady-state real interest rate in the range [—0-005, 0-04] (see e.g. Altug, 1989; Dunn and
Singleton, 1986; or Hansen and Singleton, 1983) and of simulation exercises which have a
steady-state real interest rate in the range [0, 0-05] (see e.g. Kandel and Stambaugh, 1990; or
Mehra and Prescott, 1985). The density for 6 is skewed to express the idea that a steady-state
real interest rate of 2—-3% or lower is more likely than a steady-state interest rate in excess of
4%. Note that although we assume that the densities of 6 and w are independent, many
estimates of these two parameters are not. However, the rank correlation coefficient for the pairs
of estimates is small and none of the results we present depends on this simplif ying assumption.

To provide a density for u, v and ¢ we experimented with two procedures. The first, which is
used in the basic experiment, involves taking the 10 sub-sample estimates of the mean, of the
standard deviation, and of the AR(1) coefficient of the growth rate of consumption over 10-year
samples contained in Mehra and Prescott (1985, p.147) as characterizing reasonable
consumption processes and then constructing a uniform discrete density over these triplets. The
second involves dividing the growth rates of consumption over the 89 years of the sample into
two states (above and below the mean), estimating a measure of dispersion for the first two
moments and for the AR(1) coefficient of the growth rate of consumption in each state and
directly inputting these estimates into the model. In this case simulations are performed by
assuming a joint normal density for the mean, the standard deviation, and AR(1) coefficient in
each state centred around the point estimate of the parameters and maximum support within two
standard deviations of the estimate.

Figures 1—4 present scatterplots of the simulated pairs (Rf, EP) when 10,000 simulations are
performed. We summarize the features of the joint distribution in panel B of Table I using a
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Figure 1. Scatterplot risk-free rate-equity premium: Mehra—Prescott case
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Figure 4. Scatterplot risk-free rate-equity premium: Reitz case

number of statistics. To evaluate the discrepancy of the model from the data we report (1) the
probability that the model generates values for (R, EP) which fall within a two standard
deviation band of the actual mean, (2) the percentile contour of the simulated distribution where
the actual means of (R', EP) lies, and (3) the probability that the simulated pair is in each of the
four quadrants of the space delimited by the actual means of (R', EP).

Figure 1 reports the scatterplot obtained with the Mehra and Prescott specification (i.e. when
technology parameters are fixed and we draw replications from the densities of 6 and w only). It
is necessary to check that the maximum value of the equity premium consistent with a risk free-
rate not exceeding 4% is only 0-0030, confirming Mehra and Prescott’s conclusion. Also for
this specification,the distribution of the model’s outcomes is uniform and the mode of the joint
distribution (the most likely value from the point of view of the model) is at R*=0-110,
EP=0-0094. The probabilistic measures of discrepancy suggest that a large portion of the
simulations are in the region where the simulated R’ exceeds the mean of R and the simulated
EP is below the mean of EP we find in the data, that about 73% of the simulations produce pairs
within a classical 95% ball around the actual means of (R, EP), and that the actual mean pair is
outside the 99 percentile contour.

Figure 2 reports the scatterplot obtained with the basic specification of the model. Also in this
case, the puzzle, as defined by Mehra and Prescott, is evident: if we set a 4% upper bound to the
risk-free rate, the maximum equity premium generated is only 0-0038. However, with this
specification, the distribution is bimodal and most of the simulated pairs lie on a ridge parallel to
the R’ axis. The probability that the model generates values in a ball centred around the actual
means of (Rf, EP) is now 81-4%. However, in 100% of the cases the simulated risk-free rate
exceeds the actual mean and the simulated equity premium is below the actual mean and the
actual pair still lies outside the 99 percentile contour of simulated distribution.

To examine whether the selection of the density for the technology parameters has effects on
the results, we also conducted simulations using the alternative distribution for these parameters.
No substantial changes emerge. For example, the probability that the model generates pairs in a
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ball centred around the actual means of (R, EP) is 80-3% and the maximum value for EP
compatible with a Rf not exceeding 4% is 0-0025.

Several conclusions can be drawn from this first set of exercises. First, even after taking into
account the uncertainty surrounding estimates of the technology parameters, the puzzle remains
regardless of the way it is defined (maximum values, modes, or contour probabilities): the
model cannot generate (R, EP) pairs which match what we see in the data. Second, once the
uncertainty surrounding estimates of the technology parameters is taken into account, the
simulated distributions are bimodal, highly left skewed, and have a fat left tail, indicating that
lower than average values are more probable and that very small values have nonnegligible
probability. Third, the simulated risk-free rate is always in excess of the actual one, a result that
Weil (1990) has termed the risk-free rate puzzle. Fourth, while the model fails to generate
values for (R, EP) which replicate the historical experience, in more than 80% of the
simulations it produces pairs which are within two standard deviations of the actual means.

Next, we conduct two exercises designed to examine the contribution of the modifications
suggested by Kocherlakota (1990), Benninga and Protopapadakis (1990), and Rietz (1988) to
the solution of the puzzle. The first experiment allows the discount factor 6 to take on values
greater than 1. The justification is that, in a growing economy, reasonable values for the steady-
state real interest rate can be obtained even with @ greater than 1. In this experiment we still
maintain the truncated normal density for 8 used in the baseline case but increase the upper
value for its range to 1-04 and allow about 10% of the density in the region above 1.0.

The second experiment assumes the presence of a third unlikely crash state where
consumption falls substantially.> The justification for including a third state is that in the Great
Depression consumption fell substantially and excluding such a state may have important
implications on the results (a conclusion denied by Mehra and Prescott, 1988). With this
specification there are two new parameters which cannot be measured from available data: £,
the probability of a crash state and &, the percentage fall in consumption in the crash state. Rietz
(1988) searched over the a priori ranges of [0-0001, 0-2] and [u/(1+u), 1 —v/(1+u)] and
examined the magnitude of the maximum simulated equity premium that the model consistent
with a simulated risk-free rate below 4%. We maintain these ranges in our experiment and
assume on these supports an exponential density for { and a three-point discrete density for &
summarizing the three cases examined by Rietz.

Allowing the discount factor to take on values greater than 1 goes a long way towards
reducing the discrepancy of the model from the data (see Figure 3) since it shifts the univariate
distribution of R’ towards negative values (the minimum and maximum values of Rf are now
(—0-084, 0-0.092). For example, the probability that the model generates pairs in a ball centred
around the actual means of (R, EP) is now 85-7% and in only 7-4% of the cases is the
simulated risk-free rate in excess of the actual means. Because of this shift in the univariate
distribution of R, the maximum value of EP consistent with a risk-free rate below 4% is now
0-031. Despite these differences, the location and the shape of the univariate distribution of EP
are unaffected. Hence, although the equity premium puzzle is ‘solved’ when defined in terms of
the maximum simulated EP consistent with a simulated R below 4%, it is still very evident
when we look at the distributional properties of the simulated EP.

’The three consumption states are A, =1+ u+ v, A, =1+ u—v, A; = £ * (1 + u) and the transition matrix has elements:
P11=02=; P2=0,=1-¢- L, ¢a= $23= L, ¢31=¢32,=05, ¢;,,=0.0. Note that the experiment is
conceptually different from the previous ones since there are two extra degrees of freedom (the new parameters £ and
&) and no extra moments to be matched.
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The second modification is much less successful (see Figure 4). It does shift the univariate
distribution of EP to the right (the mode of 0-035) and increases the dispersion of simulated
EPs but it achieves this at the cost of shifting the distribution of R’ towards unrealistic negative
value (the mean is —0-15 and the 90% range is [-0-940, 0-068]) and of scattering the simulated
(R, EP) pairs all over the place. For example, the probability that the simulated pair is in a ball
centred around the actual means of (R, EP) decreases to 72-7% and the probabilities that the
model generates values in each of thefour quadrants delimited by the actual means of (R, EP)
are almost identical. Finally, the maximum EP consistent with a R" below 4% is 0-747.
Therefore, adding a crash state shifts the mode and stretches and tilts the shape of the joint
simulated distribution. Roughly speaking, too many (R, EP) configurations now have equal
probability, and this weakens the ability of the theory to provide a coherent answer to the
question posed.

Technology Shocks and Cyclical Fluctuations in GNP

Kydland and Prescott (1982) showed that a one-sector growth model driven by technology
shocks calibrated to reproduce the statistical properties of Solow residuals explains about 70%
of the variance of per capita US output. This result has spurred much of the subsequent
literature which tries to account for business cycle regularities in models where monetary
impulses play no role (the so-called real business cycle literature). Kydland and Prescott’s initial
estimate has been refined by adding and subtracting features to the basic model (see Hansen,
1985) but the message of their experiment remains: a model where technology shocks are the
only source of disturbance explains a large portion of the variability of per capita US output.

Recently, Eichenbaum (1991) has questioned this assertion because ‘decisions based solely
on the point estimate of A, are whimsical (where A, = var(y;)/var(y,) and var(y;) and var(y,) are
the variance of the cyclical component of simulated and actual output) and suggests that ‘the
model and the data, taken together, are almost completely uninformative about the role of
technology shocks in generating fluctuations in US output’ (pp. 614—615). Using an exactly
identified GMM procedure to estimate the free parameters, he finds that the model explains
anywhere between 5% and 200% of the variance of per capita US output.

In this section we repeated Eichenbaum’s exercise with three goals in mind. First, we are
interested in knowing that is the most likely value of A, from the point of view of the model
(i.e. in locating the mode of the simulated distribution). Second, we want to provide confidence
bands for A, which reflect the uncertainty faced by a researcher in choosing the parameters of
the model (not the uncertainty present in the data, as in Eichenbaum). Third, we wish to verify
whether normal confidence bands appropriately describes the uncertainty surrounding point
estimates of 4, and examine which feature of the model make deviations from normality more
evident.

The model is the same as Eichenbaum’s and is a simple variation of Hansen’s (1985) model
which allows for deterministic growth via labour-augmenting technological progress. The social
planner of this economy maximizes

Ey Y 0'llog(c) + w(T - )] (10)

t=0
subject to:

¢, + ko —(1—-08)k <Ak *(y'h)* (11)
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where ¢, is per capital consumption, 7 — h, is leisure, and k, the capital stock. When 0 is
different from 1, a closed-form stationary solution to the problem does not exist. Here we
compute an approximate decision rule for the endogenous variables using a loglinear expansion
around the steady state after variables have been linearly detrended as in King et al. (1988), but
we neglect the approximation error in constructing probability statements on the outcomes of the
model (i.e. we use $(X,, B | 4, F) and no weighting).

There are seven parameters in the model, five deep (J, the depreciation rate of capital; 3, the
subjective discount rate; 1, leisure’s weight in the utility function; a, labour’s share in output;
y, the constant unconditional growth rate of technology) and two which appear only because of
the auxiliary assumptions we made on the stochastic process for technology shocks (p, the AR
parameter and o the standard deviation of the shock). Hansen (1985) calibrated these seven
parameters (the values are in the first column of panel A of Table II) and found that A, =~ 1.
Eichenbaum (1991) estimated all parameters except 8 (which is calibrated) using a method of
moments estimator (estimates and standard deviations are in the second column of panel A of
Table IT) and found (1) a point estimate of A, of 0-80, (2) a large standard deviation about the
point estimate of A, due primarily to the uncertainty surrounding estimates of p and o, and (3) a
strong sensitivity of the point estimate of A, to small perturbations in the parameter vector used.

Table II. Technology shocks and cyclical fluctuations in GNP

(A) Parameter values

Hansen (1985) Eichenbaum (1991) Canova (1994)

0 0-99 0-9926 Truncated normal, range [0-9855; 1-002], mode 0-9926
') 2-60 3-6779 (0-0003) Endogenous

a 0-64 0-6553 (0-0570) Uniform [0-50; 0-75]

y 1-00 10041 (0-0003) Normal (1-0002, 0-001)

o) 0-25 0-0209 (0-0003) Uniform [0-02; 0-03]

p 0-95 0-9772 (0-0289) Normal (0-95, 0-01)

o 0-00712 0-0072 (0-0012) Truncated y?, range [0; 0-0091], mean 0-0073

(B) Statistics of the simulated distribution

Mean 0-8775
S.D. 0-7635
Skewness 1-9802
Kurtosis 4-4083
Minimum 0-1566
Maximum 7-2355
5% 0-2261
Median 0-5949
95% 2-6018
Mode 0-9046
Pr1 0-427
Pr2 0-673
Note:

Estimated standard errors are in parentheses. Pr 1 refers to the frequency of simulations for which the variance of
simulated output is in a classical 95% region around the actual value of the variance of detrended output. Pr 2 reports
the percentile of the simulated distribution where the point estimate of the actual variance of output lies.
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In the exercise we conduct, we assume that (8|9, f) is the product of seven univariate
densities. Their specification appear in the third column of panel A of Table II. The range for
the quarterly discount factor corresponds to the one implied by the annual range used in the
previous example and the density is the same. 0 is chosen so that the annual depreciation rate of
the capital stock is uniformly distributed between 8% and 12% per year. The range is selected
because in simulation studies J is commonly set to 0-025, which corresponds to a 10% annual
depreciation rate, while estimates of this parameter lie around this value (e.g. McGratten et al.,
1991, have a quarterly value of 0-0310 and a standard deviation of 0-0046, while Burnside et
al., 1993, have a quarterly value of 0-0209 and a standard deviation of 0-0003). The range for
a reflects calculations appearing in Christiano (1988) where, depending on how proprietors’
income is treated, the share of total output paid to capital varies between 0-25 and 0-43, and the
estimate obtained, among others, in McGratten et al. (1991). We chose the densities for p and o
as in Eichenbaum because the econometric evidence on these two parameters is scant andthe
values used in most simulation studies fall within a one standard deviation band around the
mean of the assumed density (see e.g. Kydland and Prescott, 1982; Hansen, 1985). Finally, T is
fixed at 1369 hours per quarter, the density for y matches the quarterly distribution of
unconditional quarterly growth rates of US output for the period 1950-1990, and o is
endogenously chosen so that the representative household spends between one sixth and one
third of its time working in the steady state.

We performed 1000 simulations with time series of length T=124 and filtered both
simulated and actual GNP data with the Hodrick and Prescott filter.> The results appear in panel
B of Table IT and in Figure 5, where we present a smoothed version of the simulated distribution
of A,. The distribution is scaled so that with the point estimates of the parameters used by
Eichenbaum A, = 0-80. The implied value of 1, using Hansen’s parameters is 0-84.
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Figure 5. Density of variance ratio: HP filtered data

*We use the Hodrick and Prescott filter to maintain comparability with previous work. The results obtained when the
data are linearly detrended or first-order differenced are not substantially different.
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The mode of the distribution of A, is at 0-9046, the mean at 0-8775, and the median at
0-5949. The dispersion around these measures of location is very large. For example, the
standard deviation is 0-7635 and the 90% range of the distribution is [0-2261, 2:6018]. The
simulated distribution is far from normal and its right tail tends to be very long. Hence the range
of reasonable values of A, is very large, and, as in Eichenbaum, small perturbations in the
parameter vector induce large variations in the variance ratio. In addition, normal confidence
bands do not appropriately characterize the uncertainty surrounding the outcomes of the model.

Several other features of the simulated distribution are worth mentioning. First, in 67-3% of
the cases the variance of simulated output is smaller than the variance of actual output. Second,
in 42-7% of the simulations the variance of simulated output is within a 95% confidence interval
centred around the estimate of the variance of actual output. Third, if we select v=0-5 and look
for the 4 satisfying Pr(ly,.<}:) =0-5, i.e. A is the median of the simulated distribution, we find
that the median value of the variance of simulated GNP is outside the 95% normal confidence
interval for the variance of actual GNP.

When we ask which parameter is responsible for the wide dispersion in the estimates of 4,,
we find that it is the location and width of the support of p which induce this feature in the
distribution of A,. For example, assuming that the density of p has a point mass at 0-94 and
maintaining the same densities for the other parameters, we find that location measures of the
simulated distribution of A, decrease (the mode is now at 0-792) and the standard deviation
drops to 0-529. Similar conclusions are obtained by shifting the range of p towards 0-90 or by
cutting the range of possible p in half without changing the mean value. Hence, as in
Eichenbaum, we find that it is the uncertainty present in the choice of the parameters of the
exogenous processes rather than the uncertainty present in the selection of the deep parameters
of the model that is responsible for the large spread in the distribution of 4,.

6. CONCLUSIONS

This paper describes a Monte Carlo procedure to evaluate the properties of calibrated general
equilibrium models. The procedure formalizes the choice of the parameters and the evaluation
of the properties of the model while maintaining the basic approach used in calibration
exercises. It also realistically accounts for the uncertainty faced by a simulator in choosing the
parameters of the model. The methodology allows for global sensitivity analysis for parameters
chosen within the range of existing estimates and evaluates the discrepancy of the model from
the data by attaching probabilities to events a simulator is interested in characterizing. The
approach is easy to implement and includes calibration and simulation exercises conducted after
the parameters are estimated by simulation and GMM techniques as special cases. We illustrate
the usefulness of the approach as a tool to evaluate the performance of theoretical models with
two examples which have received much attention in the recent macroeconomic literature: the
equity premium puzzle and the ability of a real business cycle model to reproduce the variance
of actual US output. Finally, it is worth noting that for problems of moderate size, the
computational complexity of the procedure is limited. For both examples presented the entire
Monte Carlo routine required about a minute on a 486-33 MHz machine using RATS386
programs.
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