STATISTICAL INFERENCE IN ELLIPTICALLY CONTOURED AND RELATED DISTRIBUTIONS

edited by Kai-Tai Fang & T.W. Anderson

1

Allerton Press Inc. / New York

STATISTICAL INFERENCE IN ELLIPTICALLY CONTOURED AND RELATED DISTRIBUTIONS

Edited by

Kai-Tai Fang, Institute of Applied Mathematics, Academia Sinica, Beijing, China and T. W. Anderson, Department of Statistics, Stanford

University, Stanford, CA 94305, USA

TABLE OF CONTENTS

(i)

(viii)

Preface

Contributors

I. Distribution Theory

[1]	Anderson, T.W. and Fang, K.T., On the theory of multivariate elliptically contoured distributions and their applications
[2]	Fang, K.T. and Chen, H.F., Relationships among classes of spherical matrix distribu- tions
[3]	Fang, K.T. and Chen, H.F., On the spectral decompositions of spherical matrix distributions and some of their subclasses
[4]	Zhang, Y.T., Fang, K.T. and Chen, H.F., Matrix elliptically contoured distributions 47
[5]	Zhang, H.C. and Fang, K.T., Some properties of left-spherical and right-spherical ma- trix distributions
[6]	Zhang, H.C., The stochastic decomposition of a kind of infinite random matrix71
[7]	Fan, J., Generalized non-central $t-$, $F-$ and T^2- distributions
[8]	Hsu, H., Noncentral distributions of quadratic forms for elliptically contoured distribu- tions
[9]	Xu, J.L., Inverse Dirichlet distribution and its applications 103
[10]	Fan, J., On rotational invariant distributions

[1	1	Fang, K.T. and F	Tang, B.Q.,	Generalized	symmetric	Dirichlet	distributions	127
----	---	------------------	-------------	-------------	-----------	-----------	---------------	-----

II. Quadratic Forms and Cochran's Theorem

[12]	Ander	son, I	.w.	and	Fang,	К.Т.,	Coch	ran's	theorem	for	elliptica	ly con	toured	distribu-
	tions .			••••						••••				137

- [13] Fang, K.T. and Wu, Y.H., Distribution of quadratic forms and Cochran's theorem 147
- [15] Fan, J., Distributions of quadratic forms and non-central Cochran's theorem 177

III. Estimation, Admissibility, and Testing Hypotheses

[17]	Anderson, T.W. and Fang, K.T., Inference in multivariate elliptically contoured distributions based on maximum likelihood
[18]	Anderson, T.W., Fang, K.T. and Hsu, H., Maximum-likelihood estimates and likelihood-ratio criteria for multivariate elliptically contoured distributions 217
[19]	Fang, K.T., Xu, J.L. and Teng, C.Y., Likelihood ratio criteria for testing hypotheses about parameters of elliptically contoured distributions
[20]	Hsu, H., Generalized T^2 -test for multivariate elliptically contoured distributions . 243
[21]	Hsu, H., Invariant tests for multivariate elliptically contoured distributions257
[22]	Fan, J. and Fang, K.T., Inadmissibility of sample mean and sample regression coefficients for elliptically contoured distributions
[23]	Fan, J. and Fang, K.T., Inadmissibility of the usual estimator for the location param- eters of spherically symmetric distributions
[24]	Fan, J. and Fang, K.T., Minimax estimators and Stein's two-stage estimators of location parameters
[25]	Fan, J., Shrinkage estimators and ridge regression estimators for elliptically contoured distributions
[26]	Quan, H., Some optimal properties of testing hypotheses in elliptically contoured dis- tributions
[27]	Quan, H. and Fang, K.T., Unbiasedness of the parameter tests for generalized multi- variate distributions

IV. The Multivariate L₁-norm Symmetric Distributions

Ind	lex: The numbers of references appearing in this volume
Per	rmissions
[40]	Fang, K.T. and Fan, J., Asymptotic properties of estimation and hypothesis testing for distributions with rotational symmetries
[39]	Quan, H., Fang, K.T. and Teng, C.Y., The application of information function for spherical distribution
[38]	Xu, J.L. and Fang, K.T., The expected values of zonal polynomials of elliptically con- toured distributions
[37]	Fang, K.T. and Xu, J.L., The Mills' ratio of multivariate normal distributions and spherical distributions
[36]	Fang, K.T. and Xu, J.L., The direct operations of symmetric and lower-triangular matrices with their applications
[35]	Li, G., Moments of a random vector and its quadratic form
VI.	Miscellaneous
[34]	Fang, B.Q. and Fang, K.T., A characterization of multivariate ℓ_1 -norm symmetric distributions
[33]	Fan, J. and Fang, K.T., Maximum likelihood characterization of distributions 421
[32]	Zhang, H.C. and Fang, K.T., Some characteristics of normal matrix variate distribution
v.	Characterizations
[31]	Fang, B.Q. and Fang, K.T., Distributions of order statistics of the ℓ_1 -norm symmetric multivariate distributions and applications
[30]	Fang, B.Q. and Fang, K.T., MLE and LRC for location and scale parameters of the ℓ_1 - norm symmetric multivariate distributions
[29]	Fang, K.T. and Fang, B.Q., The ℓ_1 -norm symmetric matrix variate distributions . 373
[28]	Fang, K.T. and Fang, B.Q., Some families of multivariate symmetric distributions re- lated to exponential distribution