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Statistical Inference in Hidden Markov Models Using

k -Segment Constraints

Michalis K. TITSIAS, Christopher C. HOLMES, and Christopher YAU

Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of

output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi

algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of

information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that,

conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities,

and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real

examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model

fits. Supplementary materials for this article are available online.

KEY WORDS: Dynamic programming; Hidden Markov models; Segmentation.

1. INTRODUCTION

The use of the hidden Markov model (HMM) is ubiqui-

tous in sequence analysis applications across a range of science

and engineering domains, including signal processing (Crouse,

Nowak, and Baraniuk 1998), genomics (Li and Stephens 2003),

and finance (Paas, Vermunt, and Bijmolt 2007). The HMM is a

mixture model whose mixing distribution is a finite state Markov

chain (Rabiner 1989). While Markov assumptions rarely corre-

spond to the true physical generative process, they often ad-

equately capture dependencies that allow the HMM to be a

useful approximating model that is tractable even for very large

datasets. As a consequence, HMM-based algorithms can give

highly competitive performance in many applications.

Central to the tractability of HMMs is the availability of re-

cursive algorithms that allow fundamental quantities to be com-

puted efficiently (Baum and Petrie 1966; Viterbi 1967). These
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include the Viterbi algorithm that computes the most probable

hidden state sequence and the forward–backward algorithm that

computes the marginal probability of a given state at a point in

the sequence. Computation for the HMM has been well summa-

rized in the comprehensive and widely read tutorial by Rabiner

(1989) with a Bayesian treatment given more recently by Scott

(2002). It is a testament to the completeness of these recursive

methods that there have been few generic additions to the HMM

toolbox since these were first described in the 1960s. However,

as HMM approaches continue to be applied to increasingly di-

verse scientific domains and ever larger datasets, there is interest

in expanding the generic toolbox available for HMM inference

to encompass unmet needs, particularly in hypothesis generation

for scientific discovery-driven applications.

The motivation for our work is to develop mechanisms that

will be used to explore larger subsets of sequences that may

be of application-specific utility. Typically, standard HMM in-

ference limits itself to reporting a few standard quantities. For

an M-state Markov chain of length N, there exists MN pos-

sible sequences but often only the most probable sequence or

the NM marginal posterior probabilities are used to summa-

rize the whole posterior distribution. Yet, it is clear that, when

the state space is large and/or the sequences are long, many

other statistics maybe of interest. Modifications of the Viterbi

algorithm can allow arbitrary numbers of the most probable se-

quences to be enumerated while Bayesian techniques allow us

to sample sequences from the posterior distribution. However,

since a small change to the most likely sequences typically give

new sequences with similar probability, these approaches do not

lead to reports of qualitatively diverse sequences. By which we

mean, alternative sequence predictions that might lead to dif-

ferent decisions or scientific insights. This can be particularly

important where the sequence analysis forms only part of an

iterative investigative process where the users might later return

to the data to explore additional features.

In this article, we describe a set of novel recursive methods for

HMM computation that incorporates segmental constraints that
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we call k-segment inference algorithms. These algorithms are

constrained to consider only sequences with a prespecified num-

ber of transition events allowing diverse sequence predictions to

be obtained. Further, these methods can be applied prospectively

during model fitting or retrospectively to an existing model. In

the latter case, the utility of the methods described here comes

at no cost (other than computational time) to the HMM user.

2. MOTIVATION

Our work is motivated by two real world applications in ge-

nomics and information retrieval. The first concerns the use of

whole genome microarray or sequence analysis for the identifi-

cation of DNA copy number alterations. The objective of DNA

copy number analysis is to segment the observed sequence cov-

erage signal into homogenous regions of constant signal inten-

sity and then to classify these segments in terms of their DNA

copy number. A popular class of methods uses HMMs for this

purpose where the observed sequence read counts are used to

infer a sequence of latent copy number states (Greenman et al.

2010; Yau et al. 2010; Chen, Xing, and Zhang 2011; Li et al.

2011).

Figure 1 shows genome-wide sequence coverage for a ge-

nomically unstable colorectal cancer harboring complex DNA

copy number changes. Broad level copy number changes in

the genome can be characterized by a segmentation requiring

only 48 segments, but hundreds to thousands of segments may

be required to capture finer scale details. Ordinarily, methods

implicitly target the high-resolution objective but these results

can be unwieldy and difficult to use. Low-resolution alterna-

tives may offer sufficient detail for qualitative description and

subsequent scientific investigation. In practice, low-resolution

summaries are often obtained from high-resolution segmenta-

tions by using post-processing heuristics to merge segments. We

will demonstrate that our k-segment methods provide a more

principled approach for accessing segmentations with a range

of complexities that can be applied retrospectively to existing

HMM implementations.

In our second example, we will examine an information re-

trieval example where the objective is to analyze text documents

and to determine if they contain phrases belonging to certain top-

ics. Here, we will show the utility of k-segment algorithms for

counting occurrences of topic segments in textual documents

and to evaluate inequalities, in this case, the probability that

there is at least one phrase corresponding to a certain topic. We

show that decision systems based upon such measures rather

than point estimates (the Viterbi sequence) lead to more robust

classification performance.

Overall, the k-segment algorithms we present are naturally

useful in scientific discovery problems involving (i) the appli-

cation of HMMs and (ii) where segmental constraints provide

an important source of external information or constraints. Our

methods can be used to guide the selection of sequence predic-

tions for follow-up investigation and validation.

3. BACKGROUND

The HMM encodes for two types of random sequences: the

hidden state sequence or path x = (x1, . . . , xN ) and the ob-

served data sequence y = (y1, . . . , yN ). Individual hidden states

take discrete values, such that xn ∈ {1, . . . ,M}, while observed

variables can be of arbitrary type. The hidden state sequence x

follows a Markov chain so that

p(x|π0, A) = p(x1|π0)

N∏

n=2

p(xn|xn−1, A). (1)

Here, the first hidden state x1 is drawn from some initial proba-

bility vector π0 so that π0,m = p(x1 = m) denotes the probabil-

ity of x1 being in state m ∈ {1, . . . ,M}, whereas any subsequent

hidden state xn (with n > 1) is drawn according to a transition

matrix A so that [A]m′m = p(xn = m|xn−1 = m′) expresses the

probability of moving to a state m from m′. Given a path x fol-

lowing the Markov chain in (1), the observed data are generated

independently according to

p( y|x) =

N∏

n=1

p(yn|xn, φ), (2)

where the densities p(yn|xn = m,φ),m = 1, . . . ,M , are often

referred to as the emission densities and are parameterized by

φ. In what follows we shall collectively denote all HMM pa-

rameters, that is, π0, A, and φ, by θ .

Statistical estimation in HMMs takes advantage of the

Markov dependence structure that allows efficient dynamic pro-

gramming algorithms to be applied. For instance, maximum

likelihood (ML) over the parameters θ via the EM algorithm is

carried out by the forward–backward (F-B) recursion (Baum and

Petrie 1966) that implements the expectation step in O(M2N )

time. A similar recursion having the same time complexity is

the Viterbi algorithm (Viterbi 1967) which, given a fixed value

for the parameters, estimates the maximum a posteriori (MAP)

hidden sequence. Furthermore, straightforward generalizations

of the Viterbi algorithm estimate the P-best list of most probable

sequences (Schwartz and Chow 1990; Nilsson and Goldberger

2001). In contrast to ML point estimation, a Bayesian approach

assigns a prior distribution p(θ ) over the parameters and seeks

to estimate expectations taken under the posterior distribution

p(x, θ | y). The Bayesian framework also greatly benefits from

efficient recursions derived as subroutines of Monte Carlo algo-

rithms. Specifically, the popular Gibbs sampling scheme (Scott

2002) relies on the forward-filtering-backward-sampling (FF-

BS) recursion that simulates in O(M2N ) time a hidden se-

quence from the conditional posterior distribution p(x|θ, y).

In summary, all recursions mentioned above have linear time

complexity with respect to the length of the sequence N and

are instances of more general inference tools developed in the

theory of probabilistic graphical models (Cowell et al. 2003;

Koller and Friedman 2009).

4. THEORY OF k-SEGMENT INFERENCE

We now present the theoretical foundations of k-segment in-

ference. The methods described in this section assume a fixed

setting for the parameters θ . Therefore, to keep our expressions

uncluttered in the following we drop θ from our expressions and

write for instance p(x| y, θ ) as p(x| y) and p( y|θ ) as p( y).
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Figure 1. Whole genome DNA copy number analysis. Segmentation of the observed sequencing read depth along the genome can be used to

identify changes in the underlying DNA copy number. (Top) Broad level changes can be adequately captured using a relatively small number of

segments but if we zoom in on the labeled region (blue) higher resolution segmentations (middle/bottom) can require thousands of segments.

4.1 k-Segment Inference Problems

Any hidden path x in an HMM can have from 0 up to N − 1

transitions or equivalently from 1 up to N segments, where a

segment is defined as a contiguous run of indices where xn−1 =

xn. We define the number of all segments in x by

cx = 1 +

N∑

n=2

I (xn−1 �= xn), (3)

where I (·) denotes the indicator function. cx is the sum of the

number of transitions, that is, the locations in the hidden path

where xn−1 �= xn, and the value 1 that accounts for the initial

segment, which is not the result of a transition.

Subsets of hidden paths associated with different number of

segments comprise exclusive events that allow to decompose

the posterior distribution p(x| y) as follows. If we introduce

the events cx = k, with k = 1, . . . , N , each corresponding to

the subset of paths {x|cx = k} having exactly k segments, the

posterior distribution p(x| y) can be written as the following

mixture:

p(x| y)=

N∑

k=1

p(x, cx = k| y) =

N∑

k=1

p(x|cx = k, y)p(cx = k| y),

(4)

where

p(x| y, cx = k) =
I (cx = k)p( y|x)p(x)∑

x:cx=k p( y|x)p(x)
(5)

is the posterior distribution conditional on having k segments,

while

p(cx = k| y) =
p(cx = k, y)

p( y)
=

∑
x:cx=k p( y|x)p(x)
∑

x p( y|x)p(x)
(6)

is the posterior probability of the event cx = k.

The mixture decomposition in Equation (4) suggests that one

way to explore the posterior distribution of the HMM is to com-

pute quantities associated with the components of this mixture.

This leads to the k-segment inference problems that can be di-

vided into the following three types of problems:

• Optimal decoding: Find the MAP hidden path that has k

segments, that is, the path with the maximum value of

p(x|cx = k, y);

• Probability computation: Find the posterior probability of

having k segments, that is, p(cx = k| y); and

• Path sampling: Draw independent samples from p(x|cx =

k, y).

To this end, we introduce efficient linear time algorithms

to solve all the above tasks together with several additional

related tasks associated with more general events of the form

k1 ≤ cx ≤ k2, where 1 ≤ k1 < k2 ≤ N , such as finding the MAP

of p(x|cx > k, y), sampling from p(x|cx > k, y), etc. These

algorithms are based on a reformulation of the above k-segment

inference problems that uses an extended state-space HMM

containing auxiliary counting variables.

4.2 Auxiliary Counting Markov Chains

The basis of our algorithm is the augmentation of the Markov

chain in (1) with auxiliary variables that count the number of

segments. Specifically, the general count cx from (3) can be

considered as a counter that scans the path x and it increments

by one any time it encounters a transition. We can represent

this counting process with an N-dimensional vector of auxiliary

variables s, which is an increasingly monotone sequence of

nonnegative integers, that is, sn = cx1:n
.
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Conditioning on a certain path x, s is sampled deterministi-

cally according to the Markov chain

p(s|x) = p(s1|x1)

N∏

n=2

p(sn|sn−1, xn−1, xn),

= δs1,1

N∏

n=2

[
I (xn−1 �= xn)δsn,sn−1+1

+ (1 − I (xn−1 �= xn))δsn,sn−1

]
, (7)

where δi,j is the delta mass that equals one when i = j and

zero otherwise. We refer to the above conditional distribution

as the counting Markov chain or counting chain because it is

Markov chain that makes precise the concept of counting the

segments. The counting chain starts at one, that is, s1 = 1 (which

can be interpreted as sampling from the delta mass δs1,1), and

then it increments by one so that sn = sn−1 + 1 every time a

transition occurs in the hidden path, that is, whenever xn−1 �=

xn, which implies the generation of a new segment. The joint

density of the HMM is augmented with the counting chain so

that

p( y, x, s) = p( y|x)p(x)p(s|x). (8)

As the augmentation leaves the joint distribution between y and

x unaltered (if we marginalize out s, we recover correctly the

joint density of the initial HMM), prior-to-posterior inference

in the initial HMM and the HMM augmented with auxiliary

variables are equivalent. However, in practice, inference in the

latter model is more flexible since it allows us to solve the k-

segment inference problems through the insertion of constraints

in the counting process. More precisely, given that the final value

of the counter sN equals cx , all type of k-segment inference

problems can be reformulated as follows:

• Optimal decoding: The MAP hidden x
∗ of p(x|cx = k, y)

can be found according to

(x
∗, s

∗
\N ) = arg max

x,s\N

p( y|x)p(x)p(s\N , sN = k|x), (9)

where in the above s\N denotes all counting variables apart

from the final sN , which is clamped to k.

• Probability computation: The posterior probability p(cx =

k| y) can be expressed as
p(sN =k, y)

p( y)
, where p( y) is known

from the forward pass of the standard F-B algorithm and

p(sN = k, y) =
∑

x,s\N

p( y|x)p(x)p(s\N , sN = k|x). (10)

• Path sampling: An independent sample x̃ from p(x|cx =

k, y) is obtained as

(̃x, s̃\N ) ∼ p(x, s\N |sN = k, y) ∝ p( y|x)p(x)

×p(s\N , sN = k|x). (11)

For more general events of the form k1 ≤ sN ≤ k2, where

1 ≤ k1 < k2 ≤ N , the above still holds with the slight modifi-

cation that we will need additionally to maximize, marginal-

ize, or sample sN , respectively, for the three cases above, un-

der the constraint k1 ≤ sN ≤ k2. Simple proofs for the correct-

ness of all above statements can be found in supplementary

materials.

Furthermore, the k-segment inference problems associated

with the special case of the event sN > k can be equivalently

reformulated by using a modified counting chain that absorbs

when sn = k + 1, that is,

p(s|x) = δs1,1

N∏

n=2

[
I (xn �= xn−1 & sn−1 ≤ k)δsn,sn−1+1

+ (1 − I (xn �= xn−1 & sn−1 ≤ k)) δsn,sn−1

]
, (12)

where the indicator function I (xn �= xn−1 & sn−1 ≤ k) is one

only when both xn �= xn−1 and sn−1 ≤ k are true. Notice that

the above is an inhomogenous chain having two modes: the first

when the segment counting proceeds normally and the second

when counting stops once the absorbing state is visited. The k-

segment problems for the event sN > k are then solved by using

the above chain and clamping sN to the value k + 1.

The augmentation with counting variables results in a new

HMM having the pair (sn, xn) as the new extended state vari-

able. Given that sN = k, so that any pair (sn, xn) can jointly

take at most kM values, we can use the Viterbi algorithm to

obtain the MAP of p(x| y, sN = k), the forward pass of the F-

B algorithm to obtain p(sN = k, y) and the FF-BS algorithm

to draw an independent sample from p(x| y, sN = k). A naive

implementation of these algorithms can be done in O(k2M2N )

time but this complexity can be further reduced to O(kM2N ) by

taking into account the deterministic structure of the counting

chain using dynamic programming-based algorithms. Further-

more, the dynamic programming algorithms can solve at once

the corresponding k-segment inference problems from k = 1

up to a maximum k = kmax in overall O(kmaxM
2N ) operations.

Also, by running the k-segment Viterbi algorithm up to some

kmax and setting kmax + 1 as the absorbing counting state it

always gives a global summary of the posterior distribution,

consisting of kmax + 1 optimal paths associated with the events

cx = 1, . . . , cx = kmax and cx > kmax that is guaranteed to in-

clude the standard Viterbi MAP path. Such a summary is re-

ferred to as kmax + 1 summary and it is illustrated in the next

section. Further details regarding the implementation of the dy-

namic programming methods are discussed in supplementary

materials.

5. COMPARING k-SEGMENT AND STANDARD HMM

RECURSIONS

In this section, we discuss two established HMM recursions

for extracting summaries and a comparison of their performance

with k-segments. These include the FF-BS algorithm for sim-

ulating exact paths from the posterior p(x| y) or the best list

Viterbi (BL-Viterbi) algorithm (Schwartz and Chow 1990) that

extracts a set of paths having the highest posterior probabil-

ity. We demonstrate that while both approaches report highly

probable sequences, this does not lead to reporting diverse

summaries.

For this, we simulated a data sequence according to

yn|xn, m, σ 2 ∼ N (mxn
, σ 2), n = 1, . . . , N = 1000, where the

hidden sequence x = {xn}
N
n=1 was given by a Markov chain

with M = 3 states, m = {−2,−1, 1}, and σ = 0.9. The
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transition matrix used was

A =

⎛
⎝

0.98 0.015 0.005

0.005 0.98 0.015

0.015 0.005 0.98

⎞
⎠

while the prior distribution was uniform.

Using the simulated data, we fitted a three-state HMM using

the EM algorithm that recovered parameter estimates close to

the true values used in the simulation. We then computed the

standard Viterbi path (containing 14 segments) and obtained the

optimal segmentations using k-segments for kmax = 10, includ-

ing the kmax + 1 summary. These are shown in Figure 2.

The first 10 paths of the k-segments summary provide a

coarse-to-fine hierarchical segmentation of the data sequence

where the number of segments increases by one each time. No-

tice that two consecutive segmentations do not always follow

the principle used in the circular binary segmentation algorithm

(Olshen et al. 2004), that is, the k + 1th segmentation might not

be obtained by splitting into two segments a single segment from

the kth one. This latter approach is suboptimal. Also, notice that

the final path that corresponds to the absorbing state (labeled

with > 10 in the figure) is precisely the standard Viterbi path.

Figure 2 also illustrates path sampling under k-segment con-

straints using the FF-BS algorithm in the augmented HMM. In

particular, 10 samples are shown that are constrained to have

exactly k = 7 segments.

We investigated whether the FF-BS and BL-Viterbi algo-

rithms could provide posterior summaries that showed diversity

in terms of the number of segments in the reported paths. We

applied the FF-BS recursion to collect 100 independent samples

from p(x| y) and used the BL-Viterbi algorithm to extract the

top 100 paths having the highest posterior probability. Figure 3

shows that these paths exhibit limited diversity and there was

no path having less than 14 segments. Most of these paths are

minor perturbations of one another typically at the boundaries

between segments. Paths with very small but, nonzero, posterior

probabilities (less than 14 segments) are very unlikely to be real-

ized in practice. In contrast, the k-segment recursion guarantees

to provide different segmentations of the observed sequence.

Similarly, the use of the standard FF-BS recursion as a means

of providing a Monte Carlo approximation of the segment num-

ber probability p(cx = k| y) is also unsuitable when the true

value of p(cx = k| y) is very small. Figure 3 shows the Monte

Carlo estimates of the (log) posterior probabilities obtained from

1000 independent samples. This differs significantly from the

corresponding exact probabilities computed via k-segments. Ex-

act probability computation would be useful in decision theoreti-

cal framework where we wish to build decision-making systems

that involve utility functions that favor extreme events.

6. LEARNING WITH k-SEGMENT CONSTRAINTS

So far we have presented novel recursions for HMM inference

that are applied retrospectively to a fitted HMM. In this section,

we discuss how we could use these recursions in a prospective

statistical estimation problem with HMMs where the constraints

are introduced during model fitting so that they actively influ-

ence the inference for model parameters. We consider both point

estimation using the expectation–maximization (EM) algorithm

and posterior sampling in a Bayesian context.

6.1 Expectation–Maximization

Consider the joint density of the augmented HMM:

p( y, x, s) = p( y|x)p(x)p(sN ≤ k, s\N |x), (13)

where the evidence sN ≤ k reflects the information about the

maximum number of segments allowed.

We would like now to apply the EM algorithm to learn the

parameters θ for which we need to write down the auxiliary Q

function and subsequently derive the E and M steps:

Q(θ ; θold) = Ep(x|sN ≤k,y,θold)[log p( y|x, θ )p(x, θ )] + const,

(14)

where θold denotes the current parameter values. This func-

tion has exactly the same form with the auxiliary function in

the unconstrained HMM with the only difference being that

p(x| y, θold) is replaced by p(x|sN ≤ k, y, θold).

The E step simplifies to computing all marginals p(xn|sN ≤

k, y, θold) and all pairwise marginals p(xn−1, xn|sN ≤

k, y, θold), which can be obtained by applying the F-B algorithm

in the augmented HMM. Given the current θold (omitted next for

brevity), this algorithm computes the forward (α) messages and

the backward (β) messages (for details see supplementary mate-

rials) from which the desired marginals and pair-wise marginals

can be obtained

p(xn|sN ≤ k, y) ∝

k∑

sn=1

α(xn, sn)β(xn, sn), (15)

p(xn−1, xn|sN ≤ k, y) ∝

k∑

sn−1,sn=1

α(xn−1, sn−1)p(yn|xn)

×p(xn|xn−1)p(sn|sn−1, xn, xn−1)β(xn, sn), (16)

which involve summing out the auxiliary counting variables.

Given these quantities from the E step, the form of M step

remains the same as in unconstrained HMMs. The iteration

between the above E and M steps leads to a local maximum of

the likelihood p(cx ≤ k, y). Notice that deriving EM algorithms

under other constraints, apart from cx ≤ k, can be done as above.

For instance, if we wish to apply EM by assuming the number

of segments to be exactly equal to k, we simply need to clamp

the final counting variable sN to the value k.

We illustrate the practical consequences of the two learning

approaches using 100 simulated sequences (randomly gener-

ated as the example from Figure 2). The number of segments

had an empirical distribution in the range between 8 and 35

segments. We applied the EM algorithm prospectively (assum-

ing three hidden states) under the k-segment constraints sN ≤ k,

k = 1, . . . , 50 to obtain a corresponding set of parameter esti-

mates {θ̂
(1)

, . . . , θ̂
(50)

}. We then obtained the k-segment paths

conditioning on the corresponding parameters. We also per-

formed parameter estimation using a standard unconstrained

EM approach to obtain a single θ̂ and identified the k-segment

paths retrospectively. Parameters were initialized identically so

that the means of the Gaussian emission densities were spread

uniformly in the range [min( y)/2, max( y)/2], each variance

was set to a large value while crucially the transition matrix
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Figure 2. (a) Simulated data sequence. (b) Viterbi segmentation and k = 1 . . . 10, > 10 paths from k-segment inference. (c) 10 sample paths

obtained by the FF-BS algorithm under the constraint k = 7. (d) Paths with 0–8 segments from State 2 obtained using generalized counting

constraints. (e) Counting excursions from null (State 1/2) to abnormal (State 3) states. States 1, 2, and 3 have mean levels −2, −1, and 1,

respectively.

was initialized to an informative value, such that Aii = 10/12

and Aij = 1/12 with i �= j , that is close to the ground-truth

transition matrix that generated each data sequence (see Section

5).

Figure 4(a) shows the average value for the log-likelihood

log p(sN ≤ k, y) as a function of k for both systems. This

shows that by explicitly fitting the model under an appropri-

ate k-segment constraint, we achieve a higher likelihood value.

In fact, by initializing the parameters in the constrained EM

from the final values obtained by the standard EM should al-

ways lead to a likelihood value that is higher or equal to the

corresponding value in the retrospective model. When the con-

straint is relaxed (as k increases), the likelihoods converge to the

maximum value.

Furthermore, we measured the performance when doing seg-

mental classification, that is, the ability to infer the underlying

ground-truth hidden states that generated each sequence. Fig-

ure 4(b) shows average errors from the 100 simulations for both

systems together with the average error for the standard Viterbi

path of the unconstrained EM. We observe that the two ap-

proaches behave similarly and converge to the performance of

standard Viterbi as k increases. However, if we change the ini-

tialization of the transition matrix to a less informative one, then

the performance of the standard EM deteriorates while the per-

formance of the k-segment EM remains unaffected, as shown

in Figure 4(c). Thus, the full search in the standard EM can

be more exposed to local maxima of the likelihood (associated

with different estimated transition matrices that crucially affect

the number of segments to be outputted) compared to the more

focused search in the constrained k-segment EM.

The use of k-segment constraints during EM also provides

a simple and computationally efficient mechanism to explore a

wide range of different parameter estimates for the HMM. An

interesting property of this is the sparsity-inducing effect that

the constraint can have in the estimated values of the transition

matrix. This effect is not surprising, since a bound on the number

of segments essentially limits the number of transitions along

the hidden path, which subsequently can result in many inferred

near-zero values in the transition matrix. To demonstrate this,

let us consider again the simulated sequence from Figure 2 in
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Figure 3. Comparison of k-segment paths with standard summaries. (a) 100 posterior samples obtained by FF-BS, (b) 100 most probable paths

obtained by BL-Viterbi, (c) k = 1, . . . , 100 paths obtained by k-segments, (d) posterior distribution over segment number, and (e) log-posterior

distribution obtained by k-segments (-) and by Monte Carlo (- -) using FF-BS.

Figure 4. (a) Average log likelihoods for path classification for the prospective use of the constraint sN ≤ k (–), the retrospective use (-),

and the standard Viterbi path (..), (b) the corresponding plots for the average classification error over the hidden states assuming informative

initialization of the transition matrix, and (c) the corresponding plot assuming uniform initialization of the transition matrix. (d) Examples of the

estimated transition matrices under different k-segment constraints.
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which we applied several times the above EM algorithm asso-

ciated with the constraints sN ≤ k, k = 1, . . . , 50. Figure 4(d)

shows several estimated transition matrices for some of the con-

straints as well as the fully unconstrained case. The sparsity

or shrinkage effect is clear as, for instance, when sN ≤ 1, so

that the data sequence is explained by a single segment, the

estimated transition matrix becomes the identity matrix. By al-

lowing more segments, the transition matrix gradually can have

more nonzero values while when k is sufficiently large it be-

comes identical to the fully unconstrained case (in the example

this occurs when k ≥ 20). To conclude, it is clear that EM under

k-segment constraints enables sparse transition matrices to be

computed and this could be useful for problems involving large

state spaces but where there is a priori knowledge that there may

be a limited number of transitions.

Finally, when there is no prior information about which con-

straint to use for training the HMM, we need a mechanism

to choose the best one among a set of candidates. This can-

not be achieved based on the likelihood p(cx ≤ k, y) since this

quantity typically increases with k as the HMM becomes less

constrained. Therefore, we need to resort to some external per-

formance criterion or utility function. For instance, if in our

application we care about predictive performance, as this is typ-

ical in many machine learning applications, we can rank the

different models based on their generalization ability in held

out test data.

6.2 Bayesian Approaches

It is also possible to learn an HMM under k-segment con-

straints using Bayesian inference and here we outline how this

can be done using Gibbs sampling. Consider a Bayesian HMM

with a prior distribution p(θ ) on the parameters and a joint

density

p( y, x, s, θ ) = p( y|x, θ )p(x|θ)p(θ)p(sN ≤ k, s\N |x), (17)

where, as in the previous section, we assumed that the number of

segments cannot exceed k. Notice that, while θ and s are condi-

tionally independent given x, marginally they are dependent be-

cause of the constraint sN ≤ k. We aim to compute the posterior

distribution p(x, s, θ |sN ≤ k, y) and since this is too expensive

we resort to Gibbs-type of sampling where we iteratively sam-

ple the paths (x, s) from the conditional p(x, s|θ, sN ≤ k, y)

and the parameters θ from p(θ |x, y). The first step corresponds

precisely to the path sampling under a k-segment constraint

using FF-BS in the augmented HMM (see supplementary ma-

terials). The second step requires simulating from the poste-

rior conditional over parameters and clearly this will always

be identical with the corresponding step when sampling in the

unconstrained HMM. Also, when this step involves exact sim-

ulation from p(θ |x, y), the full algorithm is precisely Gibbs

sampling, otherwise it is Metropolis-within-Gibbs where θ is

sampled from a proposal distribution and then it is accepted or

rejected.

In principle, the use of k-segment constraints can be used in

an approximate Bayesian inference scheme for parallel com-

putation of the unconstrained posterior distribution p(x, θ | y).

For instance, multiple importance samplers could be simul-

taneously deployed to sample from the constrained densities

p(x, s, θ |sN = k, y), k = 1, . . . , Kmax, where Kmax would be

set to cover a reasonably large range. The constraints act as an

intuitive method for partitioning the parameter space allowing

the samplers to explore up to Kmax regions that a standard sam-

pler might not cover. We do not explore this aspect in detail but

leave this as future work as the implementation is nontrivial as

combining the samples from across the different constraints re-

quires the conditional marginal likelihood p( y|sN = k), which

cannot be computed by straightforward means.

7. EXTENDED k-SEGMENT INFERENCE PROBLEMS

In this section, we discuss extensions to the basic k-segment

inference problems considered in Section 4. Specifically, in Sec-

tion 7.1 we show how to solve generalized k-segment inference

problems where we are interested in transitions of a particular

type. In Section 7.2, we extend the framework in a different di-

rection by showing how to extract highly non-Markovian events

along the HMM hidden path, which consist of excursions from

null states to abnormal states.

7.1 Counting Segments Satisfying Certain Constraints

In several applications of HMMs, we may wish to solve more

general k-segment inference problems associated with proba-

bility events involving certain types of segments and transi-

tions. For example, we could have a natural subgroup of states

A ⊂ {1, . . . ,M} and we would like to classify the observed

sequence in terms of the occurrence or not of A based on the

computation of the associated posterior probability. This prob-

lem consists of an example of generalized k-segment inference

and in this section we show how this and related problems can

be solved using auxiliary counting variables.

In a hidden path of an HMM (assuming an irreducible tran-

sition matrix), we can encounter M(M − 1) possible transi-

tions that can be represented by an M × M binary matrix C

having ones everywhere and zeros in the diagonal, that is,

C(i, j ) = I (i �= j ). Such a matrix characterizes the standard

k-segment inference problems described earlier where all seg-

ments are of interest and are all counted. When we care about

a subset of transitions, we can modify C so that C(i, j ) = 1, if

both i �= j and the transition i → j belong to this subset. One

way to visualize this is to think of coloring certain transitions

in the HMM. Then, we will be interested in counting segments

generated from only those colored transitions. Furthermore, to

be flexible about the inclusion of the initial segment (which is

not the result of a transition) in the probability event, we can de-

fine an M-dimensional binary vector µ indicating the subset of

values of the initial state x1 that are of interest. Then analogously

to Equation (3), we can define

cx = µ(x1) +

N∑

n=2

C(xn−1, xn), (18)

which denotes the number of segments along the hidden path x,

which are compatible with the constraints (µ, C). Subsequently,

we can define probability events of the form cx = k, k1 ≤ cx ≤

k2, the special events cx > k, etc., and subsequently formulate

all associated k-segment inference problems as described in

Section 4.1.
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To solve all these new problems, we introduce again auxiliary

counting variables s and define a suitable counting Markov chain

p(s|x) that generates deterministically the variables in s given

the path x. This chain has the same structure with Equation (7)

but with the following modified conditionals:

p(s1|x1) = µ(x1)δs1,1 + (1 − µ(x1))δs1,0, (19)

p(sn|sn−1, xn−1, xn) = C(xn−1, xn)δsn,sn−1+1

+(1 − C(xn−1, xn))δsn,sn−1
. (20)

Here, s1 is set to one only for the subset of values of x1 compat-

ible with µ, otherwise it remains zero and the associated initial

segments are not counted. The case of counting always the first

segment corresponds to the special case where µ(x1 = i) = 1,

for each i, in which case p(s1|x1) simplifies to δs1,1. Simi-

larly, the conditional p(sn|sn−1, xn−1, xn) is such that sn in-

creases only when C(xn−1, xn) = 1 so that new segments for

which xn−1 �= xn and C(xn−1, xn) = 0 are not counted. Clearly,

counting any segment is obtained as a special case for which

C(xn−1, xn) = I (xn−1 �= xn). Also, all dynamic programing re-

cursions presented in supplementary materials are applicable to

the above generalized k-segment inference problems by simply

replacing all conditionals from the initial counting chain with

the ones from the generalized counting chain defined above.

Because these generalized chains can start from zero, the time

complexity of all algorithms is now O((kmax + 1)M2N ).

Finally, to illustrate optimal decoding in a generalized k-

segment setting, we consider again the simulated data of Fig-

ure 2. Suppose, we would like to count segments from the second

state only. The constraints (µ, C) we need to use are µ = [0 1 0]

and C = [0 1 0; 0 0 0; 0 1 0] (where ; separates the rows of

C). Figure 2(d) shows several optimal paths having 0 up to 8

segments associated with counting the second state in the HMM.

7.2 Extracting Excursions Using Two Layers of Auxiliary

Variables

In certain applications of HMMs, such as copy number calling

applications in genomics, there are often a subset of states (in

the simplest case just a single state) considered as normal or

null states while the remaining ones represent abnormalities. In

such applications, the practitioner might be interested to identify

excursions where the hidden path moves from any null state to

abnormal states and returns back to a null state. Extracting such

events using a k-segment formulation is challenging because

an excursion has a high-order Markov structure and therefore it

cannot be identified by just comparing two consecutive states. To

this end, next we describe a generalization of our augmentation

framework with counting variables that efficiently solves the

excursion problem.

We first give a precise definition of an excursion. Suppose

in HMM the states are divided into two groups: the null set

N ⊂ {1, . . . ,M} and the abnormal set N = {1, . . . ,M} \ N .

An excursion is any subpath (xi, xi+1, . . . , xj−1, xj ), with

j − i > 1, where xi, xj ∈ N and the intermediate hidden vari-

ables (xi+1, . . . , xj−1) take values from the abnormal set. In

other words, an excursion is the subpath having the start and

end states clamped to normal states and with all intermediate

variables clamped to abnormal values. Further, a special case

of an excursion is a restricted excursion where the intermediate

subpath (xi+1, . . . , xj−1) is clamped to the same abnormal state.

To count excursions, we introduce a new sequence of aux-

iliary variables e = (e1, . . . , eN ), which signify the different

phases of the excursion cycle. These variables unfold sequen-

tially given the path x according to the following deterministic

chain. Initially, e1 is set to zero so that p(e1|x1) = δe1,0 and then

any subsequent en is drawn according to

p(en|en−1, xn−1, xn) =

⎧
⎪⎨
⎪⎩

δen,1 xn−1 ∈ N & xn ∈ N ,

δen,0 xn−1 ∈ N & xn ∈ N ,

δen,en−1
otherwise.

(21)

Here, the first part of the conditional signals a new excursion

where en is set to one once a transition from a normal state

to an abnormal state occurs. The second part signifies the end

of the excursion where we return to a normal state. The third

part replicates the previous value and deals simultaneously with

both intermediate variables in the excursion subpath, in which

case en = en−1 = 1, and situations where x has started in an

abnormal state and an initiation of an excursion has not occurred

so far, in which case en = en−1 = 0. The key now to count

excursions is to increment a counter any time there is transition

from one to zero in the path e signifying the completion of an

excursion. This is achieved using counting variables s generated

given e, so that s1 = 0 and any subsequent sn is drawn from

p(sn|sn−1, en, en−1) = I (en−1 = 1 & en = 0)δsn,sn−1+1

+ (1 − I (en−1 = 1 & en = 0)) δsn,sn−1
. (22)

The initial HMM is augmented hierarchically with the above

two layers of auxiliary variables so that

p( y, x, e, s) = p( y|x)p(x)p(e|x)p(s|e) (23)

is the joint density of the extended state-space HMM and each

triple (xn, en, sn) consists of the new extended hidden state.

Then, by working analogously as before we can derive re-

cursions for all types of k-segment inference problems asso-

ciated with counting excursions. Since each variable en takes

two possible values and sn takes kmax + 1 possible values,

the complexity of all dynamic programing algorithms will be

O(2(kmax + 1)M2N ), which is twice as slow as generalized k-

segment inference.

Dealing with restricted excursions requires only a modifica-

tion of the third “otherwise” part in Equation (21). In particular,

this part must now be modified so that once an excursion cycle

has previously been initiated, that is, en−1 = 1, we will count any

transition happening between abnormal states. More precisely,

this part becomes

p(en|en−1, xn−1, xn) = I (en−1 = 1 & xn−1 �= xn)δen,en−1+1

+ (1 − I (en−1 = 1 & xn−1 �= xn)) δen,en−1
. (24)

Then, the problem of counting restricted excursions is solved by

constraining all en variables to take only the two values {0, 1}, so

that once an excursion cycle is been initiated we cannot transit to

a different abnormal state. The time complexity of the dynamic

programming recursions remains O(2(kmax + 1)M2N ) as in the

simple excursion case.
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To illustrate the concept of extracting excursions, we return to

the dataset of Figure 2, where we would like to count excursions

so that the first and second states comprise the null set and the

remaining third state is taken as abnormal. Figure 2(e) shows

several optimal paths found by counting excursions where, for

clarity, only the excursion segments are displayed using black

solid lines.

8. RELATION TO OTHER METHODS

Our method formalizes and generalizes the approach of

Kohlmorgen (2003) who provided the first solution (as far as

we are aware) for a specific form of the k-segment inference

problem. Kohlmorgen (2003) recognized that an exact dynamic

programming solution for the optimal decoding MAP estimation

problem existed. In this article, we have placed that insightful

observation by Kohlmorgen (2003) within a counting Markov

chain framework and showed that the use of dynamic program-

ming can also be used for marginalization and sampling of

random variables and thus, for instance, allow the computation

of marginal probabilities over subset of hidden paths using the

forward recursion of the F-B algorithm and simulating samples

with exactly k segments using the FF-BS algorithm. The use

of augmentation with auxiliary variables means that our frame-

work is easily generalizable as someone can tackle different

types of inference problems by constructing suitable counting

chains. For instance, in Section 7, we took this forward by intro-

ducing and solving generalized k-segment inference problems

in HMMs simply by generalizing the structure of the counting

chain.

Our counting Markov chain formulation can also be related

to the auxiliary Markov processes developed by Fu and Koutras

(1994). Fu and Koutras (1994) developed a “finite Markov chain

imbedding” (FCMI) approach that maps the original state space

on to an extended state space such that classes of states in the

extended space have a one-to-one correspondence with states

in the original space. The extended state space is constructed

such that absorbing states correspond to patterns of interest that

then allows the computation of appropriate waiting time distri-

butions associated with those patterns. These ideas have been

extended and applied more recently to compute distributions of

general patterns (Aston and Martin 2007), quantify uncertainty

in change points in HMMs (Aston, Peng, and Martin 2012; Nam,

Aston, and Johansen 2012) and more general graphical model

structures (Martin and Aston 2013). Our work here provides

a complimentary approach that focuses on segmental classifi-

cation and the exploration of alternate sequence segmentations

that we illustrate in later example applications.

In addition, there are similarities in the way we construct

counting chains with that of explicit duration HMMs (Mitchell,

Harper, and Jamieson 1995; Murphy 2002; Yu 2010), which

consists of a modification of the original HMM where each

hidden state emits not a single observation but a sequence of

observations. The number of these observations is chosen ran-

domly from a distribution. This can be thought of as introducing

duration or segment length constraints in the original HMM, so

that the resulting model is a hidden semi-Markov model. From

a technical point, the use of counting variables in ED-HMMs

shares similarities with our methodology, however, the scope of

our approach is very different. Specifically, in the retrospective

use of k-segment constraints, the counting variables are used to

obtain probabilities and hidden paths in the original standard

HMM, that is, we do not alter the original HMM but instead we

do exploratory inference in this model, while in the ED-HMM

the counting variables define a new hidden semi-Markov model

that imposes segment-length constraints in the hidden sequence.

When we consider k-segment constraints during model fit, our

methodology also implies learning a hidden non-Markov model,

which, however, again differs from ED-HMMs since it imposes

constraints in the total number and type of segments rather than

their length.

The use of efficient dynamic programing recursions has been

studied extensively in the change point estimation; see, for ex-

ample, Auger and Lawrence (1989), Fearnhead (2006), Fearn-

head and Liu (2007), and Frick, Munk, and Sieling (2014).

Traditional change point estimation algorithms allow the com-

putation of optimal segmentations of sequential data having one

up to kmax segments in O(kmaxN
2) time, that is, these algorithms

have quadratic complexity in the length of the data sequence.

Recently, Killick, Fearnhead, and Eckley (2012) developed an

exact algorithm whose expected computational complexity is

linear in the number of observations under mild conditions.

They adopted a pruning strategy to discard candidate change

points and reduced the number of computations required.

Yau and Holmes (2013) also developed a decision theoreti-

cal approach for segmentation using HMMs by defining a loss

function on transitions and identifying a Viterbi-like dynamic

programming algorithm to efficiently compute the hidden state

sequence that minimizes the posterior expected loss. The prop-

erties of the sequence predictions are modified through specifi-

cation of the loss penalties on transitions as supposed to altering

the transition dynamics of the Hidden Markov model. The k-

segment algorithms developed here can also be incorporated to

produce sequence predictions that minimize the posterior ex-

pected loss criterion subject to a desired k-segment constraint.

9. EXAMPLES

Next, we demonstrate the utility of k-segment methods in two

real-world applications. Specifically, in Section 9.1 we consider

the problem of copy number identification in cancer genomic

sequences, while in Section 9.2 we discuss an application to text

retrieval and topic modeling.

9.1 Genome-Wide DNA Copy Number Profiling

in Cancer

First, we consider the problem of genome-wide classification

of somatic DNA copy number alterations (SCNAs) in cancer.

SCNAs are an important constituent of the mutational landscape

in cancer and refer to numerical copy number changes that result

in extra or lost copies of parts of the genome. In cancer, these

alterations lead to the loss of tumor suppressor genes or the gain

of oncogenes (which restrict and promote tumorigenic activ-

ity, respectively) have been identified as being associated with

cancer (Beroukhim et al. 2010). Next generation sequencing

or microarray technologies have allowed cancers to be probed

on a genome-wide scale for SCNAs and a number of statisti-

cal models have been developed to support the analysis of this
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data (Loo et al. 2010; Yau et al. 2010; Chen, Xing, and Zhang

2011; Carter et al. 2012; Yau 2013). A particularly popular class

of these models has used HMMs to model microarray intensi-

ties or sequencing reads as observations of a hidden (discrete)

state process that corresponds to the unobserved copy number

sequence.

Specifically, a single nucleotide polymorphism (SNP) mi-

croarray dataset consists of a sequence of bivariate measure-

ments { yi}
N
i=1 at N SNP locations spread across the genome.

The first dimension of the measurements is known sometimes

as the Log R Ratio values that are intensity measurements whose

magnitude is proportional to the total copy number at that par-

ticular genomic location. In human genome analysis, the Log

R Ratio values are typically normalized such that values ap-

proximately equal to zero correspond to a DNA copy number

of two since we typically inherit one copy of every gene from

each parent. The second dimension, sometimes known as the

B allele frequency, measures the relative contribution of one of

the parental alleles to the overall signal, which can allow us to

determine which parental allele is lost or gained.

In Yau et al. (2010), these data sequences are modeled us-

ing a Bayesian hierarchical model specified via the following

relationships:

yi |xi, m, 	, ν ∼ Student(mxi
, 	xi

, ν), i=1, . . . , N, (25)

xi |xi−1 ∼ Multinomial(Axi−1
), (26)

where xi ∈ {1, . . . ,M} denotes the copy number state at the ith

location, {mj , 	j } denotes the expected signal measurements

and noise covariance for the jth copy number state, and A is a

transition matrix such that Aj corresponds to the transition prob-

abilities out of the jth copy number state. Note, we present only

an abbreviated and simplified version of the complete model by

Yau et al. (2010) here. For full details, see the original reference.

Table 1 shows an example set of copy number states. Yau et al.

(2010) modeled transitions between super-states as relatively

unlikely events leading to a “sticky” HMM that produces rela-

tively few super-state segments. Dynamics within super-states

are modeled via an embedded Markov chain that approximates

the patterns of genotypes observed in real data. The primary

scientific interest is in the switching between super-states but it

is necessary to fully model the complete genotypes to achieve

this.

Full Bayesian posterior inference for this type of model is

prohibited by the size of the datasets (O(N ) ≈ 106). Yau et al.

(2010) performed model fitting using the EM algorithm to com-

pute MAP parameter estimates and condition on these to ob-

tain MAP segmentations using the Viterbi algorithm. The F-B

algorithm can also be applied to obtain site-wise posterior prob-

abilities of state occupation. Figure 5 shows an example copy

number analysis of chromosome 1 of a colorectal cancer cell line

SW837 from an SNP microarray dataset using the OncoSNP

software from Yau et al. (2010). The chromosome exhibits a

number of copy number alterations leading to changes in the

pattern of the Log R Ratio and B Allele Frequency along the

chromosome. Genomic regions with nonnormal total copy num-

ber (2) can be identified from the Viterbi segmentations and the

site-wise posterior probabilities.

Table 1. Example copy number states. Each copy number state is

associated with a total copy number and genotype, which tells us the

number of each parental allele (A/B). The super-state corresponds to

subsets of copy number states with identical total copy number and/or

loss of heterozygosity (LOH) status

Copy number

state

Total copy

number LOH Genotype Super-state

1 0 N/A N/A 1

2 1 0 A 2

3 1 0 B 2

4 2 0 AA 3

5 2 0 AB 3

6 2 0 BB 3

7 3 0 AAA 4

8 3 0 AAB 4

9 3 0 ABB 4

10 3 0 BBB 4

11 2 1 AA 5

12 2 1 BB 5

The application of our k-segment methods can be used to aug-

ment these standard analyses with additional exploratory infor-

mation. Figure 5 shows segmentations conditional on different

fixed super-state segment numbers obtained using k-segments.

Here, we have used the ability to count certain transitions in k-

segment inference (based on generalized counting from Section

7.1) to good effect counting only transitions between super-

states and excluding uninteresting transitions between copy

number states within super-states. This means the kth segmen-

tation represents the most probable copy number segmentation

that involves k different super-state segments as supposed to

k segments defined on the original state space, which would

include transitions between states within super-states. These

segmentations allow the exploration of alternative segmenta-

tion that differ from the MAP solution and yet retain segmental

constraints that cannot be observed from the site-wise marginal

probabilities. In this example, k-segments provides a coarse-to-

fine representation of the genomic copy number profile for the

cancer cell line allowing the investigator to choose the neces-

sary level of detail required to answer their particular question

of interest.

Figure 6 shows that sampling from the posterior in this case

would not be sufficient for obtaining a full range of qualitatively

diverse sequences (as the posterior mass is mostly concentrated

in the range 65–100 segments). Using the k-segment forward

algorithm, we were able to calculate the posterior distribution

exactly over the number of segments and compare this with the

Viterbi solution, which involves 67 segments. Yet it is clear that

the signal would be well represented with far fewer segments as

the more complex segmentations simply involve large numbers

of short aberrations (many of which maybe false discoveries

induced by localized signal fluctuations). The potential dispar-

ity between the posterior probabilities and the potential user

interpretation arises because of a model misspecification. The

Markov model is only an approximation of the true (unknown)

generative process and has limited expressive power. As a con-

sequence, the sequence probabilities are not well calibrated and
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Figure 5. Copy number analysis of the colorectal cancer cell line SW837 (Chromosome 1) using site-wise marginal posterior probabilities

of a copy number aberration from the F-B algorithm, the Viterbi algorithm (black lines indicate detected regions of aberrant copy number),

and k-segment analysis for different fixed super-state segment numbers. Segmentation using low values of k provides a broad classification of

the data involving large genomic aberrations, while larger values of k produce more detailed segmentations that may correspond to small gene

deletions or amplifications.

Figure 6. Size-ordered distribution of segment lengths found in the segmentation of chromosome 1 (top) for a range of segment numbers k.

The posterior probability p(cx = k| y) (bottom) is shown alongside the Viterbi (vertical line) estimate.
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this effect is further exaggerated when summing over the large

number of possible sequences.

9.2 Application to Text Retrieval Using Hidden Markov

Topic Models

Next, we apply k-segment inference to an information re-

trieval task where the objective is to process long documents and

extract segments referring to certain topics. For this purpose, we

define a hidden Markov topic model, as those proposed in Gru-

ber, Weiss, and Rosen-Zvi (2007) and Andrews and Vigliocco

(2010), which builds upon popular topic models, such as prob-

abilistic latent semantic indexing (Hofmann 2001) and latent

Dirichlet allocation (Blei, Ng, and Jordan 2003), by assuming

that the latent topics of words in ordered text follows a Markov

chain.

Assume an unknown-content (test) document d, which, as

before, is represented by a set of words yd = (yd,1, . . . , yd,Nd
)

that are ordered according to their appearance in the text and

assumed to have been generated from an HMM. Specifically,

we assume there is a path xd = (xd,1, . . . , xd,Nd
) such that each

xd,n ∈ {1, . . . ,M} indicates the hidden topic of word yd,n. Fur-

ther, the set of these topics is divided into the relevant topics

and the irrelevant topics with the relevant topics being the ones

from which we wish to extract text segments, estimate poste-

rior probabilities of appearance, etc., while the irrelevant topics

are unknown and document-specific topics of no interest to us.

Without loss of generality, and to simplify our presentation, we

shall assume M = 2 so that there is one relevant and one ir-

relevant topic. The relevant topic is described by multinomial

parameters φr = (φr,1, . . . , φr,V ) so that the emission distribu-

tion that generates a word yd,n is such that

p(yd,n|xd,n = 1) = φr,yd,n
. (27)

φr is assumed to have been estimated by supervised learning

using fully labeled documents according to the equations:

φr,v =
nv + 1

n + V
, v = 1, . . . , V , (28)

where nv is the number of times the vth word appears in the

labeled data and n is the total number of words in these data. No-

tice that the above is simply the Bayesian mean estimate under

a uniform Dirichlet prior over φr . Similarly, the emission dis-

tribution for the irrelevant topic, that is, p(yd,n|xd,n = 2), is de-

scribed by the parameter vector φd = (φd,1, . . . , φd,V ) which is

a document-specific parameter to be estimated. Furthermore, the

prior distribution πd and transition matrix Ad of the HMM are

also document-specific parameters and the full set (φd ,πd , Ad )

can be estimated via the EM algorithm while φr is kept fixed.

In practice, we also place a conjugate Dirichlet prior over all

unknown parameters so that EM finds MAP point estimates

similar to those of Equation (28).

In the remainder of this section, we demonstrate the

above system using a freely available text corpus taken

from the University of Oxford electronic library. (See

http://www.bodleian.ox.ac.uk/ora.) Specifically, we collected a

set of 119 doctoral theses on several subjects such as History,

Social Sciences, Philosophy, Law, Politics, Literature, and Eco-

nomics. The topic of Economics was considered to be the rel-

evant topic while all remaining topics were taken as irrelevant.

Ten out of 119 documents were classified (according to the

library database system) to be about Economics while the re-

maining 109 theses were scattered across the other topics. Each

dth document was represented by a sequence of words from a

dictionary of size V = 1260, which was defined separately by

choosing all different words from a large set of freely accessible

Wikipedia articles. (Following also the standard practice in topic

modeling to exclude from the vocabulary very common words,

of nonsemantic meaning, such as “the,” “of,” “and,” etc.) The

multinomial parameters for the relevant topic of Economics

was obtained by supervised learning using counts of words

obtained from a small set of Wikipedia entries such as the entries

Economics, Finance and Investment. Having preprocessed each

document as above, we then considered two types of prediction

tasks: (i) classification and (ii) detection that we describe next

in turn.

Classification. For the classification task the objective was

to predict in a test document the presence or absence of at

least one occurrence of a segment from the topic Economics.

The test documents consisted of the 109 theses, originally

annotated as non-Economics documents, that were randomly

perturbed to create a ground-truth dataset of known classifica-

tion. Further simulation details are explained in supplementary

materials.

Given this test dataset, the objective was to construct a binary

classification system and classify each of the documents as rel-

evant, that is, as containing at least one text segment about Eco-

nomics, or as irrelevant. Each test document was processed sep-

arately by applying the EM algorithm discussed earlier. Then, to

achieve probabilistic classification, the posterior probability for

the occurrence of at least one segment from the relevant topic

is required. It can be obtained by applying k-segment inference

using a counting variable cx that increments only when a seg-

ment from the relevant topic occurs. Notice that this requires the

use of generalized counting, as described in Section 7.1, which

uses certain values for the constraints µ and C. (Assuming that

the first hidden state in the HMM corresponds to the relevant

topic and the second one to the irrelevant topic, µ = [1 0] and

C = [0 0; 1 0].) Then, the posterior probability p(cx > 0| yd ) is

computed using the forward pass of the F-B algorithm in the

augmented HMM, which subsequently provides a probabilistic

classifier. Using different thresholds in the classification proba-

bility, we can obtain different decision systems of varying false

positive and true positive rates as shown by the receiver oper-

ator characteristic (ROC) curve in Figure 8(a). In contrast, if

we were about to perform classification using the Viterbi MAP

path, we can only obtain a single decision system that classifies

documents as relevant or irrelevant based upon whether a seg-

ment from the relevant topic occurs or not in the Viterbi path.

Such system gives a single value for the true positive and false

positive rate as shown in Figure 8(a). Clearly, k-segment’s abil-

ity to compute nontrivial posterior probabilities allows for more

flexible uses of HMMs when building decision-making systems.

Detection. We now turn into the second task that is concerned

with the detection of individual segments within a document

that belong to the relevant topic. We adopt a standard informa-

tion retrieval setup that is referred to as top-k retrieval (Büttcher,

Clarke, and Cormack 2010). This is the task of retrieving k pat-

terns (typically full documents) that are most relevant to a given

http://www.bodleian.ox.ac.uk/ora
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Figure 7. An example of detection of a text segment from the relevant topic of Economics: (a) The original test document, (b) the edited

document after having randomly inserted (and replaced the original piece of text) a segment from the topic of Economics, which is shown in

red, and (c) the segment predicted as belonging to the relevant topic shown in blue color. In this case, the predicted segment was classified as a

correct detection since it overlaps more than 80% with the ground-truth segment shown in (b).

query among a large set of other possible patterns. Our spe-

cific top-k retrieval task will be to extract top-k text segments

within the same large document and to achieve that we shall

use the hidden Markov topic model. Also, to account for docu-

ments that may contain fewer than k segments from the relevant

topic, we will relax the constraint to retrieve exactly k segments

to the softer constraint of retrieving at most k segments. It is

worth noticing that there is a similarity of k-segment problems

in HMMs and top-k retrieval since both involve inference under

counting constraints. More precisely, k-segments can naturally

tackle the previous top-k retrieval task by applying optimal de-

coding, under the constraint cx ≤ k, which finds the optimal hid-

den path containing at most k text segments associated with the

relevant topic. Next, to evaluate such system in test documents

with known ground-truth segments, we randomly perturbed the

109 test documents (see supplementary materials for simulation

details).

To measure performance, we make use of a popular evalu-

ation measure used in visual object detection literature. More

precisely, detecting segments of certain topics in documents

is similar to detecting instances of object categories in natural

images. There, the detection problem is to predict a bound-

ing box that locates an instance of an object category within

the image. The well-established evaluation measure, used in the

PASCAL visual object recognition challenge (Everingham et al.

2010), is the overlap area ratio. Adopting this in our case, we

have that for a predicted segment Sp = [il, ir ], where il and

ir are the segment start and end locations, the overlap ratio is

defined by

r =
|Sp ∩ Sgt |

|Sp ∪ Sgt |
. (29)

Here, Sgt is the ground-truth segment, Sp ∩ Sgt is the intersec-

tion of the predicted and the ground segments and Sp ∪ Sgt is

their union. Clearly, r ∈ [0, 1] and values close to zero indicate

poor detection while values close to one indicate strong detec-

tion. We consider as correct detections all cases when r exceeds

the threshold of 80%; for an illustrative example of a correct

detection see Figure 7. Also, to get a total document-specific

performance that is normalized with respect to k, we average

Figure 8. (a) Receiver operating characteristic for (-) the k-segment method (using p(cx > 0| y)) and (*) Viterbi, (b) mean detection rates for

top-k systems (95% CI), (c) mean differences in detection rates of the k-segment method and Viterbi together (95% CI).
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according to

per document detection rate =
1

k

kp∑

i=1

I (ri > 0.8), (30)

where kp ≤ k is the number of predicted segments. From this

we can obtain a mean detection rate that gives the overall per-

formance in the whole test dataset. Figure 8(b) shows means

detection rates for several top-k systems of varying values of k.

Confidence intervals were obtained by repeating the experiment

100 times, so that in each repeat a random test dataset of 109

documents was created using bootstrapping together with the

standard randomization involved in the segment insertion (see

supplementary materials for simulation details).

Furthermore, it is interesting to compare k-segments with a

system constructed using the standard Viterbi MAP path in the

HMM. Standard Viterbi gives a single path that will contain a

priori an unknown number of segments from the relevant topic.

Thus, to get top-k retrieval systems (for different values of k), we

can rank all relevant-topic segments with respect to their length

so that the top-1 retrieval system simply outputs the longest

segment in the list, the top-2 retrieval system outputs the two

longest segments and so forth. Using the same bootstrapped 100

repeats, we also evaluated the standard Viterbi system and for

each repeat we recorded the difference in mean detection rates

(k-segment rate minus the standard Viterbi rate). Figure 8(c)

displays the mean of these differences together with 95% con-

fidence intervals and for several values of k. Clearly, there is a

certain range of k values where the k-segment method outper-

forms the standard Viterbi method. Moreover, as k increases,

the k-segment constraint cx ≤ k becomes weaker and the corre-

sponding optimal paths converge to the standard Viterbi MAP

paths, which explains the fact that the performance of the two

methods becomes identical for large k.

To summarize, both tasks in text retrieval presented above

indicate that k-segment inference allows for more flexible use

of HMMs, which provides us with new options when building

classification and decision-making systems.

10. DISCUSSION

HMMs can allow for highly efficient analysis of large quanti-

ties of sequence data. However, existing methods for reporting

posterior summaries from HMMs such as the Viterbi MAP path

and the marginal probabilities are rather blunt providing a lim-

ited number of quantities for summarizing potentially very large

sequence spaces. In a Bayesian framework, posterior sampling

provides a mechanism to draw a variety of sequences but we

have shown that these draws tend to come from a relatively

narrow range of possibilities in practice. Furthermore, in many

applications, the HMM is often a model of convenience rather

than the true (unknown) generative mechanism for the data. A di-

rect consequence of the model misspecification is that sequence

probabilities may not be correctly calibrated and reliance on

posterior probabilities to guide the selection of sequences may

not be appropriate.

We have demonstrated that in problems where there are strong

prior beliefs on segment number then the use of auxiliary count-

ing variables allows for computationally efficient enumeration

of sequences under segmental constraints. The k-segment algo-

rithms we developed are generic and the augmentation scheme

can be applied either a posteriori to HMMs already fitted to data

or a priori during model fit. In cancer genomics, k-segment in-

ference can be a useful exploratory tool that can help researchers

to analyze genomic sequences at different resolutions or target

events of particular types, facilitating thus the process of getting

novel insight into structural rearrangements in cancer genomes.

For other types of applications, which appear for instance in

machine learning and pattern recognition, the proposed meth-

ods can allow to build more flexible HMM-based classification

and decision-making systems, as we have demonstrated using

the text retrieval example.

Regarding future work, an interesting research direction is to

exploit the ability of k-segment inference to efficiently explore

the HMM posterior distribution to provide input into construct-

ing meta statistical models. For instance, the ability to obtain

alternative explanations of the same data sequence that may have

high utility to the research scientist but occur with very low prob-

ability could allow the practitioner to rerank different explana-

tions based on his expertise and subsequently provide feedback

into the model that can be used for supervised retraining.

To conclude, as datasets become larger and models more

complex, we expect to see increasing need for computationally

efficient methods for posterior model exploration and statistical

inference under constraints. In this article, we have presented

one such approach that significantly expands the statistical al-

gorithmic toolbox of HMMs.

SUPPLEMENTARY MATERIALS

The supplementary materials contain proofs for the auxiliary

variable reformulation of k-segment problems, k-segment dy-

namic programming recursions, and simulation details for the

text retrieval example.

[Received November 2013. Revised November 2014.]
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