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Abstract

Statistical analysis of longitudinal or cross sectional

brain imaging data to identify effects of neurodegenerative

diseases is a fundamental task in various studies in neuro-

science. However, when there are systematic variations in

the images due to parameter changes such as changes in the

scanner protocol, hardware changes, or when combining

data from multi-site studies, the statistical analysis becomes

problematic. Motivated by this scenario, the goal of this pa-

per is to develop a unified statistical solution to the problem

of systematic variations in statistical image analysis. Based

in part on recent literature in harmonic analysis on diffu-

sion maps, we propose an algorithm which compares oper-

ators that are resilient to the systematic variations. These

operators are derived from the empirical measurements of

the image data and provide an efficient surrogate to captur-

ing the actual changes across images. We also establish a

connection between our method to the design of wavelets in

non-Euclidean space. To evaluate the proposed ideas, we

present various experimental results on detecting changes

in simulations as well as show how the method offers im-

proved statistical power in the analysis of real longitudinal

PIB-PET imaging data acquired from participants at risk

for Alzheimer’s disease (AD).

1. Introduction

Statistical analysis of a cohort of brain imaging scans to

assess the long term effects of trauma/stress and identify ge-

netic, demographic and lifestyle factors for neurodegenera-

tive diseases is a cornerstone of current research in neuro-

science. Typically, the population will consist of two clin-

ically disparate groups/classes: say, diseased and healthy

(cross-sectional) or a set of subjects imaged several years

apart (longitudinal). Once all images are ‘registered’ to a

common template space, the statistical analysis can proceed

in a number of ways. For instance, at each voxel one may

perform a hypothesis test (e.g., Student’s t-test) to ask if

the distribution of intensities at that voxel across the two

distinct groups are the same [10]. If there is sufficient ev-

idence to reject the null hypothesis, we can conclude with

some confidence (0.05 α level) that the voxel is relevant for

the disease. By repeating this procedure across all voxels,

we can obtain a heat map of p-values to identify potential

regions affected by the disease.

There are two basic but important issues we should em-

phasize here. First, our ability to conclude that (at a specific

voxel) the observed empirical intensity distributions are dif-

ferent across groups depends on the sample size and how

distinct the distributions are (i.e., the effect size). Second,

this analysis assumes that the absolute image intensity mea-

surements are meaningful. In other words, we assume that

the only differences between the groups is due to the ef-

fect of the clinical phenomena under study (i.e., age, dis-

ease and so on), and not other global systematic variations

coming from modifications in acquisition parameters. Gen-

erally, in small to medium sized studies where the data is

acquired at a single site (with the same scanner), this is not

a problem. But as scientific studies investigate more subtle

scientific questions where the group differences are weaker,

we need larger sample sizes — logistic constraints necessi-

tate multi-site studies. Changes in the hardware and pulse

sequences (and many other factors) across sites introduce

systematic variations in the dataset. In fact, even in small

studies, a hardware upgrade (between baseline and follow-

up acquisitions) may be a nuisance for analysis, requiring

ad-hoc normalization which may affect statistical power of

detecting true group effects. When the effect sizes are poor,

performing inference on the data without appropriate ad-

justments could affect the success or failure of the scientific

hypothesis under investigation.

The above problem is common across various imaging

modalities in medical imaging. For instance, in neuroimag-

ing uses of positron emission tomography (PET), a nuclear

imaging modality (where an injected radiotracer binds to
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specific pathologies), image measurements vary consider-

ably, even for the same subject, due to a variety of reasons.

So, before any statistical analysis can be performed, these

images must be “normalized”. Possible approaches include

global normalization (mean intensity) or regional scaling

(by a reference region). This process converts the inten-

sities into a physiological range of interpretable values. But

if the global average or the mean intensity of the reference

region used is not independent of the condition being stud-

ied, the analysis will invariably suffer. In these cases, incor-

rect normalization can lead to an inability to identify real

group differences, or worse, one may obtain paradoxical or

“opposite” findings. In various other imaging modalities, a

normalization strategy may not even be viable. For exam-

ple, if the systematic variations are the result of changes in

the acquisition parameters at different sites, one must ana-

lyze the smaller datasets separately. The goal of this paper

is to develop a unified statistical solution to this problem.

A high level description of the strategy. Let f denote an

unknown function. Let α and β denote two parameters such

that they modify the form of the function f(·) yielding fα
and fβ . Now, consider that we are only given access to mea-

surements of fα and fβ . It is clearly not possible to verify

whether they were both derived from the same latent func-

tion, f unless we also know the relationship between the

transformations of f induced by α and β (if the respective

inverse transformations are unique). Assume that an oracle

provides us an operator T (to be described in detail) with

the interesting property that it is invariant to the parameter

space P from which α and β are drawn. That is, if we con-

struct a pair of operators from the empirical measurements

of fα and fβ , the operators will be the same: T fα ≡ T fβ if

they share the same latent function, f .

Next, consider a slightly more complicated setup. The

latent function f has now been modified to f ′. We are now

provided with the measurements, fα and f ′β , i.e., both the

parameter and the function change. Since the operator T
only offers invariances to the parameter space P (and as-

sumes that the latent function is the same), in this case, the

operators T fα and T f ′

β
cannot be compared. Nonetheless,

we can see that the operators provide a mapping to two dif-

ferent spaces, say Sfα and Sf ′

β
, since f and f ′ are distinct.

Interestingly, because of the invariance to P , if we now plug

in a known function (such as an impulse function) at all

locations in the original space into the two operators, we

will obtain its transformed representations in Sfα and Sf ′

β
.

Once these transformed forms of the impulse functions are

mapped from Sf ′

β
to Sfα , we can calculate the distance. If

the distance is near zero, then f ≃ f ′; otherwise, it charac-

terizes the discrepancy between f and f ′ since the operators

are, by design, invariant to P .

The main contribution of this paper is to formalize

this idea for immunity to systematic variations in statistical

analysis of imaging data, based on a new method in the har-

monic analysis literature by Coifman and Hirn [6]. In par-

ticular, we a) Derive the operators T using the recent work

in Diffusion Maps [7, 6] and show how the corresponding

invariance allows performing statistical analysis of system-

atically varying images, i.e., fα and fβ for α, β ∈ P . Note

that it may not otherwise be possible to even compare fα
and fβ ; b) Describe how the lower dimensional mapping

obtained by the operators relate to a Wavelet transform in

non-Euclidean spaces; c) Provide experimental evidence in

that the method facilitates statistical analysis of Pittsburgh

compound B PET (PIB-PET) [20] images and offers im-

provements over standard normalization methods used in

the community.

1.1. Related Work

There are several broadly related ideas in vision and

medical imaging that can serve as a reasonable starting

point for comparing functions that cannot otherwise be

compared [8]. The most natural choice is a statistical

measure that is, by construction, invariant to image inten-

sities: Mutual Information (MI). Mutual information has

been extensively used in both computer vision (e.g., stereo

[12, 16, 13]) and in medical imaging (e.g., non-linear reg-

istration [32, 22, 26, 33]) and offers precisely the type of

invariance we desire. While MI is a good loss function to

optimize when searching for a non-linear transformation or

disparity map, once such a transformation has been found

and the images have been aligned, MI does not make the

statistical analysis any easier. For instance, consider a set of

ten participants whose images were acquired twice, a few

years apart, and the intensities in the second acquisition are

systematically different (e.g., affine scaling). While MI can

characterize the joint entropy of a pair of intensities, it can-

not be used to quantify the voxel-wise change from one time

point to the other.

An alternative to the MI approach is based on dictionary

learning/patch regression inspired idea called image synthe-

sis [14, 28, 25]. Broadly, one may use image synthesis to

synthetically generate the image that has been corrupted, as-

suming a large set of training examples is available. While

this approach is suitable for addressing missing data, apply-

ing it in the above longitudinal setting will entail generating

the entire set of images at the second time point. The learn-

ing task will broadly correspond to inferring the parame-

ters of a generative model that explains temporal change

across the population, given only the baseline acquisition

— clearly difficult regardless of how well characterized the

training dataset is. Given these issues, to our knowledge,

there is no universally applicable solution offering the same

capabilities as the algorithm we propose here. In situations

where the structural variations in the intensities are related

by a simple transformation, one may normalize the entire

image by a suitable normalization constant. In medical
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Figure 1: Comparing two different functions on four data points. a) f(p) = fα(p) = (1, 1, 1, 1)T , b) f ′(p) = (1, 1, 3, 1)T , c) f ′
β
(p) = 3− f ′(p) =

(2, 2, 0, 2)T , d) |fα − f ′
β
|, e), f) graphs from fα and f ′

β
respectively (edge thickness denotes to edge weight), g) WKD using structure from e) and f).

The true change between a) and b) is (0, 0, 2, 0), but a simple subtraction in d) is inaccurate. The proposed algorithm can capture the true change in g).

imaging, this is often difficult because it must be derived

from a region not affected by disease, age, or the clinical

phenomena under study. If this is sub-optimal, it can affect

the statistical analysis in unexpected ways. Later, we will

show experiments using the above approach as a baseline

and demonstrate how the new method offers improvements.

2. A Multi-resolutional Perspective

Our framework considers the case where fα and fβ cor-

respond to images. Here we assume that the two images are

spatially registered so that the only variations in the mea-

surements comes from the parameters, α, β ∈ P . Although

we cannot compare fα and fβ due to parameter differences,

the latent function is the same, so the overall behavior of the

functions are similar modulo the variation introduced by the

parameters drawn from P . Formally, we assume that the re-

lationship of measurements at each grid point to measure-

ments at other grid points in the same image is preserved

and is independent of changes in the parameter space, P . In

other words, if we place a unit mass of energy at position p
in the first image, then the overall pattern of dissipation to

its surroundings (e.g., governed by the form of the function)

will be similar to that observed in the second image. Now,

imagine that fα changes to f ′α, which alters the relationship

between the sample points in subtle ways. When we place

a unit energy at location (or grid point) p, the propagation

of the energy will now show different patterns for the two

image-derived operators: capturing the difference between

those patterns is an excellent surrogate for detecting the dif-

ference between the two original functions f and f ′.
In the previous section, we proposed that this procedure

should be carried out by operators T fα and T f ′

β
derived

from the measurements of respective functions. We know

that these operators define a mapping to lower dimensional

spaces Sf and Sf ′ [2]. The unit energy at position p can be

simulated by an impulse function δp. Now, when T fα and

T f ′

β
are applied to the same δp, the energy propagation will

be characterized in the spaces Sf and Sf ′ . Interestingly, the

reader will see that this process is exactly like the construc-

tion of a mother wavelet function [23, 30], which involves

applying a Wavelet transformation operator on a delta func-

tion to characterize dissipation of a unit energy in a lower

dimensional space. Traditionally, a mother wavelet function

ψs,p corresponds to scale s and location p — while the for-

mer defines the dilation, the latter corresponds to individual

sample grid points in the image. This discussion immedi-

ately suggests the possibility of using the Wavelet transform

in place of the operator, T .

One important issue here is that wavelets are classically

defined in R
n, where the space is represented as a grid graph

with equally weighted connections to the neighbors. In-

stead, in this application, we want the energy to spread un-

evenly in all possible directions, strongly modulated by the

strength of the connections between the data points. This

corresponds to a non-Euclidean space where the design of

Wavelets is poorly investigated. Shortly, we will describe

how the wavelet transform on graphs [11, 7] provides a so-

lution to this problem by building Wavelet basis in such ar-

bitrary structured spaces.

The Spectral Graph Wavelet transform (SGWT) [11].

The construction of a wavelet transform is problematic in a

non-Euclidean space because of the two main properties of

the Wavelet bases: translation and scaling. For instance, be-

cause of the arbitrary connections between the grid-points,

it is difficult to imagine what the “shift” or “dilation” of a

function means. But instead of defining the mother wavelet

in the original domain, wavelets can be simply defined as

band-pass filters in the frequency domain. SGWT defines a

Wavelet basis based on spectral graph theory to first trans-

form the data into the frequency domain. Then, operations

analogous to scaling can be accomplished by band-pass fil-

teringand then transforming the data back — this one shot

backward/forward process gives a Wavelet basis for graphs.

Consider a graph G = {V,E, ω} defined by a vertex

set V , an edge set E and corresponding edge weight ω.

A convenient representation of the graph is a N × N ad-

jacency matrix A where N is the number of vertices and

each element aij in A denotes the edge between the ith
and jth vertices by the weight ω. A diagonal N × N ma-

trix D, known as degree matrix, characterizes the degree

of each vertex, as the ith diagonal element is defined as∑
(i,j)∈E aij . From these two matrices, a graph Laplacian

L is derived as L = D − A which is a self-adjoint opera-

tor and upon decomposition provides a full set of orthonor-

mal bases. SGWT uses these orthonormal bases to define

the graph Fourier transformation which in turn provides the

graph Wavelet transformation.

Based on the given λ and χ, SGWT is determined by a



wavelet kernel function g : R+ → R
+, which behaves as a

band-pass filter. Then, the SGWT operator T g on a function

h(p) is defined as

(T g h)(p) =

N−1∑
l=0

g(λl)βlχl(p) (1)

where βl = 〈h, χl〉. Note that there is no notion of scaling

in (1). But we know that the Fourier transform has a scaling

property which can be incorporated in the kernel function,

g(). Then, the corresponding operation (but now with scal-

ing property) is given as

Wh(s, p) = (T s
g h)(p) =

N−1∑
l=0

g(sλl)βlχl(p). (2)

which results in the wavelet coefficient Wh(s, p). The ac-

tual mother wavelet ψs,p at scale s centered at p is realized

by a delta function δp as

ψs,p(q) = T s
g δp =

N−1∑
l=0

g(sλl)χl(p)χl(q) (3)

and this satisfies the conventional transform Wh(s, p) =
〈ψs,p, h〉. This wavelet function is considered as a kernel

function ψs(p, q) between vertices p and q, serving as a key

ingredient in defining the notion of “change” between fα
and f ′β independent of the parameters α, β ∈ P

3. Change Detection in Non-Euclidean Space

3.1. Wavelet Map and Wavelet Kernel Distance

Defining a kernel function in a square integrable mea-

sure space (X,µ) enables one to measure local similarities

withinX at small scales [6]. In our case, we define a mother

wavelet function as such a kernel function using an operator

T s. The operator T s is constructed using empirical mea-

surements of function fα which are given. A wavelet func-

tion ψs,p(q) can be viewed as if it were a kernel function

written as ψs(p, q), defining a relationship between vertex

p and q [3]. Following [6], we can define a kernel func-

tion ψs(p, q). For our application, this yields Wavelet Ker-

nel Distance (WKD) ds(p, q) at scale s, a measure between

two points p and q defined as ℓ2−norm of the wavelet den-

sity difference over the space X as

ds(p, q)
2 = ||ψs(p, ·)− ψs(q, ·)||

2

2 (4)

=

∫
X

(ψs(p, r)− ψs(q, r))
2µ(r) (5)

In the graph setting, using the SGWT operator T s
g de-

fined by a set of a set of eigenvalues and eigenfunctions

as in Section 2, observe that (4) can be rewritten using a

wavelet kernel function g() in the spectral domain as

ds(p, q)
2 =

N−1∑
l=0

g(sλl)
2(χl(p)− χl(q))

2 (6)

The expression in (6) lies at the heart of the idea devel-

oped in this paper. It can be interpreted as if we were com-

paring the effect of the same wavelet function dissipating

from different locations p and q to their neighbors by the

wavelet kernel function g(), thereby measuring the effect

of the propagation. Further, we can also define a mapping

of δp at each grid-point to a lower dimensional Euclidean

space spanned by χ defined as the wavelet map γ : X → ℓ2

at scale s as

γs(p) = (g(sλl)χl(p))l=0,1,...,N−1 (7)

characterizing the local relationship of the graph with the

wavelet kernel function g(). Note that when gs(λl) = λsl ,

the wavelet map exactly becomes diffusion map proposed

earlier in [7].

A toy example is shown in Fig. 1: the objective here

is to compare two different functions fα and f ′β defined

on four data points, and find the true difference between

them. Given latent functions f = (1, 1, 1, 1)T and f ′ =
(1, 1, 3, 1)T , the true difference (i.e., |f − f ′|) here is

(0, 0, 2, 0). Given the latent functions, fα remains the same

as f while f ′β is defined to be f ′β(p) = 3 − f ′(p). Clearly,

a direct comparison of fα and f ′β (i.e., |fα − f ′β |), as illus-

trated in Fig. 1 d), fails to detect the true difference. On the

other hand, computing WKD from graphs constructed us-

ing fα and f ′β at each data point yields the true difference

as shown in Fig. 1 g).

We can now formally establish the relationship between

wavelet map, WKD, and the construction of Wavelets using

the following two results.

Proposition 1. The squared WKD ds defined between two

vertices p and q on the same graph is equivalent to the

ℓ2−norm of the difference between the respective wavelet

maps of vertices p and q.

Proof. Taking the ℓ2−norm of the difference over wavelet
map on vertices p and q yields,

ds(p, q)
2 = ||γs(p)− γs(q)||

2

2 =

N−1∑
l=0

(g(sλl)χl(p)− g(sλl)χl(q))
2

=

N−1∑
l=0

g(sλl)
2(χl(p)− χl(q))

2.

From Proposition 1, we can see that WKD defines a Eu-

clidean distance of the wavelet maps between vertices p and

q in the space formed by χ. But is there a relationship be-

tween Wavelet maps and an actual wavelet function?

Proposition 2. Let V = [χ0 χ1 . . . χN−1] denote a ma-

trix where χi corresponds to columns. The projection of a

wavelet map γs(p) at vertex p to the row space of V pre-

cisely constructs a mother wavelet function ψs,p(q).



Proof. Given χ(q), the qth row of V , taking inner product
of the wavelet maps γs(p) and χ(q) becomes

〈γs(p), χ(q)〉 =

N−1∑
l=0

g(sλl)χl(p)χl(q) = ψs,p(q)

which defines a wavelet function at q centered at p exactly

in the form given in (3).

Summary. We see that Proposition 2 establishes the con-

nection between the construction of Wavelet functions from

Section 2 and the wavelet map. It shows that a Wavelet

function can be constructed from the wavelet map at each

vertex. Further, this result ties the wavelet map to kernel

signatures on graphs, variants of which have been used for

graph matching and surface segmentation (but using diffu-

sion [9, 31]). When the wavelet map of p is projected to

the pth row of V , we get a wave-type kernel descriptor in

[1, 17]. Separately, when gs(λl) = exp(−sλl), we obtain

the heat kernel signature in [4].

3.2. Generalization of Wavelet Kernel Distance

So far, we have shown how two different vertices on the

same image/graph can be compared using a Wavelet opera-

tor T fα that has been derived from empirical measurements

of a function fα. But our main interest in facilitating statis-

tical analysis of longitudinal systematically varying data is

in comparing the same measurement location across the two

images. We now derive such a generalization.

Consider two individual graphs I and J , constructed us-

ing functions (or images) fα and f ′β , where the number of

vertices in each is N . We assume that the vertices are spa-

tially registered and that we are operating on a square inte-

grable space X . On these graphs, WKD between a vertex

pI from I and a vertex qJ on J is defined as

ds(p
I , qJ )2 = ||ψI

s (p, ·)− ψJ
s (q, ·)||

2

2 (8)

=

∫
X

(ψI
s (p, r)− ψJ

s (q, r))
2µ(r) (9)

using wavelet kernel functions ψI
s and ψJ

s .

Our basic recipe is to construct two operators T fα and

T f ′

β
, and obtain two sets of orthogonal bases χI and χJ

from each operators to compare the vertex-wise differences.

Note that while the expansion of (8) does not simplify as in

(6) since the eigenvectors χI and χJ are no longer orthog-

onal to each other, it nonetheless reduces to a meaningful

expression defining a mapping between the lower dimen-

sional spaces defined by the two operators as described by

the following result.

Proposition 3. Let λI , λJ and χI and χJ denote the eigen-
values and eigenvectors from graphs of I and J respec-

tively. Then, the WKD ds(p
I , qJ) can be written as,

ds(p
I , qJ )2 =

N−1∑
l1=0

g(sλIl1 )
2χI

l1
(p)2 +

N−1∑
l2=0

g(sλJl2 )
2χJ

l2
(q)2 (10)

− 2

N−1∑
l1,l2=0

g(sλIl1 )χ
I
l1
(p)g(sλJl2 )χ

J
l2
(q)〈χI

l1
, χJ

l2
〉

The proof of Proposition 3 is given in the extended ver-

sion. It is instructive to tease apart the various terms in (10)

to understand their behavior. The first two terms in (10)

form the WKD on a single graph whereas the last term com-

pensates for the discrepancy caused by the variations of the

inherited spaces once the first space has been mapped to the

other. By inspection, we see that this generalizes Proposi-

tion 1. When I and J are the same, we can verify,

Proposition 4. When I and J are equal, then (10) reduces

to (6).

Proof. Since I and J are the same graph, they share the
eigenvalues λl and eigenvectors χl, therefore

ds(p
I , qJ )2 =

N−1∑
l1=0

g(sλIl1 )
2χI

l1
(p)2 +

N−1∑
l2=0

g(sλJl2 )
2χJ

l2
(q)2

− 2

N−1∑
l1,l2=0

g(sλIl1 )χ
I
l1
(p)g(sλJl2 )χ

J
l2
(q)〈χI

l1
, χJ

l2
〉

=

N−1∑
l=0

g(sλl)
2(χl(p)

2 − χl(q)
2)

with 〈χI
l1
, χJ

l2
〉 = 0 when l1 6= l2.

4. Experimental Result

We demonstrate three sets of experimental results: two

of these correspond to a situation where the ground truth

variations are known whereas the third one is focused on

a real statistical analysis problem on brain imaging data

(real longitudinal PIB images). The first experiment evalu-

ates whether the proposed method can detect actual changes

across two different images where there are substantial sys-

tematic variations. In the second experiment, we carry out

a statistical group analysis on synthetically generated PIB

images, where we expect to detect true group differences

from a model of the first and the second groups, in the pres-

ence of systematic variations. Finally, we run the proposed

algorithm on a real longitudinal PIB-PET image dataset.

Here, the images are normalized in a certain sense, how-

ever, because of the characteristics of the imaging modality

we still expect systematic variations (depending on the ac-

curacy of the normalization) which decreases the statistical

power. Our goal here is to detect those regions in the brain

that show high correlation between (a) the PIB changes over

time and (b) known risk factors for Alzheimer’s disease.

Since the ground truth here is unavailable, we expect re-

gions identified by our method to be consistent with those

reported in the literature.



Figure 2: Results from NASA Earth Observatory images. We detect the changes between two images (in different scales) of Lake Powell (first row),

Sierra Nevada (second row) and Aral Sea (third row). First column: images taken in 2013, Second column: images taken in 2014 (inverted), Third column:

ground truth, Fourth column: changes identified using WKD.

4.1. Simulation on NASA Satellite Images

We obtained real satellite images from NASA Earth

Observatory (http://earthobservatory.nasa.

gov), which shows changes (due to various factors) over

time at various locations worldwide. For each scene, we

have two longitudinally acquired images which should

reveal how the region has changed over time. To simulate

‘systematic variations’, we invert one of the images by mul-

tiplying all intensities by −1, providing fα and f ′β . Notice

that direct comparison of these images yields nonsensical

results. One can use Mutual information to derive a joint

entropy of each pair of intensity values. Unfortunately,

this scheme does not directly yield a ∆t-image showing

change over time. The key here is to notice that instead

of comparing pixel intensities, we are detecting changes

of local structures at each pixel between the two images

in a lower dimensional Euclidean space, therefore we are

able to identify the high-level differences meaningfully.

Representative results are demonstrated in Fig. 2.

4.2. Group Analysis of Synthetic PIB images

We now present results of statistical analysis on a popu-

lation of synthetically generated 2-D Pittsburgh Compound

B (PIB) image data. The experiment design is as follows.

We assume we have two groups: diseased and healthy (con-

trols). We simulate brain images of 20 diseased and 20 con-

trol subjects, using a template 2-D PIB image with size of

79× 95. We assume that each subject was imaged longitu-

dinally providing a t0 (baseline) and t1 (follow-up) image.

At t0, the images Yt0 in both (diseased and control) groups

are modeled as a random field with mean µcontrol with added

Gaussian noise N(0, 0.1) as

Yt0 = µcontrol +N(0, 0.1) (11)

where µcontrol is given by the template PIB image slice
shown in Fig 3 (a). At t1, we consider two types of changes:
the first is an increase of PIB values by 20% in certain re-
gions of the brain in the diseased group characterized by
µdisease, and the other is systematic variation simulated as
an arbitrary affine transformation with scale s ∈ [1, 2] and
translation a ∈ [0, 1] applied to the image intensities.

Yt1 =

{

sµcontrol + a+N(0, 0.1) if normal

sµdisease + a+N(0, 0.1) if diseased

In this scenario, we would like to detect the changes ∆Y =
Yt1 − Yt0 from the two time points across the two groups

by comparing the distribution of ∆Y across groups. In the

standard procedure, performing a statistical hypothesis test

at each pixel (a total of 7505 tests) yields a p-value at each

pixel, that tells us whether the distribution of the ∆Y are the

same. Applying Bonferroni correction at 0.05 removes false

positives and identifies the regions with significant changes

between the two groups. This process works well when s =
0 and a = 0, however, systematic variations may reduce

or bias the effect sizes and diminish the statistical power.

Using our method, we expect to detect the group differences

even in the presence of systematic variation.

The resultant p-value maps from this simulation is dis-

played in Fig. 3 b), c) and d) at the same scale (− log10

http://earthobservatory.nasa.gov
http://earthobservatory.nasa.gov


(a) (b) (c) (d)

Figure 3: Result from a group analysis on diseased vs. normal groups using synthetic PIB images. a) a template PIB image used for the mean µ, b)

p−value map in − log10 scale from the group analysis using images without the systematic variation (serving as the ground truth), c) p−value map in

− log10 scale from the group analysis using images with systematic variation, d) p−value map in − log10 scale from the group analysis using WKD on

images with systematic variation. We can see that using WKD, we can detect group differences even when there is a systematic variations in the images.

scale), which shows three cases of this experiment: using

the standard hypothesis testing procedure on (i) the given

data without systematic variations (i.e., ground truth), (ii)

with systematic variations and (iii) WKD for the data with

systematic variations. As seen in Fig. 3 (b), there is a strong

signal showing group differences between the two groups

(diseased and controls), easily identified using standard hy-

pothesis testing. This serves as the ground truth. In contrast,

when there are systematic variations in the data, the tradi-

tional approach fails to detect the true differential signal as

shown in Fig. 3 c). We computed WKD at each pixel of the

images with systematic variations instead of computing ∆Y
directly, and then applied hypothesis testing on WKD. This

process successfully detects the region as shown in Fig. 3

d) showing excellent consistency with the actual changes

between t0 and t1. Therefore, in this sanity check experi-

ment, our method correctly picks up the true variations and

makes the downstream statistical analysis more sensitive

even when systematic variations exist.

4.3. Analysis of Longitudinal PIB Changes

In this section, we demonstrate results from a longitu-

dinal PIB-PET image analysis, where we use the ratio of

total τ protein and amyloid-β-142 (Aβ(1-42)) as a predic-

tor for the increase in voxel-wise PIB values at two different

time points. PIB values are used as a measure of brain amy-

loid deposition, a core pathological feature of Alzheimer’s

disease (AD), and it is known that such increase is closely

correlated with AD. The Aβ(1-42) interacts with the sig-

naling pathways to control the phosphorylation of τ protein

[21, 15] and their ratio is widely used as a sensitive feature

of AD pathology.

Dataset: The dataset of 84 participants used here in-

cludes subjects that are otherwise healthy but may have po-

tential risk factors for AD. The cohort is comprised of 26

males and 58 females, and the mean age is 67.4. The PIB

images are a 3-D volume spatially registered to the Mon-

treal Neurological Institute (MNI) space, then blank bound-

aries were cropped to obtain images of size 79 × 95 ×
68. The image intensities represent standard uptake value

Figure 4: Plot of sorted correlation (descending) with respect to

the number of voxels. The correlation using WKD (green) and

SUVR images (red) show that WKD shows stronger correlation

and larger number of vertices above the threshold (blue).

(SUV), which is the ratio of the tissue radioactivity con-

centration and injection divided by the body weight. These

values are scaled with the intensity from a reference region

(i.e., cerebellum), generating standard uptake value ratio

(SUVR) images. The PIB intensities, by nature, only in-

crease when affected by a disease factor. However, when

the SUVR images (normalized using a reference region) be-

tween two time points are compared, various brain regions

show decrease in the PIB values. This suggests that there

are systematic variations in the two images that have not

been account for by the normalization process.

Experimental setup: For the graph representation of

each volume image, we used a grid graph with six neighbors

for each voxel in 3-D space. The connection between voxels

were defined by exp(−||I(p) − I(q)||2/σ2) where I(p) is

the PIB intensity at voxel p and σ = 0.1. The graph Lapla-

cian for each subject had dimension of 510340 × 510340,

which was too big for standard solvers, we therefore used a

Jacobi-Davison conjugate gradient method [24] to compute

the first fifty eigenvalue/eigenvector pairs of the matrix. For

the wavelet kernel function g, we used the cubic spline func-



Figure 5: Montage of axial view of the correlation between the PIB changes and the ratio of total τ -protein and Aβ(1-42) on a template T1-

weighted brain image. The red-yellow intensities indicate correlation using WKD, and the blue-light blue intensities indicates correlation

using SUVR images in the range of [0.3 0.5].

tion provided in SGWT [11].

Result: A high positive correlation between the PIB

changes and the ratio between total τ protein and Aβ(1-

42) indicates that the increase of the PIB values are highly

related to the increase of the ratio. When compared to the

result using SUVR images, the correlation from WKD is

stronger, and we also find larger regions of the brain. To

quantitatively compare them, among the total of 510340

voxels, WKD identifies 21101 voxels (4.13%) with corre-

lations above 0.3 — a common threshold for moderate cor-

relation. On the other hand, using SUVR images, we find

only 14655 voxels (2.87%) above 0.3. These correlations

are sorted and shown in Fig. 4, indicating that WKD is more

sensitive than the differences found via SUVR images.

Fig. 5 shows the resultant correlation overlayed on a T1-

weighted template, where the correlations using WKD and

SUVR images are shown in red-yellow and blue-light blue

maps in the same range respectively. The result shows

that both our analysis and the one performed on SUVR

images agree on moderate correlations in lateral temporal

lobe regions, which are well-known to be affected by AD

[5, 29, 18, 19] — but our algorithm shows higher correla-

tion and larger regions. Interestingly, WKD framework also

picks up the bilateral cerebellum regions which is known to

show loss of volume with dementia [27]. Note that this re-

gion is very close to regions that are used as the ‘reference’

for the SUVR normalization — therefore will not be identi-

fied in the standard analysis even if affected by disease.

Remark. There are some potential limitations of the

method from the neuroscience point of view. For instance,

one issue is that the analysis may miss out on some regions

that are found by the standard analysis. In these situations, it

is difficult to assess whether this is an artifact of our method

or a consequence of the normalization process in the stan-

dard analysis. We believe that a conservative option is to use

our proposed algorithm as the first stage of analysis, which

can be followed up by more specific region of interest based

approaches common in neuroimaging.

5. Conclusion

This paper provides a solution to a problem where sta-

tistical analysis of imaging data in brain imaging studies

is problematic due to systematic variations caused due to

a variety of factors. Motivated from recent literature in

harmonic analysis, we propose to compare operators as a

means of detecting changes across images, when the abso-

lute measurements cannot be compared on their own. These

operators are derived from empirical measurements of im-

ages and provide invariance to the systematic variations.

Using our framework, we showed experiments on synthetic

as well as real datasets, demonstrating that the algorithm

works well in a regime where few alternatives are currently

available. In particular, in an interesting application to brain

imaging data from subjects at risk for Alzheimer’s disease,

we show that the sensitivity and power of statistical analysis

of PIB-PET images can be improved by using the proposed

method. The code will be made publicly available.
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