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Stochastic rearrangement of germline V-, D-, and J-genes to create

variable coding sequence for certain cell surface receptors is at the

origin of immune system diversity. This process, known as “VDJ re-

combination”, is implemented via a series of stochastic molecular

events involving gene choices and random nucleotide insertions

between, and deletions from, genes. We use large sequence reper-

toires of the variable CDR3 region of human CD4+ T-cell receptor

beta chains to infer the statistical properties of these basic bio-

chemical events. Because any given CDR3 sequence can be pro-

duced in multiple ways, the probability distribution of hidden re-

combination events cannot be inferred directly from the observed

sequences; we therefore develop a maximum likelihood inference

method to achieve this end. To separate the properties of the mo-

lecular rearrangement mechanism from the effects of selection, we

focus on nonproductive CDR3 sequences in T-cell DNA.We infer the

joint distribution of the various generative events that occur when

a new T-cell receptor gene is created. We find a rich picture of cor-

relation (and absence thereof), providing insight into themolecular

mechanisms involved. The generative event statistics are consis-

tent between individuals, suggesting a universal biochemical pro-

cess. Our probabilistic model predicts the generation probability of

any specific CDR3 sequence by the primitive recombination pro-

cess, allowing us to quantify the potential diversity of the T-cell

repertoire and to understand why some sequences are shared

between individuals. We argue that the use of formal statistical

inference methods, of the kind presented in this paper, will be es-

sential for quantitative understanding of the generation and evo-

lution of diversity in the adaptive immune system.

convergent recombination ∣ expectation maximization ∣

palindromic nucleotides ∣ insertion/deletion profiles

Receptor proteins on the surfaces of B and T cells in the
immune system interact with pathogens, recognize them

and initiate an immune response. The diversity of these receptors
is the outcome of a remarkable process in which germline DNA is
edited to produce a repertoire of (Tor B) cells with varied antigen
receptor genes (1). The process is called “VDJ recombination”
because the germline contains multiple versions of so-called V-,
D-, and J-genes, particular instances of which are quasi-randomly
selected, stochastically edited, and joined together to produce a
new surface receptor gene each time a new immune system cell is
generated.

The statistical distribution of these biochemical events (and
the resulting receptor coding sequences) in a population of newly
created receptors is an important quantity: It contains informa-
tion about the in vivo functioning of the biochemical editing me-
chanism and provides the baseline for a quantitative assessment
of the downstream workings of selection in the adaptive immune
system. Here, we address the problem of inferring this distribu-
tion from the large T-cell sequence repertoires that are becoming
available via high-throughput sequencing technology (2–5). In
particular, we focus purely on a subset of receptor sequences that
are nonproductive, due to a reading frame shift or an accidental

stop codon to isolate the statistics of the molecular mechanism
from the effects of selection on the functional repertoires.

In the beta chain of human T-cell receptors (the focus of this
work), the germline has 48 different V-genes, 2 D-genes, and 13
J-genes. VDJ recombination proceeds by first joining a D-gene
with a J-gene and then a V-gene with the DJ junction. First, the
recombination activating gene (RAG) protein complex brings
two randomly chosen D- and J-genes together, cuts out the inter-
vening chromosomal DNA, and forms a hairpin loop at the end of
each gene (6, 7). In further steps (8, 9) the hairpin loops are
opened, creating overhangs at the end of both genes that may
eventually survive as P-nucleotides (short inverted repeats of
gene terminal sequence) (10). This is followed by nucleotide de-
letions and insertions at the junctions and ends with ligation. The
process is then repeated between a random V-gene and the DJ
junction. The end product is the so-called CDR3 region of the
receptor gene: a short, highly variable region that plays an essen-
tial role in determining the antigen specificity of the cell.

Each recombined sequence can thus be thought of as the out-
come of a generative event described by several random variables
(Fig. 1): V-, D-, and J-gene choices, deletions of variable numbers
of nucleotides from the selected genes, insertions of random nu-
cleotides between them, and the possible creation of P-nucleo-
tides (short palindromic nucleotides as in Fig. 1A at the 3 0

end of the D-gene). From the set of observed CDR3 sequences,
we wish to infer the underlying probability distribution of these
generative events.

To date, this inference has been done via a deterministic align-
ment procedure that assigns a unique event to each sequence
(2–4). However, because individual CDR3 sequences can arise
in multiple ways (see Fig. 1), this assignment must be done prob-
abilistically. Deterministic alignment introduces spurious biases
and correlations in the statistics of generative events (Fig. 2). Thus,
a statistical inference procedure is needed to accurately infer the
underlying event probability distribution from the data. In this
paper we present such amethod, based on likelihoodmaximization
via an iterative expectation-maximization algorithm (11) and apply
it to recent data on human T-cell receptor sequences.

Analysis
We work with sequence data on CD4+ T-cell beta chain CDR3
regions obtained from nine human subjects by methods described
in refs. 4 and 5 (see Acknowledgments). In these experiments,
Tcells are collected from a blood sample and sorted into “naïve”
(CD45RO−) and “memory” (CD45RO+) compartments, DNA
is extracted, and sequence reads long enough to capture a 5
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piece of the J-gene, a 3 0 piece of the V-gene, and the variable
sequence lying in between are obtained.

Each sequence is read multiple times, and a clustering algo-
rithm is used to correct for sequencing error (4, 5). This process
produces a dataset consisting of an average of 232,000 (140,000)
unique CDR3 sequences from the naïve (memory) compartments
for each individual subject. Each unique sequence comes with a
multiplicity reflecting the prevalence of that particular cell type in
the blood sample.

Roughly 14% of the unique CDR3 sequences are “nonproduc-
tive,” i.e., either their J-genes have been shifted out of the correct
reading frame or the CDR3 sequences have a premature stop co-
don. They arise from a recombination event on one of a cell’s two
chromosomes that failed to make a functional receptor, followed
by a successful recombination on the other chromosome. Such
sequences should not be subject to functional selection (5), and
their statistics should reflect only the VDJ recombination process
(see SI Appendix, section 10 for evidence that the non-productive
constraint introduces no bias). Because this is our primary con-
cern, we focus our analysis on the nonproductive CDR3 se-
quences, of which there are an average of 35,000 (22,000) in
the naïve (memory) compartments for each individual subject.
We analyze the naïve and memory data sets separately to be able
to verify the absence of selection effects. Our data sets are avail-
able online (see SI Appendix, sections 1 and 2 for details).

Structure of Recombination Event Distributions. Each CDR3 gener-
ating recombination event can be fully characterized by a set E
of discrete variables comprising: the identities of the V-, D- and
J-genes selected for recombination* (V,D,J); the numbers of
bases deleted from the 3′ end of the V-gene (delV ), the 5′ end
of the J-gene (delJ), and both ends of the D-gene (del5 0D and
del3 0D for the 5′ and 3′ ends, respectively); the number of
palindromic nucleotides at each of the gene ends (palV; palJ;
pal5 0D; pal3 0D); the specific sequence ðx1;…; xinsVDÞ of length
insVD inserted at the VD junction; and the specific sequence,
ðy1;…; yinsDJÞ of length insDJ inserted at the DJ junction (see
Fig. 1). We choose a convention in which both sequences are read
in the 5′ to 3′ direction, but the VD (DJ) inserted sequence is
read from the sense (antisense) strand.

We seek a joint distribution over all of these variables contain-
ing the minimal set of dependences between the variables that
is required to self-consistently capture the observed correlations
in the data. We find that the following factorized form for the

probability of a recombination eventE (defined by specific values
for all the event variables) successfully captures all the significant
correlations between sequence features that are present in the
data (see Fig. 2):

PrecombðEÞ ¼ PðV ÞPðD; JÞ

× PðdelV jV ÞPðdelJjJÞPðdel5 0D; del3 0DjDÞ

× PðinsVDÞ
YinsVD

i¼1

p
ð2Þ
VDðxijxi−1ÞPðinsDJÞ

YinsDJ

i¼1

p
ð2Þ
DJ ðyijyi−1Þ: [1]

The various factors are normalized joint or conditional distribu-
tions on their respective arguments. PðV Þ and PðD; JÞ account
for the fact that the various genes have different usage probabil-
ities (and that D- and J-gene usage is correlated). The factors
PðdelV jV Þ, etc., are distributions on the number of nucleotide
deletions, conditioned on the gene being deleted (deletion
profiles turn out to be very gene-dependent). PðinsVDÞ and
PðinsDJÞ give the probabilities of different numbers of nucleo-
tide insertions at each junction. The parameters p

ð2Þ
VD and p

ð2Þ
DJ

account for possible nucleotide bias in the insertions: They give
the conditional probabilities of inserting a specific nucleotide
given the identity of the immediately 5′ nucleotide, with x0 refer-
ring to the last nucleotide at the 3′ end of the truncated V-gene on
the sense strand for a VD insertion, or at the end of the truncated
J-gene on the antisense strand for a DJ insertion.

P-nucleotides do not appear explicitly in Eq. 1: we treat them
as “negative” deletions (i.e., a palindrome of half-length 2, as in
Fig. 1A, is counted as a deletion of value −2). This is possible
because we find that when the number of nucleotide deletions is
greater than zero, occurrences of palindromic nucleotides at the
end of the gene segment are completely explained by chance
insertions of the corresponding nucleotides (see SI Appendix,
section 11 and Fig. S10). Thus, true P-nucleotides, not attributa-
ble to chance insertions, only occur in association with zero nu-
cleotide deletions and it is consistent to label them as negative
deletions.

The factors in our equation for PrecombðEÞ [Eq. 1] are probabil-
ity distributions on event variables that take on a finite number of
values. Specifying this joint distribution requires a total of 2,865
probabilities (more than 90% of which are needed for the dele-
tion length probabilities of the individual V-, D- and J-genes).
Despite the large number of probabilities to be inferred, we are
able to determine them accurately and without overfitting. We
emphasize that our goal is to obtain an accurate description of
recombination event statistics, and not (yet) to explain those sta-
tistics mechanistically.

A

B

Fig. 1. A 60 bp CDR3 read (gray box) can be aligned to different genes [nomenclature follows IMGT conventions (24)] with different deletions (white), in-
sertions (yellow), and P-nucleotides (red). (A) Alignment to specific V-, D-, and J-genes with insVD ¼ 13, insDJ ¼ 6, delV ¼ 5, delJ ¼ 6, del5 0D ¼ 6, del3 0D ¼ −2

(in other words, pal3 0D ¼ 2). (B) Alignment of the same read to different V- and D-genes, and with insVD ¼ 15, insDJ ¼ 9, delV ¼ 7, del5 0D ¼ 9, del3 0D ¼ 3 (no
P-nucleotides). Note that the alignment to the V-gene is not maximal in this case. A few heavily penalized mismatches are allowed (in the V-gene in this
example) in order to accommodate a small sequencing error rate. The location of the sequencing primer is indicated: It is chosen to uniquely identify
the start of the CDR3 read within each J-gene.

*Here we distinguish only the genes, not their various alleles. The gene list includes
germline pseudogenes: They cannot produce functioning receptor proteins but, because
we work with non-coding VDJ rearrangements, pseudogene sequences can appear in
the data.
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Generation Probability and Likelihood of Observed Sequences. The
probability PgenðσÞ of generating a specific CDR3 sequence σ

is the sum of the probabilities of all recombination events Eσ that
produce σ:

PgenðσÞ ¼ ∑
E∈Eσ

PrecombðEÞ: [2]

The likelihood LðσÞ of observing a specific CDR3 sequence read
σ, however, must take into account residual sequencing error as
well as allelic variation and is given by a sum over a larger set of
recombination events eEσ that generate sequences close to σ:

LðσÞ ¼ ∑
E∈eEσ

PðE; σÞ where [3]

PðE; σÞ ¼ PrecombðEÞ ×
1

ð1þ RÞL

× ∑
alleles a

PðV ajVEÞPðJajJEÞPðDajDEÞ

�
R

3

�
nerrðσ

a
E
;σÞ

:

[4]

In the latter equation, nerr is the number of mismatches between
the observed read σ and the CDR3 sequence σa

E that would be
produced by the recombination event E with allele choices a. L is
the length of the sequence read. The mismatch rate R is deter-
mined in the inference with the rest of the distribution para-
meters and reflects both sequencing error as well as unknown
allelic variation. In practice, we only consider recombination
events eEσ that lead to CDR3 sequences with at most a few mis-
matches from σ. The sum over alleles† arises because we do not
know a priori which alleles are present and reads may not go deep
enough into the gene sequence to clearly distinguish alleles from
each other (12). The probabilities of the different alleles, given a
gene, are also inferred and are expected to differ from individual
to individual.

The likelihood of the whole datasetD is then the product over
the individual sequence likelihoods: LðDÞ ¼

Q
σ∈DLðσÞ. This

expression depends implicitly on the parameters defining the gen-
erative probability distribution (along with the allele distributions
and the sequencing error parameter), and we infer their correct
values by maximizing LðDÞ using an expectation maximization
algorithm (11, 13) (see SI Appendix for algorithmic details). In
order to identify universal features of the diversity generation ma-
chinery, we perform this inference separately for each individual
subject. Our analysis software is available online (see SI Appendix
for details).

Results
In what follows, we present results of our analysis of naïve, non-
productive, CDR3 sequence repertoires of nine individuals (see
SI Appendix for a parallel analysis of memory sequence reper-
toires). Selected results data files are available online (see SI
Appendix for details).

Correlations Between Event Variables. It is important to verify that
correlations not present in the assumed structure of the probabil-
ity distribution [Eq. 1] are in fact not present in the data. To per-
form this self-consistency check, we use the inferred generative
distribution to compute the probability-weighted counts distribu-
tion of recombination event variables in the data and then use this
distribution to calculate the mutual information of all pairs of
event variables. The matrix of mutual information values is shown
in the upper-triangular part of Fig. 2A, where the entries outlined
in red are dependences accounted for by individual factors in our
assumed form of PrecombðEÞ [Eq. 1], entries outlined in green are
indirect dependences that can be induced by these factors, and
the rest would vanish if the data were perfectly described by
the assumed structure of PrecombðEÞ. There are a few detectable
correlations that are not consistent with the assumed structure:
ðinsVD; delV Þ; ðinsDJ; delJÞ; and ðV;DÞ. They are, however,
all so weak (mutual information <0.02 bits) that we do not model
them explicitly (indeed, they might arise from subtle biases in our
inference procedure).

For comparison, in the lower-triangular part of Fig. 2A we
show the mutual information values of all pairs of variables, but
now calculated from a deterministic assignment of events to
sequences based on maximal alignments. The resulting distribu-
tions exhibit spurious correlations that are absent from the

A B

Fig. 2. (A) Data-derived correlations between sequence features: Each entry is the mutual information IðX; YÞ of a feature pair over the naïve nonproductive
repertoire. The outlined elements are correlations expected from the form of PrecombðEÞ: Red identifies a direct effect of a factor in Eq. 1 (e.g., D ↔ J) and green
indirect effects (e.g., D↔ J ↔ delJ). The top-left half of the matrix shows results from the MLE, while the bottom-right half corresponds to a deterministic
maximum-alignment based identification of recombination events. (B) Probability distribution of the number of VD insertions conditioned on the number of
DJ insertions for MLE (Upper) and deterministic (Lower) analysis. Each curve corresponds to a different value of insDJ, ranging from 0 (blue) to 10. The curves
collapse for MLE indicating independence.

†We use the known alleles for each gene listed in the IMGT database (24) augmented by a
few additional variants observed in the data (see SI Appendix for details).
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corrected, maximum likelihood estimate (MLE) of the distribu-
tions. For instance, the number of insertions at the two junctions
are found to be independent in our analysis while the uncorrected
estimate shows a dependence (Fig. 2 B and C).

Gene Usage Distributions. The inferred frequencies of V- and
J-genes vary significantly from gene to gene, a phenomenon for
which no mechanistic explanation has yet been given. In particu-
lar, linear location on the chromosome does not explain the
pattern of either V- or J-gene usage (see SI Appendix, Fig. S4 A

andC). The usage frequencies are consistent between individuals,
though of all the inferred parameters in Precomb, these usage pat-
terns show the most relative variation between individuals.

The pattern of D-gene use conditioned on J-gene choice (SI
Appendix, Fig. S4D) reveals the known mechanistic constraint
prohibiting utilization of D-genes that lie 3 0 of the chosen J-gene
(1, 5). The inferred distribution assigns a total probability of less
than 0.1% for joining events using TRBD2 and any TRBJ1 gene.
We note that such a determination is impossible without prob-
abilistic analysis due to the uncertainty in identifying genes in
specific sequences. The dependence between V-gene choice
and D- or J-gene choice is very weak to nonexistent (with mutual
information less than 0.01 bits). Thus, we believe that previously
reported correlations in the use of these genes (14) reflect the
effects of selection rather than VDJ recombination. Finally, we
note the presence of pseudo V-genes that occur in almost 10% of
the nonproductive CDR3s (see SI Appendix for more details).

Nucleotide Insertions. In Fig. 3 we show the factors related to in-
sertions in the inferred distribution PrecombðEÞ. The VD and DJ
insertions are uncorrelated (Fig. 2) and their length distributions
are nearly identical, with exponential tails (Fig. 3A). The nucleo-
tide frequencies in the inserted segments are not uniform and
are well explained by a dinucleotide Markov model where the
probability of inserting A, C, G, or T depends on the immediately
5′ nucleotide (see Fig. 3B). The VD inserted segment, on the
sense strand, and the DJ inserted segment, on the antisense
strand, show a preference for Cs. The frequencies of trinucleo-
tides are almost perfectly accounted for by the dinucleotide pre-
ferences (Fig. 3C), suggesting that the sequence statistics are fully
captured by dinucleotide statistics. Additionally, the VD insertion
dinucleotide bias, taken on the sense strand in the 5′-3′ direction,
is virtually identical to the DJ insertion dinucleotide bias, taken
on the antisense strand in the 5′-3′ direction. This suggests that
the mechanism of junctional nucleotide insertions is strand spe-
cific and occurs on opposite strands for the VD and DJ junctions.
The molecular mechanistic basis of these features is not evident.

Nucleotide Deletions. Because there is a strong correlation be-
tween number of deletions and gene identity (see the entries
for IðdelV; V Þ and IðdelJ; JÞ in Fig. 2), we allow for gene-depen-
dent deletion profiles in PrecombðEÞ [Eq. 1]. The results for a few
genes are shown in Fig. 4A (see SI Appendix, Figs. S12–S16 for all
the profiles). P-nucleotides are counted as negative deletions as
they occur only in association with zero nucleotide deletions (see
SI Appendix, Fig. S10). The profiles have substantial variation
from gene to gene, suggestive of a nuclease activity that depends
on sequence context, but they are highly consistent between
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individuals. We have modeled this context dependence using a
position weight matrix summing independent contributions from
the bases in a six nucleotide window (four 3 0 and two 5 0) around
the cutting point to the log probability of deletion (see Fig. 4B
and SI Appendix, Fig. S11 for details). We find that only bases
3 0 of the deletion site have a strong effect on the probability, with
T and A nucleotides having the greatest contribution, consistent
with previous observations (15). This simple model, which ignores
both the P-nucleotides as well as the effects of distance from the
end of the gene, does reasonably well in explaining the variation
in deletion probabilities (r2 ¼ 0.7). This modeling is simply to
suggest that the complexity of the observed deletion distributions
may ultimately be explained by a parsimonious mechanistic
model that reflects the underlying biochemistry of the deletion
process.

Consistency of Distributions Across Individuals. The insertion pro-
files, and the many different gene-dependent deletion profiles,
are very consistent between individuals (Figs. 3 and 4 and SI
Appendix), suggesting the action of a universal molecular me-
chanism of rearrangement and providing convincing evidence
against overfitting. We note that finite sample size statistics
account for less than 50% of the observed interindividual var-
iance (indicated by the error bars) in some of our plots, possibly
reflecting biological variation.

Potential Diversity of Repertoire. Our inferred distribution of
recombination events [Eq. 1] implies a probability distribution
PgenðσÞ on the space of all CDR3 sequences [Eq. 4] whose
entropy Sseq ¼ −∑σPgenðσÞ logPgenðσÞ is a measure of the poten-
tial sequence diversity of VDJ recombination. Because multiple
recombination events can lead to the same sequence, we cannot
calculate Sseq directly. We do, however, have an explicit descrip-
tion of Precomb, the entropy of which we can calculate: Srecomb ¼
52 bits; in addition, we can show that sequence entropy and re-
combination event entropy are related by

Sseq ¼ Srecomb − hSðEjσÞiσ ≃ 47 bits; [5]

where the correction term, hSðEjσÞiσ ≃ 5 bits, is the entropy of
recombination events that give the same sequence (which we
know for sequences in the repertoire as a byproduct of our infer-
ence), averaged over sequences. This means that CDR3 se-
quences can be generated in approximately 32 different ways,
on average, by VDJ recombination; this is the fundamental rea-
son why we must resort to probabilistic inference methods. The
total sequence diversity of 47 bits corresponds to a potential
CDR3 repertoire size of approximately 1014 sequences‡. This
is to be compared with the estimated 4 × 106 unique CDR3 se-
quences in an individual (4, 16) , the approximately 1011 Tcells in
the blood of an individual (17) and the approximately 10

13 po-
tential peptide-MHC complexes (18). Although convergent re-
combination means that the sequence entropy cannot be
neatly partitioned into contributions from gene choice, deletions,
and insertions, the entropy of recombination events Srecomb can
be so partitioned (Fig. 5A). We note that the bulk (60%) of the
recombination entropy comes from the nucleotide insertions, and
little from gene choice (5 bits from V and 4 bits from D and J)
consistent with previous estimates (19). For comparison, uniform
usage of the genes would result in an entropy of 5.9 bits for Vand
4.7 bits for D- and J-gene choices.

Overlap of Repertoires Between Individuals. Some sequences appear
in the repertoires of more than one individual, and we can ask
whether their number and specific identities are consistent with

chance on the basis of our generative distribution PgenðσÞ. Some
shared sequences appear simultaneously in too many repertoires
to be valid and are probably due to intersample contamination
(see SI Appendix for details). Eliminating clearly identifiable
questionable cases, we are left with 21 sequences that occur in
the nonproductive repertoires of two individuals and none that
occur in more than two.

The total number of shared sequences between the repertoire
samples of any pair of individuals with sample sizes N1 and N2 is
expected to be Poisson distributed with mean n̄ ¼ N1N2hPgeniσ
where hPgeniσ ¼ ∑σP

2
genðσÞ. Note that although the specific

shared sequences are likely to have high probabilities of genera-
tion, the number of shared sequences, without regard to their
identities, is determined by hPgeniσ, which is the average value
of Pgen over the potential repertoire. We estimate this quantity
to be hPgeniσ ≃ 3.4� 0.1 × 10−10 by taking the mean of Pgen over
the observed repertoire.

In Fig. 5B, we compare the expected number of pairs of indi-
viduals with a certain number of shared sequences (calculated as
a sum of Poisson distributions over the pairs) to the observed
number of such pairs, showing excellent agreement. The specific
shared sequences have particularly high generation probabilities
according to our distribution, with a median value of approxi-
mately 10−8 compared to the repertoire median of approximately
10−14 (Fig. 5C). Because the generative distribution is trained on
individual repertoires, and is highly consistent between indivi-
duals, its success in accounting for recurring sequences between
individuals is a nontrivial test of its validity. We find similar results
for the shared sequences among the memory repertoires (see SI
Appendix, Fig. S6).

Convergent recombination has been proposed as an explana-
tion for the occurrence of “public” T-cell receptors (20–22). How-
ever, the recombination entropy SðEjσÞ is only weakly correlated
with the generation probability PgenðσÞ (correlation coefficient
0.13, see SI Appendix, Fig. S7), and we find that the shared non-
productive sequences in our data do not have higher recombina-
tion entropies than other sequences.

Results from Other Repertoires. Inference of PrecombðEÞ from the
nonproductive memory repertoires of the same nine individuals
leads to results identical with those reported above for the naïve
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Fig. 5. (A) Entropy decomposition. Top bars: Sequence entropy is smaller
than recombination entropy by 5 bits because of convergent recombination;
Bottom bars: Recombination event entropy decomposed into contributions
from gene choice, insertions, and deletions. (B) Statistics of the 21 CDR3 se-
quences shared between pairs of individuals: actual (red) vs. expected on the
basis of the inferred PgenðσÞ (blue). (C) Histogram of PgenðσÞ for all sequences
(blue) and for the 21 shared sequences (red, kernel density estimate); hPgeni

for the full repertoire is indicated by the vertical green line.

‡Recall that this estimate is for the β-chain only. The α-chain will yet add more diversity to
this estimate.
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nonproductive repertoires (see SI Appendix, Figs. S5 and S6). The
consistency of the inferred generative distribution between these
repertoires as well as between the nine individuals is strong evi-
dence that the nonproductive CDR3 sequence statistics, memory
or naïve, reflect only the basic recombination process and not
selection. In SI Appendix, Fig. S8 we show the distribution of gen-
eration probabilities of CDR3 sequences from the productive re-
pertoires. Although it is tempting to apply our approach to the
productive sequence repertoires, it would be inconsistent to do
so: These sequences have passed selection filters, thymic and
adaptive, and we have no analog of Eq. 1 to parametrize the prob-
ability of such success. This is an important subject for future in-
vestigation.

Discussion
We have presented a method for inferring the statistics of VDJ
recombination events from the large T-cell receptor sequence re-
pertoires that are made available by high-throughput sequencing.
We emphasize the crucial importance of using a probabilistic
approach: The typical CDR3 sequence can be produced by about
32 different recombination events, and using a deterministic as-
signment of events to each sequence results in systematic biases
and spurious correlations. Our general approach allows us to
cope with not-yet-indexed alleles (12) and, most importantly, with
sequencing errors, an essential task given the rapid growth of
high-throughput but error-prone sequencing technologies.

Because we focus on nonproductive sequences, our results
describe the probability distribution over CDR3 sequences pro-
duced by the recombination machinery before any functional
selection has occurred. Its remarkable reproducibility across in-
dividuals and repertoires (naïve and memory) provides compel-
ling evidence for the consistency and accuracy of our method.
The obtained distribution is a central feature of the adaptive im-
mune system and serves as a baseline (or, in evolutionary terms, a
neutral model) for analyzing the subsequent processes of the im-
mune system. By calculating the entropy of the generative distri-
bution, we can estimate the potential diversity of the CDR3
sequences (approximately 1014 sequences) and the contributions
of insertions, deletions and gene choices to this entropy. We find
that insertions contribute most (60%) of the diversity.

We are able to evaluate the probability of generating any
specific CDR3 sequence (including as yet unobserved ones). This
probability could be used to estimate the strength of selection

on a sequence or group of sequences, or the likelihood that a
sequence is shared between individuals or repertoires. Thus, it
could help better characterize the significance of shared or public
T-cell receptor sequences (22). We have verified that the se-
quences that are shared between the nonproductive repertoires
of different individuals in our data are consistent with the predic-
tions of the inferred probability distribution (Fig. 5 B and C), a
very stringent test of its accuracy.

The recombination event distributions also provide insight
into the molecular mechanism of recombination and should serve
as a starting point for detailed mechanistic models of recombina-
tion. We find that the recombination processes at the two junc-
tions are essentially independent of each other and that insertion
events are independent of gene choice and deletions. The in-
ferred distribution confirms that a D-gene can only recombine
with downstream J-genes. We derive a precise model for the com-
position of inserted nucleotides, based solely on frequencies of
dinucleotides. We also show that a relatively crude model of
sequence-specific nuclease activity can account for the deletion
probabilities reasonably well. Our observed distribution, which
is specified by a large number of probabilities, should be repro-
duced by parsimonious, but more realistic, mechanistic models.

We have focused on characterizing the molecular generation
of nucleotide sequences that code for T-cell receptors. The func-
tional receptor repertoire is first shaped by this molecular process
and then by thymic selection and adaptation to pathogens.
Quantitative models of the latter processes are needed for under-
standing the adaptive immune system. Whereas the underlying
biochemistry conveniently served to parametrize our sequence
distributions, finding an analogous functionally relevant parame-
trization of amino-acid sequences to model the effects of selec-
tion is much more challenging (23). Statistical analysis of the
productive receptor repertoires, with our precise characterization
of the unselected repertoire in hand, will hopefully aid in this
effort.
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Statistical inference of the mechanisms of T-cell re-
ceptor diversity generation from sequence repertoires:
Supporting Information

Anand Murugan, Thierry Mora, Aleksandra M. Walczak and Curtis G. Callan, Jr.

1 Sequences of V, D, and J-genes and their alleles

Accurate knowledge of the sequences of germ line V-, D-, and J-genes and their allelic variants
is essential to minimize errors and bias in our analysis. There are 2 D-genes, 13 J-genes, and 48
V-genes, not counting alleles. There are in addition 19 ‘pseudo’ V-genes on the same germline
chromosome: they participate in the recombination process and, though they cannot lead to
a functioning receptor, they can appear in the non-productive sequence data sets, provided
that a sequencing primer (or an approximate one) is present, which in our case is true for 11
pseudo V-genes.

We curated a list of known and discovered allelic variants of the V-genes by combining
those found in the public IMGT database [1] with variants that we discovered with high
confidence during our analysis. Not all the sequence reads listed in IMGT are true variants
since many of them are from rearranged DNA with variation at the junctional end. Such
‘variants’ were removed from our list, unless the variation was deeper in the sequence, far
from the edited end. In addition, we have found three instances of allelic variants in our
data that are not listed in IMGT. The discovered variants of genes TRBV7-7 and TRBV10-1
can actually be found by BLAST in the NCBI database of human sequences; the variant of
gene TRBV7-2 is not found by BLAST and appears to be completely novel. Undiscovered
variants have rather small impact on overall recombination event statistics, but they can cause
systematic errors in the inference of gene-specific deletion profiles.

Complete lists of the genes and alleles used in our analysis are available online1. For
completeness, we also list the primers used by Robins et. al. [2, 3] in acquiring the data we
analyze.

2 CDR3 sequence data files and formats

The CDR3 sequences used in our analysis come from näıve or memory CD4+ T-cells of 9
human individuals, and are further segregated into ‘in-frame’ and ‘non-productive’ sequences.
The sequences are 60bp in length for 6 of the subjects, and 101bp in length for the remaining
three. The reads of different length differ only in how far the sequencing window goes into
the V gene: both types are anchored on the same conserved phenylalanine in the J-gene and
have the same read depth into the J-gene.

Processed sequence data was made available to us by H. Robins. As described in [2, 3] each
sequence is read multiple times and the multiple reads are used to estimate the multiplicity
of each specific TCR receptor in its respective compartment. In addition, multiple reads are
used to correct for sequencing errors by clustering reads that differ at a small number of
positions [2]. In our data files, the effective sequence multiplicity is recorded along with the

1physics.princeton.edu/~ccallan/TCRPaper/genes
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error-corrected sequence (although we do not use multiplicity in our current analysis). The
data files used in our analysis are available online2. The file names in the repository clearly
indicate the category to which the included data belongs.

3 Overall description of the analysis pipeline and software
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Fig. S1: Flow chart of the analysis pipeline.

There are two major steps in the analysis pipeline that leads from a list of CDR3 sequences
to a final estimate of the probability distribution Precomb(E) of generative recombination
events. The first is an ‘alignment’ step in which, for each read σ, we create a comprehensive list
of recombination ‘scenarios’ {Eσ} that could plausibly have produced that read. A ‘scenario’
is a particular set of values for the event variables (gene identities, VD insertions, etc.) that
generates a recombined sequence nearly identical to the read in question (with possibly a small
number of mismatches). The second major step is an iterative procedure (summarized in the
flow chart of Fig. S1) for finding the generative distribution that maximizes the likelihood of
the observed data given the functional form of the generative distribution (as expressed in
main text Eqn. 2).

The algorithms we have developed to execute these two steps are described in greater
detail in the following two subsections. Software to implement these procedures was written
in Matlab using the Parallel Computing toolbox and run on a Linux cluster. Compiling key
routines into C++ using Matlab Coder greatly improved processing speed, allowing model
inference on an individual data set to be completed in about 20 hours running on 8 processors.
Our Matlab code, along with summary instructions on how to run it, is available online3

2physics.princeton.edu/~ccallan/TCRPaper/data
3physics.princeton.edu/~ccallan/TCRPaper/scripts
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3.1 Initial parsing of sequence reads by alignment

The first step in our inference procedure is to align each CDR3 read with specific alleles
of V, D, and J genes by sequence matching. The goal is to generate a set of plausible
recombination events that could produce the read to serve as a starting point for subsequent
probabilistic refinement. This preliminary alignment procedure produces, for each read, a
finite number of V, D, and J alleles, the maximal length alignments of these alleles to the
read, the corresponding minimum nucleotide deletions from the genomic sequences, with
possible P-nucleotides identified, and with the unmatched parts of the read identified as VD
or DJ insertions. Mismatch information is also stored.

Certain thresholds are imposed on the alignments – gene alignment lengths must be suf-
ficiently long; gene deletions must not be too large; errors are allowed in the alignments (no
gaps), but the number of errors must be small. The alignment score (using an appropriate
mismatch penalty) is used to rank order alignments, and a threshold on the score relative to
the score of the best alignment is also imposed. Specific values for these various parameters
are chosen in the light of computational experience to achieve fast and accurate convergence
of the overall model-fitting algorithm.

The procedure for finding J matches is simplest. The CDR3 reads all begin at the 3 ′ end
(sense strand) from a primer in a known position in each J gene. Thus for each candidate J
gene, we simply look for exect matches of the end of the sequence read with the portion of
the gene just 5 ′ of the primer. Proceeding in this way, and imposing the various thresholds
mentioned, we find an average of 2-3 J alignments per read.

For the V-gene, the position of alignment to the read is not fixed. So for a given V-gene,
we align the 5 ′ end of the read to the m-th base from the 3 ′ end of the V-gene, and note the
best-scoring match at this positioning (this time allowing some mismatches, and penalizing
them in the score). We step through the values of m and record the best-scoring match over all
positionings. Repeating this process for all the V-genes, and imposing the earlier mentioned
thresholds, we are left with a limited set of possible V-gene identifications, together with
their specific alignments to the read. Proceeding in this way, we find an average of ∼ 15 V
alignments per read.

After identifying the plausible alignments to V- and J- genes, we turn to the problem
of identifying D-gene matches. This is a more difficult problem because the D-genes are
short, and deletions (occurring on both ends) often leave residual sequences which are hard
to identify as a D-gene fragment. We therefore put very loose constraints on the D-gene
alignments, relying on the probabilistic refinement to narrow them down. Specifically, we
consider the read sequence segment lying between the end of the highest-scoring V-gene and
the end of the highest-scoring J-gene, and include 10 nucleotides of flanking sequence on either
side, to allow for ambiguous origin of these bases. We identify as a possible D-gene match
every maximal non-overlapping alignment to this segment of the three D-gene alleles. These
D-gene matches are scored by their length and the top 200 are selected as possible D-gene
alignments.

Alignment files are available online4: the files are in Matlab format and record the outcome
of the above alignment strategy for a subset of our data. Inspection of the alignment data for
individual sequences should provide instructive illustrations of the above-described procedure.
The various thresholds and parameters used in the procedure are found in the files as well.

4physics.princeton.edu/~ccallan/TCRPaper/results/alignments
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The full set of alignment files used in our analysis can be generated using routines provided
in our online software repository.

We note that one could generate a unique assignment of sequence features to a given read
by selecting from the alignment ensembles just described the V, D, and J assignments with
the highest score (i.e. having the longest effective alignment with the read). We will call the
occurrence distribution of gene assignments, insertions, and deletions produced in this way as
the ‘deterministic ’ estimate of the sequence feature probability distribution. It corresponds to
standard practice in the literature for inferring feature statistics from sequence data, and will
be used as a benchmark for comparison and contrast with our more accurate probabilistically
inferred distribution.

3.2 The expectation maximization algorithm

As described in the main text, we wish to find model parameters that maximize the likelihood
of the data. We use an iterative Expectation-Maximization algorithm to do this. Given a
current guess for the model parameters that describe Precomb(E), we update it by calculating
the probability-weighted counts of events over the data set and then using those counts to
re-estimate the marginal distributions (P (V ), P (D, J), P (insV D), and so on) that appear as
factors in the general functional form of Precomb(E) (main text Eqn. 2).

As indicated in main text Eqns. 2-4, the joint likelihood of a recombination event E and
sequence σ is the product of two factors: the probability of the generative event (given by
Precomb(E)), and the sum over allele choices a of the probability of those allele choices multi-
plied by the probability of the number of mismatches between σ and the sequence σa

E implied
by E and a. In other words, in addition to the recombination event probability Precomb(E),
likelihood involves the sequencing error rate R and the allele probabilities P (Va|V ), etc. We
emphasize that we carry out this exercise independently for the data sets derived from differ-
ent individuals. While we expect (and find) that Precomb(E) is consistent between individuals,
we of course expect different individuals to have different allele probabilities.

In the expectation maximization procedure, we start from a prior in which each factor in
main text Eqn. 2 for Precomb(E) is uniform in its variables, the sequencing error rate R is set
to a small value (typically 10−4), and the allele probabilities are uniform over all the alleles of
each gene. Using main text Eqn. 4, for each CDR3 sequence read σ, we exhaustively compute
the likelihoods of all recombination events E given σ, starting from maximal alignments for
each sequence identified in the initial parsing of the read (previous section), and looping
over the other scenarios, involving extra deletions compensated by chance re-insertions of
identical nucleotides, that could also ‘explain’ the read. We also loop over the number of true
P-nucleotides in the cases where they are present.

Normalizing these likelihoods yields the relative weights that observing the sequence σ
assigns to different recombination events E, given the current model parameters. Summing
these weighted occurrences over all the sequences in the data set gives a new, data-conditioned,
estimate of the various factors that enter into the assumed general form of Precomb(E) (as well
as a new estimate of the sequencing error probability and allele occurrence frequencies). The
formal statement of the update rule is as follows; for each parameter in the model that
describes the probability of a specific recombination event feature X (say a particular V-gene
choice) we update it to the probability weighted counts over the whole data set of that event.
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In other words, the (k + 1)-th iteration of the model parameters are given by

P (k+1)(X) =
∑

σ∈D

∑

E

δXE ,X P (k)(E|σ)

=
∑

σ∈D

∑

E

δXE ,X

P (k)(E, σ)

L(k)(σ)
(1)

where δXE ,X is one if X is true in the recombination event E and zero otherwise. This
procedure is used to update all the factors entering into the likelihood calculation and the
process is repeated until convergence to a stable end point is achieved. Since all sequences
in the data set are looped over in the calculation, we can record ‘on the fly’ the likelihood
L(σ) (main text Eqn. 4), the generation probability Pgen(σ) of that sequence (a conceptually
different quantity), as well as the conditional entropy of events S(E|σ) for each sequence
quantifying the multiplicity of recombination events that could have produced the given CDR3
sequence). The product of L(σ) over all sequences is the current overall likelihood of the data
set, a measure of convergence of the procedure. The generation probabilities Pgen(σ) have
a direct physical significance, reflecting the probability of generation of the sequence by the
molecular machinery.
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Fig. S 2: Convergence of the total likelihood of all data sets with iterations of the EM
algorithm.

Iterating this process is guaranteed, by general expectation maximization arguments, to
maximize the overall likelihood of the data set locally. We have found that rapid and direct
convergence to a likelihood maximum is the norm for the data sets we work with (see Fig. S2).
The models for the probability distribution of generative events inferred in this way from the
different data sets are available online5. The distribution is also described in a Microsoft Excel
file.

5physics.princeton.edu/~ccallan/TCRPaper/results/models
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4 Sequencing error rate

The sequence mismatch rate in our model reflects both uncorrected sequencing error as well
as unknown allelic variation. Our model assumes that this mismatch rate R is independent
of position along the sequence read. As is well-known, accuracy of the sequencing procedure
becomes worse at the end of the sequence read (the 5 ′ , or V-gene, end of our CDR3 sequence)
so, in assaying error rates, we ignore the last 15 nucleotides (at the 5 ′ end) for the 101 bp
reads, where we can afford to do this. Our alignment procedure also disallows mismatches
in the J- and D-gene alignment because of the shortness of these segments and the expected
low error rate at this end (more accurately, the beginning) of the sequence read. In assessing
position dependence of sequence error rates, therefore, we only need concern ourselves with
mismatches to V gene assignments. Summing all such mismatches for the three individuals
for which we have 101 bp reads, and plotting them against read position, we obtain the results
plotted in Fig. S3. We find that R converges in the mean to a value of order 3 × 10−4 per
base pair, two orders of magnitude smaller than the raw instrumental sequencing error rate.
There are, however, a few sharp peaks at specific positions along the read; since they appear
at the same position for different individuals, they presumably reflect some anomaly in the
functioning of the sequencing machine. This shortcoming of the error rate model does not
greatly influence the results of the inference because the overall error rate is rather low.
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Fig. S3: Position-dependent error profile for the three individuals with read length 101 base
pairs. The sequencing read proceeds from the right (101 to 1) where the J gene sequencing
primer binds. The spikes in the error rate at specific positions (67, 43 and 27) are true
sequencing error spikes and not the result of unknown allelic variants. Positions 1-15 show
the characteristic increase in error rate with read length. The overall decreased error rate in
positions 10-20 reflect our requirement of a minimum alignment length of 20 nucleotides to a
V gene with an upper bound on the allowed errors in the alignment. Since we do not allow
any errors in the J and D genes, the error rate is zero in this region.
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5 Gene and pseudogene usage

Fig. S4: Statistical aspects of gene usage. (A) Usage frequencies of V-genes, ordered by
position on the chromosome, with the exception of pseudogenes (red legend). (B) Usage
frequencies of the two D-genes. (C) Same for the 13 J-genes. (D) D-gene usage frequencies,
conditioned on J-gene choice. As expected from the mechanistic constraint, TRBD2 has
essentially zero probability ( < 0.1%) of recombining with any TRBJ1 gene. Error bars
indicate variation across the nine individuals.

In Fig. S4, we show the inferred gene usage frequencies. As described in the main text,
Fig. S4D reveals the mechanistic constraint prohibiting the recombination of the TRBD2 gene
with any upstream TRBJ1 gene. We include pseudo V-genes in our analysis. These pseu-
dogenes cannot produce a functional receptor but they can participate in the recombination
process and produce a non-productive rearranged CDR3 sequence which can be transmitted
into the näıve or memory compartments just like any other non-productive rearrangement.
The set of V gene sequencing primers used by Robins et. al. [2, 3] either exactly or approx-
imately match 11 pseudogenes. Of these, TRBV23-1, TRBV5-3, TRBV12-2 and TRBV6-7
show significant usage, together accounting for almost 10% of CDR3 sequence reads.

6 Memory T-cell non-productive repertoire

We performed the same analysis on both the naive and memory T-cell repertoires. The non-
productive CDR3 sequences in both of these compartments should not be subject to selection,
and a comparison of inferences from the two provides a test of this important assumption.
Results from the larger näıve non-productive compartment (containing an average of 35,000
unique sequences per individual) were reported in the main text. Here we report the re-
sults from the smaller memory non-productive compartment (containing an average of 22,000
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unique sequences per individual). In Fig. S5, we compare the naive and memory insertions and
deletions distributions. In Fig. S6 we show that the occurence of shared sequences between the
individual non-productive repertoires is consistent with our generative model for the memory
compartments as well. The plots show that the models inferred from the näıve and memory
T-cells are identical in all respects, in confirmation of the expectation that non-productive
sequences are not subject to selection effects.
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Fig. S5: Comparison of insertions (A) and deletions (B) distributions for the naive and
memory T-cell repertoires. We find that the inferred models from the two compartments are
statistically identical in all respects. Error bars indicate variation across the nine individuals.

7 Spurious shared sequences between repertoires

Of the 9 individuals, we find three specific pairs of individuals – (2,3), (2,7) and (5,6) –
who have an unusually large number of sequences in common, in both the naive and memory
compartments. While all other pairs of individuals have between 0 and 4 sequences in common,
these three pairs have 15 to 90 shared sequences. Additionally, many of these shared sequences
occur in both the naive and memory compartments of the individuals. We suspect that these
anomalies are the result of inter-sample contamination.

Hence, for our analysis of the distribution of shared sequences between individuals, we
discard from consideration the four pairs of individuals (2,3), (2,7), (3,7) and (5,6). This leaves
32 pairs of individuals for our analysis. We also discard three specific additional sequences
that occur in the naive and memory compartments of one individual and also in another
individual.

8 Convergent recombination and generation probability

As discussed in the main text, a typical CDR3 sequence can be produced by ≈ 32 different
recombination events, corresponding to an entropy of 5 bits per CDR3 sequence. In Fig. S7, we
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Fig. S6: Shared sequences in memory T-cell non-productive CDR3 sequence repertoires.
A) Distribution of number of shared sequences between the 9 individuals. B) Distribution
of Pgen(σ) for the entire repertoire (blue) and for the recurring sequences (red). 〈Pgen〉 is
indicated by the green vertical line.

show the 2D histogram of the recombination entropy S(E|σ) and the generation probability
Pgen(σ). As expected, sequences with higher recombination entropy tend to have higher total
generation probability, with a correlation of 0.13. Note also that while the shared sequences
between individuals (red dots) all have high Pgen(σ), they are widely distributed with respect
to the recombination entropy, since only Pgen(σ) determines the recurrence probability of a
sequence.

9 Generation probabilities of productive sequences

The probability distribution of recombination events that we infer enables us to calculate
the generation probability of any given TCRβ CDR3 sequence. We calculate Pgen(σ) for all
the sequences in the naive and memory productive repertoires. The distributions of these
generation probabilities are shown in Fig. S8. The productive repertoires have systematically
higher generation probabilities, implying that sequences that are more likely to be generated
are also more likely to pass selection filters and survive in the blood. This is, in part, due to
systematically fewer insertions in the productive repertoires, which have exponentially higher
generation probabilities.

10 The nonproductive sequence constraint does not bias re-

combination event statistics

As noted in the main text, we infer the probability distribution of generative events from
nonproductive sequences only. One might worry that using such a non-random subset of all
the sequences produced by VDJ recombination could introduce an uncontrolled bias into the
inference. To look at this in more detail, we note that the condition for a rearranged CDR3
sequence to be out of frame involves the sum of six variables that our analysis has shown to
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Fig. S7: A 2D histogram of conditional entropy of recombination events given the sequence
and Pgen(σ). Convergent recombination (as measureed by the recombination event entropy)
is a contributing factor to Pgen(σ), with correlation coefficient 0.13. The shared sequences in
the naive non-productive repertoires are shown in red.

be uncorrelated:

[− delV + insV D − del5 ′D + length(D)− del3 ′D + insDJ − delJ ] mod 3 > 0.

Since a large number of uncorrelated variables are involved, it is a priori unlikely that this
constraint would significantly affect the evaluation of the pairwise correlations that define
our generative model. We can test this quantitatively by generating a simulated sequence
repertoire from our recombination event distribution, running our inference algorithm on the
out-of-frame subset of these sequences, and then comparing the inferred and the “actual”
event distributions. The result of carrying out this program on a simulated repertoire of 105

sequences (two-thirds of which were out-of-frame) is displayed in Fig. S9. It is clear that the
initial and the inferred generative distributions are identical to each other, confirming that the
condition of being out-of-frame does not bias the statistics of recombination events and does
not interfere with our ability to correctly infer the probability distribution of these events.
We thank W. Bialek for suggesting this test of our analysis method.
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Fig. S8: Generation probabilities of all the CDR3 sequences in the naive and memory pro-
ductive repertoires were computed using our inferred distribution. The above panel shows the
distribution of the logarithm of these probabilities for the three repertoires for one individual.
The productive repertoires have systematically higher generation probabilities.

11 Occurrence of palindromic nucleotides with non-zero dele-

tions

To show that the occurrence of palindromic nucleotides with non-zero nucleotide deletions
from the ends of the genes is consistent with chance insertions, we keep track of the (model
probability weighted) joint frequencies of lengths of observed palindromes conditioned on the
number of deletions and on gene choice. Keeping track of this detail is necessary because of
the strong dependence of deletion probabilities on gene choice. After we obtain our converged
model, we calculate the frequencies of chance palindromic nucleotides of different lengths
co-occurring with non-zero deletions (taking into account all the structure of Precomb(E),
including the nucleotide bias in insertions). The plot in Fig. S10 shows that the observed
frequencies of palindromic nucleotides co-occurring with non-zero deletions are completely
consistent with those expected by chance insertions.

12 Sequence dependence of nucleotide deletion probabilities

Since the sequence at the 3 ′ end of the V gene varies between genes, we fit a simple model
to the gene dependent deletions profiles to explain the variation in these distributions. The
precise mechanism of the generation of P-nucleotides and their relationship to deletions is
unclear. Hence, we take only the probabilities of deletions greater than or equal to two
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Fig. S9: Probabilities of recombination event variables were re-inferred by simulating se-
quences from our final distributions, discarding all in-frame sequences, and running the
expectation-maximization algorithm on the out-of-frame subset. The above scatter plots
show that the original probabilities are obtained. This provides evidence that the use of just
the non-productive TCR sequences does not bias the statistics of recombination events.

nucleotides and consider the nucleotide sequence context (four bases 3 ′ and two bases 5 ′ of
the deletion position) as a predictor of the deletion probability. We use a function of the form

P (n deletions|σ&n ≥ 2) =
exp

(

∑6
k=1 ǫ(k, σ(n− 4 + k)

)

Z(σ)
(2)

Z(σ) =
12
∑

n=2

exp

(

6
∑

k=1

ǫ(k, σ(n− 4 + k)

)

(3)

where ǫ is a 6 × 4 matrix containing the contribution of each possible nucleotide at each of
the positions, analogous to a (log) Position Weight Matrix (PWM). We do a least squares fit
to determine the elements of ǫ. In Fig. S11, we show ǫ fit to the V deletions. There is a strong
preference for T and A, especially in the 2 nucleotides just 5 ′ of the position of deletion. Since
there are only 13 J-genes, there is less sequence variation among them that we can utilize.
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Fig. S10: Occurrence frequency of P-nucleotides for non-zero deletions.
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Fig. S11: Position weight matrix for sequence dependence of nucleotide deletion position.
The figure shows ǫ/ log(10) (see SI Appendix section 12 for details) fit to the V gene specific
deletions profiles, using four nucleotides 3 ′ and two nucleotides 5 ′ of the deletion position
(black vertical line). The 3 ′ nucleotides are the most informative about deletion probability
and show a preference for T and A. The sequence logo corresponding to this position weight
matrix is shown in the main text Fig. 4B.
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Fig. S12: Deletion profiles for all the V-genes (1 of 3). The title for each panel lists the gene
name and total number of counts, across all the individuals studied, of the particular gene
in question. Individuals with fewer than 100 counts for a specific gene are plotted in gray
dashed lines. The blue lines show the predictions of the position weight matrix based model
fit to these curves.
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Fig. S13: Deletion profiles for all the V-genes (2 of 3). The title for each panel lists the gene
name and total number of counts, across all the individuals studied, of the particular gene
in question. Individuals with fewer than 100 counts for a specific gene are plotted in gray
dashed lines. The blue lines show the predictions of the position weight matrix based model
fit to these curves.
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Fig. S14: Deletion profiles for all the V-genes (3 of 3). The title for each panel lists the gene
name and total number of counts, across all the individuals studied, of the particular gene
in question. Individuals with fewer than 100 counts for a specific gene are plotted in gray
dashed lines. The blue lines show the predictions of the position weight matrix based model
fit to these curves.
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Fig. S15: Deletion profiles for all the J-genes. The title for each panel lists the gene name and
total number of counts, across all the individuals studied, of the particular gene in question.
Individuals with fewer than 100 counts for a specific gene are plotted in gray dashed lines.
The blue lines show the predictions of the position weight matrix based model fit to the V
deletions curves, but evaluated on the J gene sequences.
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Fig. S16: Marginal deletion probability distributions for the two D-genes. Deletions at the
5 ′ end (3 ′ end) of the D gene are shown in green (blue). The x-axis displays the gene sequence
from the 5 ′ end to the 3 ′ end.
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