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 Ecology, 66(4), 1985, pp. 1204-1210
 C 1985 by the Ecological Society of Amenica

 STATISTICAL INFERENCE ON MEASURES OF
 NICHE OVERLAP1

 LAURENCE D. MUELLER2 AND LEE ALTENBERG
 Department of Biological Sciences, Stanford University, Stanford, California 94305 USA

 Abstract. Estimates of measures of niche overlap are often reported without any indication of
 sampling variance or an accompanying confidence interval. We have investigated the delta, Jackknife,
 and bootstrap methods for making statistical inferences on four measures of niche overlap: the coef-
 ficient of community, Morisita's index, Horn's index, and the Euclidian distance. Our qualitative
 conclusions are: (1) The bias of these estimators was usually < 10% of the mean unless the sample
 size was small and the number of resource categories large. The jackknife and bootstrap can significantly
 reduce this bias. (2) The variance of the bootstrap and jackknife estimators was usually greater than
 that of the "standard" estimator. (3) Under a variety of circumstances, the population sampled may
 actually represent several unrecognized subpopulations. In such cases confidence intervals generated
 by the jackknife and delta techniques can be quite inaccurate, while the nonparametric confidence
 intervals derived from the bootstrap are highly accurate.

 Key words: bootstrap; coefficient of community; computer simulation; delta method; Euclidian
 distance; Horn's index; jackknife; Morisita's index.

 INTRODUCTION

 Until recently little attention has been paid to the

 statistical properties of niche overlap measures (Pe-
 traitis 1979, Ricklefs and Lau 1980, Maurer 1982, Smith
 and Zaret 1982). Many of these overlap measures are

 complicated functions of the underlying observations.
 It is therefore not surprising that most ecologists have

 not attempted to estimate the variance or construct

 confidence intervals for these measures of overlap (Or-
 ians and Horn 1969, Pulliam and Enders 1971, Jaksic

 et al. 1981, Paine et al. 1981). Ricklefs and Lau (1980)
 have examined the bias and variance of four measures
 of niche overlap by sampling theoretical populations
 on a computer. They suggest that empirical workers

 conduct computer simulations using their own data to
 gain insights concerning the sampling variance and dis-
 tribution of these overlap measures. In fact, in recent
 years the use of computer simulations has allowed the

 development of a growing body of "computer inten-
 sive" statistics (Efron 1979b), which sidestep the math-

 ematical difficulties encountered in analyzing many
 statistics having non-normal distributions. We shall be
 examining one example of these techniques, the
 "bootstrap" estimator (Efron 1979a).

 In addition we will derive analytic approximations
 for the variance of the overlap indices studied by Rick-
 lefs and Lau. Using this variance estimate we will also
 describe a method for constructing confidence inter-
 vals. The methods involved in these analytic approx-

 imations come under the general heading of the "delta
 method." This method is based on Taylor series ap-
 proximations. Smith and Zaret (1982) have used these

 i Manuscript received 26 August 1983; revised 10 May
 1984; accepted 3 October 1984.

 2 Present address: Department of Zoology, Washington State
 University, Pullman, Washington 99164 USA.

 same techniques to derive expressions for the bias of

 a variety of niche overlap measures. They show that,
 in general, bias will be greater when many resource

 categories are used rather than a few. Smith (1982) has
 also used the delta method to derive the approximate
 sampling variance of several measures of niche breadth
 and has shown these approximations to be quite ac-
 curate.

 We will describe a third method, the jackknife, for

 both point and interval estimation. We examine sta-
 tistical properties of all three methods by conducting
 extensive computer simulations. These computer sim-
 ulations allow us to evaluate the accuracy of these
 methods, since each involves approximations. We also
 use the results from the computer simulations as a
 means of discerning if one method is superior to the
 other.

 THE DELTA METHOD

 We are interested in calculating the niche overlap of

 two species (populations) which utilize up to n different
 resources. Let the probabilities of resource utilization

 for the first species be given by p, P2, . . ., Pn and for
 the second species q, q2, . . , qn. With these population
 quantities we can calculate measures of niche overlap
 in a variety of ways (Schoener 1970, Pianka 1974,
 Hurlbert 1978, Petraitis 1979, Ricklefs and Lau 1980,

 Maurer 1982). We will restrict our attention here to

 the four measures considered by Ricklefs and Lau
 (1980): coefficient of community (S.), Morisita's index
 (S2), Horn's index (S3) and the Euclidian distance (S4).
 These indices are calculated as follows,

 n

 S. =i min{pi, qi}, (la)

 S2 = 2 2 piqi,(2 pi2 + : qi2), (Ib)
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 S3 = (pi + qi)log(pi + qi)

 - pilogpi - qilog qi1

 [2 log(2)], (I c)

 S4=1 - (p - qi)2/2} (1d)

 In practice we do not know the pi's and qi's, but we
 have sampled the population and obtained estimates

 p, and qj (i = 1, . . ., n). One way of estimating Sj (j =
 1, . . ., 4) is to replace every pi and qi in Eq. 1 with
 Pi and qZ. We will denote the estimators obtained in
 this fashion as S$.

 In addition to obtaining an estimate of Sj we would
 like to be able to estimate the sampling variance of

 each Sj. It is possible to derive the approximate sam-
 pling variance of the Sj using the delta method (see
 Bishop et al. 1975:486-488). This method yields the
 following formulae,

 var(S) hjTDPh, + VjTDqVj (2)

 where

 hjT = (aSj'/8p, . . Sj/dPn-1)

 VjT = (aSj/aq,, . Sjlqn- )

 and DP and Dq are the covariance matrices of p and q,
 respectively. For the four indices we have,

 1) Coefficient of community:

 OS,/Opi = A + B
 where

 (1 if pi < qj

 A= 1/2ifpi=q,

 t0 ifpi > qj

 n-i

 -1 if 1 - u n > Z
 - 2 if P

 1 0 ifn < Z

 2) Morisita's index:

 ,SJap, = 2[(qi- qn) - S2(pJ- ]

 (T, Ti2 + qi2),

 3) Horn's index:

 49S3149Pi = lolg X :7-~ _log[ip/pn /
 [/ lo(2 + )

 [2 log(2)],

 4) Euclidian distance:

 0S4/api= [(i- ql) + (qn -

 2(1 - 54),

 and all summations are for i = 1, . n- 1. a$/oqi

 are the same as 0Sj/opi except pi, pn, qi, and q, are
 replaced with qi, q, pi, and pn, respectively.

 If we assume that the count vector (the number of

 items recorded for resource category 1, 2, . . ., n, for
 each species) has a multinomial distribution, then the

 covariance matrix for qT = (qli . q,_ I) is Dq and for
 pT = (pa . ... p,-I) is DP, where

 Dptii = pi(l -Pi)INI,

 Dqii= j(l - )IN2,

 Dp~ij = -pjl/Nl,

 Dq ij = -qqj/N2,

 and N1 is the total number of items sampled for species
 1, and N2 is the same for species 2.

 Although the method of estimating the Sj just de-
 scribed is straightforward it may not be the best avail-

 able. Before considering alternative methods of esti-
 mation we will make some analytic statements about

 the S estimators. In particular we would like to

 know if E(S,) = $j, i.e., is the estimator unbiased?
 Horn's index is a concave function that has 025/Opi2 +
 02S/Oq 2 + 2a2S/ap0aq <0 for all i. Consequently we
 can invoke Jensen's inequality to prove that E(S3) '
 S3 (see Karlin and Taylor 1975:249). This result does
 not tell us the magnitude of the bias but it does say

 that it will always be negative when it is not 0. This
 fact explains the persistent negative bias in the simu-

 lations of Ricklefs and Lau (1 980:Table 1). It is possible

 to estimate the magnitude of the bias for S2 and S3 by
 expanding these functions in a Taylor series about the

 points (pl, . p. , pn) and (ql, . .., qj). This technique
 has been used by Smith and Zaret (1982) who give

 approximations for the bias of 52 and S3. An exact

 expression for the bias of S9 is also given in Smith and
 Zaret (1982). van Belle and Ahmad (1974) have pre-

 viously derived the delta estimate of variance for Mor-
 isita's index.

 THE JACKKNIFE

 A second method of estimating the indices (Eq. 1)
 is the jackknife statistic (see Miller 1974 for a review).
 The jackknife has been applied to an ecological diver-
 sity index (Zahl 1977), population size estimation
 (Burnham and Overton 1979), and genetic distance

 estimates (Mueller 1979). The jackknife provides an
 easy method for estimating the overlap indices and
 their variance. The jackknife can also be useful in re-

 ducing bias. When the bias takes the form a/N + O(N2),
 then the jackknife will remove the first term of the bias.
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 Let S_-i be the same as before, except that the ith
 observation has been deleted before the calculation.

 Since we assume we have made N. observations for

 species 1 and N2 observations for species 2 there are

 a total of N. + N2 observations to delete. N. + N2

 pseudovalues may then be defined as

 Si = (N. + N2)Sj - (NI + N2- I

 The jackknife estimator and its variance are then sim-

 ply

 Si=: si/(NI + N2)

 var(S) = j (s,- 5)2/

 (N. + N2)(NI + N2 - 1).

 The number of calculations may be reduced by making

 the following observation. Suppose there are only two

 categories and the number of observations for species

 kincategory lis nk,(k, I= 1, 2). Obviously n,, + n12 +
 n21 + n22 = N. + N2. It is apparent from Eq. 4 that
 although there are N. + N2 pseudovalues, there will

 only be four different values of si, 5, l12, S21, and 522
 corresponding to deleting an observation in category
 1 for species 1, category 2 for species 1, etc. Thus

 simplified expressions for S, and var($) are

 Si = : : Sklfnkl/(NI + N2), (3)
 k I

 var(S)= z (Ski - S)2n/
 k I

 (N. + N2)(NI + N2- 1). (4)

 These equations will apply to any number of categories.

 THE BOOTSTRAP

 The proliferation of high-speed computers has opened

 the way for new techniques in statistics that would have

 been unthinkable 30 yr ago (see Efron 1979b for a
 review). One of these techniques is called the bootstrap

 (Efron 1 979a). The bootstrap requires, perhaps, several

 million more arithmetic operations than either the del-

 ta or jackknife methods. The reward for this increased

 computational effort is twofold: (1) no assumptions

 about the distribution of the observations are required,
 (2) statistical measures that may have untractable

 mathematical features may be examined. The boot-

 strap uses the sampled observations as an empirical

 estimate of the distribution function. This probability
 distribution simply puts mass 1/N at each observed

 point, if N is the total sample size. Repeated samples
 of size N are then chosen from this empirical distri-
 bution. This results in estimates of such things as the
 bias and variance of particular statistics and confidence

 intervals. If the distributions of the observed random

 variable are known exactly, there is less to be gained

 from the bootstrap. However, we expect that the ben-

 efits of the bootstrap will increase as the differences

 between the assumed distribution and the real one in-

 crease. We will illustrate this technique with the over-

 lap measures already discussed.

 Suppose we have the estimates j and q from inde-

 pendent samples of size Ni (i = 1, 2). We produce one
 bootstrap replicate as follows. Using a random number

 generator we take two independent multinomial sam-

 ples of size Ni where the underlying probabilities for
 each sample are f and q, respectively. We designate
 the sample so obtained p1*, ql*. We then substitute
 these values in Eq. 1 and obtain a bootstrap estimate

 S*i , In the present study this process was repeated
 1000 times. We obtain bootstrap estimates of the vari-

 ance and bias of S, as,

 1000

 Bias (Si) = Si - z ij*/I000,
 j= 1

 2; - ~* 2

 var i - ( 01)0 /999. )

 We use as our bootstrap estimators of the Si,

 Si* = Si-Bias (S,). (6)

 In addition to estimating the bias of various overlap

 measures, we will use the 1000 replicates of each S, to
 approximate the cumulative distribution function. A

 Bayesian justification for this approach is given in Ef-

 ron (1981). Once the cumulative distribution function

 has been estimated, confidence intervals can be de-

 rived. To describe the procedure for estimating con-

 fidence intervals, we first introduce some notation which

 closely follows Efron (1981). Let our estimate of the

 cumulative distribution function for Si, CDFi(t), be
 defined as,

 CDFi(t) = prob JSi* <t} =

 # {Sij* < t}/1000,

 where "#" can be read "the number of times." The

 values of Si, which is greater than or equal to, say, 2.5%
 of all observations, would be given by CDFi- 1(0.02 5).
 Thus our 1-2a central confidence interval is

 [CDF- l (a), CDF-(l 1-)]. (7)

 If there is substantial bias in Si, then the confidence
 interval generated by Eq. 7 will be biased in a similar

 fashion. Efron (1981) has described a method for cor-

 recting this bias which we now describe. Let cI( ) be
 the cumulative distribution function of a standard nor-

 mal random variable. We can now define z, = Ib-
 CDF (Si) and t(zx) = a. A bias-corrected 1-2a confi-
 dence interval is then given by

 [CDF-1('(2z0 + zD), CDF-1('(2z0 + z1_))]. (8)

 Obviously if the estimated bias is 0, then from Eq. 6,

 Si* = Si and the confidence intervals produced from
 Eqs. 7 and 8 will be the same.
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 COMPUTER SIMULATIONS

 It is highly unlikely that the estimators, S, and S,
 and S/*, are equivalent. A preference for one of these

 estimators over the other should be based on statistical

 criteria. The criteria we have chosen to examine are

 the bias, variance, and mean-squared error (MSE), which

 equals the variance plus the squared bias, of each es-

 timator in addition to the associated confidence inter-

 vals. We would prefer the estimator with the smallest

 value of all these quantities. In practice the variance

 of $~ and Sj will be used to construct a confidence
 interval. The confidence interval on Sj* is determined
 nonparametrically. The accuracy of the confidence in-

 tervals on S3 and $j will depend on the accuracy of the
 variance estimate and on how closely the estimator is

 distributed as t[,1 + N2 - 2(n - 1)]
 To get some insight into the statistical properties of

 our three estimators we have carried out computer

 simulations which we now describe. Our first series of

 simulations considers just the delta and jackknife es-

 timators. The bootstrap was not evaluated for all these

 examples simply because of time considerations. We

 considered two categories and p, took on values of 0.1,
 0.2, 0.3, 0.4, and 0.5, while q was set to 0.15, 0.35,

 0.55,0.75, and 0.95. All possible combinations of these

 p and q values were examined, yielding 25 different

 populations. The values of p, and q, for each of these
 25 populations defined the true value of Sj. For each
 population the following process was repeated 2000
 times.

 1) A sample of N observations (N = 20, 60, or 200)

 was taken for each species to estimate p, and q1.

 2) Sj, $j, var(Sj), and var(S) were calculated and a 95%
 confidence interval was constructed for each esti-

 mator, i.e., S$j ? t2N-2,0.025 (var(S.))''2.

 After the 2000 trials we estimated the expected value

 for each estimator as the mean of the 2000 values of

 S $. With the expected values we can estimate the

 bias of each estimator as E(S,) - S and E(S) - S. It
 should be noted that since we have only an estimate

 of E(S,) and E(Sj), some estimates of the bias may not
 be significantly different from 0. We tested this by cal-

 culating the variance of each estimator from the ex-

 pected values and the 2000 observations of S and S$.
 These variances we denoted as var(S,) and var(S). We

 used these to put confidence intervals on our estimates
 of bias.

 To examine how close the estimates of variance Eq.

 2 and Eq. 4 were to the values var(S) and var(Sj), we
 calculated the mean of the 2000 values of var(S,) and
 var($,), which we denoted as var(S) and var(S,). Lastly,
 we kept track of the number of times our calculated

 confidence intervals included S. With this information

 we calculated the empirical confidence level of these

 intervals and compared them to the expected level of
 95%.

 It is clear from the analytic and numerical results of

 Smith and Zaret (1 982) that the bias of these estimators

 is liable to be worse when the number of resource cat-

 egories is large. We have carried out simulations sim-

 ilar to the ones described previously on two different

 simulated populations with 10 resource categories.

 These examples are identical to ones used by Smith

 and Zaret (1982) and the underlying pi's and q,'s are
 given in Table 2. For each example we let N = 20, 60,

 and 200. Only the results for N = 20 are shown in Table

 2 because the results for N = 60 and 200 are qualita-

 tively similar.

 Perhaps the most restrictive assumption used in both

 the jackknife and delta methods is that the count vector

 has a multinomial distribution. To examine how our

 estimators behave when the underlying distribution is

 not multinomial we conducted several additional sim-

 ulations. In particular, we considered a population that
 was "contaminated" by a second subpopulation which

 samples the environment differently. For instance, sup-

 pose we were determining the overlap in diets of two
 species of lizards. Individuals were sampled at random

 and their gut contents examined. We might then clas-

 sify the insects into various genera. Usually the results
 from each lizard would be pooled to get our final es-

 timate of p and q. It is possible, however, that some

 fraction of the individuals we sampled were actually

 choosing items with different probabilities from the

 rest of the population (see Mosteller and Tukey 1977:

 17, for a brief discussion of contaminated distribu-

 tions). We have studied this problem with the following
 sort of numerical simulations. We restricted ourselves

 to two categories. We assumed a base population for
 each species composed of individuals which sample
 the environment with probabilities pI and qP. We called
 these individuals type I. We also assumed a fraction
 C of all individuals sampled the environment with

 probabilities A, and q1. We called these individuals
 type II. Random samples from this population were
 generated as follows. Ten individuals of each species
 were sampled and the probability that type II individ-
 uals were included in the sample was C. Each individ-
 ual was then given its own sample of 20 resource items;
 the probabilities used to generate these samples de-
 pended on whether a given individual was type I or
 type II. Since there were only two resource categories,
 each individual in the sample could be characterized

 by the frequency of category one items it contained in
 its sample of 20 resource items. For species one, let

 the frequencies of resource item one for each individual
 be x,, x2, . . , x,0 and for species two, Y., Y2, . * *, Y1o
 We conducted the bootstrap sampling on this set of
 data while keeping in mind that we can no longer dis-

 tinguish type I from type II individuals. Each bootstrap
 replicate sampled 10 individuals, with replacement, for
 each species. From each individual a sample of 20
 resource items was chosen: the probability of the item
 being from category one was determined by the par-
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 TABLE 1. Summary of 25 different simulations comparing the jackknife and delta estimators of four overlap measures: the

 coefficient of community (S,), Morisita's index (S2), Horn's index (S3), and the Euclidian distance (S4). For S, and S4, the
 delta and jackknife estimators are equal for two categories, hence the entries of 50 for bias, variance, and MSE.

 Sample size

 200 60 20

 S S2 S3 S4 SI S2 S3 S4 SI S2 S3 S4

 Statistic* Percent of all cases

 Bias 50 88 96 50 50 96 100 50 50 96 100 50
 Variance 50 24 100 50 50 32 100 50 50 32 80 50
 MSE 50 32 100 50 50 40 100 50 50 44 84 50
 cl 48 64 100 48 66 48 100 66 86 12 100 86

 Variance estimated 32 100 88 32 32 100 80 48 32 100 68 48

 Bias significantly >Ot

 Jackknife 24 20 28 24 28 28 28 28 36 40 44 36
 Delta 24 60 96 24 28 68 100 28 36 84 100 36

 * Percent of all cases in which the jackknife had a smaller bias, variance, and mean squared error than the delta estimator,
 and percent of all cases in which the confidence level of the jackknife measure was closer than the delta confidence level to
 95%.

 t Percent of all cases in which the jackknife estimate of variance was closer than the delta estimate to the observed value.
 t Percent of all cases in which the bias was significantly greater than 0 is listed for both the jackknife and delta method.

 Ties to within 10-9 are counted half.

 ticular xi or yi. Thus, if individual j was chosen from
 species one, the probability of a resource item being

 in category one is x;. The final samples have Nl = N2 =

 200. We made 1000 replicates to get one bootstrap

 estimate of each S$. When these estimates of S$ were

 made, a new cycle was begun by generating a new sam-

 ple of 10 individuals for each species with the simul-

 taneous classification of each individual as either type

 I or type II. A total of 1000 cycles was completed for

 each value of C in Table 3.

 RESULTS

 A summary of the results for the 25 two-category

 simulations which examined the jackknife and delta

 estimators only is given in Table 1. From examination

 of Table 1 it is clear that the jackknife is effective at

 reducing the bias for S2 and S3. This result is consistent

 with the form of the bias for S2 and S3 and the known

 properties of the jackknife. These same two overlap

 statistics also seem to have significant bias in a greater

 TABLE 2. Niche overlap statistics with multiple categories. Given below are the percent bias, variance, mean squared error

 (MSE) and actual confidence level (C.L.) of supposed 95% confidence intervals for the delta (S) and jackknife (S) estimators.

 Estimator Example* % bias Var(S,) MSE C.L.

 Sl El 19.5 ? 1.0 0.0126 0.0221 85.5 ? 1.5
 E2 10.6 ? 1.1 0.0124 0.0147 92.9 ? 1.1

 S. El 6.5 ? 1.9 0.0450 0.0461 87.1 ? 1.8
 E2 15.1 ? 2.0 0.0428 0.0474 80.4 ? 1.7

 El 16.4 ? 1.3 0.0242 0.0320 91.4 ? 1.2
 E2 15.4 ? 1.2 0.0244 0.0321 92.9 ? 1.1

 52 El 2.6 ? 1.6 0.0371 0.0373 86.8 ? 1.5
 E2 1.6 ? 1.5 0.0357 0.0358 87.9 ? 1.4

 S3 El 22.1 ? 0.8 0.0160 0.0423 61.4 ? 2.1
 E2 21.9 ? 0.8 0.0148 0.0387 58.9 ? 2.2

 S3 El 3.5 ? 0.9 0.0227 0.0234 92.3 ? 1.2
 E2 4.5 ? 0.9 0.0225 0.0235 90.8 ? 1.3

 S4 El 8.0 ? 0.4 0.00445 0.00767 86.4 ? 1.5
 E2 7.5 ? 0.4 0.00415 0.00715 89.6 ? 1.3

 54 El 0.4 ? 0.5 0.00627 0.00628 93.5 ? 1.1
 E2 0.04 ? 0.5 0.00581 0.00581 93.6 ? 1.1

 * Two examples (E l and E2) with 10 resource categories with N = 20 were tested with the following underlying probabilities:

 Example l. pT= (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
 qT = (0.4, 0.3, 0.1, 0.1, 0.05, 0.01, 0.01, 0.01, 0.01);

 Example 2. pT= (0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.2, 0.1, 0.1)
 qT = (0.4, 0.3, 0.1, 0.1, 0.05, 0.01, 0.01, 0.01, 0.01).
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 portion of the populations and of a greater magnitude

 than S, or 54.
 The delta estimator had smaller variance than the

 jackknife for S2, while the jackknife had the smaller

 variance for S3, and for S. and S4 they are equal. The

 jackknife always generated more accurate confidence

 intervals for S3, and was generally more accurate for

 S, and S4 than the delta estimator, but lost this lead
 with larger sample sizes. For S2, the jackknife was bet-

 ter for large samples, but much worse for small sam-

 ples. The jackknife appears to give more accurate vari-

 ance estimates for S2 and S3, while the delta estimates

 seem superior for S, and S4. In our simulations, the
 jackknife estimate of variance was usually biased up-
 wards, which is consistent with the analytic predictions

 of Efron and Stein (1981). Although neither the jack-

 knife nor the delta method is better for all measures

 of niche overlap, the jackknife estimator appears to be

 better for S3, while the delta method may be slightly

 better for S, and S4. The results for S2 are equivocal.
 Interestingly, most conclusions for the two-category

 comparisons hold for the multiple-category compari-

 sons (Table 2). The jackknife outperforms the delta
 method for S3 in all categories except variance. How-

 ever, in spite of this, because of the substantial reduc-
 tion in bias the jackknife has a smaller mean-squared

 error. The delta method does uniformly better than the

 jackknife for S, with neither estimator having an ad-
 vantage in bias reduction. The one difference between

 the two- and multiple-category results is for S4. With

 S4 the jackknife performs better in all categories except
 the variance. The results for S2 are again equivocal.
 Although the jackknife has a decided advantage in bias

 reduction, its variance and mean-squared error are

 larger than the delta method's. The data are not shown

 in Table 2, but results from additional computer sim-

 ulation show that the delta estimator has more accurate

 confidence intervals at sample sizes of 20 and 60 but

 loses this advantage at the highest sample size (200).

 In Table 3 we present the results of the simulations
 involving various degrees of contamination (0, 0.10,

 or 0.25). Since the results for the Euclidian distance
 were identical to the coefficient of community, only

 the latter results are presented. The most striking result

 in Table 3 is that even low levels of contamination can
 severely affect the accuracy of confidence intervals pro-
 duced by either the jackknife or delta methods despite

 the large sample sizes. In marked contrast are the con-
 fidence intervals of the bootstrap, which are exceed-

 ingly accurate. There are also a few instances where

 the jackknife or delta estimators are biased while the

 bootstrap is unbiased (within the accuracy of our sim-
 ulations). The bootstrap invariably has a higher vari-
 ance and MSE: however, it is larger by only 3-11%.

 DISCUSSION

 Ricklefs and Lau (1980) suggested that computer

 simulations be used to estimate confidence intervals

 TABLE 3. The percent bias, variance, mean squared error

 (MSE), and confidence level (C.L.) for the delta (S), jackknife
 (5,) and bootstrap (S*) estimators of the Euclidian distance.
 In all cases N = 200.t

 Esti-
 mator % bias Var(S) MSE C.L.

 A. Contamination = 0.

 Sl 0.06 0.00142 0.00142 95.5 ? 1.3

 S. 0.06 0.00142 0.00142 95.5 ? 1.3

 Sl* 0.4 0.00147 0.00147 98.9 ? 0.6

 S2 0.1 0.00235 0.00235 95.5 ? 1.3

 52 0.1 0.00236 0.00236 95.6 ? 1.3

 S2* 0.5 0.00244 0.00244 98.5 ? 0.8

 53 0.4t 0.00177 0.00177 95.1 ? 1.3
 S3 0.03 0.00176 0.00176 95.2 ? 1.3

 S-3* 0.1 0.00189 0.00189 98.5 ? 0.8

 B. Contamination = 0.10.

 5l 0.1 0.00535 0.00535 72.7 ? 2.8

 Sl 0.1 0.00535 0.00535 72.7 ? 2.8

 S9* 0.3 0.00534 0.00534 95.4 ? 1.3

 52 0.008 0.00856 0.00856 72.3 ? 2.8
 S2 0.03 0.00866 0.00866 72.2 ? 2.8

 S2* 0.2 0.00898 0.00898 94.9 ? 1.4

 S3 0.9t 0.00363 0.00368 72.4 ? 2.8
 53 0.6t 0.00362 0.00364 72.8 ? 2.8

 S~3 0.04 0.00380 0.00380 95.0 ? 1.4
 C. Contamination = 0.25.

 5 0.005 0.00914 0.00914 65.5 ? 2.9

 5l 0.005 0.00914 0.00914 65.6 ? 2.9

 Sl* 0.4 0.00955 0.00956 95.1 ? 1.3

 S2 l.Ot 0.00939 0.00946 64.7 ? 3.0
 S2 0.7 0.00962 0.00965 64.4 ? 3.0

 S2* 0.3 0.0106 0.0106 95.4 ? 1.3

 53 0.9t 0.00222 0.00229 66.6 ? 2.9
 S3 0.7t 0.00221 0.00225 65.9 ? 2.9

 S3* 0.1 0.00235 0.00235 95.5 ? 1.3

 t We assume two categories of individuals that are sampled
 as follows:

 Type I individuals: P, = 0.80, q, = 0.15
 Type II individuals: Pl' = 0.15, q,' = 0.80,

 where p and q are the probabilities of two species utilizing
 resource 1.

 t Significant bias.

 or conduct hypothesis tests on measures of niche over-

 lap. This suggestion is in essence the bootstrap esti-
 mator we have examined. We have expanded the anal-

 ysis of Ricklefs and Lau by examining the statistical
 properties of the bootstrap estimator in addition to

 jackknife and delta estimators.
 It is evident that both the jackknife and bootstrap

 are effective at reducing bias. It appears, however, that
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 there is a cost to reducing bias in the form of increased
 variance of the estimator.

 A basic assumption in this and other work (Ricklefs

 and Lau 1980, Smith 1982, Smith and Zaret 1982) is

 that the count vector of niche categories has a multi-

 nomial distribution. We have considered deviations

 from this assumption by examining populations in

 which one multinomial distribution is contaminated

 with a second to various degrees. There are a variety

 of circumstances where such distributions are likely to

 be found. If there is genetically based variation for
 resource preference, then the resulting population might

 be a mixture of several multinomial populations. Con-

 taminated distributions might also arise if individual

 resource use is dependent on some form of precondi-

 tioning or experience. In any case, the bootstrap has a
 tremendous advantage when there is a contaminated

 distribution. This advantage is due to the nonpara-
 metric confidence intervals that the bootstrap gener-

 ates. Consequently, if it seems unwise to make the
 multinomial assumption for a given data set, the boot-

 strap would be the best method for estimating niche

 overlap. Implementation of the bootstrap requires ac-

 cess to computing facilities, while the delta and jack-
 knife techniques can be carried out with calculators.
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