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Abstract. This paper discusses the electrical impedance tomography (EIT) problem: electric
currents are injected into a body with unknown electromagnetic properties through a set of contact
electrodes. The corresponding voltages that are needed to maintain these currents are measured.
The objective is to estimate the unknown resistivity, or more generally the impedivity distribution
of the body based on this information. The most commonly used method to tackle this problem
in practice is to use gradient-based local linearizations. We give a proof for the differentiability of
the electrode boundary data with respect to the resistivity distribution and the contact impedances.
Due to the ill-posedness of the problem, regularization has to be employed. In this paper, we
consider the EIT problem in the framework of Bayesian statistics, where the inverse problem is
recast into a form of statistical inference. The problem is to estimate the posterior distribution of
the unknown parameters conditioned on measurement data. From the posterior density, various
estimates for the resistivity distribution can be calculated as well as a posteriori uncertainties.
The search of the maximum a posteriori estimate is typically an optimization problem, while
the conditional expectation is computed by integrating the variable with respect to the posterior
probability distribution. In practice, especially when the dimension of the parameter space is large,
this integration must be done by Monte Carlo methods such as the Markov chain Monte Carlo
(MCMC) integration. These methods can also be used for calculation of a posteriori uncertainties
for the estimators. In this paper, we concentrate on MCMC integration methods. In particular,
we demonstrate by numerical examples the statistical approach when the prior densities are non-
differentiable, such as the prior penalizing the total variation or the L1 norm of the resistivity.

1. Introduction

Consider the electrical impedance tomography (EIT) problem: given a body with unknown
electromagnetic properties, the goal is to estimate the unknown resistivity distribution in the
body from a finite number of current/voltage measurements on the surface of the body. In
this work, the measurement configuration can be described as follows: a set of contact
electrodes are attached on the body surface and different electric currents are injected into
the body. The corresponding voltages needed to maintain these currents are then recorded.
The current/voltage pairs constitute the data.

The potential applications of this imaging modality are numerous. The medical
applications of EIT vary from the detection of cancerous tumours from breast tissue [55, 59]
to monitoring of pulmonary or gastric functions [5, 20, 42]. For a review on the medical
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applications see [13]. In industry EIT has applications such as monitoring of industrial
processes [12,37,49,62,78] and non-destructive testing and evaluation of materials [2,21,60].
For a recent review on EIT see also [8].

This review concerns statistical inversion methods applied to the EIT problem. By
statistical inversion methods, we refer in particular to the Bayesian approach, recasting the
traditional inverse problem in the form of statistical inference from the distribution of the
unknown parameters.

The paper is organized as follows. In section 2, we consider the mathematical model of
both the forward problem with a particular emphasis on the computational aspects and the
conventional formulation of the inverse problem. We discuss briefly the linearized inverse
problem, iterative gradient-based solvers and differentiability issues. A new result, to the
knowledge of the authors, concerning the Fréchet differentiability of the forward electrode
model is proved. Section 3 is devoted to the description of the general idea of statistical
inversion methods, i.e. Bayesian formulation of the problem, and results concerning the Markov
chain Monte Carlo (MCMC) iteration schemes for sampling from probability distributions. In
section 4, we formulate the EIT problem as a Bayesian problem of statistical inference and apply
the MCMC algorithm with various prior distributions. In particular, we demonstrate the use of
the statistical approach with non-differentiable prior distributions that lead to computational
difficulties when traditional optimization-based iterative inversion methods are employed.
Finally, in section 5 we discuss briefly some related questions and problems for further study.
Two technical appendices are included at the end of the paper.

2. EIT problem

We start by discussing the mathematical model of the forward problem of determining the
electrode voltages on the surface of the body when the injected currents and the electromagnetic
properties of the body are known. The implementation of the forward problem with a finite
element approximation is also discussed. Further, the inverse problem and its linearized version
is then discussed in detail.

2.1. Forward problem

Let � ⊂ R
n, n = 2, 3, be a bounded domain with a connected complement. We assume

that � has a smooth boundary. Here, � represents the body with known electromagnetic
properties. We consider time-harmonic electromagnetic fields in � with low frequencies. In
the quasi-static approximation, the fields can be described in terms of a scalar voltage potential
u satisfying the equation

∇ · σ∇u = 0 (2.1)

in�. Within this approximation, the functionσ is complex valued and describes the admittivity,
the inverse of the impedivity, of the body. In this paper, we restrict ourselves to the case where
the admittivity is real and positive, describing the conductivity of the body, i.e. σ : � → R+.
Physically, this corresponds to the static measurement. An extension to complex admittivities
is straightforward.

The following definition fixes the admissible class of conductivities considered in this
paper.

Definition 2.1. A conductivity distribution σ : � → R+ is in the admissible class of
conductivities, denoted by A = A(�), if the following conditions are satisfied:



Statistical inversion and Monte Carlo sampling methods in EIT 1489

(1) For someN � 1, there is a family {�j }Nj=1 of open disjoint sets,�j ⊂ �, having piecewise
smooth boundaries and for which

� =
N⋃
j=1

�j .

Furthermore, we require that σ |�j
∈ C(�j), 1 � j � N , i.e., σ restricted to each subset

�j allows a continuous extension up to the boundary of the subset.
(2) For some constants c and C,

0 < c � σ(x) � C < ∞.

In medical applications, which is our major interest, the subsets�j in the forward problem
may represent the organs. In the inverse problem, the set of admissible conductivities provides
a natural discretization basis.

Due to the possible discontinuities of σ ∈ A, the equation (2.1) must be interpreted in the
weak sense, discussed in detail below.

To describe the current injection and voltage measurements on the surface of the body, we
define a set of surface patches e� ⊂ ∂�, 1 � � � L, as a mathematical model of the contact
electrodes. The electrodes are strictly disjoint, i.e. e� ∩ ek = ∅ for � 
= k. If � ∈ R

2, the
electrodes are disjoint intervals of the boundary, and in the case � ∈ R

3, they are sets with a
piecewise smooth simple boundary curve on ∂�. Let I� be the electric current injected through
the electrode e�. We call the vector I = (I1, . . . , IL)

T ∈ R
L a current pattern if it satisfies the

charge conservation condition

L∑
�=1

I� = 0. (2.2)

Let U� denote the voltage on the �th electrode, the ground voltage being chosen so that

L∑
�=1

U� = 0. (2.3)

The vectorU = (U1, . . . , UL)
T ∈ R

L is called a voltage vector. In terms of the current patterns
and voltages, the appropriate boundary condition for the electric potential is given as∫

e�

σ
∂u

∂n
dS = I�, 1 � � � L, (2.4)

σ
∂u

∂n

∣∣∣∣
∂�\∪e�

= 0, (2.5)

(
u + z�σ

∂u

∂n

)∣∣∣∣
e�

= U�, 1 � � � L. (2.6)

Here, the numbers z� are the presumably known contact impedances between the electrodes
and the body. We use the notation z = (z1, . . . , zL)

T in what follows. For simplicity, we
assume that the contact impedances are real. Note that in the forward problem, only the
current patterns on the boundary are specified. However, conditions (2.4) and (2.5) alone are
not sufficient to uniquely determine the potential u, but one needs to require u+ z�∂u/∂n to be
constant on e�, the constant being U�. Finding these voltages is part of the forward problem.

The electrode model described above was originally suggested in [9]. The well-posedness
and unique solvability of the direct problem was discussed in the articles [61] and [68]. The
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following proposition was proved in [68]. It serves also as a tool for further discussion in this
section. In the following, we use the notation

H = H 1(�)⊕ R
L, (2.7)

where H 1(�) is the L2-based Sobolev space. Further, we denote

Ḣ = H/R (2.8)

equipped with the quotient norm,

‖(u, U)‖
Ḣ

= inf
c∈R

‖(u− c, U − c)‖H.

Thus, (u, U) ∈ H and (v, V ) ∈ H are equivalent in Ḣ if

u− v = U1 − V1 = · · · = UL − VL = constant. (2.9)

With these notations, the following proposition fixes the notion of the weak solution of the
electrode model.

Proposition 2.2. Let σ ∈ A(�). The problem (2.1), (2.4)–(2.6) has a unique weak solution
(u, U) ∈ Ḣ in the following sense. There is a unique (u, U) ∈ Ḣ satisfying the equation

Bσ,z((u, U), (v, V )) =
L∑
�=1

I�V� (2.10)

for all (v, V ) ∈ Ḣ, where the quadratic form Bσ,z is given as

Bσ,z((u, U), (v, V )) =
∫
�

σ∇u ·∇v dx +
L∑
�=1

1

z�

∫
e�

(u−U�)(v−V�) dS.(2.11)

Furthermore, the quadratic form is coercive in Ḣ, i.e., we have the inequalities

α0‖(u, U)‖2
Ḣ

� Bσ,z((u, U), (u, U)) � α1‖(u, U)‖2
Ḣ

(2.12)

for some constants 0 < α0 � α1 < ∞.

The proof is based on the observation that the space Ḣ can be equipped with an equivalent
norm defined as

‖(u, U)‖2
∗ =

∫
�

|∇u|2 dx +
L∑
�=1

∫
e�

|u− U�|2 dS,

and the quadratic form Bσ,z satisfies the estimate

c‖(u, U)‖2
∗ � |Bσ,z((u, U), (u, U))| � C‖(u, U)‖2

∗ (2.13)

with some constants 0 < c � C � ∞ depending on σ and z. With this estimate, the result is
a direct consequence of the Lax–Milgram lemma. The details are not repeated here.

We define the resistance matrix of the complete model as follows. If σ ∈ A(�) and
z ∈ R

L, z� > 0 are given, the resistance matrix R(σ, z) is the L× L matrix with the property

U = R(σ, z)I,

where I is any current pattern that satisfies (2.2).
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2.2. Numerical implementation of the forward problem

The numerical implementation of the forward problem based on the electrode model of the
previous subsection has been discussed in detail, for example in [75] and [35]. A brief summary
of the details is given here.

Let uh denote a finite-dimensional approximation of the solution u satisfying the
equations (2.1), (2.4)–(2.6) in the weak sense specified by proposition 2.2, corresponding
to a given current pattern I . The approximation uh is in a finite-dimensional subspace
Qh = span{ϕi |1 � i � Nn} of dimension Nn,

uh =
Nn∑
i=1

αiϕi, (2.14)

where the functions ϕi are basis functions related to a finite element mesh, the number of
nodes being Nn. The finite element meshing of � is in practice chosen to conform with the
underlying partition defined by σ ∈ A. As usual, the super-index h indicates the mesh size.
In practice, we use linear or quadratic basis functions. In order that the condition (2.3) be
satisfied, the voltage vector is represented as

Uh =
L−1∑
j=1

βjnj , (2.15)

where the vectors nj ∈ R
L are chosen as n1 = (1,−1, 0, . . . , 0)T , n2 =

(1, 0,−1, . . . , 0)T , . . . , nL−1 = (1, 0, . . . ,−1)T .
Using the theory of finite elements [4], a substitution of the approximations (2.14)

and (2.15) to the weak form (2.10) yields a matrix equation

Ab = f, (2.16)

where b = (α, β)T ∈ R
Nn+L−1 and the data vector f is

f =
(

0∑L
�=1 I�(nj )�

)
=

(
0

CT I
)
, (2.17)

where 0 = (0, . . . , 0)T ∈ R
Nn and C ∈ R

L×(L−1) is the sparse matrix given as

C =




1 1 1 . . . 1
−1 0 . . . 0

0 −1 0 . . .
...

...
. . .

. . .

0 . . . −1



. (2.18)

The stiffness matrix A ∈ R
(Nn+L−1)×(Nn+L−1) is the sparse block matrix of the form

A =
(

B C

CT G

)
(2.19)

with

Bi,j =
∫
�

σ∇ϕi · ∇ϕj dx +
L∑
�=1

1

z�

∫
e�

ϕiϕj dS, 1 � i, j � Nn,

Ci,j = −
(

1

z1

∫
e1

ϕi dS − 1

zj+1

∫
ej+1

ϕi dS

)
, 1 � i � Nn, 1 � j � L− 1
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Gi,j =
L∑
�=1

1

z�

∫
e�

(ni)�(nj )� dS

=




|e1|
z1

, i 
= j

|e1|
z1

+
|ej+1|
zj+1

, i = j ,
1 � i, j � L− 1.

By solving equation (2.16) as b = A−1f , an approximate solution for the forward problem
is obtained. The Nn first coefficients in b give the solution uh in the nodes and the last
L − 1 coefficients give the referenced voltages β = (β1, . . . , βL−1)

T on the electrodes. The
potentials U� on the electrodes are calculated with the aid of (2.15) to yield

Uh = Cβ. (2.20)

The relation between the injected currents and the computed voltages on the electrodes can be
written in the form

Uh = Cβ = CR̃h(σ, z)CT I = Rh(σ, z)I, (2.21)

where R̃h(σ, z) ∈ R
(L−1)×(L−1) is a block (A−1)i,j ,Nn+1 � i, j � Nn+L−1 of the inverse of

the matrix A. Thus the computed approximation of the resistance matrix in the finite element
model is given as Rh(σ, z) = CR̃(σ, z)CT ∈ R

L×L.

2.3. Inverse problem

Within the framework of the electrode model of the previous section, the corresponding inverse
problem is to estimate the conductivity distribution from a set of measured current/voltage
pattern pairs. The estimation of the contact impedances z� of the electrodes can be included
in the inverse problem. In the following discussion, we assume that the contact impedances
are known.

Let {I (k)}Kk=1 ⊂ R
L, K � L − 1, be a set of linearly independent current patterns.

These current patterns are applied through the electrodes into the body whose conductivity
distribution is unknown. Let us denote by {V (k)}Kk=1 ⊂ R

L the set of measured voltage patterns.
The traditional formulation of the EIT inverse problem is to find an estimate σ̂ ∈ A(�) of
the true conductivity distribution σ ∈ A(�) of the body such that the set {U(k)}Kk=1 ⊂ R

L of
computed voltage patterns are in some sense close to the measured voltages.

In the EIT problem as formulated here, the input data are the known current patterns and
the measured output data are the corresponding voltage vectors. Thus, the information of
the internal structure of the body is in the resistance matrix. Since the resistance matrix is
more closely related to the resistivity distribution of the body, rather than to its inverse, the
conductivity distribution, it is more natural to seek to estimate the resistivity. In the case of
complex admittivity, the resistivity is replaced by complex impedivity. By the assumptions of
the admissible class of conductivities, we may assume that the resistivity is in the same class,
i.e.

ρ = σ−1 ∈ A(�).
We introduce here the following notations. If K linearly independent current patterns are used
in the EIT measurement, we stack the measured voltages to a single vector and denote

V = (V
(1)

1 , . . . , V
(1)
L , . . . , V

(K)
1 , . . . , V

(K)
L )T ∈ R

KL.

Similarly, we denote

U(ρ) = (U
(1)
1 (ρ), . . . , U

(1)
L (ρ), . . . , U

(K)
1 (ρ), . . . , U

(K)
L (ρ))T ∈ R

KL,

where U(k)(ρ) = R(ρ−1, z)I (k).
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2.4. Least squares methods, regularization and linearization

The most straightforward approach to attack the inverse problem is to seek to minimize the
weighted least squares error, i.e., seeking ρ such that the functional

F(ρ) = ‖U(ρ)− V ‖2
W =

K∑
k=1

L∑
�=1

wk,�(U
(k)
� (ρ)− V

(k)
� )2 (2.22)

attains its minimum. Here, W = (wk,�) is a symmetric positive definite weight matrix. Due to
the ill-posedness, the problem necessitates regularization. The classical way of implementing
a regularizing side constraint is to use a Tikhonov-type regularization: instead of minimizing
the least squares functional (2.22), one minimizes the regularized modification,

Fα(ρ) = ‖U(ρ)− V ‖2
W + αA(ρ), (2.23)

where A is a properly chosen regularizing functional and α > 0 is a regularization parameter.
The choice of the regularization functional A(ρ) is often done ad hoc. We shall discuss

specific choices in more detail in the next section. The goal of this paper is not to concentrate on
least squares methods per se. However, few comments concerning the minimization process
of the functional Fα are in order, since this issue touches also on the statistical inversion
algorithms. What is more, the standard least squares algorithms provide a good reference for
the statistical inversion methods discussed later.

The most commonly used algorithms for minimizing the regularized least squares
functional (2.23) are iterative gradient-based optimization algorithms. We discuss these
algorithms briefly.

Let HM ⊂ A(�) be an M-dimensional subspace of A(�). If HM = span{ηm|1 � m �
M}, we write ρ = ∑M

m=1 ρmηm ∈ HM and identify ρ with the vector (ρ1, . . . , ρM)
T ∈ R

M .
Consider the restriction of the functional Fα in (2.23) to HM . Starting from an initial

guess ρ(0) ∈ R
M , the iterative gradient-based methods produce a sequence {ρ(j)} ⊂ R

M of
resistivity distributions that hopefully converge towards the (global) minimum point of the
functional Fα(ρ). We consider first the choice of the initial guess.

Often, when no prior information of the internal structure of the body is available, the
initial guess of the resistivity is chosen to be constant. This constant may be chosen so that
the corresponding computed voltages are fitted to the measured voltages. In [36] and [69], the
fitting was based on the observation that the quadratic form Bσ,z in (2.11) has the property

Bσ,z(λ(u,U), (v, V )) = Bλσ,λ−1z((u, U), (v, V )), λ > 0,

implying that the resistance matrix R(σ, z) satisfies

R(λσ, λ−1z) = λ−1R(σ, z).

We consider now a model where both the resistivity and contact impedances are constants,
ρ = ρ0(1, . . . , 1)T , z = z0(1, . . . , 1)T . We have

U(k)(ρ0) = R(ρ−1
0 , z0)I

(k) = ρ0R(1, z0/ρ0)I
(k).

We assume, for a moment, that the ratio ξ = z0/ρ0 is known. We can then compute the
resistance matrix R(1, ξ) and define the reference voltage vectors Ũ (k) = R(1, ξ)I (k), and
further Ũ = (Ũ

(1)
1 , . . . , Ũ

(1)
L , . . . , Ũ

(K)
1 , . . . , Ũ

(K)
l )T . The optimal background resistance in

the weighted least squares sense is now found by minimizing the deviation

‖U(ρ0)− V ‖2
W = ‖ρ0Ũ − V ‖2

W,

yielding

ρ0 = ŨTWV

‖U‖2
W

. (2.24)
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The above procedure was based on the assumption that the ratio ξ is known. In general, this
is not the case. However, as pointed out in [9], in medical applications there is an empirical
value that gives a good approximation for this ratio. In general, the optimization of both ρ0

and z0 would require iterative methods.
In the following discussion the parenthesized super-index refers to the iteration number.

Having the initial value ρ(0) fixed, the conventional Gauss–Newton-type iteration step ρ(j) →
ρ(j+1), j � 0 is computed now as

ρ(j+1) = ρ(j) − λ(j)s (H (j)
α )−1g(j), (2.25)

where the Hessian H(j)
α ∈ R

M×M is given by

H(j)
α = (DU(ρ(j)))TW(DU(ρ(j))) + 1

2αD
2A(ρ(j)), (2.26)

and the gradient g(j) by

g(j) = (DU(ρ(j)))TW(U(ρ(j))− V ) + 1
2αDA(ρ(j)), (2.27)

and λs > 0 is a relaxation parameter controlling the step size. Here, DU and DA denote the
differentials of the maps ρ �→ U(ρ) and ρ �→ A(ρ), respectively, and D2A = (∂2A/∂ρj∂ρk).

This algorithm (and other gradient-based methods) rely on the differentiability of the map
ρ �→ R(ρ−1, z) as well as on the differentiability of the regularizing functional A. Since to
our knowledge the differentiability proof of the resistance matrix has not been presented in the
literature (although it is stated without proof in [36]), we give the proof here. For a reference
to results concerning the Fréchet differentiability and related inverse problems, see [10].

The differentiability assumption of the regularizing functional excludes many useful and
interesting choices of the functional. This issue is discussed in later sections with examples.
In the following theorem, we use the notation z = 1/y = (1/y1, . . . , 1/yL) ∈ R

L, y ∈ R
L

being the electrode contact admittance.

Theorem 2.3. The mapping

M : A(�)⊕ R
L → Ḣ, (σ, y) �→ (u, U),

is Fréchet differentiable. The derivative M′(σ, y) satisfies the following equation. Let
h = (s, η) ∈ A ⊕ R

L, with σ + s > 0 and y� + η� > 0. Denoting (w,W) = M′(σ, y)h, we
have

Bσ, 1
y
((w,W),(v, V )) = −

∫
D

s∇u0 · ∇v dx −
L∑
�=1

η�

∫
e�

(u0 − U 0
� )(v − V�) dS (2.28)

for all (v, V ) ∈ Ḣ.

Above, the space A⊕R
L is equipped with the norm ‖(σ, y)‖ = ‖σ‖∞+‖y‖∞. Especially,

theorem 2.3 implies that the resistance matrix (σ, y) �→ R(σ, 1/y) is Fréchet differentiable.

Proof. Let us denote M(σ + s, y + η) = (u, U) and M(σ, y) = (u0, U 0). We need to prove
the estimate

‖(u, U)− (u0, U 0)− (w,W)‖∗ � C(‖s‖∞ + ‖η‖∞)2c

with some constant C independent of s and η, where (w,W) is the solution of the
equation (2.28). We have

Bσ,1/y((u
0, U 0), (v, V )) =

L∑
�=1

I�V� = Bσ0+h,1/(y+η)((u, U), (v, V )),
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or∫
�

(σ + s)∇u · ∇v dx −
∫
�

σ∇u0 · ∇v dx +
L∑
�=1

(y� + η)

∫
e�

(u− U�)(v − V�) dS

−
L∑
�=1

y�

∫
e�

(u0 − U 0
� )(v − V�) dS = 0.

In terms of the quadratic form Bσ,1/y , we have

Bσ,1/y((u− u0, U − U 0), (v, V ))

= −
∫
�

s∇u · ∇v dx −
L∑
�=1

η�

∫
e�

(u− U)(v − V ) dS. (2.29)

By substracting the equation (2.28), we obtain

Bσ,1/y((u− u0 − w,U − U 0 −W), (v, V ))

= −
∫
�

s∇(u− u0) · ∇v dx −
L∑
�=1

η�

∫
e�

((u− u0)− (U� − U 0
� ))(v − V�) dS.

Therefore, by the estimate (2.13), we have

‖(U, u)− (U 0, u0)− (w,W)‖2
∗

� C|Bσ,1/y((u− u0 − w,U − U 0 −W), (u− u0 − w,U − U 0 −W))|
� C

( ∫
�

|s||∇(u− u0)||∇(u− u0 − w)| dx

+
L∑
�=1

|η�|
∫
e�

|u− u0 − (U� − U 0
� )||u− u0 − w − (U� − U 0

� −W�)| dS

)

� C(‖s‖∞ + ‖η‖∞)‖(u, U)− (u0, U 0)‖∗‖(U, u)− (U 0, u0)− (w,W)‖∗.

The claim thus follows if we show the estimate

‖(u, U)− (u0, U 0)‖∗ � C(‖s‖∞ + ‖η‖∞).

This inequality is a consequence of the equation (2.29), since

‖(u, U)− (u0, U 0)‖2
∗ � C|Bσ,y((u, U)− (u0, U 0), (u, U)− (u0, U 0))|

�
∫
�

|s||∇u||∇(u− u0)| dx +
L∑
�=1

|η�|
∫
e�

|u− U�||u− u0 − (U� − U 0
� )| dS

� C(‖s‖∞ + ‖η‖∞)‖(u, U)‖∗‖(u, U)− (u0, U 0)‖∗,

giving the desired estimate. The proof is complete. �

In practice, the full iterative Gauss–Newton algorithm is seldom used. Instead, one usually
performs just one updating step ρ(0) → ρ(1) and then stops. It is our experience that in order
to get a converging iterative algorithm, one usually has to decrease the relaxation parameter λs

in formula (2.25) as the iteration marches on. Often, the reconstruction after several iterations
does not differ significantly from the reconstruction after the first iteration step, especially
when the initial estimate has been chosen to be the best matching constant resistivity. The
numerical computation of the differential DU(ρ) is explained in appendix B.
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3. Statistical inversion

The philosophy behind the statistical inversion methods is to recast the inverse problem in the
form of statistical quest for information. We have directly observable quantities and those that
cannot be observed. These quantities depend on each other through a more or less well known
model. The objective is to extract all the possible information of some of the variables based on
all knowledge of the measurements, model and information obtained prior to the measurement.
In the statistical inversion approach, all the variables included in the model are modelled as
random variables. It can be thought that the randomness is related to our uncertainty of their
true values, and this uncertainty is expressed in terms of probability distributions. In contrast to
the traditional formulation of the inverse problem discussed above, the solution of the statistical
inverse problem is the posterior probability distribution of the sought parameter conditioned
on the measurement. The identification of inverse problems with statistical inference has been
promoted, especially in the geophysical literature, see [46, 52, 54, 71, 72] and [53]. Below, a
summary of the basic ideas is given with the assumption that the variables are finite-dimensional
random vectors, although an extension to infinite-dimensional spaces is possible; see [45].

3.1. Bayesian model

We start by formulating the statistical inverse problem in the framework of Bayesian statistics.
As a general reference on probability theory, see, e.g., [56] or [66]. As is customary in
probability theory, random variables are denoted by capital letters and their values by lower
case letters. Let (S,B, P ) denote a probability space, B being the σ -algebra of measurable
subsets of S and P : B → [0, 1] a probability measure. Let

(X,N) : S → R
n+k, V : S → R

m (3.1)

be random vectors. In our formulation, the vector (X,N) represents all those quantities that
cannot be directly measured while V represents a vector of observable quantities. We assume
thatX ∈ R

n represents those variables that we are primarily interested in whileN ∈ R
k contains

unknown but uninteresting variables such as the measurement noise or model parameters of
which we have incomplete knowledge. These variables are assumed to be tied together through
a model

V = F(X,N), (3.2)

i.e., we assume that the model is complete in the sense that the vectors X and N determine
the observable V uniquely. The function F : R

n+k → R
m is assumed here to be a known

deterministic function representing a model of the measurement. We assume that the variables
X and N take the values X = x ∈ R

n and N = n ∈ R
k . Then, the probability distribution of

the random variable V conditioned on X = x and N = n is formally given by

π(v|x, n) = δ(v − F(x, n)),

where δ is the Dirac delta in R
m. Let πpr(x, n) denote the prior probability density of the

unknown vector (X,N). Then the joint probability density of (X,N) and V can be written as

π(x, n, v) = π(v|x, n)πpr(x, n) = δ(v − F(x, n))πpr(x, n).

Since we have arranged the variables so that N represents all the variables whose values are
not of primary interest, we may integrate the variable n out and define the joint probability
density of the variables X and V as a marginal distribution,

π(x, v) =
∫

Rk

π(x, n, v) dn =
∫

Rk

δ(v − F(x, n))πpr(x, n) dn. (3.3)
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Often in the applications, one considers a simple model where the variables X and N are
independent. In terms of the probability densities, this can be written as

πpr(x, n) = πpr(x)πnoise(n),

where we have identified the variable N as noise. Furthermore, the posterior distribution
attains a particularly simple form in the case where the noise is additive. Then the model
equation (3.2) is written as

V = f (X) + N,

and the integration with respect to v in (3.3) can be performed. We have

π(x, v) =
∫

Rk

δ(v − f (x)− n)πpr(x)πnoise(n) dn = πpr(x)πnoise(v − f (x)). (3.4)

The solution of the statistical inverse problem is defined as the posterior distribution of
X, i.e. the conditional probability density πpost(x) = π(x|v), given by the well known Bayes
formula

π(x|v) = π(x, v)∫
π(x, v) dx

. (3.5)

Thus, the solution of the statistical inverse problem, in contrast to traditionally formulated
ones, is not just an estimate of the unknown vector X but a probability distribution. We can
also write π(x, v) = πpr(x)πnoise(v − f (x)) = πpr(x)π(v|x). The term π(v|x) is called the
likelihood density.

Let us mention that the formulation above covers implicitly also the hierarchial Bayes
models. More precisely, we assume that the prior density πpr(x) depends on model parameters
α ∈ R

� that are not exactly known, πpr(x) = πpr(x, α). The uncertainty concerning the value
of α is expressed in hierarchial Bayes models by saying that α is distributed according to a
presumably known hyper-prior distribution πh(α). Merging the vector α into the model vector
n renders the hierarchical model formally, similar to the discussed one.

3.2. Estimates from posterior distribution

We assume that we have solved an inverse problem in the statistical sense, i.e., we have
determined the posterior probability distribution of the random variable X. This distribution
can be used to calculate various estimates for X as well as a posteriori uncertainties for
these estimates. Assuming that the probability distribution is given in terms of a probability
density as above, a commonly used estimate based on this density is the (possibly non-unique)
maximum a posteriori (MAP) estimate

xMAP = arg maxx π(x|v). (3.6)

The computation of the MAP estimate leads typically to an optimization problem such as the
regularized least squares problem discussed in section 2.4. It is worth noting that the well
known maximum likelihood estimate which amounts to the determination of the maximum of
the likelihood density only, that is

xML = argmaxxπ(v|x),
corresponds to the solution of the non-regularized inverse problem. Thus in the case of ill-posed
inverse problems, maximum likelihood estimates are unstable.

Another commonly used estimate that will be discussed in more detail here is the
conditional expectation

x|v =
∫

Rn

xπ(x|v) dx. (3.7)
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In contrast to the search for the maximum posterior estimate, the search for the conditional
expectation is an integration problem.

We assume that x̃ ∈ R
n is an estimate of the variable X. To get an idea of the reliability of

this estimate, it is also desirable to obtain credibility limits for this estimate. Let us consider
the j th component of the vector x. In the following, we use the notation

x−j = (x1, . . . , xj−1, xj+1, . . . , xn)
T ∈ R

n−1,

i.e., x−j is the vector x with the j th component deleted. The conditional posterior probability
density of the single component Xj conditioned on x̃−j is given by

π(xj |x̃−j , v) ∼ π((x̃1, . . . , x̃j−1, xj , x̃j+1, . . . , x̃n)|v). (3.8)

The marginal posterior probability density of Xj is given as

π(xj |v) ∼
∫

Rn−1
π(x|v) dx−j , (3.9)

i.e., we integrate out the n − 1 variables from the posterior distribution. Both of these one-
dimensional distributions are informative in the evaluation of the credibility intervals of the
estimate x̃j . However, there is a remarkable difference: if the components of the random
variable X− x̃ are strongly correlated with respect to the posterior measure, it is clear that the
conditional probability density of Xj given by (3.8) depends heavily on the values x̃−j , while
the marginal probability density is independent of them. Therefore, it is advisable to calculate
the conditional correlation matrix

corr(x − x̃|v) =
∫

Rn

(x − x̃)(x − x̃)T π(x|v) dx (3.10)

before jumping to conclusions based on the conditional distribution. Large off-diagonal
components compared with the diagonal ones indicate large correlation and thus heavy
dependence of the conditional posterior density on the corresponding components.

To summarize, the estimation of the random variable based on the posterior density as well
as the estimation of the a posteriori uncertainties require integration of the posterior probability
density. In the following sections, we discuss sampling-based integration techniques.

3.3. General idea of MCMC

The statistical formulation of the inverse problem gives a posterior probability density (or more
generally, a posterior probability distribution) as a solution rather than single estimates. To
obtain single estimates and information as to their credibility, one often faces the problem of
integrating numerically with respect to the posterior probability distribution. It is clear that if
the dimension of the parameter space R

n is large, the use of numerical quadrature methods is
out of the question. In this section we discuss the MCMC methods. The MCMC methods are,
at least on the conceptual level, relatively simple algorithms to generate sample ensembles for
Monte Carlo integration. The literature on MCMC methods is extensive. Our main references
in this section are [65, 67, 74] and [24].

Let ν denote a probability measure over a state space that is chosen here to be R
n and let

f be a scalar or vector- valued measurable function on R
n, f ∈ L1(ν(dx)). The objective is to

calculate the integral of f by Monte Carlo integration. Hence, if {x(1), x(2), . . . , x(N)} ⊂ R
n

is a representative ensemble of samples distributed according to the distribution ν, we seek to
approximate the integral of f by an ergodic average∫

Rn

f (x)ν(dx) ≈ 1

N

N∑
j=1

f (x(j)). (3.11)
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The MCMC methods are just a systematic way of generating a sample ensemble such that (3.11)
holds.

Let B denote the Borel sets over R
n. A mappingP : R

n×B → [0, 1] is called a probability
transition kernel, if

(i) for each B ∈ B, the mapping R
n → [0, 1], x �→ P(x, B) is a measurable function;

(ii) for each x ∈ R
n, the mapping B → [0, 1], B �→ P(x, B) is a probability distribution.

A time-homogenous Markov chain with the transition kernel P is a stochastic process
{X(j)}∞j=1 with the properties

P(X(j+1) ∈ A|X(1), . . . , X(j)) = P(X(j+1) ∈ A|X(j)), (3.12)

P(x,A) = P(X(j+1) ∈ A|X(j) = x). (3.13)

More generally, we define

P (k)(x, A) = P(x(j+k) ∈ A|x(j) = x)

=
∫

Rn

P (y,A)P (k−1)(x, dy), k � 2

where P (1)(x, A) = P(x,A). In particular, if ν is the probability distribution of X(j), the
distribution of X(j+1) is given by

νP (A) =
∫

Rn

P (x,A)ν(dx). (3.14)

The measure ν is an invariant measure of P(x,A) if

νP = ν, (3.15)

i.e., the distribution of the random variable after one transition step is the same as before the
step.

Given a probability measure ν, the transition kernel P is called irreducibile (with respect
to ν) if for each x ∈ R

n and A ∈ B with ν(A) > 0 there exists an integer k such that
P (k)(x, A) > 0. Thus, regardless of the starting point, the Markov chain enters with a positive
probability any set of positive measures.

Let P be an irreducible kernel. We call P periodic if for some integer m � 2 there is a set
of disjoint non-empty sets {E1, . . . , Em} ⊂ R

n such that for all j = 1, . . . , m and all x ∈ Ej ,
P(x,E

j+1( mod m)
) = 1. Otherwise, P is aperiodic.

The following result is of crucial importance for MCMC methods.

Proposition 3.1. Let ν be an invariant measure of the transition kernel P , and we assume that
P is irreducible and aperiodic. Then for all x ∈ R

n,

lim
N→∞

P (N)(x,A) = ν(A) for all A ∈ B, (3.16)

and for f ∈ L1(ν(dx)),

lim
N→∞

1

N

N∑
j=1

f (X(j)) =
∫

Rn

f (x)ν(dx) (3.17)

almost certainly.

See [67], proofs in [74] based on [58].
The property (3.17) is the important ergodicity property that is used in Monte Carlo

integration. The convergence (3.16), stating that ν is a limit distribution for the transition
kernel P can be stated also in a slightly stronger form. We skip the detailed discussion here
and refer to article [74].
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3.4. Construction of the transition kernel

To avoid measure theoretic notations, we assume that the probability distribution ν on R
n is

defined by a probability density, ν(dx) = π(x) dx. We wish to determine a transition kernel
P(x,A) such that ν is its invariant measure. To this end, we write P as a sum of absolutely
continuous and singular part

P(x,A) =
∫
A

K(x, y) dy + r(x)χA(x)

=
∫
A

(K(x, y) + r(x)δ(x − y)) dy,

where χA is the characteristic function of the set A and δ denotes the Dirac delta. Although
K(x, y) � 0 is actually a density in the setting of continuous random variables, it can loosely
be interpreted as the probability of the move from x to y while r(x) � 0 is the probability
of x remaining inert. This would be correct in the setting of discrete random variables. The
condition P(x,Rn) = 1 implies that

r(x) = 1 −
∫

Rn

K(x, y) dy. (3.18)

In order for π(x) dx to be an invariant measure of P , we must have the identity

νP (A) =
∫
A

( ∫
Rn

π(x)K(x, y) dx + r(y)π(y)

)
dy

=
∫
A

π(y) dy

for all A ∈ B, or

π(y)(1 − r(y)) =
∫

Rn

π(x)K(x, y) dx. (3.19)

By formula (3.18), this is tantamount to∫
Rn

π(y)K(y, x) dx =
∫

Rn

π(x)K(x, y) dx, (3.20)

referred to as the balance equation. In particular, if K satisfies the detailed balance equation

π(y)K(y, x) = π(x)K(x, y) (3.21)

for all pairs x, y ∈ R
n, then the balance equation holds a fortiori. The conditions (3.20)

and (3.21) constitute the starting point in constructing the Markov chain transition kernels
used for stochastic sampling.

We start by discussing an MCMC scheme known as the Metropolis–Hastings algorithm;
see [33, 51]. The aim is to construct a transition kernel K that satisfies the detailed balance
equation (3.21). One starts with some candidate kernel. Thus, let q : R

n × R
n → R+ be a

given function with the property
∫
q(x, y) dy = 1. The function q defines a transition kernel

Q(x,A) =
∫
A

q(x, y) dy.

If q happens to satisfy the detailed balance equation, we set simply K(x, y) = q(x, y),
r(x) = 0 and we are done. Otherwise, we define

K(x, y) = α(x, y)q(x, y), (3.22)

where α is a correction term to be determined. We assume that for some x, y ∈ R
n, instead of

the detailed balance, we have

π(y)q(y, x) < π(x)q(x, y). (3.23)
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Our aim is to choose α such that

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y). (3.24)

This is achieved if we set

α(y, x) = 1, α(x, y) = π(y)q(y, x)

π(x)q(x, y)
< 1. (3.25)

By reversing x and y, we see that the kernel K defined through (3.22) satisfies (3.21) if we
choose

α(x, y) = min

(
1,

π(y)q(y, x)

π(x)q(x, y)

)
. (3.26)

This transition kernel is called the Metropolis–Hastings kernel. The kernel q is called the
candidate generating kernel for reasons that become evident when the implementation of the
method is discussed.

A slightly different algorithm is obtained if the candidate generating kernel is defined
by using the density π directly and a block segmentation of the vectors in R

n. Let us write
R
n = R

k1 × · · · × R
km , where k1 + · · · + km = n, and denote correspondingly

x = (x(1), . . . , x(m))
T ∈ R

n, x(j) ∈ R
kj . (3.27)

If X is an n-variate random variable with the probability density π , the probability density of
the ith block X(i) conditioned on the variables X(j) = x(j), i 
= j , is given by the density

π(x(i)|x(1), . . . , x(i−i), x(i+1), . . . , x(m)) = Ciπ(x(1), . . . , x(i−1), x(i), x(i+1), . . . , x(m)),

where Ci is a normalization constant. With these notations, we can define a transition kernel
K by the formula

K(x, y) =
m∏
i=1

π(y(i)|y(1), . . . , y(i−1), x(i+1), . . . , x(m)), (3.28)

and

r(x) = 0.

This transition kernel does not in general satisfy the detailed balance equation (3.21). However,
it satisfies the weaker but sufficient condition (3.20). To prove this claim, we observe first that∫

Rki

π(y(i)|y(1), . . . , y(i−1), x(i+1), . . . , x(m)) dy(i) = 1

for all i = 1, . . . , m, implying that∫
Rn

π(y)K(y, x) dx = π(y)

∫
Rn

K(y, x) dx = π(y).

Furthermore, we observe that∫
Rki

π(y(1), . . . , y(i−1), x(i), . . . , x(m))π(y(i)|y(1), . . . , y(i−1), x(i+1), . . . , x(m)) dx(i)

= π(y(1), . . . , y(i−1), x(i+1), . . . , x(m))π(y(i)|y(1), . . . , y(i−1), x(i+1), . . . , x(m))

= π(y(1), . . . , y(i−1), y(i), x(i+1), . . . , x(m)).

Applying this identity recursively we obtain∫
Rn

π(x)K(x, y) dx = π(y),

showing that (3.20) holds. The algorithm thus obtained is known as the Gibbs sampler. For
the special case when m = n and k1 = · · · = km = 1, the algorithm is referred to as the
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single component Gibbs sampler. The algorithm was originally proposed in article [23] for
image restoration purposes, and later generalized and developed to its present form in [22].
Although the construction of the Gibbs sampler, as opposed to the Metropolis–Hastings kernel,
is not based on the requirement of the detailed balance of the transition kernel, it is often seen
as a special case of the Metropolis–Hastings algorithm. As we shall see in the next section,
algorithmically they yield essentially the same method.

The success of the Metropolis–Hasting and Gibbs sampler algorithms depend largely on
whether they satisfy the assumptions of proposition 3.1. There are known sufficient conditions
concerning the density π that guarantee the ergodicity of these methods. In the following
proposition, we give such conditions, which are relatively general. The proposition summarizes
lemmas 1 and 2 in [67]. The proofs can be found in article [64].

Proposition 3.2. (i) Let π : R
n → R+ be a probability density, andE+ = {x ∈ R

n|π(x) > 0},
and let q : R

n×R
n → R+ be a candidate generating kernel andQ(x,A) be the corresponding

transition probability function. If Q is aperiodic, then the Metropolis–Hastings chain is also
aperiodic. Further, if Q is irreducible and α(x, y) > 0 for all (x, y) ∈ E+ × E+, then the
Metropolis–Hastings chain is irreducible.

(ii) Let π be a lower semicontinuous density and E+ = {x ∈ R
n|π(x) > 0}. The Gibbs

sampler defines an irreducible and aperiodic transition kernel if E+ is connected and each
(n− 1)-dimensional marginal π(x−j ) = ∫

R
π(x) dxj is locally bounded.

When implemented in practice, the question of convergence is a difficult issue, since it is
not a straightforward matter to decide when the sample set is large enough to represent good
coverage of the probability distribution. Another practical issue that needs to be taken into
account is related to the initiation of the sampling. If the initial value x(1) is far away from
the maxima of the distribution, it may take a long sequence of updatings before the algorithm
starts to sample the distribution near the maxima where most of the contribution should come
from. Therefore, in practice, it is advisable to retain the samples only after a period of time
that is usually referred to as the burn-in phase. One can monitor the posterior probabilities of
the updates as the sampling proceeds and retain the samples only after this random function
stabilizes around some value. This will be demonstrated in section 4. It is also proposed
in the literature to restart the MCMC sampling with different initial values. This procedure
guarantees on one hand that the samples are less correlated and it may also lead to a better
coverage of the probability distribution. More details of the convergence issues may be found,
e.g., in [24] and [11].

3.5. Implementing MCMC

One of the reasons why the MCMC methods are becoming increasingly popular in various
fields of application is that they are conceptually simple and the algorithms are easy to describe
on a formal level. We start by giving the implementation steps of the single-component Gibbs
sampler. A generalization to a block version is straightforward.

(1) Pick the initial value x(1) ∈ R
n and set k = 1.

(2) For 1 � j � n, draw y
(k)
j ∈ R from the one-dimensional distribution

π(yj |y(k)1 , . . . , y
(k)
j−1, x

(k)
j+1, . . . , x

(n)
n ).

(3) Set x(k+1) = y(k). When k = K , the desired sample size, stop. Else, increase k → k + 1
and repeat from (2).

Similarly, the Metropolis–Hastings algorithm consists of a few simple steps.

(1) Pick the initial value x(1) ∈ R
n and set k = 1.
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(2) Draw y(k) ∈ R
n from the proposal distribution q(x(k), y) and calculate the acceptance

ratio

α(x(k), y) = min

(
1,

π(y)q(y, x(k))

π(x(k))q(x(k), y)

)
.

(3) Draw t ∈ [0, 1] from uniform probability density.
(4) If α(x(k), y) � t , set x(k+1) = y, else x(k+1) = x(k). When k = K , the desired sample size,

stop, else increase k → k + 1 and repeat from (2).

The implementation of both of the above methods requires care. In implementing the
Gibbs sampler, the posterior distribution is typically given in a non-parametric way. Therefore,
the one-dimensional updatings are usually done by approximating numerically the probability
densities. More precisely, to perform the second step with a given j , one needs to calculate
the function

C(t) = C

∫ t

−∞
π(yj |y(k)1 , . . . , y

(k)
j−1, x

(k)
j+1, . . . , x

(n)
n ) dyj , (3.29)

where we have included a normalization constant C to guarantee that C(t) → 1 as t → ∞.
The value y(k)j is then found by setting y(k)j = C−1(t), where t is a drawn value of a uniformly
distributed random variable in the interval [0, 1]. To calculate the function C above, one needs
a relatively good understanding of the interval where the distribution function differs clearly
from zero. If the direct model is complicated, the numerical search as well as the integration
itself may make the algorithm prohibitively slow.

In the Metropolis–Hastings algorithm, the proposal algorithm is usually chosen to be a
parametric density (e.g. Gaussian) to make the drawing simple. The problem here is to choose
the proposal distribution so that the acceptance ratio has a reasonable value. If q is chosen too
wide, the drawn y is practically never accepted. On the other hand, if q is so narrow that the
proposed y is always accepted, the step x(k) → x(k+1) gets too short and a proper sampling
of the distribution requires a prohibitively large sample set. There are results concerning an
optimal acceptance ratio (see, e.g., [24, 64]). A good rule of thumb is that of all y, roughly
20–30% should be accepted.

Let us mention here that in the literature adaptive Metropolis–Hastings schemes have been
suggested; see, e.g., [18,24,25,29,30,57,70]. The idea in some of the adaptive methods is to
change the proposed distribution based on recent draws as the algorithm progresses.

4. EIT as a statistical inverse problem

Consider now the impedance tomography problem as a statistical inverse problem. As in
section 2.4 where the gradient-based methods were discussed, we consider the discretized
problem, i.e. we identify the resistivity with the coefficient vector, so that we have ρ ∈ R

M .
The discrete model is

V = U(ρ) + N,

where the additive noise N is assumed to be independent of ρ. What is more, we assume that
the contact impedances are known. An extension to the case of unknown contact impedances
is quite straightforward.

We assume that the basis functions ηk ∈ HM spanning the subspace HM are positive.
Typically, the functions are the characteristic functions of the pixels (or voxels when � ⊂ R

3)
of the discretized body. To implement the positivity constraint in this situation, we consider
prior densities of the form

πpr(ρ) = π+(ρ)π̃pr(ρ), (4.1)
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where π̃pr is to be discussed later and π+ is the positivity prior

π+(ρ) =
{

1 if 0 � ρmin � ρj � ρmax � ∞ for all j, 1 � j � M

0 otherwise.

In practice, one has to choose ρmin > 0 in order that the forward problem be solvable in the
admissible class of HM where πpr(ρ) > 0.

Since the EIT problem with merely the positivity constraint is in practice still too sensitive
to noise, we may call the density π̃pr the regularizing prior density. We write the regularizing
prior densities in the form

π̃pr(ρ) ∼ e−αA(ρ), (4.2)

where α > 0 is a parameter that is related to the confidence on the regularizing prior. Let us
assume that the noise vector N is a zero mean Gaussian random vector with positive definite
covariance matrix C. With this choice, the posterior distribution given by formulae (3.3)
and (3.5) assumes the form

π(ρ|V ) ∼ π+(ρ)exp(− 1
2 (U(ρ)− V )T C−1(U(ρ)− V )− αA(ρ)).

Hence, without the positivity constraint π+, the weighted least squares solution discussed
in section 2.4 corresponds to the MAP solution when W = 1

2C
−1. This rather obvious

observation is our starting point in the discussion of the EIT prior densities. For earlier studies
on the statistical approach to EIT inverse problems, see [18, 39, 40, 43, 44, 50, 57, 69].

4.1. EIT priors

In impedance tomography, the fundamental prior information of the resistivity distribution
is that it is a positive function. Additional information may be related to the overall size
of the resistivity [6, 7], smoothness properties of the function, see e.g. [1, 34, 80], or to the
presumably known internal structure of the body. For example, in magnetic resonance imaging
(MRI)-guided medical impedance tomography, such information is the approximately known
anatomical structure of the body; see, e.g., [38, 39, 75, 77].

In the discussion below, we use as a starting point the most commonly used regularizing
functionals for generating different regularizing priors. We start by specifying the discretization
subspace HM . We assume that the body � is divided into M pixels �j , 1 � j � M . We
define the subspace HM ⊂ A as consisting of resistivities of the simple form

ρ(x) =
M∑
j=1

ρjχj (x), (4.3)

where χj is the characteristic function of �j and identify ρ ∈ HM with the vector
(ρ1, . . . , ρM) ∈ R

M .
We consider first the simplest Tikhonov-type regularization, where the least squares

functional to be minimized is

Fα(ρ) = ‖U(ρ)− V ‖2
W + α‖ρ − ρ∗‖2

L2(�).

More generally and especially when gradient-based methods are employed, the
regularizing functional A is often chosen to be a quadratic functional

A(ρ) = ‖L(ρ − ρ∗)‖2
L2(�).

Here, ρ∗ is a ‘good guess’ for the resistivity distribution and L is a properly chosen linear
regularization operator.
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Consider the discrete case where L is a matrix approximation of the operator L, and

π̃pr(ρ) ∼ e−α‖L(ρ−ρ∗)‖2
. (4.4)

When L is a discrete approximation of a differential operator, we arrive at a class of
regularizing priors that can be called smoothness priors. For a short discussion on the
utilization of conventional smoothness priors in EIT inverse problems, see [34]. A typical
difficulty in using the smoothness-type priors is that the functions inHM are not differentiable.
However, reasonable discrete approximations can be defined. One such construction is given
in appendix A.

A different meaning of the quadratic regularization functional is obtained by observing
that the probability mass of the density (4.4) is concentrated near the affine space

ρ∗ + Ker(L) = {ρ ∈ HM |ρ − ρ∗ ∈ Ker(L)}.
Thus, the prior density tends to pull the resistivity distributions towards this space without
strictly constraining the solutions to this space. In article [77] this point of view was adopted
and the matrix L was chosen as

L = I − P,

the matrix P being an orthogonal projection P : HM → H 0
M . The space H 0

M was chosen
such that the vectors ρ ∈ H 0

M correspond to (anatomically) realistic resistivity distributions.
A basis for H 0

M was constructed by using principal components computed from an acceptable
ensemble of resistivity distributions. This class of priors is called subspace priors.

Anatomical prior information can also be considered, loosely speaking, as knowledge
about the spatial and directional variations in the size of the first-order derivatives of the
resistivity distribution. In article [39] structural prior information was incorporated into
the regularization operator penalizing the first-order smoothness of ρ with the aid of a
properly constructed matrix-valued field. Also, the statistical interpretation of the method was
explained. Especially, the assessment of the implicit assumptions that are carried out when
the prior model is used, was explained via the investigation of certain conditional covariances
of the prior distribution.

Obviously, if we have strict confidence on the anatomical prior information, it can be
incorporated as a structural constraint to the EIT inverse problem via the construction of the
space HM . These approaches lead typically to a very small-dimensional inverse problem that
is no longer ill-posed. Thus, a maximum likelihood approach can yield reasonable estimates.
These methods are not discussed further here; for details see [16, 26, 27, 76, 79].

The statistical inversion method allows us to analyse also priors that lead to non-
differentiable regularization functionals but which conform well with the assumption ρ ∈ A,
i.e. priors that allow moderate discontinuities in the resistivities. In article [14], the authors
considered the linearized EIT problem with continuous-type boundary data and used an
image enhancement technique based on the minimization of the total variation of the image.
Modifying this idea, the total variation can also be considered as a regularizing functional.

Let f : � → R be a function in L1(�). We define the total variation of f , denoted by
TV(f ), as

TV(f ) =
∫
�

|Df | = sup

{ ∫
�

f divg dx|g = (g1, . . . , gn) ∈ C1
0(�; R

n), |g(x)| � 1

}
.

A function is said to have bounded variation if TV(f ) < ∞.
To find a discrete analogue, let us consider the two-dimensional problem. We assume that

ρ is of the form (4.3). Let J be the number of edges of positive length between the pixels. In
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this case, the total variation of ρ can be calculated as

TV(ρ) =
J∑

j=1

dj |FT
j ρ|, (4.5)

where dj is the length of the j th edge between the adjacent pixels �
i
j

1
and �

i
j

2
and Fj ∈ R

N

is the vector

(i
j

1 ) (i
j

2 )

Fj = (0, . . . , 1, 0, . . . , 0, −1, 0, . . . , 0)T .

The total variation prior is defined as

π̃pr(ρ) ∼ e−αTV(ρ), (4.6)

where the total variation is calculated as in (4.5). The statistical approach to EIT with the total
variation prior was adopted in [40,69]. Estimates from the posteriors were computed by using
the sampling-based approach.

Another non-quadratic prior is obtained by considering the regularization functional

A(ρ) = ‖ρ − ρ∗‖L1(�).

A piecewise constant discretization leads us to consider the prior

π̃pr(ρ) ∼ exp

(
− α

M∑
j=1

|�j ||ρj − ρ∗|
)
. (4.7)

Hence, the corresponding regularizing functional is also non-differentiable in this case and the
direct utilization of gradient-based optimization methods for the search of the MAP estimate
is not possible. An approximation for the L1-prior has been used in connection with EIT and
statistical inversion in [50].

References [18, 57] give very interesting ideas for the statistical inversion of EIT data.
In [18] the authors consider a situation in which the possible material types, say materials
denoted by {1, . . . , N}, making up the object � are known. In their model the resistivities of
the materials {1, . . . , N} are assumed to be known exactly a priori but the proportion and the
spatial distribution of the different materials is unknown. In their model, they use a regularizing
prior of the form

πpr(ρ) ∝ exp

(
α

M∑
m=1

Hm(ρ)

)
, Hm(ρ) =

∑
m′∼m

δ(ρm − ρm′), (4.8)

where δ is the Dirac delta and the notation m ∼ m′ means that the summation is carried over
the immediate neighbours m′ of the pixel m on the lattice. The exact knowledge about the
resistivities of the (possible) materials in � is taken into account via the construction of the
transition kernel for the Metropolis–Hastings algorithm. In a uniform square lattice this prior
can be basically thought of as an analogue of the total variation prior (4.6) for processes with
discrete states. Priors of the form (4.8) are often referred to as Markov random field priors.

In [57] the authors extend the model by assuming that the resistivities of the materials
{1, . . . , N} are not known a priori but instead they may vary from pixel to pixel. Let
τ = (τ1, . . . , τM)

T denote some estimate for the material-type distribution in � with states
τi ∈ {1, . . . , N}. By assuming that the resistivity of each material j obeys Gaussian density
with mean η(j) and standard deviation ξ(j), they defined a conditional prior of the form

πpr(ρ|τ) ∝ π+(ρ) exp

(
− α

M∑
m=1

Gm(ρ)

) M∏
m=1

exp

(
− 1

2ξ(τm)2
(ρm − η(τm))

2

)
, (4.9)
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i

i+1

Figure 1. Left: the discretization of the domain � into 260 quadrilateral pixels. Right: the ith and
(i + 1)th edge between the adjacent pixels. The dotted lines denote the boundaries of the triangular
elements that are used in the forward computations.

where Gm(ρ) = ∑
m′∼m(ρm − ρm′)2 and m′ ∼ m mean the same as in (4.8). For the material-

type distribution τ the authors used a prior πpr(τ ) of the form (4.8) and the overall prior was
obtained as πpr(ρ, τ ) = πpr(ρ|τ)πpr(τ ). These sophisticated prior models could be especially
useful in certain industrial applications of EIT.

There are also some very interesting results concerning the use of Bayesian neural networks
in connection with impedance imaging [43, 44]. In this approach the prior information as
well as the nonlinearity of the inverse problem are coded in a multilayer perceptron (MLP)
network. This approach was shown to be very successful in a process tomography application
of EIT in which the task was to detect and estimate non-conducting bubbles in a conducting
liquid. Although it is evident from these results that Bayesian networks have great potential in
statistical inversion of the EIT problem—especially in relation to constructing very nonlinear
prior densities with non-connected support—the treatise of MLP networks is outside the scope
of this review.

To obtain further insight into the significance of the selection of the prior, we generate
a set of spatial resistivity distributions based on different prior distributions. We will use
the term resistivity distribution to refer to the spatial interpretation of the associated random
vector. In the numerical calculations, we use a two-dimensional circular body divided into
quadrilateral pixels shown in figure 1. The number of pixels is 260. This discretization is
essentially identical to the ‘Joshua tree’ of [7].

We consider four different prior distributions of the form (4.1). We refer to the first one
as the white noise distribution, obtained by choosing L = I , the M × M unit matrix in (4.4).
Thus, the pixel resistivities are assumed to be uncorrelated Gaussian random variables of
equal variance centred around ρ∗. Here we use ρ∗ = ρ0. The second prior distribution in our
selection is a second-order smoothness prior. Here, the form of the regularizing prior is again
that of (4.4), but the matrix L is a discrete approximation of the Laplacian. The construction
of the matrix L is given in detail in appendix A. In addition to the (truncated) Gaussian priors
above, we consider the two non-differentiable priors discussed above, where the regularizing
prior π̃pr(ρ) is either the total variation prior (4.6) or the L1-prior given in (4.7). The latter
one could also be called the impulse prior since it is concentrated around spatial resistivity
distributions which are almost constant but may have large deviations with small support.
Thus, these resistivity distributions look like impulse noise on a relatively flat background.
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For an extensive discussion of this feature, see article [15].
In figure 2, we show sets of five resistivity distributions from a large randomly drawn

collection from each of the above-mentioned distributions. The random drawing is produced
from the conditional priors πpr(ρ33, . . . , ρ260|ρ1, . . . , ρ32) using the Gibbs sampler, and the
displayed resisitivity distributions are picked so that their probabilities are relatively large. The
drawing is produced from the conditional priors due to the fact that the smoothness prior and the
total variation prior are partially uninformative since F and TV(ρ) have non-trivial kernels†.
The fixed pixels 1, . . . , 32 form the outermost layer of the mesh. The value of resistivity in
the fixed pixels was 1 and the parameter α controlling the width of the distribution is chosen in
each case so that the dynamical ranges of the resisitivity distributions are roughly of the same
magnitude.

4.2. MCMC sampling of resistivities

In the following simulations, we assume that there are 16 identical electrodes with equal spacing
attached to the boundary of the circular domain �. The width of the electrodes is chosen so
that they cover 50% of the boundary ∂�. We use 15 linearly independent trigonometric current
patterns; see, e.g., [41]. Taking the symmetry of the resistance matrix into account, the data
consist of 120 independent real numbers. However, we use all the 240 measured voltages
despite this redundancy in the data. For the computation of the simulated measurements V

the domain � was divided into 1432 triangular elements, the total number of vertex nodes
being 749. To the computed voltages, Gaussian random errors with a standard deviation of
1% of the corresponding voltage values were added.

We consider the EIT problem where the resistivity is discretized using the pixel mesh of
figure 1. For the computation of the forward solution U(ρ) the mesh was divided into 1056
triangular elements, the number of nodes being 561; see figure 1. Although this is strictly
speaking incorrect, we use the (false) assumption that the noise vector is Gaussian zero mean,
all the channels being independent and having equal variance. The reason for this is that the
noise covariance matrix is diagonal and the scale difference of the individual variances is not
great. Thus, the noise covariance matrix is C = σ 2I , and the posterior distribution is

π(ρ|V ) ∼ π+(ρ) exp

(
− 1

2σ 2
‖U(ρ)− V ‖2 − αA(ρ)

)
. (4.10)

In experimental measurement systems an approximation for the noise covariance C can be
obtained by using a set of repeated measurements or by analysing the measurement system.
For further details, see e.g. [1, 16, 80].

Our primary interest in the numerical studies is in those prior distributions that correspond
to the non-differentiable regularizing functionals, the total variation prior (4.6) and the L1-
prior (4.7). To shorten the burn-in phase of the MCMC calculation, it is advisable to find a
relatively good approximation for the MAP estimate. The first step is to compute estimates
for the optimal background resistivity and the electrode contact impedance (assuming that the
ratio ξ = z0/ρ0 is known). These values, denoted by (ρ0, z0), are calculated by using the
formula (2.24). Next, we apply the Gauss–Newton-type search described in section 2.4. Here,
we face two difficulties. First, the total variation and L1-priors are non-differentiable, due to
the presence of the absolute value function. To overcome this problem, we use the smooth
approximation

|t | ≈ hβ(t) = 1

β
log(cosh(βt)),

† In practice, however, the numerical kernel of the approximate Laplacian L can depend on the mesh structure.
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Figure 2. Spatial resistivity distributions which are sampled from different prior distributions.
From left to right: white noise prior, second-order smoothness prior, total variation prior and
impulse prior, i.e. L1-prior.

where β > 0 is a small parameter adjusting the accuracy of the approximation. The second
problem comes from the positivity constraint π+(ρ). To avoid negative values, we use an
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Figure 3. Convergence of the MCMC iteration: the values of the exponent terms in the posterior
densities for 400 states of the Markov chains corresponding to the total variation prior (top) and
L1-prior (bottom). The end of the burn-in period is denoted with vertical lines.

interior point search and augment the least squares functional with a penalty term of the form

Jγ (ρ) = γj

M∑
k=1

1

ρk
,

where {γj } is a sequence of decreasing positive coefficients (j denotes the iteration index) [17].
After finding a reasonable approximation ρ̂β = ρ(j) for the MAP estimate, we start the MCMC
run with the posterior probability density of the form (4.10). Notice that for MCMC, there is
no need to smooth the functional A(ρ). However, to speed up the calculations, we linearize
the mapping ρ �→ U(ρ) around the initial guess ρ̂β

U(ρ) ≈ U(ρ̂β) + DU(ρ̂β)(ρ − ρ̂β). (4.11)

It is our experience that with noisy data, the effect of the linearization is usually not large on
the outcome but simplifies the numerics considerably since we do not need to solve the finite-
element problem after each updating of the resistivity. However, with some target distribution,
such as large-scale deviations from the background near the boundary and very small noise
levels, further iteration can prove to be worthwhile. The computation of the differentialDU(ρ)

is explained in appendix B.
We generate a set of 10 000 samples using both the total variation and the L1-priors. The

MCMC is based on a Gibbs sampling algorithm. Due to the relatively well chosen initial
resistivity, we have reason to believe that the burn-in period is short. This belief is supported
by the values of the exponent terms in the posterior distribution, depicted in figure 3.

We used the burn-in length of 200 samples. Figures 4 and 5 display the results. In both
figures the top-left image shows the resistivity distribution that was used to generate the data.
The mesh used in the inversion is depicted in the same image to facilitate the evaluation of the
results. Also, we have marked four pixels for further discussion. The top-right image is the
outcome of the positivity constrained Gauss–Newton iteration, i.e. the initial value ρ̂β . When
the smooth approximation of the total variation was used, the Gauss–Newton iteration does
not significantly improve the estimator, and the estimator is found by performing a single step.
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When the approximate L1-functional was used, we performed six steps of the gradient-based
iteration to find the estimate depicted in the top-right image of figure 5. In figures 4 and 5, the
centre-left image shows the conditional mean of the resistivity based on the MCMC sampling,
the centre-right image shows the square root of the diagonal of the posterior covariance matrix,
i.e. the standard deviation of each pixel around the conditional mean. Notice that in the case of
the total variation prior, the largest uncertainty is in the directions corresponding to the pixels
located at the boundaries of the objects. Finally, the bottom rows show the 90% credibility
limits: for each pixel, we have searched upper and lower bounds so that 5% of the sampled
pixel values lie below or above these limits.

Finally, figures 6 and 7 show the marginal densities of single pixels marked in figures 4
and 5 when the prior distribution is the total variation prior or theL1-prior, respectively. In these
figures, the solid line denotes the conditional expectations, the dotted lines the credibility limits
of 90% probability and the dashed line indicates the initial value found as an approximative
MAP estimate ρ̂β .

Figures 4–7 reveal clearly two things. First, the effect of the choice of the prior is
remarkable. As was expected by the construction of the priors, the total variation prior prefers
reconstruction with relatively flat details, while theL1-prior details tend to have a small support
and a relatively good dynamical range. Also, it is clear from these examples that there can
be a significant difference between the conditional mean and MAP estimates. This is evident
both with respect to the total variation prior and the L1-prior.

Above, we have implemented the MCMC method by using the Gibbs sampler. It is
our experience that the Gibbs sampler works more reliably in EIT than the Metropolis–
Hastings method. In the Metropolis–Hastings method, we used the Gaussian approximation
of the posterior distribution at ρ̂β as the proposal distribution. One of the problems with
the Metropolis–Hastings method is that in order to keep the positivity constraints intact, the
proposal distribution needs to be quite narrow, leading to prohibitively slow convergence. It
has proven to be very difficult to hit the gap between these two extreme cases. On the other
hand, the reason for linearization of the mapping ρ �→ U(ρ) is precisely the need for numerous
re-evaluations of the voltage vector when running the Gibbs sampler.

In articles [18,57] the authors proposed an adaptive Metropolis–Hastings scheme which is
suitable when using priors of the form (4.8) and (4.9). Based on the results they obtained, the
proposed adaptive Metropolis–Hastings scheme works well in such cases in which the values
of the resistivities are (approximately) known.

4.3. Interpretation of results

The proper interpretation of the results obtained by Bayesian inversion methods is a subtle
issue. It is very easy to jump into false conclusions and over-interpretation. This is true
especially when applied to notoriously ill-posed inverse problems such as the EIT problem.

In the previous section we used the Monte Carlo sampling method to calculate the
conditional expectation of the resistivity distribution as well as its a posteriori uncertainties
using two different priors but the same data. The differences between the results are remarkable.
In particular, when the total variation prior was used, the true values of the resistivities in
the selected pictures in figure 6 lie outstandingly outside the 90% credibility limits. This
raises the question about the meaning of these limits. One would feel tempted to say that
if the measurements were repeated with independent noise, roughly 90% of the conditional
expectations would have credibility limits including the true resistivity. This interpretation is
strictly incorrect. The posterior probability distribution measures our uncertainty based on
the measurement and the prior. The pitfall here is that the true resistivity distribution may
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Figure 4. Total variation prior: in top-left image, the true resistivities are ρ = 1 for the background,
ρ = 0.1 for the left inclusion and ρ = 2 for the right one. In the simulation of the data we used
z = 0.24 for the contact impedances. Top right is the Gauss–Newton reconstruction, centre row
shows the conditional expectation and the standard deviation, and the bottom row the upper and
lower bounds for 90% credibility interval.

have a very small probability with respect to the postulated prior probability measure. On the
other hand, the ill-posedness of the problem necessitates that useful priors are ‘informative’
with respect to certain subspaces from which the likelihood carries only little information.
This problem is reflected in the fact that the results are usually sensitive to the selection of the
prior distribution. Summarizing, the a posteriori uncertainties are reliable only in relation to
our confidence in the postulated prior. If the prior is selected ad hoc and not based on actual
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Figure 5. L1-prior, the images are as in figure 4.

prior information coming, e.g., from other measurement modalities, the estimates and their
credibility limits may even be misleading.

5. Further topics

As we have seen in the previous sections, the choice of the prior density gives us the
corresponding Tikhonov regularization functional if we identify the inverse problem with the
search of the MAP estimator. Conversely, the statistical inversion approach can be used as a
tool to analyse in general the underlying prior assumptions of various regularization schemes.
As an example, consider the NOSER reconstruction algorithm described and discussed in
articles [7, 8]. The algorithm performs one Newton iteration step starting from an optimally
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Figure 6. Marginal distributions of single pixels with the total variation prior. The mid solid line is
the conditional expectation, the left and right solid lines the 90% credibility limits and the dashed
line the initial value found by the Gauss–Newton method.
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Figure 7. As in figure 6 when the prior is the L1-prior.

chosen constant background to minimize the least squares error. Since the Hessian is an ill-
conditioned matrix, the inversion requires regularization which is done in the NOSER algorithm
by adding a diagonal weight, i.e. the reconstruction is analogous to formula (2.25)

ρ = ρ0 − (H + αdiag(H))−1g,
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Figure 8. Left: NOSER reconstruction with α = 0.1 (the data V are the same as those used in
figures 4 and 6). Centre: the diagonal elements of the Hessian αH . Right: covariance of the pixels
corresponding to the prior (5.1) in the NOSER algorithm.

where α > 0 is a regularization parameter, and H and g are given similar formulae to (2.26)
and (2.27)

H = (DU(ρ0))
T (DU(ρ0)), g = (DU(ρ0))

T (U(ρ0)− V ).

A NOSER reconstruction from the data V which was used in the examples of the previous
section is shown in the left image of figure 8. The values of the regularization matrix αdiag(H)

are depicted in the centre image of figure 8. This image gives us a view of the implicit
assumptions that the NOSER algorithm poses on the actual resistivity distribution. It can be
seen that the measured voltages are much less sensitive to the values of ρ in the centre of
� than to the values close to the boundary ∂�. In other words, the sensitivity of the EIT
reconstruction to the measurement noise increases when moving towards the centre of �.

From the point of view of statistical inversion, this reconstruction corresponds to (positivity
constraints ignoring) the MAP estimate of the (linearized) posterior distribution, when the
measurement noise consists of additive mutually independent Gaussian random variables with
equal variances (white noise) and the prior probability density is

πpr(ρ) ∼ exp(−α(ρ − ρ0)
T Hd(ρ − ρ0)), Hd = diag(H), (5.1)

where ρ0 is the optimal background resistivity distribution. This prior, again ignoring the
positivity constraint, is a Gaussian density with covariance proportional to H−1

d . Since Hd is
diagonal, the pixels are assumed to be mutually independent. However, since Hd is clearly not
of the form cI , the pixels are assumed to have different variances. The meaning of this prior
is easy to display graphically; see figure 8.

From figure 8 we see that the prior is wider the deeper inside the body the pixel resides,
i.e. the effect of the regularization gets weaker with increasing sensitivity to the measurement
noise. One can justify this choice by saying that the prior density is chosen to be in balance
with the likelihood density to avoid bias due to the prior. It must be noted here that in contrast to
the ideas of Bayesian inference explained above, the implicit prior distribution of the NOSER
algorithm is determined by the measurement setting. In the statistical inversion approach
the prior should be independent of the measurements and carry such information that the
measurement setting, at least partially, destroys. From this point of view, one could say that
the NOSER algorithm does not belong to the class of statistical inversion algorithms although
it has a statistical interpretation.
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In section 3 we mentioned the hyper-priors. This topic is intimately related to the choice
of the regularization parameter in the Tikhonov regularization. The literature concerning this
topic is extensive; see, e.g., [31, 32, 47, 63, 73] and references therein. It would be tempting
to include the parameter α appearing in the regularizing prior distributions in (4.2) as one
unknown parameter that is eventually integrated out by MCMC sampling. More specifically,
one could write the prior as

π̃pr(ρ, α) ∼ exp(−αA(ρ))πh(α),

where πh(α) is the hyper-prior of the parameter α and integrate α out to get

π(ρ|V ) ∼
∫ ∞

0
exp(− 1

2‖U(ρ)− V ‖2
C−1 − αA(ρ))πh(α) dα,

the integration being done by MCMC. There are several problems with this procedure. First,
if the hyper-prior is not very restrictive with relatively narrow support, the MCMC algorithm
tends to favour small values of α and fits the resistivity distribution to satisfy the data only
with the cost of the prior. On the other hand, restrictive hyper-priors are questionable since
the goal was to do the opposite, not to fix the value of α. At the moment, the authors are not
aware of a satisfactory solution to this problem.

Finally, we discuss briefly some computational aspects of the MCMC calculations. In
section 4.2 we used the linearized model (4.11) to calculate approximations of the voltage.
This simplification was done only to speed up the Gibbs sampling. When the full nonlinear
version for computing the voltage vectors is used, one should take advantage of the special
structure of the finite element system matrix. Consider the Gibbs sampling algorithm described
in section 3.5. The updating of the resistivity requires the computation of the probability
density (3.29), and to this end, one has to solve successively the forward problem (2.16). Let
us write A = A(σ) to indicate the dependence of the matrix (2.19) on the conductivity. Let
σ denote the current value of the conductivity and assume that we need to update the value
of the conductivity in the kth pixel �k , σk → σk + t , t ∈ R. This updating yields a low rank
perturbation of the system matrix A(σ). Indeed, let �k be the kth (open) pixel and

� ∈ Ik = {k1, . . . , kj } if and only if supp ϕ� ∩�k 
= ∅.
By denoting with ek the natural kth basis vector, we have

A(σ + tek) = A(σ) + tVkIkV
T
k ,

where Vk = [ek1 , . . . , ekj ] ∈ R
(Nn+L−1)×j , Ik ∈ R

j×j is a symmetric positive definite matrix
with entries of the form

(Ik)p,q =
∫
�k

∇ϕkp · ∇ϕkq dx, kp, kq ∈ Ik.

By denoting

b0 = A(σ)−1f, Bk = A(σ)−1Vk,

the solution of the equation A(σ + tek)b = f can be written by using the Sherman–Morrison–
Woodbury formula [28] as

b = b0 − tBkIk(1 + tV T
k BkIk)

−1V T
k b0,

i.e. the evaluation requires only successive solutions of a j × j problem. The matrices
Ik can be pre-computed when the system matrix A is created. Let us mention here
article [19], where the idea of using the Sherman–Morrison–Woodbury formula for solving
partial differential equations repeatedly is also presented. Optimal updating ordering to
minimize the computational work is an important issue that will be studied in the future.
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6. Conclusions

The aim of this work was to demonstrate the application of a general approach, the statistical,
or Bayesian, inversion method, to the EIT problem, and show how the MCMC sampling
techniques work in this context with different priors. In contrast to the traditional way of
looking at this inverse problem, the aim of the statistical approach is not to find a single
estimate of the unknown resistivity but to estimate the whole a posteriori distribution. Since
the visualization of the posterior distribution directly is impossible, the visualization is usually
done by showing single estimates calculated on the basis of the a posteriori distribution, such
as the conditional expectation or MAP conductivity distributions. This visual representation
easily leads us astray, giving the impression that the method is simply another regularization
method of producing single reconstruction images. The key features of the statistical approach,
however, are (1) the possibility of incorporating prior information in a controlled way to the
calculations; and, above all, (2) obtaining the full statistical description of the information that
is immersed in the prior information and the measurements. The cost of this is, of course,
the increased computational complexity, which is recognized as a major challenge for future
research.
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Appendix A. Computation of the approximat Laplace operator

In this appendix, we describe the discrete approximation used in the smoothness prior
construction when the pixel mesh is not a structured one. Let p0 denote the midpoint of a
given pixel and by pj , 1 � j � n we denote the midpoints of the neighbouring pixels. We are
looking for coefficients αj , 0 � j � n, such that Fρ(p0) − ∑n

j=0 αjρ(pj ) is small in some
sense. Let us denote by Hs the L2-based Sobolev space in R

2 with smoothness index s ∈ R.
We equip Hs with the norm

‖f ‖s =
( ∫

R2
(1 + λ2|ξ |2)s |f̂ (ξ)|2 dξ

)1/2

and with the corresponding inner product (·, ·)s , where f̂ is the Fourier transform of f and
λ > 0 is a scaling parameter. By the Sobolev imbedding theorem, Hs ⊂ Ck if k > s + 1
in R

2, so if we choose s > 3, we have δ, Fδ ∈ H−s , the dual of Hs . Denoting by 〈·, ·〉 the
distribution duality between Hs and H−s , for f ∈ Hs , we obtain the estimate∣∣∣∣

n∑
j=0

αjf (pj )−Ff (p0)

∣∣∣∣ =
∣∣∣∣
〈
f,

n∑
j=0

αjδpj −Fδp0

〉∣∣∣∣ � ‖f ‖s
∥∥∥∥

n∑
j=0

αjδpj −Fδp0

∥∥∥∥
−s

.

Thus, we seek to choose the coefficients αj so that the norm attains its minimum. Since H−s

is a Hilbert space, the minimum is attained by orthogonal projection and the corresponding
vector α = (α0, . . . , αn) satisfies Aα = g, where

Ai,j = (δpi , δpj )−s , gj = (Fδp0 , δpj )−s .
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In fact, explicit expressions for these coefficients can be found. By integration in polar
coordinates of R

2, one finds that

Ai,j = 2π
∫ ∞

0

t

(1 + λ2t2)s
J0(t |pi − pj |) dt,

where J0 is the Bessel function of order zero. From this expression we obtain

Aj,j = π

λ2(s − 1)
,

and for i 
= j , the Hankel–Nicholson formula [48, p 105] yields

Ai,j = π |pi − pj |s−1

K(s)2s−2λs+1
Ks−1(λ

−1|pi − pj |),
where Ks−1 denotes the modified Bessel function of order s − 1. Similarly,

gj = −2π
∫ ∞

0

t3

(1 + λ2t2)s
J0(t |p0 − pj |) dt,

giving further

g0 = − π

λ4(s − 1)(s − 2)
,

and for j > 0,

gj = − π |p0 − pj |s−2

K(s − 1)2s−3λs+2

(
Ks−2(λ

−1|p0 − pj |)− |p0 − pj |
2λ(s − 1)

Ks−1(λ
−1|p0 − pj |)

)
.

In practice, we have used the values λ = 2 and s = 4 in our calculations.

Appendix B. Computation of the Jacobian matrix DU (ρ)

The Jacobian matrix DU(ρ) of the mapping ρ �→ U(ρ) is computed as follows. First, let us
denote

C̃ = (0 C) (B.1)

f̃ = [f (1), f (2), . . . , f (K)] (B.2)

b̃ = [b(1), b(2), . . . , b(K)], (B.3)

whereC ∈ R
L×L−1 is defined by equation (2.18), f (·) ∈ R

Nn+L−1 by equation (2.17), 0 ∈ R
L×Nn

and b(·) ∈ R
Nn+L−1 is the solution of the equation (2.16) corresponding to f (·) and K is the

number of current patterns. Furthermore, we assume that the resistivity distribution is of the
form (4.3).

By equations (B.1)–(B.3) and (2.20), the set of computed voltages Ũh ∈ R
L×K ,

corresponding to all K current patterns, is obtained as Ũh = C̃b̃. Since we are interested
in the derivatives of the voltages Ũh with respect to each pixel ρ�, � = 1, . . . ,M , we need to
determine

∂(C̃b̃)
∂ρ�

. (B.4)

If the reference of the actual measurement is different from the choice (2.3), the actual
measurements are obtained by multiplying Ũh from the left with a properly chosen
measurement operator (matrix) M ∈ R

Q×L (Q is the number of actual measurements for
the single current pattern). Thus, we obtain M C̃b̃ = M̃b̃. Now the derivative becomes

∂(M̃b̃)

∂ρ�
= M̃

∂b̃

∂ρ�
. (B.5)
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Consider the term ∂b̃/∂ρ�. From equation (2.16) we obtain

∂b̃

∂ρ�
= ∂(A−1f̃ )

∂ρ�
. (B.6)

The right-hand side of (B.6) can be expanded as

∂(A−1f̃ )

∂ρ�
= −A−1 ∂A

∂ρ�
A−1f̃ = −A−1 ∂A

∂ρ�
b̃. (B.7)

Since only the matrix B in A (see equation (2.19)) depends on ρ, the derivative ∂A/∂ρ� can
be computed as

∂A

∂ρ�
=

(
∂B
∂ρ�

0
0 0

)
(B.8)

where
∂B(i, j)

∂ρ�
= − 1

ρ2
�

∫
��

∇ϕi · ∇ϕj dx dy, i, j = 1, 2, . . . , Nn. (B.9)

Now the derivatives with respect to the actual measurements become

M̃
∂b̃

∂ρ�
= −M̃A−1 ∂A

∂ρ�
b̃ = −((A−1)T M̃T )T

∂A

∂ρ�
b̃

= −((A−1)M̃T )T
∂A

∂ρ�
b̃ = −KT ∂A

∂ρ�
b̃ = −K̃T ∂B

∂ρ�
α̃ (B.10)

where K = A−1M̃T , K̃ ∈ R
Q×Nn and α̃ ∈ R

Nn×K . The last steps are based on the fact that
the matrix A is symmetric. In (B.10) there are two separate potential distributions, b from
the true injected currents and K that is due to the set of measurement patterns M̃T = (M C̃)T .
The matrix obtained from equation (B.10) is R

Q×K where Q is the number of the actual
measurements for the single current pattern and K the number of current patterns (right-hand
sides). After reshaping we obtain the �th column of the Jacobian. The same procedure is
carried out for each ρ� to obtain the other columns of DU(ρ). A similar procedure to compute
the Jacobian has been used, for example, in optical tomography and is known as the adjoint
differentiation [3].
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