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Abstract
In x-ray tomography, the structure of a three-dimensional body is reconstructed
from a collection of projection images of the body. Medical CT imaging does
this using an extensive set of projections from all around the body. However, in
many practical imaging situations only a small number of truncated projections
are available from a limited angle of view. Three-dimensional imaging using
such data is complicated for two reasons: (i) typically, sparse projection data
do not contain sufficient information to completely describe the 3D body, and
(ii) traditional CT reconstruction algorithms, such as filtered backprojection, do
not work well when applied to few irregularly spaced projections. Concerning
(i), existing results about the information content of sparse projection data are
reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion
methods can be used to incorporate a priori information into the reconstruction
method, leading to improved image quality over traditional methods. Based
on the discussion, a low-dose three-dimensional x-ray imaging modality is
described.

1. Introduction

Three-dimensional x-ray imaging is based on acquiring several projection images of a body
from different directions. If projection images are available from all around a two-dimensional
slice of the body, the classical work of Radon (1917) shows that the inner structure of the slice
can be determined. This result was reinvented by Cormack and Hounsfield and commercialized
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in the 1970s as computerized tomography (CT) imaging technology which is widely used in
medicine today (Cormack 1963, 1964, Shepp and Kruskal 1978).

We consider clinical imaging situations where three-dimensional information is helpful
but complete CT-type projection data are not available. For instance, in mammography the
breast is compressed against a fixed detector and it is possible to move the x-ray source keeping
the breast immobilized. However, the detector-beam angle should be relatively small and if the
detector plane cannot be rotated, the projections can be obtained only from a relatively narrow
aperture. The resulting reconstruction problem6 is an example of limited-angle tomography.
Another type of situation occurs in extraoral dental imaging where some teeth are imaged
with x-rays passing through other teeth and skull. The region of interest is surrounded
by uninteresting tissue which is not attempted to be imaged. This situation is called local
tomography. Apart from geometric restrictions, keeping the number of radiographs as small
as possible to minimize radiation dose to the patient leads to sparse distribution of projection
directions. We call the above type of data sparse projection data as opposed to traditional CT
data.

Three-dimensional medical x-ray imaging using sparse projection data can be viewed as
an imaging modality of its own, made feasible by the digital revolution in x-ray imaging
technology. It is suited for situations in which the sought-for diagnostic information
cannot be retrieved from any single projection image and a CT scan is not feasible due
to low resolution, high radiation dose or cost of equipment. By its information content,
this kind of imaging is obviously superior to studying a single radiograph. However, it
differs significantly from CT imaging since sparse projection data do not contain enough
information to completely describe a 3D body. Instead, only certain features of the body can
be reliably reconstructed. What these features are depends both on data and available a priori
information.

It is well known that traditional CT reconstruction algorithms do not produce satisfactory
reconstructions when applied to sparse projection data (see Ranggayyan et al 1985, Natterer
1986, Hanson 1987 and references therein). In this paper we present and review results
suggesting that statistical inversion methods can be successfully used for reconstruction. The
statistical inversion approach has the following benefits:

• Any collection of projection data can be used for tomographic reconstruction. In
particular, cone beam geometry and truncated projections are not more complicated
to work with than parallel beam geometry and full projections.

• Application-dependent a priori information on the target can be used in a natural and
systematic way to recast the classically ill-posed problem in a well-posed stochastic
form. With a well-constructed prior model one can obtain improved image quality over
traditional methods.

Part I of this paper is a review paper. It brings together results from physics, mathematics
and medical imaging in a way that is not usually considered in the field of CT imaging. The
rest of this part is organized as follows. In section 2, we give a review of the mathematical
results on the information content of sparse projection data. In section 3, we discuss the theory
of statistical inversion, the prior models and the computation of posterior statistics on a rather
general level. The likelihood model for the collection of projection data is also discussed. In
section 4, we describe a three-dimensional x-ray imaging modality based on sparse projection
data and give a review of statistical inversion approaches to x-ray tomography. In section 5,

6 For historical reasons, we use occasionally the term reconstruction to mean any procedure to acquire information
on the inner structures from x-ray measurements, although this term is quite imprecise, in particular from the point of
view of statistical inference.
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Figure 1. Illustration of cone beam measurement geometry for transmission tomography. Left:
global tomography. Right: local tomography. The region of interest is denoted by ROI.
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Full angle data Limited angle data Sparse full angle data Sparse limited angle data

Figure 2. Illustration of four different choices for data collection in transmission tomography. The
black dots denote the locations of the x-ray source for the set of projection data. For each such
location, the detector is thought to be located opposite to the x-ray source as in figure 1.

we give conclusions. In part II of this paper we apply the general results to practical problems
in dental radiology using experimental data.

2. Information content of sparse projection data

Geometrical arrangements of the x-ray source and digital sensor vary according to the
diagnostic task and equipment. We illustrate here the types of tomographic data resulting
from different imaging situations. For clarity we present two-dimensional examples, but
similar situations can be considered in 3D as well.

We separate two cases according to whether the whole object is fully visible in each
projection or not, see figure 1. The case on the right in figure 1 is called local tomography.

In traditional CT imaging, projections are taken from all around the object. We sample
the angular variable more sparsely in order to lower the radiation dose and due to geometrical
limitations, see figure 2. In each of these four cases shown in figure 2, we might additionally
have the local tomography situation.

The types of data described above cover a large range of specific imaging tasks. The
choice of data collection dictates what kind of features and details we can hope to reconstruct
reliably from the data without a priori information on the body.

It is well known that reconstruction from the collection of complete projection data is
numerically stable (or mildly ill-posed), see e.g. Natterer (1986) and references therein. This
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Visible edge Indetectable edge Visible crack Indetectable crack

Figure 3. Illustration of discontinuities that can and cannot be recovered based on limited-angle
projection data. The black dots denote the locations of the x-ray source in the acquisition of the
projection data. For each such location, the detector is thought to be located opposite to the x-ray
source as in figure 1.

makes it possible to obtain numerical reconstructions with such algorithms as the filtered
backprojection that do not use a priori information on the tissue. A careful analysis of
collections of x-ray source locations in 3D space giving complete enough projection data for
stable recovery has been given by Orlov (1976), Tuy (1986) and Finch (1985). By the term
stable it is meant here that the reconstruction from such data can be expected to represent the
3D object reliably. This situation falls outside the scope of this paper.

The information content of sparse projection data depends on the type of sparsity. We
discuss the effect of limited-angle and local tomography settings and the effect of reducing
the number of radiographs.

2.1. Limited-angle tomography

Perfect reconstruction from (an infinite set of) limited-angle tomographic data is possible in
principle, as discussed by Smith et al (1977) and Natterer (1986). However, the reconstruction
problem is extremely ill-posed, or sensitive to measurement noise, as shown by Davison
(1983), Louis (1986), Finch (1985) and Tam and Perez-Mendez (1981). Thus, a high quality
reconstruction is not possible in practice without a priori information on the target.

What features of the target can be reliably reconstructed using only the limited-angle
data? A precise answer to this question is given by Quinto (1993). One simple consequence
of his results is that a sharp discontinuity, or jump along a curve, is reliably recoverable if and
only if some x-ray in some of the projections is tangent to the curve. Otherwise the curve
cannot be reconstructed by any algorithm from the projection data alone. We give examples of
parts of boundary and cracks that are visible or undetectable in the reconstruction, see figure 3.

In the recent work, Noo et al (2002) give conditions for two-dimensional cone beam
projections that are needed to reconstruct a region of interest (ROI) within the object. Their
result states that a ROI can be recovered accurately if (i) the object is fully visible in each of
the projections and (ii) the projection data contain all the possible rays through the ROI.

2.2. Local tomography

In local tomography the region of interest is surrounded by tissue that is not reconstructed.
This is often the consequence of small detector size forcing truncation of projections, or
intentional minimization of radiation dose outside the region of interest. Local tomography
was introduced by Smith and Keinert (1985) and Vainberg et al (1981). In this problem class
the goal is to reconstruct the region of interest using only x-rays passing through it. It turns
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out that the actual attenuation function cannot be reconstructed but, instead, another function
preserving sharp features can be recovered. This so-called lambda tomography was refined
by Faridani et al (1992, 1997).

In the above works on local tomography the 3D body is imaged from full view angle.
The combination of local and limited-angle tomography is considered by Kuchment et al
(1995) and Katsevich (1997). The numerical examples in (Kuchment et al 1995) are very
illuminating. See also the book by Ramm and Katsevich (1996), especially the images on
pp 254–257. The results are similar to limited-angle global tomography: certain parts of
singularity curves in the region of interest can be stably reconstructed. The parts are exactly
those that have some measured x-rays as tangents.

2.3. Few radiographs

Most of the above results on reconstructable features from limited data assume that the data are
available from a curve or other continuum of x-ray source positions. In practice datasets are
finite, and the number and directions of radiographs have an effect on the information content
of the dataset. As noted by Smith et al (1977, theorem 4.2), a finite number of projections
tell nothing at all about the volume since an almost arbitrary function can be added to the
attenuation coefficient without changing the projections. Information content of projections
has been studied further by Logan and Shepp (1975), Grünbaum (1982), Hamaker and Solmon
(1978), Kazantsev (1991) and Saksman et al (1997). The analysis in the above references
implies that problems caused by incomplete information content of a finite dataset can be
removed or greatly reduced by using a priori knowledge on the 3D body to exclude erroneous
(oscillatory) features from the reconstruction.

2.4. Conclusion

The discussion in this section suggests that high-quality tomographic reconstruction from
sparse projection data is not possible without the use of a priori information. Note also that
the above theoretical results concerning the reconstructable features in limited-angle and local
tomography do not imply that any given practical tomographic algorithm is able to recover
those features.

In this paper we discuss how statistical inversion facilitates a systematic and natural way
of incorporating a priori knowledge in tomographic reconstruction from sparse projection
data, leading to improved reconstruction quality over traditional reconstruction methods.

3. Statistical inversion

The following review papers provide more detailed analysis of several issues in statistical
inversion approach than is given in this paper: Hanson (1987), Tamminen (1999), Mosegaard
and Sambridge (2002), Evans and Stark (2002) and Kaipio et al (2000). See also the work of
Lehtinen (1985, 1986) and Hämäläinen et al (1987).

3.1. Basic definitions

The success in solving ill-posed inverse problems depends heavily on how well one is able
to make use of a priori information on the target. Particularly useful is information that is
complementary to that extracted from the measurement. Such additional prior information is
usually available: the practitioner has often a relatively good overall idea of what a typical
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target of the measurement should look like. The actual measurement is needed to distinguish
additional specific information from the general. From the computational point of view, this
prior information may be rather qualitative in nature and work has to be done to translate it in
a computationally useful quantitative form. The statistical inversion approach is a systematic
and flexible way of incorporating in the inversion process extra information of the target of
interest.

The main idea in statistical inversion approach is to consider the inverse problem as a
problem of Bayesian inference. All variables are redefined to be random variables. The
randomness reflects our uncertainty of their actual values and the degree of uncertainty is
coded in the probability distributions of these random variables.

To keep the discussion tractable we consider linear measurement models with additive
Gaussian errors:

m = Ax + ε (1)

where the variables m ∈ R
N, x ∈ R

M and ε ∈ R
N are vector-valued random variables7 and

A is the deterministic system matrix modelling the measurement. See section 3.2 for an
interpretation of tomographic x-ray measurements in the form of (1). When ε is Gaussian
with zero mean and covariance matrix �noise, denoted ε ∼ N (0, �noise), we have

pnoise(ε) ∼ exp
(− 1

2εT�−1
noiseε

)
. (2)

Let us mention that the statistical formulation does not depend on the Gaussian approximation.
For an exposition of how to handle Poisson distributed observation models in inverse problems,
see e.g. (Voutilainen et al 2000). Further, observe that if the noiseless model would be badly
known, we could also model A by a random matrix.

We assume here that the image vector x and the noise are independent. In terms of
probability densities, this implies that their joint probability density is of the form

p(x, ε) = ppr(x)pnoise(ε). (3)

Here, pnoise is the probability distribution of the noise that can be approximated, for example,
by analysing x-ray images from well-known phantom targets. The probability density ppr is
called the prior density of the image. It is designed to contain all possible information that we
have of the target prior to the measurement. It is crucial, in contrast to classical regularization
methods, that the choice of the prior distribution should not be based on the data m. The proper
design of the prior is an essential part of the statistical inversion procedure. The rule of thumb
is that typical image vectors (say, of some existing library) should have high prior probability
(density) while atypical or impossible ones should have low or negligible probability. Prior
models are discussed in more detail in section 3.3.

Having the joint probability of x and ε, we may write the conditional probability of m,
given x and ε formally as

p(m | x, ε) = δ(m − Ax − ε). (4)

Here, δ is the Dirac delta, i.e., if x and ε were given, m would be completely determined. The
joint probability distribution of x and m is then obtained as

p(x,m) =
∫

R
N

p(m | x, ε)p(x, ε) dε = ppr(x)pnoise(m − Ax) (5)

by straightforward substitution. Finally, the conditional probability distribution of x given the
measurement m, or posterior density of x is given by the well-known Bayes’ formula

p(x | m) = p(x,m)

p(m)
= ppr(x)p(m | x)

p(m)
(6)

7 For notational convenience, we use the same lower-case notation for both, the random vector and its values.
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where p(m) is the marginal density of m and plays the role of a normalization constant. The
density p(m | x) is called the likelihood density and is in this case

p(m | x) = pnoise(m − Ax). (7)

It turns out that the density p(m) is in non-Gaussian posterior cases actually difficult to
determine. Fortunately, it also turns out that the most important estimation methods that are
based on the posterior distribution do not necessitate the determination of p(m). Thus the
posterior density is usually considered in the non-normalized form

p(x | m) ∝ ppr(x)pnoise(m − Ax) (8)

that is, the product of the prior and likelihood densities.
In the framework of Bayesian inversion theory, the posterior distribution (6) represents the

complete solution of the inverse problem, since it expresses our beliefs about the distribution
of x based on all prior information and the measurement. Because the posterior distribution is
a probability density in a large-dimensional space, we must have efficient tools to explore it.
To produce an image of the target based on the posterior, several alternatives exist. The most
common ones are the maximum a posteriori estimate (MAP) and conditional mean estimate
(CM). They are defined by the formulae

p(xMAP | m) = max p(x | m) (9)

and

xCM =
∫

R
M

xp(x | m) dx. (10)

Observe that the MAP estimate is not necessarily unique, while the CM estimate is unique,
provided that the integral converges. Finding the MAP estimate is an optimization problem
while finding the CM estimate is a problem of integration.

In addition to computing point estimates, the statistical inversion approach strongly
suggests the computation of interval and uncertainty estimates as well as the marginal posterior
densities of the variables themselves. An example of an interval estimate is the confidence
interval, defined for a given 0 < τ < 1 as [ak, bk] ⊂ R where the endpoints ak and bk are
determined by ∫ bk

ak

pk(xk) dxk = τ pk(ak) = pk(bk) (11)

where pk is the marginal posterior density

pk(xk) =
∫

R
M−1

p(x | m) dx1 · · · dxk−1 dxk+1 · · · dxM. (12)

Note that the confidence interval is not always well defined.
The most common uncertainty estimate is the posterior covariance

�x|m =
∫

R
M

(x − xCM)(x − xCM)Tp(x | m) dx (13)

In the case of non-Gaussian posterior these estimates can usually be obtained only with the
aid of sampling methods. Details of how these can be computed are discussed in section 3.6
and a practical illustration of their significance is given in part II of this paper.
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Figure 4. Left: schematic illustration of the pencil beam attenuation model for x-ray transmission
tomography. Right: in the discretization the domain � under investigation is discretized into a
lattice of M pixels �i .

3.2. Likelihood distribution for x-ray imaging

In this section, we discuss in more detail the likelihood model we use for x-ray imaging in this
paper.

In x-ray imaging, an almost pointlike x-ray source is placed on one side of an object under
imaging. Radiation passes through the object and is detected on the other side, see figure 4.
Usually the radiation is detected with x-ray film or a digital sensor that can be thought of as
2D arrays of almost pointlike detectors.

The domain under imaging is modelled by a bounded subset � ⊂ R
3 (or � ⊂ R

2 in 2D
problems) together with a nonnegative attenuation coefficient x : � → [0,∞). The value
x(s) gives the relative intensity loss of the x-ray travelling at s ∈ � within a small distance
ds:

dI

I
= −x(s) ds.

The x-ray has initial intensity I0 when entering � and a smaller intensity I1 when exiting �.
We write ∫

L

x(s) ds = −
∫ 1

0

I ′(s) ds

I (s)
= log I0 − log I1 (14)

where I0 is known by calibration and I1 from the corresponding point value in a projection
image. Thus the measured data are the integral of x(s) along the line L.

The discretization of the attenuation model involves dividing the domain � into a lattice
of M disjoint 3D voxels �i (or 2D pixels), see figure 4, and measuring the length of the x-ray
inside each voxel (or pixel).

Assuming that the attenuation x is constant within each voxel (or pixel) �i , the attenuation
map can be approximated in the form

x ≈
M∑
i=1

xiχi (15)

where χi is the characteristic function of voxel (or pixel) �i in the lattice. Within
the discretization (15), the attenuation map is identified by the coefficient vector x =
(x1, x2, . . . , xM)T ∈ R

M . Using the approximation (15), the line integrals through the domain
can be approximated by weighted sum of voxel (or pixel) values, that is,∫

Lj

x(s) ds ≈
M∑
i=1

xi|�i ∩ Lj | (16)

where the subindex j denotes the measurement index. Arranging the set of projection data
into a vector m = (m1,m2, . . . ,mN)T ∈ R

N , we get the equation

m = Ax (17)
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where matrix A implements the approximation (16) for the set of projection data. We note
that the model (17) can be implemented for any data collection geometry.

In the above model, we neglect scattering phenomena and effects of non-monochromatic
radiation, such as beam hardening. See (Sauer et al 1994, Antyufeev and Bondarenko 1996)
for the former and (Sukovic and Clinthorne 2000) for the latter.

The model (17) is assumed here to represent the noiseless observations. In practice,
however, the measurement is corrupted by (at least) two noise types:

• The detector is a photon counter, implying that the attenuated signal at each detector is a
count nj ∈ N with expectation λj ∈ N, 1 � j � N .

• The photon count of each detector is amplified electronically, causing electronic noise.

The amplification noise of the counting process can reasonably be assumed to be multiplicative.
Bearing in mind that the projection data (17) involve a logarithm of the count data, a reasonable
model for the electronic noise is additive noise. A feasible model for the count vector n is
to assume that each count nj is independent of the remaining ones and that nj has Poisson
distribution with expectation λj . Therefore, we may write

p(n | x) =
N∏

j=1

pPoisson(nj , λj )

=
N∏

j=1

1

nj !
λ

nj

j exp(−λj ), λj = λ0I0 exp(−(Ax)j) (18)

where λ0 is the probability that a photon is absorbed to the detector. However, in x-ray
imaging a relatively large number of photons are usually detected at each detector pixel. In
such case, the value of the likelihood density (18) can be well approximated with the value
of a Gaussian approximation for the attenuation data of form (14) (Bouman and Sauer 1993,
Sachs and Sauer 1999). A detailed discussion on this approximation is given in the appendix.
An approximation for the distribution of the electronic noise can be determined, for example,
by careful analysis of the measurement electronics. However, this falls outside the scope of
this paper.

In this study we assume Gaussian distributions for the logarithms of both noise variables.
Thus, the overall model for noise becomes the sum of two additive Gaussian random variables.
The distribution of this new variable is convolution of two Gaussian distributions, which
is again a Gaussian distribution. Therefore, we approximate the statistics of the overall
measurement noise by ε ∼ N (0, �noise), i.e., the measurement noise is assumed to be normally
distributed with zero mean and covariance matrix �noise that is assumed to be invertible. The
likelihood distribution is then

p(m | x) = exp
(− 1

2 (m − Ax)T�−1
noise(m − Ax)

)
.

3.3. Prior models

The most crucial task in statistical inversion is the determination of a feasible prior. In
particular, the translation of qualitative prior information into the language of probability
densities is often a challenging problem.

The general goal in designing priors is to assign a distribution ppr(x) with the following
property. If E is a collection of expectable images and U is a collection of unexpectable
images, we should have

ppr(x) 
 ppr(x
′) when x ∈ E x ′ ∈ U.
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Thus, the prior probability distribution should be concentrated on expectable images and give
them a clearly higher prior probability to occur than to those we do not expect to see.

In many cases it turns out that certain expectable features can be formulated in the form
of probability densities relatively easily while others may be very tricky if not impossible. A
typical example of an easy task is when the image is expected to be smooth. In this case,
one can use what is later called a smoothness prior. However, if we expect that in addition,
the image contains infrequently occurring small anomalies that we would like to locate, the
problem becomes more complicated. Indeed, using a smoothness prior we are very likely
to fail in detecting the anomaly since its occurrence probability with respect to that prior is
extremely low.

In the following we discuss briefly some of the methods for constructing prior models.
The emphasis is on finding a qualitative description of these prior models.

In the following, it must be understood that when one talks about an image it is assumed
that the pixel values (i.e., values of the x-ray attenuation coefficient) are non-negative. This
requirement means that the prior is proportional to the cut-off function,

ppr(x) ∝ p+(x) =
M∏

k=1

θ(xk) (19)

where θ is the Heaviside function. This cut-off function is not written out explicitly in the
following.

3.3.1. Generic Gaussian priors. The most widely used prior models are the Gaussian white
noise and smoothness priors. Gaussian densities in finite-dimensional spaces are generally of
the form

ppr(x) ∝ exp
(− 1

2 (x − x∗)T�−1
pr (x − x∗)

)
(20)

where x∗ is the mean vector and �pr is the covariance matrix. The simplest one is undoubtedly
the Gaussian white noise prior,

ppr(x) ∝ exp

(
− 1

2σ 2
‖x − x∗‖2

2

)
(21)

i.e., the covariance is assumed to be diagonal matrix �pr = σ 2I . This prior is by far the most
commonly used implicit choice for a prior model in the Tikhonov regularization approach for
inverse problems (cf formula (27)). The notion ‘white noise’ is naturally related to the diagonal
covariance structure which means that all image pixels are assumed to be uncorrelated. The
standard deviation of each pixel around the assumed mean value x∗ is given by σ . No structure
of the image is assumed a priori.

The smoothness priors in 2D and 3D are typically functions of associated directional
derivatives. Perhaps the most commonly used smoothness prior for a 2D pixel image in an
equilateral P × P = M square mesh is given by

ppr(x) ∝ exp


−α

∑
k∈M

∑
�∈Nk

|xk − x�|2

 (22)

where α is a scaling parameter, M is the index set of non-boundary pixels in the lattice (i.e.,
M = {i|∂�i ∩ ∂� = ∅}) and Nk is the index set of four nearest pixels for the (non-boundary)
pixel k (i.e., Nk = {k − 1, k + 1, k − P, k + P }). The realization of the smoothness prior for
higher orders and for non-regular meshes such as arbitrary triangular meshes may turn out to
be more tedious. It also depends on the basis in which x is represented, see (Kaipio et al 1999)
for an example in which x is represented in piecewise linear rather than piecewise constant
basis.
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A particular class of smoothness priors are anisotropic priors. These priors can be viewed
as structural priors as they reflect structural information on the target. Therefore, we discuss
them separately below.

3.3.2. Impulse noise priors. It is easy to generate prior densities based on pixel presentation
of the images. It is a less obvious task to describe what sort of qualitative properties they
represent as an image. An important class of priors are the impulse noise priors. In some
applications, we expect to see a low-contrast image with few outstanding pixels as outliers.
Such images appear, e.g. in astronomy, where the sky is a nearly black object with bright stars.
We mention here three of such priors. These are the L1-prior

ppr(x) ∝ exp

(
−α

M∑
k=1

|xk|
)

= exp(−α‖x‖1) (23)

the maximum entropy prior

ppr(x) ∝ exp

(
M∑

k=1

xk log

(
xk

x0

))
(24)

and the Cauchy distribution prior,

ppr(x) ∝
M∏

k=1

1

1 + λx2
k

. (25)

In all these priors, the pixels are uncorrelated. The performance of the maximum entropy prior
and the L1-prior in recovering nearly black objects has been studied in (Donoho et al 1992).

3.3.3. Reparametrized priors. In many cases the pixelwise parametrization of the image
does not allow easily the coding of the prior information in the form of a prior density. An
illustrative example is that we know that the target contains a possibly unknown number
of subregions in which the material parameters are constant. We may also know that the
boundaries of these subregions are smooth. In this case it is then possible to parametrize the
unknown variable for example with the aid of the material parameters inside all subdomains as
well as the coefficients of the truncated Fourier series of the boundary curves. For an example
in relation to optical tomography, see (Kolehmainen 2001, Kolehmainen et al 2000a, 2000b),
and in relation to x-ray imaging, see (Hanson et al 1997a, 1997b, Mohammad-Djafari and
Sauer 1997, Mohammad-Djafari and Soussen 1999).

Also in the case of very fine meshes it may turn out that the covariance matrix becomes
almost singular. It is then advisable to consider lower dimensional (subspace) representations
of the variable. In addition to making the overall estimation problem smaller dimensional,
this may also increase the overall computational stability of the problem, since one often has
to work also with the inverse of the covariance matrix.

3.3.4. Sample-based priors. In some cases one has access to a more or less representative
ensemble of samples/images of the actual variable. One might for example have an ensemble
of thoracical topographies of organs based on more extensive measurements (e.g., anatomical
atlases), or an ensemble of full-angle reconstructions of teeth. In such cases, it is feasible to
assume that the ensemble is distributed according to the prior. The problem is to find a prior
that would produce ensembles similar to the one at hand if samples were randomly drawn from
the prior. This problem is recognized as a kernel estimation problem. As a general reference
on kernel estimation methods we give (Thompson and Tapia 1990).
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A particularly simple and computationally light special case is when the prior distribution
underlying the ensemble can be approximated by a Gaussian distribution. One can then use
the ensemble average as the prior mean and a low rank approximation for the inverse of the
covariance matrix. In some cases it may also be possible to construct the ensemble artificially,
see (Vauhkonen et al 1997, 1998) for examples of this approach.

3.3.5. Structural priors. In medical imaging, the overall structure of the target is often well
understood based either on anatomical information or on information from other imaging
modalities. Different modalities carry information related to different physical parameters
such as mass absorbtion coefficient, conductivity and thermal parameters. While there seldom
are any simple relationships between these parameters, we can usually expect that certain
features are correlated. One such feature is related to detected organ boundaries: it is
reasonable to assume that there are jumps with respect to all parameters through the organ
boundaries. Hence, if one imaging modality is able to reconstruct an organ boundary, this
information could also be used as prior information for other modalities. The procedure how
to construct the actual prior density from this information is based on the idea that pixel
values of a physical parameter within one type of tissue are strongly correlated while the
correlation across the boundaries is low or negligible. In practice, these requirements are met
by anisotropic priors: different directions close to the boundaries need to be distinguished
from each other. These priors are called structural priors. The construction of structural priors
is often slightly tedious, starting from the need of powerful image segmentation methods. The
good news is that Gaussian structural priors may turn out to be adequate which in turn means
that in the case of Gaussian likelihoods most estimates have closed form solutions (Kaipio
et al 1999).

3.3.6. Anomaly priors. As noted above, one of the main problems in the construction of
prior models and densities is that the prior density should be high for such targets that are
common or expectable. However, we are often most interested in certain deviations from the
usual, cancers being the most obvious examples. This leads to an obvious dichotomy: a good
prior distribution for the normal tissue tends to exclude the presence of the anomalous feature
and the information could be lost. There is a cure to this problem: it is possible to consider
the parameters describing the normal and the anomalous tissues as separate random variables
and to assign different prior distributions to them. The statistical inverse problem is then to
estimate these two variables separately. Of course, this procedure increases the number of
unknowns which may be a computational problem. However, it has the significant virtue that
one does not have to discern the cancerous tissue from the normal tissue visually since the
estimate for the anomalous part has been computed separately. See (Kaipio and Somersalo
2002) for the treatment of this topic.

3.3.7. Markov random field priors. The smoothness priors discussed above are a special
class of Markov random fields (MRF). Let N = {Ni | 1 � i � M} denote a neighbourhood
system, i.e., Ni ⊂ {1, 2, . . . ,M} is a list of neighbours of xi . We require that i /∈ Ni

and i ∈ Nj ⇔ j ∈ Ni . Consider now the conditional probability distribution of a single
component xj . We say that x = (x1, . . . , xM)T is a MRF with respect to the neighbourhood
system N if it holds that

pxj
(xj | x1, . . . , xj−1, xj+1, . . . xM) = pxj

(xj | xk, k ∈ Nj ).

In other words, the value of xj depends on the values of the remaining components only
through its neighbours. The probability distributions of MRFs are of a particular form. The
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Figure 5. Images having total variations (from left to right) 18, 28 and 40.

well-known Hammersley–Clifford theorem (see e.g. Besag (1974)) states that the probability
density of a MRF is necessarily of the form

p(x) ∝ exp


−

M∑
j=1

Vj(x)




where the functions Vj may depend only on xj and on those components xk of x for which
k ∈ Nj . In particular, we have then

pxj
(xj | x1, . . . , xj−1, xj+1, . . . xM) ∝ exp


−

∑
j∈Nk

Vk(x)


 .

A typical example of a MRF prior is the total variation prior. Consider again a rectangular
pixel image, and define the neighbourhood system in a natural way, i.e., the neighbouring
pixels are those that share a common edge. The total variation of the image is defined as

TV(x) =
M∑

i=1

∑
j∈Ni

lij |xi − xj |

where i and j are neighbours with common edge and lij denotes the length of their common
edge (i.e., lij = |∂�i ∩ ∂�j |). It turns out that the total variation prior,

ppr(x) ∝ exp(−αTV(x))

is a prior that is concentrated on images that are ‘blocky’, i.e., the pixels are clustered in
blocks with almost equal value and short boundary Dobson and Santosa (1994, 1996). To
demonstrate this fact, we have plotted three simple images in figure 5. The values of the pixels
are 0 (black), 1 (grey) or 2 (white). The total variations of these images are, from left to right,
18, 28 and 40, respectively. Often, one may also have a relatively good understanding about
the distributions of possible values of x within the different blocks in the target. For total
variation type MRF priors in such cases, see (Fox and Nicholls 1997, Nicholls and Fox 1998).

The MRF priors are very useful for designing structural priors. As an example, consider
a medical imaging problem where we know a priori (at least approximately) the location
of organ boundaries. This information can be based on anatomical data or on data coming
from different modalities (CT, MRI, for instance). In medical applications, this information
is expressed by saying that we have a segmented image, i.e., to each pixel we may assign an
index indicating to which tissue type the pixel belongs to. Assume that T (i) ∈ {1, 2, . . . ,K}
is the type of the pixel xi . Now we can define a neighbourhood system N in such a way that

T (j) �= T (i) ⇒ j /∈ Ni

i.e., pixels of different type are never neighbours. This means that the pixels are divided into
cliques according to their type. As a consequence, for a MRF with this type of neighbourhood
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Figure 6. Columns from left to right: three random draws from the Gaussian white noise prior,
second-order (isotropic) smoothness prior, L1-impulse prior and total variation prior, respectively.
All priors except the smoothness prior include positivity constraint.

systems, pixels in different cliques are uncorrelated, i.e., the prior allows jumps in the parameter
values across the organ boundaries, while within one tissue type, the values may be strongly
correlated.

3.4. Visualization of prior models

An enlightening possibility that is very worthwhile but seldom realized, is to draw samples
from the prior distribution in order to verify the qualitative nature of the prior. This procedure
allows one to get a qualitative understanding of which are actually the features that we assume
the target has. The problem in drawing samples from the prior distribution is that the prior is
very often not proper (integrable) and the task is impossible as such. However, it is possible
to consider certain conditional prior distributions that are proper and can be sampled. With
non-Gaussian priors one has to resort to Markov chain Monte Carlo (MCMC) methods for
drawing these samples, see section 3.6. In figure 6 random draws from the Gaussian white
noise prior, second-order (isotropic) smoothness prior, L1-impulse prior and total variation
prior are shown. For the smoothness and total variation priors the samples are from conditional
priors such that the values of the boundary pixels were fixed to zero. The samples that are
shown in figure 6 are the three most probable realizations from the set of the samples drawn
from each prior.

In addition to drawing samples from the prior, it is also advisable to visualize the prior
covariance. In Gaussian prior cases we naturally have to construct the covariance anyway
but in non-Gaussian cases the covariance can again be estimated based on MCMC runs.
Non-proper priors can be handled as in the case of drawing samples from the priors. The
visualization is carried out simply by fixing a pixel, say xj , and plotting the covariances
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cov(x1, xj ), . . . , cov(xM, xj ) in the same mesh as the target itself, see (Kaipio et al 1999) for
details and examples.

We also note that most interesting and feasible priors are nonintegrable or uninformative
in the sense that they do not represent proper probability distributions. This means among
other things that their covariance matrices may not exist, which again loosely speaking means
that the variances of x in certain directions are infinite. More rigidly, let v ∈ R

M, ‖v‖ = 1. It
is possible that the scalar-valued random variable xv = (xTv) has infinite variance.

3.5. Computation of the MAP estimate

Unless the noise and prior densities are Gaussian, finding the MAP estimate requires iterative
optimization methods. If the mapping x �→ p(x | m) is smooth, Newton–Raphson type
methods can be used in mildly large-dimensional cases, while very large-dimensional cases
typically require gradient-based methods. Observe that when the prior probability density is
of the Gibbs type,

ppr(x) ∼ exp(−αG(x)) (26)

the search for the MAP estimate in the case of Gaussian additive noise is tantamount to the
minimization problem

xMAP = arg min
(

1
2 (m − Ax)T�−1

noise(m − Ax) + αG(x)
)

(27)

i.e., a regularized weighted output least squares problem. We see that in the language of
traditional inverse problem literature, the function G, called potential or penalty function,
plays the role of Tikhonov regularization functional.

3.6. Computation of the CM estimate

Analytic evaluation of the conditional mean is practically impossible unless the posterior is
Gaussian. When the dimensionality of the problem is high, no traditional quadrature rule for
computing the integral in (10) is feasible simply because the number of the quadrature points
would be unreasonably large. Furthermore, the factor p(m) in (6) should also be computed by
integration. The evaluation of this factor is a problem of the same magnitude as the evaluation
of the conditional mean itself. Consequently, the integration requires the use of Monte Carlo
integration methods.

Markov chain Monte Carlo (MCMC) methods provide a tool for the approximation
of high-dimensional posterior integrals. MCMC methods create a set of random samples
{x(t) ∈ R

M} from the density p(x | m) and approximate the conditional mean with the
sample mean Gilks et al 1996. The key idea in the sample generation is to create a
Markov process which has p(x | m) as the stationary distribution. Once the simulation of
the process has been run long enough, say r iterations, the process will produce a set of
samples {x(t) | t = r + 1, . . . , S} whose distribution is close to p(x | m). The most popular
algorithms for the sample generation are the Gibbs sampler and the Metropolis–Hastings
algorithm (Gilks et al 1996, Hastings 1970, Geman and Geman 1984).

3.6.1. Metropolis–Hastings algorithm. In the Metropolis–Hastings algorithm the states of
the Markov chain are generated as follows: given the state x(t) of the chain, a candidate xc

for the next state is drawn from the proposal density q(xc|x(t)). Loosely speaking, q(xc|x(t))

is the probability of the move from x(t) to xc. The candidate is not accepted automatically.
To understand the acceptance rule, assume first that the proposal density is symmetric, i.e.,
q(x|y) = q(y|x) for all x, y. It can be interpreted by saying that the probability for moving



1452 S Siltanen et al

from y to x equals the probability of moving from x to y. In this particular case, the acceptance
rule is simple: if the proposed state xc has higher probability than the previous state x(t), the
candidate is automatically accepted. However, if it has a lower probability, it is accepted only
by a probability that is proportional to the ratio of the probabilities. Hence, the acceptance
probability γ of the candidate is simply

γ = min

{
1,

p(xc | m)

p(x(t) | m)

}
. (28)

If q(x|y) �= q(y|x), a modification of (28) is needed to compensate the asymmetry:

γ = min

{
1,

p(xc | m)q(x(t) | xc)

p(x(t) | m)q(xc | x(t))

}
. (29)

If the candidate is accepted, the next state is x(t+1) = xc. Otherwise, x(t+1) = x(t). The
distribution of the samples converges asymptotically to p(x | m). In practice the acceptance
is carried out so that one first draws a sample from the proposal distribution and computes
γ . Then a random number from the uniform distribution Uni(0, 1) is drawn and compared
with γ .

As it can be seen from equations (28) and (29), the normalization constant p(m) is
cancelled out in the computation of the acceptance probability and therefore it is sufficient to
know the posterior density up to the normalization constant only. This is a very important
feature since the computation of p(m) is a formidable task.

If an arbitrary initial draw x(0) is used, the first subsequent draws do not describe the
posterior distribution. Therefore a burn-in period {x(t), t = 0, . . . , r} of the generated
Markov Chain is usually discarded in the computation of the conditional mean, and thus, the
conditional mean is obtained as

x̂CM ≈ 1

S − r

S∑
i=r+1

x(i). (30)

On the other hand, if the MAP estimate has been computed and used as the initial draw, there
is no burn-in and the first samples can be used. Correspondingly, an estimate for the posterior
covariance can be obtained as

�̂CM ≈ 1

S − r − 1

S∑
i=r+1

(x(i) − x̂CM)(x(i) − x̂CM)T. (31)

The convergence of the simulation can be monitored, e.g. by computing confidence
intervals for the point estimates by using multiple parallel simulations with different starting
points x(0) (30). For more detailed information about the MCMC methods and the convergence
properties, see e.g. (Gilks et al 1996, Hastings 1970, Gamerman 1997, Smith and Roberts
1993, Tierney 1994, Roberts and Smith 1994). The marginal posterior densities of individual
components xk are obtained simply by using any kernel estimation method for the scalar draws{
x

(t)

k , t = r + 1, . . . , S
}
.

The key problem in the Metropolis–Hastings method is to find effective proposal
distribution. This is especially crucial in the case of large-dimensional problems. If the
proposal distribution is not feasible, γ ≈ 0 for almost all draws and very few of the candidates
get accepted. On the other hand, the proposal distribution has to be one from which we can
perform the draws. In many cases a Gaussian approximation is a feasible choice and at least
the one which is tried first. Write the posterior in the form p(x | m) ∝ exp(−g(x | m)). In
the case of twice differentiable g, the Gaussian approximation for the posterior density can be
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written at point x∗ by determining a Taylor’s approximation for the exponent term g(x | m) of
the posterior density

g(x | m) ≈ g(x∗ | m) + ∇g(x∗ | m)(x − x∗) + 1
2 (x − x∗)T∇2g(x∗ | m)(x − x∗). (32)

Typically, the MAP estimate is used as the linearization point x∗. Thus, an approximative
Gaussian distribution is obtained with covariance

�A = (∇2g(x∗ | m))−1. (33)

In many cases the proposal density associated with the exponent (32) is not used as such.
Instead, in the proposal density the previous state is used as the expectation while the covariance
(33) is retained. A procedure of this kind is often referred to as the random-walk Metropolis
algorithm (Gilks et al 1996). Thus the proposal density takes the form

q(xc | x(t)) = N (x(t), β�A). (34)

In equation (34), β is a scaling factor which is used for tuning the mixing properties of the
algorithm. The tuning parameter β has to be chosen carefully. If it is too large, almost all
candidates xc will be rejected. On the other hand, if β is too small almost all candidates xc will
be accepted but the algorithm is again very inefficient due to the fact that the jumps become
very small. The draws are very correlated in both extreme cases.

One possible way of choosing the value of β is to monitor the empirical acceptance rate.
There is theoretical justification for aiming at acceptance rates between [0.15, 0.5], for more
details see (Gilks et al 1996) and references therein.

In the case of a Gaussian proposal density the candidates xc can be drawn as follows.
Let β�A = USUT denote the singular value decomposition of the covariance matrix of the
proposal distribution (34). If we now define a multivariate random variable ϕ ∼ N (0, I ), we
can generate the candidates using the formula

xc = U
√

Sϕ + x(t). (35)

A visualization of the convergence of Metropolis–Hastings algorithm when x ∈ R
2 is

given in figure 7. Note the relevance of the adjustment of the scaling factor γ . The acceptance
rate is in the range [0.15, 0.5] for cases (c) and (d).

3.6.2. Gibbs sampler. Together with the Metropolis–Hastings algorithm and its variants,
Gibbs sampler constitutes a popular method of generating samples with a prescribed
distribution (Geman and Geman 1984). Rather than using a proposal distribution as in the
Metropolis–Hastings scheme, one uses directly the posterior distribution but in a sequential
manner. The so-called single component Gibbs sampler proceeds as follows:

(i) Fix the initial draw x(0) = (
x

(0)

1 , . . . , x
(0)

M

)
T and set j = 1.

(ii) Generate x(j) a single variable at a time:

Draw x
(j)

1 from the density t �→ p
(
t, x

(j−1)

2 , . . . , x
(j−1)

M

∣∣ m)
draw x

(j)

2 from the density t �→ p
(
x

(j)

1 , t, x
(j−1)

3 , . . . , x
(j−1)

M

∣∣ m)
...

draw x
(j)

M from the density t �→ p
(
x

(j)

1 , . . . , x
(j)

M−1, t
∣∣ m)

.

(iii) Set j ← j + 1 and go to (ii).
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Figure 7. Samples generated by the random walk Metropolis–Hastings algorithm. The boomerang-
shaped lines are equipotential lines of the posterior distribution. The initial estimate x(0) is in the
lower right-hand corner of the figures. The scaling factors γ were (a) γ = 0.01, (b) γ = 0.05,
(c) γ = 0.3 and (d) γ = 1. ‘Number of moves’ refers to how many of the 100 000 samples
(candidates) have been accepted. Only the accepted samples from the first 1000 candidates are
shown.

The determination of the so-called full conditional densities of a single component xk while
the remaining ones are fixed can in some cases be carried out analytically, at least with respect
to some variables, but since they are functions of a single variable only, it is relatively
straightforward to approximate the associated distribution functions non-parametrically
and then employ the well-known golden rule to draw the samples. Compared to the
Metropolis–Hastings method, the virtue of the Gibbs sampler is the absence of the problems
related to the choice of the proposal distribution as well as questions related to the acceptance
rule. The significant drawback is that it becomes easily slow when the number of the
components is large as it is in real x-ray tomography problems.

A visualization of componentwise updatings with the density of the previous example is
given in figure 8.

4. X-ray tomography from sparse projection data

4.1. Applications to medical imaging

Three-dimensional information is crucial for many radiological tasks. Some examples are

• A dentist wants to know whether the roots of a certain tooth are close to the inferior dental
canal (a tunnel for nerves inside the jaw bone). Answer to this question is not necessarily
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Figure 8. Illustration of the componentwise sampling with the Gibbs sampler.

present in a single intraoral radiograph due to overlapping of structures. In such case, the
dentist can use his regular equipment to take a couple of extra images from such angles
that the roots and the canal have clear disparity. Tomographic reconstruction from these
images is likely to yield the desired information.

• A radiologist suspects breast cancer after examining a screening mammogram. In
further study of the finding, seven radiographs are taken of the breast with an opening
angle of ±15◦. The reconstructed volume shows three-dimensional distribution of
microcalcifications, which helps in deciding whether to perform biopsy or not.

• A surgeon is mounting a screw to bone and wants to check whether the tip of the screw
is already close to the surface of the bone. A C-arm unit is used to take an x-ray image.
However, the direction of this image has to be carefully chosen to capture the desired
information. Instead, several images can be taken from a collection of directions bracketed
around the most probably correct direction, making sure that the position of the screw can
be reliably seen in the three-dimensional reconstruction.

The above procedures are examples of a novel three-dimensional medical imaging modality.
It is intermediate between studying a single radiograph and a CT scan. The radiation dose
of the novel modality is equal to the dose of a few radiographs, much lower than the dose of
CT. Also, the cost and resources required by the imaging equipment are considerably smaller
than those of a CT scanner. Such low dose imaging modalities with applications to dental
radiology and mammography have previously been suggested by Webber et al (Webber 1998,
Webber et al 1997, Ramesh et al 2002) and McCauley et al (2000).

As mentioned in the introduction, three-dimensional reconstruction from sparse projection
data is not as straightforward as from the comprehensive dataset provided by CT. In
section 4.2 we discuss tuned aperture computed tomography (TACT), a traditional approach
using tomosynthesis, or unfiltered backprojection, as reconstruction method. In section 4.3
we discuss how to use the statistical techniques of section 3 to improve the image quality of
TACT.

4.2. Tuned aperture computed tomography (TACT)

The TACT method was suggested by Webber (1998). In TACT imaging the directions of the
projection images are calibrated from a reference object in the image. The reconstruction
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method in TACT is tomosynthesis (unfiltered backprojection). Tomosynthesis was first
presented by Ziedses des Plantes (1932) and later promoted by Grant (1972).

The quality of tomosynthetic reconstructions suffer from the blur that is primarily due to
the overlapping of structures in the reconstruction due to the poor information content of the
limited-angle projection data in the depth direction. Several deblurring methods have been
suggested. Ruttimann et al (1984) present an iterative enhancement scheme, and Persons
(2001) uses Fourier transform methods.

Despite these limitations, TACT imaging has been found useful for many clinical
applications, see e.g. (Webber et al 1997, 1996, Webber and Messura 1999, Ramesh et al
2002, Lehtimäki et al 2003). We note that the proofs of many theorems about the structures
that are reconstructable from sparse projection data are based on the analysis of unfiltered
backprojection and ideal noise free data. Thus, the analysis in section 2.1 explains the limits
for what one can expect to see in TACT reconstructions. So choosing the projection directions
is crucial for successful TACT imaging.

4.3. Properties of statistical reconstruction

Statistical inversion can improve the quality of reconstruction over traditional methods (such
as TACT) with careful modelling of a priori information. It is in principle possible to
recover even such features of the target that are not stably reconstructable in the sense of
section 2.

Reconstruction algorithms based on statistical inversion are modular because the prior
information and the measurement model are separate:

• If different types of tissue are imaged with the same measurement setting (same x-ray
device and same projection directions), only the prior distribution needs to be changed in
the computation.

• If the measurement setup changes, only the likelihood distribution needs to be changed.
This change is accomplished by (i) computing matrix A in equation (17) for the new
geometry and (ii) approximating the noise characteristics for the new imaging equipment
or imaging parameters.

Statistical inversion can provide more information than just reconstruction. In addition to
presenting a single estimate (typically MAP estimate) as final image of the target, statistical
inversion gives natural means to obtain more extensive information on the solution by
computing different statistics and confidence limits from the posterior. In the case of
non-Gaussian posteriors this can be done by sampling the posterior using MCMC methods.
Statistical inference from the posterior is conducted using MCMC methods by Hanson et al
(1997a, 1997b). They verify the prior for the deformable boundaries by samples from the
prior in (Hanson et al 1997b). In part II of this paper we show marginal distributions and
confidence intervals for reconstructed pixel values.

Statistical inversion methods are computationally much more demanding than traditional
methods such as TACT or filtered backprojection. Applying statistical inversion to
realistic three-dimensional medical imaging leads to large-scale optimization or integration
problems. Thus, powerful computers and efficient numerical algorithms are required to reduce
reconstruction time to clinically acceptable limits.

In part II of this paper we show how statistical inversion with a feasible prior can improve
reconstruction quality over tomosynthesis and other traditional reconstruction methods in
dental imaging. We acquire our tomographic data with a commercial medical x-ray device
using in vitro human phantoms. The examples are computed with realistic resolution.
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4.4. Review of statistical inversion approaches to tomography from sparse projection data

In this section we review earlier work on statistical (Bayesian) inversion for reconstruction
from sparse projection data.

• Persson et al (2001) and Delaney and Bresler (1998) compute MAP estimates with total
variation prior using simulated limited-angle projection data. Improved image quality is
reported in comparison with filtered backprojection.

• Hanson and his collaborators have worked on Bayesian methods for sparse data
transmission tomography for a long time. In the pioneering 1983 work Hanson and
Wecksung (1983) applied Bayesian inversion to limited-angle tomography using a
Gaussian prior. In later works they used shape parametrization of the problem together
with Bayesian inversion methods (Hanson et al 1997a, 1997b, Battle et al 1997, 1998).

• Shape parametrization and Bayesian approach to limited-angle problem have also
been studied by Mohammad-Djafari et al, see (Soussen and Mohammad-Djafari 1999,
Mohammed-Djafari and Sauer 1997, Mohammad-Djafari and Soussen 1999). See also
the discussion about prior models for x-ray imaging in (Mohammad-Djafari and Sauer
1997).

• Sauer et al (1994) consider the Bayesian approach to transmission tomography in
nondestructive testing. Their data consist of few radiographs collected from full angle, and
they compare Markov random field (MRF) priors with different smoothness properties.
They also consider binary MRF priors (i.e., possible values of attenuation are known a
priori). MAP estimates are computed. This work is extended to real measurement data
(and modelling of uncertain source locations) in Sachs and Sauer (1999). In (Bouman
and Sauer 1996) they present an iterative pixelwise coordinate descent algorithm for the
computation of the MAP estimate. See also (Bouman and Sauer 1993). Similar work has
been conducted by Hsiao et al (2001) with simulated non-sparse data.

• Nygrén et al (1997) apply Bayesian approach to ionospheric radiotomography. They
use Gaussian priors for reconstructions with simulated and real data. This work is the
continuation of the work of Lehtinen (Lehtinen 1985, 1986, Hämäläinen et al 1987).

• Anisotropic total variation regularization has been considered by Bleuet et al (2002).
This approach cannot be interpreted as Bayesian in the strict sense since the regularizing
penalty functional depends on the measurement geometry, whereas prior distributions
should be independent of the measurements.

• Yu and Fessler (2002) consider structural MRF priors. In their (conditional) MRF prior,
the weighting field for the jumps between neighbouring pixels is based on level-set
representation of the organ boundaries in the current estimate. Their model contains a
hyperprior that prefers relatively short and smooth organ boundaries. A minimization
scheme in which the pixel values and organ boundaries are updated in an alternating
manner is used for the computation of MAP estimates.

• Bayesian methods have been used widely and successfully in emission tomography
modalities (SPECT and PET), see e.g. (Cunningham et al 2998, Chan et al 1997, Aykroyd
and Zimeras 1999, Hebert and Leahy 1989, Liang et al 1989, Green 1990, Hebert and
Gopal 1992, Lalush and Tsui 1992, Gindi et al 1993, Mumcuoglu et al 1994, Lee et
al 1995, Bowsher et al 1996). Typically, Markov random field (MRF) priors are used
as a prior model for the image and MAP estimates are computed as final images from
the posterior. In most cases Poisson model is used for the statistics of the emission
data. This can give significant improvement over Gaussian noise models when emission
data contain very low counts, which is often the case, especially in PET. Many of the
articles give detailed discussions on the optimization routines that are used to compute
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MAP estimates. The resolution of the reconstructions in SPECT and PET are not expected
to be as high as in x-ray tomography. Thus, the numbers of unknowns for these problems
remain much lower than in x-ray imaging.

5. Conclusions

In this paper, the application of statistical inversion methods to x-ray tomography with sparse
projection data was reviewed and discussed. The main focus was given to the theory of
statistical inversion and to the prior models. The discussion included an example on the
analysis and visualization of the prior models. We also discussed the likelihood model we
use for x-ray tomography and the computation of the point estimates from the posterior. A
review of mathematical results on the information content of sparse projection data was also
given. Based on the presented theory, a novel statistical model for three-dimensional imaging
of dentomaxillofacial structures is proposed in part II of this paper. Results are given with
experimental projection data from in vitro dental phantoms.
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Appendix. Gaussian approximation for the likelihood

Let nmeas
i denote the value of the detected photon count for the ith observation in the set of

projection data. For it we define the value of the attenuation measurement

mi = − log
nmeas

i

λ0I0
(A.1)

modelling the fact that

Ii = I0 exp(−m0,i) m0,i = (Ax)i

is the error-less intensity measured on the detector pixel. The photon counts ni are assumed to
be independent and have distributions ni ∼Poisson(λi), λi = λ0Ii . This models the fact that
each photon is absorbed to the detector with probability λ0.

Next, we would like to approximate the observation errors with a Gaussian distribution.
Unfortunately, since the attenuation data is a logarithm of a Poisson distributed quantity this
kind of approximation cannot be justified directly. Instead of that, we will consider in detail the
likelihood function, that is, the probability mass function of n = (n1, . . . , nN)T with condition
that x is given. At point u = (u1, . . . , uN)T it is

p(n = u | x) =
N∏

i=1

e−λi
λ

ui

i

ui!

=
N∏

i=1

exp[ui log(λ0I0 exp(−m0,i)) − λ0I0 exp(−m0,i ) − log(ui!)].

where m0,i = (Ax)i. Taking logarithms, we get

log p(n = u | x) =
N∑

i=1

[−uim0,i − λ0I0 exp(−m0,i )] + c(u) (A.2)
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where the constant c(u) is independent of x. Following Sauer and Bouman (1993), we write

log p(n = u | x) = c(u) +
N∑

i=1

h(m0,i , ui)

where function h is of the form

h(t, ui) = −uit − λ0I0 exp(−t).

Now, we write Taylor approximations for functions t �→ h(t, ui) at point t̂ i = t̂ i (ui) where
∂th(t̂ i, ui) = 0. This gives

log p(n = u | x) ≈ c(u) +
N∑

i=1

h(t̂ i ) +
1

2

N∑
i=1

∂2
t h(t̂ i )(m0,i − t̂ i )

2. (A.3)

Solving equation ∂th(t̂ i, ui) = 0 yields

t̂ i (ui) = − log
ui

λ0I0
∂2
t h(t̂ i , ui) = −ui. (A.4)

Denoting t̂ (u) = (t̂1(u1), . . . , t̂N (uN))T and recalling m0,i = (Ax)i we obtain

p(n = u | x) ≈ ec1(u) exp
(− 1

2 (t̂ (u) − Ax)TD(u)(t̂(u) − Ax)
)

(A.5)

where c1(u) is a constant and D(u) is a diagonal matrix with elements Dii(u) = ui .
Now, if the values of ui are the measured photon counts nmeas

i and

mi = − log
nmeas

i

λ0I0

we see that t̂
(
nmeas

i

) = mi . Thus

p(n = nmeas | x) ≈ ec1(n
meas) exp

(− 1
2 (m − Ax)TD(nmeas)(m − Ax)

)
. (A.6)

Thus the value of the likelihood function p(n = nmeas | x) is approximately the same as
some function c2(n

meas), depending only on nmeas, multiplied with the likelihood function that
we would obtain using an additive Gaussian error model for m0 with the noise covariance
matrix D−1(nmeas). When the measured data nmeas are given, the function c2(n

meas) can
be considered as a normalization constant that does not affect computation of CM or MAP
estimates. Summarizing, we have shown that even though Gaussian model may not be
the correct model for the logarithm of count data, we obtain right CM and MAP estimates
using Gaussian error model in our computations. In practice, the matrix D(nmeas) can be
approximated by D(nmeas) ≈ σ−2I whenever the photon counts at each detector pixel are
approximately of the same magnitude.
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