Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings

J. Lieblein and M. Zelen

Abstract

Fatigue is an important factor in determining the servive life of ball bearings. Bearing manufacturers are therefore constantly engaged in fatigue-festing operations in order to obtain information relating fatigue life to load and other factors. Several of the Jarger manufacturers have reently pooled thelr test data in a cooperative effort to sat up unfform and standardized ball-bearing application formulas, which would henefit the many uners of antifriotion bearinge. These data were compiled by the Amerioan Standards Agboviation, which subsequently requested that the National Burean of Standards perform the neceasary analyses. Thie paper summarizes the principal results of the analyset undertaken by the Bureat, and dencribes the statintical procedures used in the inventigation.

1. Introduction

1.1. Statement of Problem

The experience of ball-bearing manufacturess over many ycars has led to the neceptance of en equation of the form [15, p. 15, eq (53)]'

$$
\begin{equation*}
L=(C / P)^{D}, \tag{1}
\end{equation*}
$$

relating fatigue life L to load P when other factors are kepl constant. In the above equation, C is termed the "basic (dynamic) capacity," and is defined [$15, \mathrm{p} .48]$ as the constant bearing load (in pounds) that 90 percent of a group of similar bearings can endure for one million revolutions under the given running conditions.

The quantity C in eq (1) depends upon the characteristics of tho bearing type, as indicated in [15, p. 32, eq (120)]. When the expression cited is substituted in eq (1), the fatigue-tife formula for boll bearings takes the form

$$
\begin{equation*}
L=\left[\frac{f_{C} Z^{\alpha_{1}}}{} D_{D_{5}^{\alpha_{2}}(i \cos \alpha)^{\alpha_{s}}}^{P}\right]^{\nabla} . \tag{2}
\end{equation*}
$$

The symbols are defined as follows:
$Z=$ number of balls.
$D_{n}=$ bell diameter in incles.
$i=$ number of rows.
$a=$ contact angle.
$P=$ bearing load in pounds.
$L=$ number of million revolutions that a specified pereentage of bearings will fail to survive on account of fatigue causes. If the percentage is 10 , then $L=L_{t 0}$, and is termed the rating life; if the percentage is 50 , then $L=L_{2,}$, the median life.
$p, a_{1}, a_{2}, a_{3}, f_{c}$ are taken as unknown parameters whose values have to be estimated from given data.
Since $i=1$ and $\alpha=0^{\circ}$ for deep-grooze ball bearings, with which this paper is exclusively concerned, the life equation that will henceforth be considered takes the form

$$
\begin{equation*}
L=\left[\frac{f_{l} Z^{a_{1}} D_{e_{2}^{2}}^{e_{2}}}{P}\right]^{p} . \tag{2a}
\end{equation*}
$$

[^0]The main goal of this investigation was to detertnine the "best values" of the unknown paramelers in the life equation from the experimental data. One of the major problems was to determine the value of the exponent p, as there was disagreement within the ball-bearing industry whether an appropriate value for p was 3,4 , or some other value.

1.2. Description of Data

The data available for analysis consisted of sets of records summarizing endurance tests for deep-gtoove ball bearings. These tests were carried out over a period of years by four major ball-bearing companies. In the interest of trade anonymity, these companies will henceforth be designated by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . Each endurance test consisted of a number of bearings of the same type (the number varying from test to test), which were tested simultanepusly under the same load and running conditions. Table 1 summarizes the number of test groups of data for each company. The data from company B were sufficiently extensive to permit a further breakdown into three bearing types, here demoted by B-1, B-2, and B-3.

Table 1. Summary of bath-bearing atata

Company	Number of test groups	Total number of bearinpa In teat groups
${ }_{\text {A }}$	50 148	1, 250
Type $\mathrm{B}-1$	37	
Type ${ }^{\text {B-2 }}$	94	
C---1.	12^{17}	291
D.	${ }^{3}$	109
Total (all companies) .	213	4,948

The worksheets, summarizing the tests, recorded the number of millions of revolutions reached by cach bearing in the test group before fatigue failure. Information was also given for those tests terminated before all bearings in the test group failed. In addition to the test results, the workshocts incloded information on the characteristics of the bearing type (e. g., values for $Z, D_{\mathrm{e}}, i, \alpha$) and load P, as well as other items of descriptive and identifying information. A specimen worksheet is reproduced in appendix A.

All necessary quantities for evaluating the unknown parameters in the life equation (2) were given directly on the worksheets except the fatigue life $L .{ }^{2}$ This quantity can be estimated from the observed fatigue lives of individual bearings within a test gronp. Ar already noted, two concepts of fatigue life are used for L_{1} namely, the rating life I_{10}, and the median life L_{20}. Separate analybes have been carried out with regard to each throughout.

Appendix A summarizas the data taken from the original worksheets that were used in the statistical analysis. Also given are the computed values for $L_{n 0} L_{\text {sp, }}$ and the "Weibull slope" \boldsymbol{e} (which relates to the dispersion of fatigue lives). The methods for obtaining these quantities from the bearing data are given in detail in appendix B.

1.3. Assumptions for the Statistical Analyses

All conclusions reached in this report, and all statistical analyses employed, are bazed upon the following principal assumptions:
(a) The life formula (2) is the proper functional form for deseribing fatigue life in ball bearinge.
(b) Differences in the measured life of bearings classed as identical, tested at the same load, reflect only the inherent variability of fatigue life, and are free from systematic errors that may arise from different test conditions, materials, manufacturing methods, etc.

[^1](c) All the bearings in a test group can be regarded as a random sample from a homogeneous population of ball bearings.
(d) The probability distribution of the number of revolutions to fatigue failure is of the same form for each test group, although its parameters may differ from group to group.
(a) This fatigue-life distribution is of the type known as the "Weibull distribution."

The purely statistical assumptions, (c) to (e), served as the basis for the determination of $L_{3 n}, I_{\text {ton }}$, and $\boldsymbol{6}$ for each test group. Assumption (e), however, is not involved in the methods used to evaluate the parameters in the life formula (2) from given valucs of L_{00} or $L_{s 0}$. A different assumed form for the distribution of fatigue life might give somewhat different values for I_{10} and $L_{\text {to }}$, but the same methods conid then be used to evaluate the unknown parameters in the life formula (2).

Other assumptions of a more technical nature were necessary in the course of the analyses. These are discussed in appendixes B and C .

As in all cases where inferences ars made from giveth data, the conclusions reached here pertain only to the population from which the given data can be regarded as constituting a random sample.

2. Outline of Statistical Analyses

The statustical analyses were divided into two phases. The first phase considered the problem of finding estimates of L_{10}, L_{30}, and the Weibull slope e from the given test data; the second phase used these estimates of L_{10} and L_{30} to evaluate the unknown values of the parameters in the life formula.

2.1. Estimation of L_{10} and L_{50}

The guantity L depends upon the existence of an underying probsability distribution of bearing lives. Selcetion of a distribution or population is equivalent to specifying the probebility that a bearing selected at random from such a population will survive any given number of revolutions, L, or, converscly, that if e is a specified probability, then L is the life period that will be survived with this probability, e. g.,

$$
\text { Probability }\{\text { life } \geq L\}=\varepsilon=\left\{\begin{array}{l}
.90 \text { for } L=L_{10} . \\
.50 \text { for } L=L_{50} .
\end{array}\right.
$$

Accordingly, any L, buch as L_{10} or χ_{60}, must be obtained by estimating a characteristic of the assumed distribution, For reasons described in appendix B, the distribution characterizing ball-bearing fatigue life was taken to be the Weibull distribution. In brief, this distribution can be derived by assuming a "weakest-link" coneept of fatigue strength. In addition, the suitability of the Weibull distribution for fatigue life has been verified in many cases by empirical plotting of data.

One method of estimating L_{10} or $L_{s 6}$ makes use of special probability-plotting paper so designed that a theoretical Weibuil distribution plots as a straight line, and treats the problem as one of straight-line fitting by conventional least squares procedures. However, the procedure usually followed does not take into full account the number of bearinge that remain intact when tests are incomplete, nor the interdependence of successive points. Because of these and other timitations, it was decided to use an alternative approach in the estimation of L_{10} and $L_{s 0}$ for each test group (see appendix B).

To this end, a method was developed that takes into account explicitly the number of bearings remaining intact at the termination of a test, and that albo possesses several other advantages. This method makes use of certain specially determined linear functions of the observed failure times (in logarithma), $x_{\text {f }}$ arranged in order of size. Thesc functions have the general form

$$
\begin{equation*}
T=\sum_{j=1}^{k} c_{j} x_{j} . \tag{3}
\end{equation*}
$$

As the method makes intimate use of the ordered arrangement of the data, it is termed an "order atatistics" method.

The coefficients c_{j} in eq (3) allow great flexibility. Thoy have been determined in such a manner that the method will have certain desirable objective characteristics, e. g., freedom from systematic error and a minimum standard error.

2.2. Evaluation of the Parameters in the Life Formula

Once the estimates for L_{10} and L_{50} are obtained, it is possible to evaluate the exponent p in the life formula. Howeser, in order to make the most efficient use of the given data, it is neceseary also to estimate the other paranneters, $f_{c r} a_{1}$, and a_{2}.

The methorls for estimating the values of L_{10} and L_{50} for each dest group actually yield results for $\ln L_{14}$ and $\ln L_{\mathrm{Bi}}$. Thus, taking logerithns ${ }^{3}$ of the life equation (2a) gives

$$
\begin{equation*}
\ln L=\left(p \ln f_{c}\right)+\left(p a_{t}\right) \ln Z+\left(p a_{2}\right) \ln D_{a}-p \ln P \tag{4}
\end{equation*}
$$

This equation can be writen more simply as

$$
\begin{equation*}
Y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{9} \tag{5}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
Y=\ln L\left(\text { for cither } L_{10} \text { or } L_{\text {e0 }}\right), \tag{6}\\
\delta_{41}=p \ln f_{c}, b_{1}=p x_{1}, b_{v}=p a_{2}, b_{3}=-p, \\
x_{1}=\ln Z, x_{2}=\ln D_{a 1} x_{2}=\ln P .
\end{array}\right\}
$$

The quantities x_{1}, x_{2}, and r_{3} depend on the charact,gristics of the bearing type and test conditions, and can be regarded as known exactly. On the other hand, the variable Y, whicl depends on the outcome of the bearing tests, is subject to considerable dispersion. Thus, extimates can be found for the parameters b_{0}, b_{1}, b_{2}, and b_{3}, using standard least bquares methods based on minimizing the sums of squared deviations in the y direction. These methods are discussed in detail in appendix C.

After the paramelers b_{1}, b_{1}, b_{2}, and b_{3} are estmated, values for $a_{a_{1}} a_{1}, a_{2}$, and p can be found from the relations

$$
\begin{array}{ll}
a_{0}=\ln f_{t}=-\frac{b_{0}}{b_{3}} & a_{1}=-\frac{b_{1}}{b_{3}} \\
a_{2}=-\frac{b_{2}}{b_{3}} & p=-b_{3}
\end{array}
$$

It is clear that the values for a_{0}, a_{1}, and a_{2} depend on the value of p.
The estimates for p and the $a^{\dagger} \mathrm{s}$ are subject to some uncertainties because they are based on test results, which themselves are subject to considerable varibbility. Hence with every value of p and of the a's calculated from the life data, there is given also an interval of uncertainty to indicate its precision. These intervals are " 95 -percent confidence limits." 4

A large interval of uncertainty associated with an estimste indicates poor pracision; a small interval of uncertainty is evidence of high precisjon. These intervals of uncertinty not only reflect the inherent variability of the test data, but are also affected by (a) how well the life equation (2a) is the proper functional form for bearing life, and (b) the suitability of the data (including the number of test groups) for estimating the parameters in the life formula.

Furthor technical details concerning the evaluation of the pararneters in the life formuls are given in appendix C.

[^2]
3. Summary of Analysea

3.1. Evaluation of Parameter p

The statistical analysis based on all deep-groove ball-bearing data from companies A, B, and C^{5} yielded the final values for p shown in table 2 . The separate values for each of the three companies are given in table 3. The intervals of uncertainty specified by \pm quantities in those tables refer to intervals within which, with reasonable assurance, the true value of the parameter is located. The fact that all of the intervals of uncertainty exhibit considerable overlap shows that the data are consistent with the supposition that all three companies have a common value of p for deep-groove bearings. The fact that all the intervals include 3 indicates that all the estimates of p are consistent with the practice of taking $p=3$. Moreover, the value of p for L_{30} was not significantly different from that for I_{00}.

Takle 2. Pinal aver-all values of p for decp-qroove
becrings

	L_{10}	L_{M}
P.-. - .-.--	2. 87 ± 0.35	2. 80 ± 0.81

Table 3. Individual estimutes of p for dcep-greove bearinga by company

Company	Number of test groupr	L_{10}	L_{80}
A.	50	3. 00 ± 0.64	3. 05 ± 0.60
B	148	2. $75 \pm .48$	2. 82 ± 0.40
	12	3. $12 \pm .88$	2. 88 ± 1.02

The values given for p are based on analyses of all deep-groove ball-bearing data, irrespecttive of bearing lype. Hence, the parameter estimates represent "omnibus' values. In order to investigate the dependence of the exponent p on bearing type, the data from company B , which was mado up of three bearing types, were amalyzed separately. The results for the exponent p are shown in telle 4. These results are all compatible with the value $p=3$.

Tablex 4. Vatue of p by bearing type for company B

Types	Number of test groups	Value of p	
		$L_{\text {ct }}$	L_{50}
B-1.	37	3. 36 ± 0.88	3. 23 ± 0.47
B-2	94	2. 65 ± 0.91	2. 13 ± 0.79
B-3	17	1.89̇1,28	2. 82 ± 1.10
Total	148		

[^3]
3.2. Evaluation of Parameters t_{c}, a_{1}, and a_{s}

The computations that give estimates for the pxponent p also yicld estimates for the quantities $\ln f_{4} a_{1}$, and a_{2}. From the rolations (6) it is clear that the values for these parameters depend on the value for p. Thus, associated with every value of p will be corresponding values for In f_{c}, a_{t}, and a_{2}. Table 5 summarizes these parameter estimates associated with the final values of p. The estimates for $\alpha_{0}=\ln f_{4}$ rather than f_{4} are given here, because this is the parameter that aribes naturally in the life formula (ef. eq 4).

The analyses conducted separately for each company resulted in other values than those in the previous paragraph for a_{0}, a_{1}, a_{2}. Thesc results are summarized in table 6. They show excellent agreement with the results in table ${ }^{\text {a }}$, wen though the values for p are somewhat different.

Table 5. Findil maders of $a_{1} a_{11} a_{2}$ for L_{0} and L_{0}

Company	p		$\begin{aligned} & \text { Inte } \\ & \text { qnie } \end{aligned}$	$\begin{aligned} & \text { val of } \\ & \text { tainty } \end{aligned}$	a	Intery		a_{2}	Inter uncer	$\begin{gathered} \text { val of } \\ \text { taintry } \end{gathered}$
L_{10}										
${ }_{\text {A }}^{\text {B }}$	2.87 2.87 288 287	9.02 88 986	(7.31, (7 88, (6) 85	10. $\begin{aligned} & \text { (1) } \\ & 12 \\ & 12.4 \\ & 42\end{aligned}$	0.380 -670 -174	($\begin{aligned} & -0.454, \\ & 0.458 \\ & -1.750\end{aligned}$	(1. 201)	1.72 1.81 1.37	(1. 31,	1.92)
L_{50}										
	2. 80	10. 36 9. 05 9.05		$\begin{aligned} & \text { 11. } 98) \\ & \text { (8. } 80 \\ & 11.58) \end{aligned}$	$\begin{gathered} 0.015 \\ .665 \\ .475 \end{gathered}$			1. ${ }^{69}$ 1. 91 1. 1		

Table 6. Valuta of a_{0}, a_{1}, a_{4} for L_{10} and L_{30}, based on independent analyass for each company

Company	${ }^{p}$		Inter uncer	alal of	a_{1}	Interv unitert	of	${ }_{\square}$	Inte unce	al of ainty
L_{10}										
	3. 00	897	(7. 18,	10. 90$)$	0.390-606-.041	$(-0.507$$(-308$-1.326.	$\begin{array}{r} \text { 1. 249) } \\ 0.928) \\ .092) \end{array}$	$\begin{aligned} & \text { 1. } 79 \\ & \text { 1. } 80 \\ & \text { 1. } 36 \end{aligned}$	$\left(\begin{array}{ll}(1.60, & \text { 1. } 94 \\ (1.67, & 1.92 \\ (0.49, & 293\end{array}\right)$	
	2.75	8.39	(7.90,	9.24						
	3. 12	9.21	(7. 29 ,	11.84)						
$L_{s 4}$										
		$\begin{array}{r} 10.18 \\ 9.15 \\ 8.98 \end{array}$	$\left.\begin{array}{ll}(8.48, & 12.00 \\ \text { (8, } 61 & 9.76 \\ (6.58, & 12.30\end{array}\right)$		$\begin{gathered} 0.072 \\ .890 \\ .510 \end{gathered}$	$\begin{aligned} & (-0.768 \\ & (-1,056 \\ & (-156 \end{aligned}$	$\begin{aligned} & 0.855) \\ & (.822) \\ & (.810) \end{aligned}$	$\begin{aligned} & \text { 1. } 71 \\ & \text { 1. } 90 \\ & \text { 1. } 75 \end{aligned}$		

Similarly, the values for a_{0}, a_{1}, and a_{2}, arising from separate analyses made on the three types of bearings from company B, resuitad in still other estimates for these parameters. Table 7 summarizes these eatimates. These estimates are less precise than the corresponding omnibus values given for company B in table 6 . This is a consequence of the fact that within a bearing type, the quantities Z and D_{a} hardly vary at all. This condition makes the data unsuitable for estimating the aseociated unknown parameters, a_{0}, a_{1}, and a_{2}.

Table 7. Vaitued of $a_{n,} a_{1}, a_{2}$ for $L_{w} a+1 d L_{30}$ by bearimg type (comptoty B)

Type	6_{4}	Interval of uncertajnty	\square_{1}	Interval of uncertainty	a_{1}	Interval of uneertainty
L_{10}						
B-1.	7.25	(5.21, 0.39)	1. 07	(0.35, 1. 76)	1. 68	(1.27, 2.08)
H-2	7. 34	(5.54, 9.33$)$	1. 21	($.43,2.00)$	1. 69	(1.38, 1, 93)
P-6.	2, 50	$(\cdots 7.06,16,04)$	8.70	($-2.25,9.08$)	1. 27	(0.60, 1. 05)
L_{10}						
B-1	7. 39	(5.92, 8.92)	1. 23	(0.78, 1.73)	1. 79	$\left(\begin{array}{ll}1.50 .2 .08)\end{array}\right.$
B-2.	9. 090	(7.10, 11. 67)	0.87	(-, 05, 1, 68)	1. 77	$\left(\begin{array}{lll}1.46, ~ 2,03\end{array}\right)$
B-3.	1. 03	$(-4.34,683)$	4. 500	(1, 97, 7, 18)	1. 48	$(1,21,1.70)$

3.3. Redetermination of the Rstimates for f_{c}

The uncertainty intervals associated with estimates for the parameter $a_{0}=\ln f_{4}$ are quite large. This is primarily because the uncertainty associated with the estimate of a_{e} also depends on how well the other parameters, a_{1}, a_{9}, and p, are estimated. Another way to evaluate a_{0}, which may result in smaller intervals of uncertainty, is to assume a priori values for a_{1}, a_{3}, and p, and then determine the estimate for a_{0}. This procedure was followed by using the widely accepted values for the parameters given in [15], namely, $a_{1}=2 / 3, a_{2}=1.8, p=3$.

However, if on such a calculation the values assumed for the parameters a_{1}, a_{2}, and p are not compatible with the given data, then values of a_{0} (or f_{e}) so calculated will not be correct determinations for these data. Accordingly, an analysis was made to determine whether the parameter values in [15] were eompatible with the given data.

This analysis showed that these parameter values are compatible with the data, with respect to all individual companies for rating life L_{10}, but not for median life $L_{\text {so }}$. (Company A was the only company for which the parameter values are suitable for median fife.) A further analysis, by bearing type for company B, showed that the above parameter values are not suitable for the rating life L_{00} with respect to $\mathrm{B}-3$-type bearings.

In the light of this last analysis, redetermined values of a_{0}, taking $a_{1}=2 / 3, a_{2}=1.8$, and $p=3$, are only strictly valid with respect to company A, company B (B-1, B-2), and company C for rating life L_{0}. These values are summarized in table 8 . For conveniance, these new estimates are given for $f_{c}=\ln ^{-4} a_{0}=\exp a_{0}$.

Table 8. Values for f_{t} tuseuming $a_{1}=8 / 8, a_{4}=1.8_{1} p=8,0$ for L_{10}

Company	Number of test groupg	f	Interval of uncertainty
	50	4,538	(4, 273, 4,817$)$
B (over-all value)	148	4, 925	(4, 750, 5,105$)$
B-1	37	4.709	($4,403,5,054$)
B-2	17	5, 033	$(4,885,5,187)$
C.-.	12	- $\overline{3} 294$	
D	3	4,639	$(3,478, \quad 6,187)$

[^4]The authors express their gratitude for the assistance rendered by the various staff anemb of the Burenu, without which the prosecution of this study and realization of its goal would not have been possible. Particular thanks go to Churchill Eisenhart, Chief of the Statistical Engineering Laboratory, for his many valuable suggestions and constructive criticisms which have been incorporated into this report. Thanks are also due to Joseph M. Cameron for many useful suggestions and for his liaison assistance with the work of the Computation Laboratory. Most of the large-scale calculations were performed on the Bureau's electronic computer (SEAC), and for these the audhors are deeply indebted to the following members of the Computation Laboratory: I. Stegun, for her general supervision; A. Futterman, for her painstaking efforts in organizing and seeing the SEAO computations through to a successful conclusion; also to R. Capuano and R. Zueker, as well as others in the hand-computing department, for the large amount of hand computations. Our appreciation is also expressed to the following personnel of the Statistical Enginecring Laboratory: M. Carson and M. L. Epling for their excellent computational work, and I. S. Deming, M. E. McKinley, C. Yirk, and L. Hamilton for their efforts in connection with the various tables and charts.

The authors also express their thanks to the members of the American Standards Association Committee B-3 (Ball and Roller Bearings), Subcommittee 7, for their invaluable cooperation during the course of this study.

4. Appendix A. Summary of Original Data

This appendix summarizes in tabular form the worksheets submitted by the American Standards Association Subcommittec to the National Bureau of Standards for statistical analysis. Separate tables are presented for deep-groove data from companies A, B, C, and D. These four tables (A-1 to A-4) are followed by table A-5, which gives a synopsis of the number of test groups and the number of bearings for cach company.

Tables A-1 to A-4 give the size of test group, the walues for quantities I, Z, D_{9}, and the estimetes ${ }^{\text {a }}$ for L_{10}, L_{50}, and the "Weibull slope" e. All of these variables are direetly observed or sperified quantities except for the estimates $L_{10}, L_{y b}$, and e. These last three quantities are based on statistical celeulations that made use of the results of individual endurance tests. These calculations are explained in appendix \mathbf{B}.

The original data, as submitted, contained a few cases where companies tested bearinge manufaetured by other companies. Such test groups are not included in the summary tables, as these results confound differences in tasting with differences in manufacturing. Therefore these test results were not used in any of the analyses. Thus, table A-3, for company C, omits 4 tests performed on other manufacturers' bearings; table A-4, for company D, ornits 3 teste.

The five tables described above are followed by a specimen workslneet. ${ }^{3}$ with identifying information removed. A sample of Weibull-funetion coordinate paper is also ineluded. This coordinate paper had been used for graphing the results of all the individual endurance tests and these graphs had accompenied the worksheets submitted to the Statistical Engineering Luboratory.

[^5]

Record No．	$\begin{gathered} \text { Yasr } \\ \text { of } \\ \text { tegt } \end{gathered}$	1 Munder In tast grows	Load	Z Munder of belle	$\begin{gathered} \mathbf{D}_{\mathbf{a}} \\ \text { Bali } \text { diam. } \end{gathered}$	I_{10}	L_{50}	Westrant slope
			3 b		12．			
1－1	1936	24	4240	9	21／16	19.2	84． 5	1.27
1－2	1997	20	4240	8	11／26	26.2	74.2	1.82
1－3	1937	14	4240	8	13／16	21.1	68.1	${ }_{1}{ }^{\text {che }}$
1． 4	1937	19	4240	8	11／16	11．8	66.8	1.05
1－5	1937	18	4240	8	11／16	13.5	79.4	1.06
1－6	1938	21	2530	9	1／2	5.80	25.7	1.27
1－7	1938	28	4240	8	11／16	18．3	4.7	2.10
1－8	1938	27	4240	8	13／16	5.62	73.2	． 73
1－9	1940	20	4240	8	11／16	25.8	$82+7$	1.14
1－10	1940	22	4240	8	11／16	8.70	41.6	1.20
1－11	1940	19	420	8	11／16	11.6	160	． 72
1－12	1940	15	2940	9	7／16	20.6	72.4	1.52
1－13	1940	15	1940	9	7／16	14.5	88.2	1.04
1－14	1940	15	2536	9	1／2	12.1	33.1	1.87
1－15	1940	14	2536	9	1／2	15.1	46.4	1.67
1－16	1940	15	2536	9	1／2	14.0	43.6	1.66
1－17	1940	14	2536	9	1／2	19.3	51.8	1．91
1－18	1940	26	4340	8	11／16	46.2	110	2.17
1－19	1940	14	4240	8	11／16	30.0	88.2	1.74
1－20	1\％42	20	4240	8	11／16	21.1	57．4	1.89
1－21	1942	20	4240	8	21／16	17.3	45.7	1.94
1－22	1942	37	4240	8	11／16	37.5	128	1.64
1－23	1942	36	4240	8	$11 / 16$	20.3	77.1	2.14
1－24	1942	32	4240	8	11／16	4.03	42.5	.80
1－25	1941	28	2544	8	17／32	8.38	84.7	－ 8 且
1－26	1943	23	3975	8	19／32	3.79	13.5	． 93
1－27	19.42	30	4400	10	5／8	11.7	45.2	1.39
1－28	1942	31	6920	8	7／a	4.15	15.8	1.11
1－29	1943	30	990	9	5／16	7.23	12.0	1.09
1－30	1943	30	1509	7	7／16	22.9	110	1.20
1－31	1943	30	932		12／32	9.54	37.6	1.57
1－32	1944	26	3180	8	19／32	6.28	23.0	1.45
1－33	1944	29	3180	${ }^{8}$	19／32	4.81	21.2	1.27
1－34	1）${ }^{\text {gh }}$	33	86400	10	7／8	4.17	12.8	1.68
1－35	1944	26	14080	8	1－1／4	5.42	31.6	1，07
1－36	1951	28	1940	9	7／16	7.47	49.5	1.00
1－37	1951	34	2330	9	7／16	4.80	21.3	1.26
1－38	1951	27	1550	9	7／16	14.8	78.4	1.13
1－39	1951	29	1165	9	7／16	84.9	460	1，17
1－10	1951	27	2910	9	7／16	3.40	16.5	1．19
1－41	199	27	3880	9	7／26	1.24	3.23	1.97
1－42	199	26	776	9	7／26	2 l 1	951	1.37
$1-43$	1951	30	29750	8	$1 \rightarrow 3 / 4$	3．01．	12.6	1．34
1－44		30	21.12	9	11／26	B9．1	486	1.11
$1-45$	8	30	$4{ }^{2} 24$	8	$11 / 16$	15.2	104	． 98
1－46	安	30	8448	8	11／16	2.04	10．2	1.17
$1-47$	0	30	21.2	8	5／8	51.0	376	． 9.7
124	宫	30	4224	8	5／8	5.26	59.8	． 78
1－49		30	9148	8	5／8	． 883	4.94	1．09
1－50	1944	30	4224	8	11／16	14．8	57.4	1.39

Table A-2. Stumarti ball-bearing data for company B_{r} with computed watuea for L_{10}, L_{56} and Weibull alope e

fiocord Ho.	Year of test	Mumber in trat groap	Lond	2 Manber of bells		140	L_{50}	Wafrall slop
			16		In.			
2-1	1940	19	570	10	3/16	6.68	13.4	2.72
2- 2	1944	20	570	9	5/16	29.8	70.0	2.22
2-3	1946	23	580	9	1/4	16.3	55.2	2. 55
2-4	1946	23	580	9	1/4	28.5	69.2	2.13
2-5	1947	23	580	9	1/4	16.4	49.3	I. 71
2-6	1943	10	665	9	1/4	10.3	40.1	1.50
2-7	1944	10	665	9	1/4	25.7	46.4	3.19
2-8	1942	19	5 BO	10	$1 / 4$	9.55	39.6	1.32
2-9	1946	33	620	10	$1 / 4$	17.9	62.1	1.51
2-10	1947	15	620	10	$1 / 4$	19.9	73.2	1.45
2-11	1947	31	620	10	$1 / 4$	12.9	50.4	1.39
2-12	1944	29	625	10	1/4	19.3	46.2	2.18
2-13	1917	17	720	10	1/4	11.1	23.3	2.54
2-14	1946	60	980	11	9/32	15.7	43.5	1.85
2-1.5	1947	32	980	11	9/32	17.2	38.7	1.54
2-16	1950	49	600	11	5/16	417	609	2.85
2-1.?	1949	60	600	11	5/16	216	709	I. 58
2-18	1943	20	900	11	5/16	35.6	100	1.92
2-19	1946	67	1220	11	5/16	12.0	42*2	1.50
2-20	1947	34	1280	11	5/16	8.53	46.6	1.11
2-21	1940	20	1370	71	5/16	6.77	18.9	1. 85
2-22	1950	60	145	11	5/16	13.5	46.5	1.53
$2-23$	2950	60	2243	11	5/16	2.32	8.06	1.51
2-24	1942	20	720	12	5/16	36.7	147	1.40
2-25	1946	55	1300	12	5/16	19.0	57.2	1.72
2-26	2947	30	1300	12	5/16	19.5	60.6	1.67
2-27	1944	20	1650	24	12/32	17.0	74.4	1.37
2-28	1946	59	1760	24	11/32	20.9	53.7	2,00
2-29	1947	34	1760	14	11/32	9.56	40.7	1.30
2-30	1940	20	2010	13	13/32	5.49	33.3	1.05
2-31	1940	9	2010	13	33/32	1.39	44.0	.54
2-32	2944	19	2714	13	13/32	9.80	82.7	.88
2-33	1943	11	2630	25	13/32	5.18	54.9	+80
2-34	2942	12	5900	14	19/32	6.36	17.5	1.86
2-35	2947	19	5900	14	29/32	3.68	22.1	1.05
2-36	1947	20	8070	14	23/32	8.34	23.6	1.80
2-37	1942	12	8075	14	23/32	6.78	36.4	1.12
2.38	2938	10	565	9	. 210	9.27	18.4	2.75
2-39	1940	23	720	8	9/32	18.2	56.9	3.66
2-40	1,940	24	720	8	$9 / 32$	22.8	56.2	2.09
2-171	2940	25	720	8	9/32	3.99	15.6	1.36
2-42	1940	21	720	8	$9 / 32$	9.07	29.4	1.60
2-4, 3	1940	25	720	8	$9 / 32$	7.14	28.5	1.36
2-44	1940	25	720	8	9/32	12.5	26.4	2.51
$2-45$	194	25	720	8	$9 / 32$	18.8	48.7	1.98
2-46	1941	23	720	8	9/32	27.5	53.2	2.08
2-47	1947	33	860	6	5/16	17.1	59.0	1.52
2-48	1948	6	660	8	5/16	15.2	87.6	1.08
2-49	1943	20	900	9	5/16	30.1	92.3	1.68
2-50	1944	18	900	9	5/16	15.0	47.6	1.63

Beoord No.	$\begin{aligned} & \text { Yoar } \\ & \text { of } \\ & \text { test } \end{aligned}$	Mumber in t日at group	Iond	2 Number of ball:	D_{2}	L_{10}	L_{50}	Witibull [10p*
			71		$1{ }^{1}$			
2-51	1945	27	940	9	5/16	17.5	52.8	1.71
2-52	1947	34	940	9	5/16	24.4	65.6	I. 214
2.53	1.939	10	1180	9	5/16	8.76	22.1	2.04
2-54	1945	30	1580	9	$3 / 8$	12.1	43.3	1.47
2-55	1947	33	1580	9	3/8	17.2	64.6	1.42
2-56	1940	8	1580	9	3/8	20.7	34.6	1.61
2.57	1945	31	21.60	9	7/16	10.9	37.6	2.52
2-58	2947	30	2960	9	7/16	12.7	53.7	1.30
2-59	1938	9	2200	9	7/16	3.73	43.5	.77
2-60	1947	30	2480	9	7/16	16.6	78.3	1.21
2-6.1	1850	40	1340	9	15/32	180	275	4
2-62	1937	19	1660	10	7/16	85.2	234	1.86
2-63	1941	19	1700	9	15/32	57.1	230	1.35
2-64.	1939	24	2480	9	25/32	15.7	55.8	1.48
2-65	1939	25	2480	9	15/32	27.1	97.8	1.47
2-66	1939	23	2480	9	15/32	21.7	122	1.09
2-67	1939	28	2180	9	15/32	13.2	42.3	1.62
2-66	1939	28	21480	9	15/32	35.6	145	1.35
$2-69$	2939	20	2480	9	15/32	12.7	34.7	1.87
2-70	1944	20	2480	9	15/32	10.1	27.8	1.67
2-71	1945	20	2460	9	15/32	8.83	34.3	1.39
2-72	1938	10	2480	9	15/32	16.5	60.3	1.45
2-73	1942	11	2480	9	15/32	17.9	65.8	1.45
2-74	1943	10	2480	9	15/32	15.7	63.1	1.35
2-75	1943	20	2480	9	15/32	10.8	42.7	1.38
2-76	1944	18	2480	9	15/32	14.2	37.9	2.83
2-77	1944	18	2480	9	1.5/32	19.0	67.8	1.48
2-76	194	18	2480	9	13/32	16.3	57.7	1.49
2-79	194,	20	2480	9	15/32	2.93	18.0	$1.0{ }_{4}$
2-80	1944	20	24.80	9	15/32	5.69	25.4	1.26
2-81	1944	28	2480	9	15/32	9.54	39.9	1.32
2-82	19h4	22	2460	9	15/32	12.6	55.7	1.27
2-83	1944	23	21480	9	15/32	5.10	37.5	+ ${ }^{94}$
2-94	1944.	18	2480	9	15/32	16.0	53.7	1.56 -78
2-85	1944	20	2480	g	15/32	1.98	22.1	, 15
2-86	154,5	20	2480	9	15/32	5.65	28.8	1.16
2-87	1945	20	2480	9	15/32	12.8	43.6	1.58
2-88	1945	20	2480	9	15/32	9.814	32.3	1.59
2-89	1945	20	2480	9	15/32	12.1	43.0	1.48
2-90	1945	20	2480	9	15/32	5.48	40.8	. 94
2-91	2945	20	2480	9	15/32	6.64	25.3	1.17
2-92	2945	32	2480	9	25/32	13.9	41.9	1.70
2.93	1946	35	2480	9	15/32	9,02	45.4	1.17
2-94	1946	34	24.20	9	15/32	11.0	49.2	1.26 1.16
2-95	194\%	37	2480	9	15/32	2.5	73.6	1.16
2-96	1944	9	2480	9	15/32	5.91	37.2	1.02
2-9?	21944	10	2400	9	15/32	18.1	40.5	2.39
2-98	1945	10	2480	9	15/32	17.1	53.3	1.65 2.95
2-99	1945	10	2480	9	15/32	32.6 ch.	6.8	1.87
$2-100$	1944	10	2480	9	15/32	24.1	6.2	1.07

Beoord HO	Yoar of tort	Number in teat groun	Loed	Z Qumber of halls	$\begin{gathered} D_{\mathrm{a}} \\ \text { Ball dinn } \end{gathered}$	40	L_{50}	Wa1bull slope
			1.1		1.			
2-104	1945	20	2480	9	15/32	36.1	71.6	2.75
2-102	1946	20	24.80		15/32	63.3	104	3.82
2-103	1946	12	2480	9	15/32	7.7	59.0	1.33
2.104	1946	11	24.80	9	25/32	15.1	92.9	1.04
2-105	1945	10	2480	9	15/32	18.8	39.4	2.55
2-106	1950	12	2 280	9	15/32	5.63	34.7	1.04
2-107	1950	12	2460	9	15/32	7.23	34.5	1.201
2-108	1951	30	$2{ }^{2} 80$	9	15/32	16.7	7. 8	1.29
2-109	1951	63	2480	9	15/32	26.5	90.3	1.54
2-110	2950'	23	2480	9	15/32	8.35	49.1	1.06
2-111	1943	19	3250	9	15/32	3.79	9.30	2.10
2-112	1937	10	3470	10	7/16	9.05	36.6	1.35
2-113	3944	20	4600	9	15/32	2.98	7.35	2.08
2-114	1943	19	2300	10	15/32	22.5	73.4	1.59
2-115	1938	10	2730	10	15/32	3.82	39.7	. 89
2-316	1946	22	2660	20	17/32	6.55	20.8	1.63
2-117	1944	20	2250	11	15/32	17.5	64.3	1.45
2-118	1943	26	2300	11	15/32	61.7	152	2.10
2-179	1945	48	2840	11	15/32	18.6	42.7	2.27
2-420	2947	28	2010	11	15/32	21.6	66.3	1.68
2-121.	3.947	8	2840	11	15/32	71.9	39,7	1.59
2-122	1948	8	2840	11	15/32	23.9	50.6	1.46
2-123	1943	19	3200	17	15/32	7.80	33.1	1.30
2-124	194	28	4000	11	15/32	3.55	13.9	1.36
2-125	1943	19	4000	17	15/32	9.40	23.4	2,06
2-126	1947	23	73350	11	11/16	4.76	22.7	1.7
2-127	1944	20	12000	11	1-1/16	3.23	9.86	1.69
2-128	1944	20	12000	27	1-1/16	2.62	9.52	1.146
2-129	1944	9	12700	8	1-1/2	7.89	39.7	1.17
2-230	1949	18	16500	17	1-1/16	4.93	20.4	1.33
2-131	1950	20	16500	14	1-1/16	6.26	16.2	1.98
2-132	1938	9	565	7	5/16	37.3	103	1.85
$2-133$	1944	20	900	7	5/16	14.0	30.6	2.86
2-134	1938	70	1650	8	13/32	30.3	87.6	1.77
2-7.35	1944	20	2250	8	15/32	25.7	7.2	1.85
2-1.36	1943	20	2300	8	15/32	10.5	60.4	1.07
2-137	1914.	19	3200	B	15/32	10.3	24.2	2.01
2-139	1914	19	4000	8	15/32	4.56	12.9	3.81
2-139	1937	10	1710	8	17/32	25.1	274	4.79
2-140	1938	9	2360	8	17/32	48.8	264	1.12
2-1/12	1937	10	2690	8	17/32	7.53	60.7	.90
2-14,2	1937	71	3850	8	17/32	14.9	62.6	1.32
2-14,	1947	27	7760	8	29/32	4.57	43.4	. 84
2-nlut	1943	12	9550	8	1-1/16	3.90	40.7	. 80
2-145	2947	21	9750	8	2-1/16	15.5	79.4	1.16
2.31 .6	1948	16	11400	8	1-3/16	10.2	43.9	1.29
2-147	1948	20	11400	8	1-3/16	4.71	16.9	1.48
2-314	2947	18	124\%	8	1-3/16	10,1	34.2	1.55

Repord Ho.	Year df test	3unber in tert grap	toad	2 Suanter of balls	D_{a} Ball diam.	${ }_{10}$	\mathbf{L}_{50}	Weitbuld slope
			1 b		in.			
3-1	1942	94	1580	7	9/16	16.9	64.8	1.40
3-2	1949	29	790	7	9/16	271	729	1.52
3-3	1949	35	1185	$?$	$9 / 16$	74.4	287	1.40
$3-4$	1940	29	1600	9	1/2	9.62	40.1	1.32
3-5	1945	10	1600	8	15/32	12.9	66.3	1.10
3-6	1943	9	2275	7	17/32	13.8	58.0	1.31
3-7	2946	13	2540	8	15/32	2.38	11.3	1.21
3-8	1946	12	2540	9	15/32	2.38	11.5	1.19
$3-9$	7949	12	1580	7	9/16	8.75	62.2	0.96
3-10	1949	12	1580	7	$9 / 16$	25.7	123	1.27
$3-17$	194?	34	1600	9	1/2	74.5	123	0.92
3-12	1949	12	610	8	5/16	26.8	65.6	2.10

Regord Ho.	Year or test	Nughber 1n test eroup	Load	2 Munber of bells	D_{a} Ball ${ }_{\text {dien }}$	$\mathrm{L}^{*}{ }^{*}$	L_{50}^{*}	Weibull -1opg
4-1	1946	19	$\begin{gathered} 1 \mathrm{~b} \\ 1750 \end{gathered}$	9	in. $7 / 16$	159	963	1.05
L-2	1951	34	1750	9	7/16	11.7	526	0.94
4-3	1951	56	1750	9	7/16	123	582	1.15

* Life estimates are in hours.

Table A-5. Summary of teat groupt of ball-bearing data

Company	Number of teat groups	Total number of bearings in teat group
A.	50	1,259
B-....-		
Type $\mathrm{B}-2$	94	---.
Tуре 1-3	17	
$\mathrm{C}^{\text {C }}$	12	${ }_{101}^{291}$
Total (all companies)	213	4,948

*These data were not used in the main analyser

5. Appendix B. Evaluation of $L_{10}, L_{x o n}$ and Weibull Slope e, by Using Order Statistica for Censored Data

This is a technical appendix that gives the mathematical basis for estimating, for each test group, the values of L_{10} and L_{50} for use in the regression analysis discussed in appendix C , and also the Weibull slope e.

5.1. Weibull Distribution

a. Characteristies

As noted in the text, the basic assumption for eatimating $L_{n, 1} L_{\text {sp }}$ and ε for each test group was that the probability distribution of fatigue lives of individual benrings could be represented by a "Weibull distribution." This means that the observed fatiguc lives (number of revolutiona) of all the bearings in a test group of, say, n bearings constitute a random sample of n independent ohservations from a distribution whose cumulative (from above) distribution function (hereafter dennted by edf) is "

$$
\begin{align*}
S(L) & =\operatorname{Prob}\{\text { life } \geq L\} \\
& =\exp \left[-(L / a)^{\circ}\right], \quad 0 \leq L<\infty, \tag{B1}
\end{align*}
$$

where a and e are the two parameters to be fitted. They are related to L_{10} and L_{50} by eq (Bza) below. The function $S(L)$ is also termed the "survivorship" function. This distribution is one of three limiting types to whieh the distribution of the smallest member of a sample, under general conditions, tends as the sample size is increased indefinitely. (Another type is discussed in the following section.) This matter was first studied chiefly by Fisher and Tippett [5], and for this reason the type (B1) is sometimes referred to as Fisher-Tippett type III for smallest valucs.

There are both theoretical and practical reasons for choosing the Weibull distribution (B1) as the underlying probability distribution for fatigue life.

Theoretical. Here it is assumed that fatigue is an "extreme-value" phenomenon, related in some manner to the strength at the weakest point in the material under stress. The theoretical reasoning that proceeds from this assumption is mentioned by a number of authors, snd is given explicitly, for example, by Freudenthal and Gumbel in [6, p. 310 to 318]. It leads precisely to the form (B1) (see eq (2.9) in [6]). It is recognized that this statistical assumption has not received universal acceptance. This paper is, howover, not oncerned with the relative merits of various statistical theories of fatigue, but merely with consequences of a reasonable choice from arnong them.

Practical. Application of the Weibull distribution received extensive attention by W. Weibull in [19], where he showed that a distribution of the general type (B1) represented certain fatigue-life data quite satisfactorily. In addition, inspection of the special "Weibull" plota accompanying the worksheets suggests that many can be fitted satisfactorily by a straight line representing a Weibull distribution, as explained below.

The manner in which these graphs are constructed is described by Weibull in [19]. A sample of Weibull-function coordinate paper used for this purpose is included in appendix A. The essence of the method is that eq (B1) may be converted, by taking logarithms twice, into

$$
\begin{equation*}
e(\ln L)-(e \ln a)=\ln [\ln (1 / S)], \tag{B2}
\end{equation*}
$$

where " In " denotes the natural logarithm (base denoted by ϵ) and $S=S(L)$. From eq (B1) and the defnitions of L_{10} and L_{50}, when $L=L_{w}, S(L)=.90$; and when $L=L_{80}, S(L)=.50$. These values substituted in eq (B2) give

[^6]\[

\left.$$
\begin{array}{l}
e\left(\ln L_{10}\right)-e(\ln a)=\ln [\ln (1 / .6)]=-2.25037 \tag{B2q}\\
e\left(\ln L_{50}\right)-e(\ln a)=\ln [\ln (1 / .50)]=-0.36651,
\end{array}
$$\right\}
\]

the valnes on the right-hand side being obtained from [17, table 2]. These are the relationships between the parametcrs a, e, L_{m}, and $L_{n o t}$. The right-hand numerical values will later be denoted by y.so, $y_{\text {de }}$, respectively. Equation (B2) may be written

$$
e x-a^{\prime}=y
$$

where

$$
\begin{equation*}
x=\ln L_{,} a^{\prime}=e \ln a, y=\ln [\ln (1 / S)] . \tag{B3}
\end{equation*}
$$

The variables x, y correspond to the two scales shown on the Weibull-function coordinate paper in appendix A. The variable x, with uncestricted values, corresponds to the horizontal meale "Bearing life," having a logarithmic scale. The variable y is represented through the percentage surviving, S, or rather through the (vertical) scale for "bearings tested-percent" $=$ percent failed ${ }^{10}=1-S=P$, which can vary only between 0 and 1 . This scale also has nonuniform graduntions, given by the iterated logarithm in (B3).

The Weibull distribution is thus seen to be equivalant to a straight-line relationship, wild "Weibult slope" ε, between the logarithm of fatigue life and an associated quantity y depending only on its relative rank when the fatigue lives are arranged in ascending order. Thus, goodness of fit of the straight line (B3) is equivalent to goodness of fit of a Weibull distribul tion to the fatigue lives L of an individual test group. In fact, one common method of statistical analysis of fatigue-life data (Freudenthal and Gumbel [8]) depends upon the use of the classical method of least squares for fitting this straight line. This method is, however, subject to ecrtain limitations described below. Instead, an alternative method, presented in the following sections, is preferred that fits the distribution of $x=\ln L$ directIly by use of order statistics.

b. Limitations of Rittigg by Leant Squares

In the classical method of least squarcs for fitting the straight-line relationship (B3) to a test group of ball-bearing data, pairs of values $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, are requircd. The values of $x=\ln L$ nec obtained from the given data. However, the variable y, measured through the percentage failing, $P=1-\$$, presents difficulties. The problem of how to plot P is known as the problem of "plotting position."

It seems clear that the values, P_{t}, of the plotted variable, P, must somehow be related to the rank order of the bearings as they fail. A natural choice is the percentage failing: $P=f / \mathrm{m}$, where f is the rank order of failure in a test group of n. This is not advisabie for reasone discussed at length by Gumbel in [9, p. 14], where he advocates the ploting position $f /(n+1) .{ }^{11}$ Other workers tale different positions, and the question of plotting position must be regarded as still unsettled.

A second difficolty with the use of least squares is that as usually used it fails to take adequate account of the number of items remaining intact ("runouts") in the incompleted teate. As a final point, it is to be noted that the suecessive platted pointe are not independent, as they represent the observed lives in increusing order. A correct use of lenst squares procedures would have to take into account all the intercorrelations, which is not done in the usual application of the "method of least squares." The method of order statistics described in seetion shas the advantage of avoiding the above limitations of the least squares method.

[^7]
5.2. The Extreme-Value Distribution

a. Helation to Welbull Distribution

The preceding section indicates that logarithms of lives, rather than lives themselves, are the nataral units in which to carry out the analysis. This idea has also been adopted by those who do not use the Weibull distribution, either becsuse they are unaware of ite existence or because they do not feel it fits their data.

If the Weibull distribution is edopted for fatigue life, L, then the variate, $x=\ln L_{r}$ hes the nonnormal cumulative distribution function ${ }^{12}$

$$
\begin{aligned}
G(x) & =\operatorname{Prob}\{\ln (\mathrm{life}) \geq x\}=\operatorname{Prob}\left\{\operatorname{life} \geq \epsilon^{2}\right\} \\
& =S\left(\epsilon^{2}\right)=\exp \left(-a^{-\epsilon} \epsilon^{e x}\right)=\exp \left[-\epsilon^{\{t-\ln \Delta\}) \epsilon^{-1}}\right], \quad-\infty<x<0 .
\end{aligned}
$$

This may be written
where

$$
\begin{equation*}
G(x)=\Phi(y)=\theta \times p(-\infty), \tag{B5}
\end{equation*}
$$

and

$$
\begin{equation*}
y=(x-w) / \beta, \quad-\infty<x<\infty, \tag{B6}
\end{equation*}
$$

$$
\begin{equation*}
u=\ln a, \quad \beta=1 / e \tag{B7}
\end{equation*}
$$

are the tro parameters. The distribution, $\Phi(y)$, considered as a distribution of the "reduced variable," y, has standardized parameters $u=0, \beta=1$, and is called the "reduceddistribution."

The form (B5) is another of the three asymptotic distributions of extreme values, sometimes designated as Fisher-Tippett type I for smallest values. This distribution has been studied extansively, chiefly by E. J. Gumbel (e.g., $[7,8,9]$). In this paper, the term "extremevalue distribution" will be given to the distribution of smallest values (unless otherwise spectfied), although this name is frequently given to the largest-values case.

From the above discussion, it is apparent that methods pertinent to the type I extremevalue distribution (B5) are appropriate. For this purpose there is available a mathematical approach recently developed by one of the authors of this report, and described in detail in [13].
b. Charactaristics

A description of the extreme-value distribution (B5), together with an interpretation of its parameters in terms of life estimates for rather their logarithms), is essantial to an understanding of the application of the method of order statistics in this paper. It will be seen that the problem of estimating life is equivalent to that of estimating the parametars u and β.

The parameters of the extreme-value distribution (B5) are depicted in figure 1 (page 291). The quantity u is the position of the mode or highest point of the (frequency) distribution. The quantity β is a seale parameter, analogous to the standard deviation, σ, in the case of the normal distribution. In fact, β is $\sqrt{6} / \pi$ (nhoul $\%$) times the standard deviation of the extremevalue distribution.

Although the two parameters, u, β, completely specify the distribution, it is very useful to introduce related quantities of the form

$$
\begin{equation*}
t=u+\beta y, \tag{B8}
\end{equation*}
$$

which are linear combinations of parameters 4 and β and may thus also be regarded as parameters when known values are later assigned to y. Introduction of t makcs it possible to estimate u and β simultancously. Thus if t can be obtained as $a+b y$ with s and b known and y arbitrary, then the valucs $s=a, \beta=b$ can be read off at once.

The parameter t has another highly important meaning. In figure 1 the area F under the distribation to the right of the ordinate crected at t represents the probsbility that a value

[^8]

FTeure 1, General form of extreme-valus digtribution (for amailagt values) shoving relatiokthiy of paramelers $i_{F}, x_{\mathrm{H}}=\ln L_{10}$, and $x_{\mathrm{si}}=\ln _{n} L_{30 \mathrm{r}}$ to u and B .
larger than t will occur. Thus t is a function of F and may be written t_{p}, as shown; it is designated the "upper 100F-percentage point" of the distribution. For example, if $F=.90$, then $t=t_{50}$ represents a value of $x=\ln L$, which will be oxecedod by 90 percent of the population. This is associated with rating life I_{10} (life exceeded by 90 percent of bearings) by the relation

$$
\begin{equation*}
t_{.50}=x_{10}=\ln L_{10} \tag{B9}
\end{equation*}
$$

where x represents life in logarithmic units. Similarly, for median life,

$$
\begin{equation*}
t_{\Delta 0}=x_{s 0}=\ln L_{50} \tag{B10}
\end{equation*}
$$

Since the t 's are regarded as parnmeters of the distribution, so also are x_{10} and x_{50} and thercfore L_{19} and L_{30}. These are not, of course, all independent.

In generad, we bave the percentage point t_{F}, which, expressed in terms of the original parameters u and β, may be written in the form (B8):

$$
\begin{equation*}
t_{P}=u+\beta y_{P}, \tag{B8a}
\end{equation*}
$$

where y is a quantity depending only on the probability F, determined as follows. We have from ($\mathbf{B 8} \mathrm{B}$)

$$
\begin{equation*}
y_{p}=\left(t_{r}-u\right) / \beta \tag{B11}
\end{equation*}
$$

i. e., $y r$ is the value of $(x-u) / \beta$ when x takes the value $t r$. But by definition of the probability F, in view of (B5), (B6), and (B11),

$$
\begin{equation*}
F=\operatorname{Prob}\left\{x \geq t_{r}\right\}=O\left(t_{r}\right)=\Phi\left(y_{r}\right)=\exp \left(-\varepsilon^{\theta^{r}}\right) . \tag{B12}
\end{equation*}
$$

Thus, solving for y_{p}, we obtain

$$
\begin{equation*}
y_{p}=\ln (-\ln F) . \tag{B13}
\end{equation*}
$$

This is the reduced variable corresponding to the probability F, and may beobtained by a simple change in sign from table 2 of (17), which tabulates the function

$$
-\ln \left(-\ln \Phi_{v}\right),
$$

where Φ_{y} a probability, takes on values from 0 to I . Thus,

$$
\left.\begin{array}{l}
\text { for } F=.00, y=-2.25037 ; \tag{B14}\\
\text { for } F=.50, y_{F}=-0.36651 .
\end{array}\right\}
$$

The above discussion shows that both x_{10} and x_{00} (rating and median lives in logarithmic units) may be determined once the general percentage point (B8a) is estimated by giving the two particular valuee (B14) to γ_{p}.

c. Converaion Fiom Largeat to Smallest Volues

The methods and numerical results developed in \{13] were for problems, such as maximum gust-loads on airplanes, that required the distribution of largest sample values. In order to adapt this material to the distribution of smallest values (B5) required here, the relationships of symmetry involved in the reversal of direction must be examined with care. To avoid confusion, it is necessary to use subscripts L and S to distinguish between quantities related to the largest-value distribution from those related to the smallest-values case. No generality is lost by use of reduced varistes. 'Thus, in (B5), x will be replaced by the reduced variate y, and, for simplicity, the symbol $G(y)$ will be used instead of $\Phi(y)$:

$$
\begin{equation*}
G(y)=\Phi(y)=\exp \left(-\epsilon^{\prime}\right) . \tag{B15}
\end{equation*}
$$

From this, the ("cumulative from above") distribution of smallest values is

$$
\begin{equation*}
\operatorname{Prob}\left\{Y_{s} \geq y\right\} \equiv G_{s}(y)=\exp \left(-\epsilon^{y}\right), \quad-\infty<y<\infty, \tag{B16}
\end{equation*}
$$

where Y_{s} denotes the reduced smallest value. The corresponding distribution of largest values is (sce Gumbel [9 , eq (I), p. 21])
$\operatorname{Prob}\left\{Y_{\Sigma} \geq y\right\} \in H_{z}(y)=1-\operatorname{Prob}\left\{Y_{\Sigma}<y\right\}=1-\exp \left(-\varepsilon^{-v}\right)=1-G_{s}(-y), \quad-\infty<y<\infty$,
from (B16).
The corresponding relation for the density functions is obtained by differentiation, with $g_{s}(y)=G_{S}^{\prime}(y)$, and $\Lambda_{L}(y)=H_{L}^{\prime}(y):$

$$
\begin{equation*}
g_{s}(y)=h_{L}(-y) . \tag{B18}
\end{equation*}
$$

Hence the two distributions are morcly mirror inages of each other. The momente of the distributions are related as follows:

$$
\begin{equation*}
y_{x s}=E_{s}\left(y^{k}\right)=\int_{-\infty}^{\infty} y^{k} g_{s}(y) d y=\int_{-\infty}^{\infty}\left(-y^{\prime}\right)^{k} h_{L}\left(y^{\prime}\right) d y=(-1)^{k} v_{\nu L} . \tag{B19}
\end{equation*}
$$

Thus, the means differ in sign and the variances are identical:

$$
\begin{gather*}
\nu_{1 s}=-\gamma=-\nu_{L_{2}} \tag{B20}\\
\sigma_{S}^{*}=\frac{\pi^{2}}{6}=\sigma_{L}^{2} . \tag{B21}
\end{gather*}
$$

These values are given, for example, in [9, p. 23, eq (3.27)].
Finally, we need the relationships between moments of the order statistics for the two distributions. As the smailest-value distribution is a reversal of the largest-value distribution, it is natural to reverge the arrangernent of the order statistics as well. This gives simpler results. Thus we are interested in the ith order statistic in the sertes

$$
\begin{equation*}
(S): \quad y_{1}^{\prime} \geq y_{2}^{\prime} \geq \ldots \geq y_{i}^{\prime} \geq \ldots \geq y_{n}^{\prime}, \tag{B22}
\end{equation*}
$$

where the parent distribution is that of smollest values. Primes will be used as a reminder that the order is descending, not ascendiug. Thus in tables B-2 and B-3 the absence of primes indicates that the order statistics are in increasing order.
(B22) is the analogue of the saries

$$
\begin{equation*}
(L): \quad y_{1} \leq y_{2} \leq \ldots \leq y_{t} \leq \ldots \leq y_{n} \tag{B23}
\end{equation*}
$$

of order atatistics for the largest-value parent distribution. Whenever a distinction is necessary the subseripts S or L will be used with the y 's.

From (B18) it may seem intuitively (and may be justified rigorously) that the distributions and moments of the order statistics follow the same symmetry relationships as che parant distributions, namely,

In other words, the even moments remain the same; the odd moments change only in sign.
The above development shows that the numerical results for moments of order statistics previously obtained in [13] for the largest-value case can be used here for smallest values without any substantive change.

5.3. Method of Order Statistics for Censored Samples
 a. For Small Samples

Consider an independent random sample of n items from the distribution of smallest values, of which only the k smallest values can be observed. In view of the preceding discussion, it is desirable in the theoretical development to deal with the order statistics in descending order:

$$
\begin{equation*}
\left(x_{1}^{\prime} \geq x_{2}^{\prime} \geq \ldots \geq x_{n-k}^{\prime}\right) \geq x_{k-k+1}^{\prime} \geq \ldots \geq x_{n k}^{\prime} \tag{B25}
\end{equation*}
$$

where the parentheses denote the ($n-k$) (largest) unobservable values, and the remaining k values are known. This arrangement materially simplifies the exposition. Primes will again be used to denote descending order to distinguish from ascending order, which will oceur in the later parts of this section.

From the k known values it is desired to determine an estimator

$$
\begin{equation*}
T_{n, k}^{\prime}=w_{l}^{\prime} x_{n-1+1}^{\prime}+w_{2}^{\prime} x_{n-k+z}^{\prime}+\ldots++w_{k}^{\prime} x_{n,}^{\prime} \quad k \leq n_{j} \tag{B26}
\end{equation*}
$$

(i. e., the weights w^{\prime}) of the general parameter,

$$
\begin{equation*}
t_{r}=u+\beta y_{r} \tag{B27}
\end{equation*}
$$

of the extreme-value population (B5), such that T^{\prime} in (B26) is (1) unbiased and (2) of minimum veriance. Mathematically, this means that

$$
\begin{equation*}
E\left(T^{\prime}\right)=t_{r,} \tag{B28}
\end{equation*}
$$

where E denotes mathematical expectation, and

$$
\begin{equation*}
\operatorname{Var}\left(T^{\prime \prime}\right)=\mathrm{A} \text { minimum, } \tag{B29}
\end{equation*}
$$

subject to the above condition.
From (B6),

$$
\begin{equation*}
x=u+\beta y \tag{Bio}
\end{equation*}
$$

where y is the reduced variable and x the observed variable. From this the following relations for the order statistics x_{r} and y_{r} are apparent:

$$
\begin{gather*}
x_{t}^{\prime}=u+\beta y_{t}^{\prime}, j=n-k+1, \quad n-k+2, \ldots, n, \tag{B31}\\
x_{n-k+1}^{\prime} \geq x_{n-k+2}^{\prime} \geq \ldots \geq x_{n}^{\prime} \tag{B32}\\
y_{n-k+1}^{\prime} \geq y_{n-k+2}^{\prime} \geq \ldots \geq y_{n}^{\prime} \tag{B33}\\
E_{y}\left(x_{j}^{\prime}\right)=u+\beta E_{s}\left(y_{p}^{\prime}\right) . \tag{B34}
\end{gather*}
$$

The values $E_{s}\left(y_{f}^{\prime}\right)$ may be obtained with the aid of the table in [14]. This table gives the valucs of $E_{L}\left(y^{\prime}\right.$) where the order statistics, y^{\prime}, are in descending order (as indicated by the prime). The means needed in (B34) are obtaimed from (B24) and the evident symmetry relations
sas

$$
\begin{gather*}
E_{L}\left(y_{1}^{\prime \prime}\right)=(-1)^{m} E_{L}\left(y_{m-1+1}^{\prime \prime}\right) \\
E_{S}\left(y_{t}^{\prime}\right)=-E_{L}\left(y_{n-++1}^{\prime}\right), \tag{B35}
\end{gather*}
$$

Reference [14] gives the values of $E_{x}\left(y_{r}^{f}\right)$ for $r=1(1) \min (n, 26), n=1(1) 10(5) 80(10) 100$.
From (B28) and (B31),

$$
\begin{equation*}
E\left(T^{\prime \prime}\right)=\sum_{j=1}^{k} w_{j}^{\prime}\left[u+\beta E\left(y_{n-\alpha+j}^{\prime}\right]\right]=i_{p}=u+\beta y_{F} . \tag{B36}
\end{equation*}
$$

This is required to be an identity for all values of the parameters u, β. Equating their coeffieients gives the two conditions on the weights, w's:

$$
\begin{equation*}
\sum_{j=1}^{k} w_{j}^{\prime}=1, \sum_{j=1}^{1}\left[E\left(y_{x-k+j}^{\prime}\right)\right] w_{j}^{\prime}=y_{F} \tag{B37}
\end{equation*}
$$

where the numerical values $E\left(y_{n-t+j}^{\prime}\right)$ may be obtainad from [14] as aIready indicated.
For the variance condition (B29), we have, in view of (B26),

$$
\begin{align*}
& \sigma_{s f}^{2}\left(T^{\prime \prime}\right)=\sum_{j=1}^{k} w^{\prime}, \sigma^{2}\left(x_{n-k+j}^{\prime}\right)+\sum_{j=1}^{k} \sum_{i=1}^{k} w_{i=1}^{k} w_{i}^{\prime} w_{j}^{\prime} \sigma\left(x_{n-k+1}^{\prime}, x_{n-k+j}^{\prime}\right) . \tag{B38}\\
& \operatorname{Var}\left(T^{\prime \prime}\right)=\left[\Sigma w_{f}^{\prime 2} \sigma_{s-k+s}^{\prime 2}+\Sigma \Sigma^{\prime} w_{i}^{\prime} w_{f}^{\prime} \sigma_{N-k+1, *-\varepsilon+j}^{\prime}\right] \beta^{2}=V_{k}^{\prime k y^{\prime}} \beta^{2} \tag{B39}\\
& =\text { minimum subject to (B28). }
\end{align*}
$$

Ure of Lagrange multipliers in the same manner as in [13, pp. 50-52] gives, after differentiation, the conditions on the weights:

$$
\begin{equation*}
\sigma_{a-k+j}^{\prime_{s}^{2}} w_{f}^{\prime}+\sum_{\substack{j=1 \\ j \neq i}}^{k} \sigma_{a-k+1,4-k+j}^{\prime} w_{j}^{\prime}+\lambda+\mu E y_{n-k+f}^{\prime}=0, j=1,2, \ldots, k . \tag{B40}
\end{equation*}
$$

For each fixed value of $k \leq n$ there are k linear equations which, with the two in (B37), form a simultaneous system of ($k+2$) equations in the ($k+2$) unknowns, wo $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k}^{\prime}, \lambda, \mu$. The values of λ and μ are useful as a check, because, if (B40) is multiplied by w_{i} and summed for $j=1,2, \ldots, k$, the result is, in view of (B37) and (B39),

$$
\begin{equation*}
V Q_{\min }^{n}+\lambda+\mu Y_{P}=0 . \tag{B41}
\end{equation*}
$$

The minimum value, $V_{\text {and }}^{\text {an }}$, will be denoted by Q_{a}^{\prime}, .
In general, there will bo a get of ($k+2$) linear equations to solve for each $k=2, \ldots, n$.
(1) Case $k=n$. For $k=n$, the matrix of conffigiants and right-hand "constant terms" of (B40) and (B37) is the ($n+2$) by ($n+3$) matrix

$$
A_{n}^{0}=\left[\begin{array}{lllllll}
\sigma_{11}^{\prime} & \sigma_{23}^{\prime} & \cdots & \sigma_{14}^{\prime} & 1 & E y_{1}^{\prime} & 0 \tag{B42}\\
\sigma_{21}^{\prime} & \sigma_{22}^{\prime} & \cdots & \sigma_{24}^{\prime} & 1 & E y_{2}^{\prime} & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & : \\
\cdot & \cdot & & . & . & \vdots & \cdot \\
\sigma_{11}^{\prime} & \sigma_{n 2}^{\prime} & \cdots & \sigma_{n 1}^{\prime} & 1 & E y_{4}^{\prime} & 0 \\
1 & 1 & \cdots & 1 & 0 & 0 & 1 \\
E y_{1}^{\prime} & E y_{2}^{\prime} & \cdots & E y_{4}^{\prime} & 0 & 0 & y_{r}
\end{array}\right]
$$

The ordinary ($n+2$) by ($n+2$) matrix of coefficients, without the constant terms, will be denoted by A_{μ} If Γ_{n} denotes the vector column of constant terms, then

$$
\begin{equation*}
\Lambda_{n}^{\theta}=\left[\Lambda_{n} \mid \Gamma_{n}\right], \tag{B43}
\end{equation*}
$$

and the linear system of ($n+2$) equations may be denoted

$$
\begin{equation*}
\Lambda_{n} W_{n}^{\prime}=\mathbf{r}_{n}, \tag{B44}
\end{equation*}
$$

where W_{n}^{\prime} denotes the column vector of the ($n+2$) unknowns $w_{1}^{\prime}, w_{n}^{\prime}, \ldots, w_{n}^{\prime}, \lambda, \mu$.

The coefficients of the unknowns in (B44) involve the means $E\left(y^{\prime}\right)$, slready discussed, and covariances $\sigma_{i j}^{\prime}$. These values are given in table $\mathrm{B}-1$ for $n=2$ to 6 . The $\sigma_{i s}^{\prime}$ were computed by the method developed in [12]. Table B-I also indicates how the momenta for the largest values case can be obtained simply from those shown.

The $(n+2)$ solutions of (B44) are all expressible linearly in terms of the componente of $\Gamma_{\mathbf{2}}$. Thus the solutions all take the form

$$
\left.\begin{array}{rl}
w_{j}^{\prime} & =a_{j}^{\prime}+b_{y f p}^{\prime}, \quad j=1,2, \ldots, n \tag{B45}\\
\lambda & =c_{1}^{\prime}+d_{j}^{\prime} y_{p} \\
\mu & =c_{2}^{\prime}+d_{j}^{\prime} y_{p}
\end{array}\right\} .
$$

Substituting these w_{f}^{\prime} in (B39) gives an expression of the form

$$
\begin{equation*}
O_{n, s}^{\prime}=V_{n, \infty}^{(n)}=A_{n}^{\prime}+2 B_{n}^{\prime} y_{r}+C_{n}^{\prime} y_{r}^{2} . \tag{B46}
\end{equation*}
$$

The quantities $a_{f}^{\prime}, b_{f}^{\prime}$ for the weights w_{f}^{\prime} for $n=2$ to 6 , are shown in table $\mathrm{B}-2$. The coefficients $A_{n}^{\prime}, B_{n}^{\prime}, Q_{\mathrm{n}}^{\prime}$ of $Q_{\mathrm{n}, \mathrm{s},}^{\prime}$ sind the values of $Q_{n, n}^{\prime}$ evalusted at $F=.90$, 50 , corresponding to $L_{10} L_{\mathrm{son}}$ respectively, are given in table B-3.

Calculations were limited to $n=6$ in this paper, in view of the diminishing returns in "efficiency" (see below) for increasingly larger amounts of computing. Methods suitsble for larger values of n are discussed later.

Table B-3 shows that as sample size increases from $n=2$ to 6 (in the case $k=n$), the variance diminished for the percentage-point parameters t_{p} for $F=.90$ and .50 , i. e., $t_{F}=x_{10}=\ln$ L_{40} and $t_{F}=x_{50}=\ln L_{50}$. This is a common characteristic of the behavior of estimators for increasing sample size. Another method whereby estimators may be compared is through their effeciency.

Efficiency is a mesarue intended to provide a convenient atandard of comparison for estimstors. This is done for two estimators to be compared by dividing the variance of each into a theoretical "smallest" variance, $Q_{L b}$, known as the "Cramer-Rao lower bound." Further details in the case of complete samples where $k=h_{\text {, }}$ as here, may be found in [13, p. 14 and 15]; values of $O_{\text {Le }}$ are also indicated in this reference in table III (a).

Table B-4 shows the efficiency values so obtained, for the case $k=n, n=2$ to 8 , as regards the order-statistics estimators for the parameters $x_{10}=\ln L_{10}, x_{\mathrm{kn}}=\ln L_{60}$.

These values show that for x_{10}, the efficiency, starting with under 70 percent for $n=2$, increases rapidly until 89 percent, out of a possible maximum 100 parcent, is reached for $n=6$. A 90 -percent-efficient estimator is generally considered to be quite good. As regards asor the efficiency is well above 95 percent for all the values of n, and for $n=6$ exceeds 99 percent. In view of results of this nature, and because of the increasingly heavy computations necessary, calculations were not carried beyond $n=6$ in [13].

The above applies to estimation of the parameters x_{10} and $z_{\text {ser }}$ which it will be recalled are the logarithms of the setual life estimates $L_{10 r} L_{50}$. It is believed that efficiency of the method of order statistics in obtaining estimates of actuel life L_{10}, L_{50} is probsbly reasonable, in view of its high efficieney in estimating the logarithme, x_{10}, x_{50}.
(2) Case $k<n$. For the case $k<n$, the procedure is very similar. One starts with a $(k+2)$ by ($k+3$) order matrix Λ_{p}^{1} derived from Λ_{i}^{0} in (B42) by striking out the first ($n-k$) rows and columns. One proceeds in this manner for $k=n-1$, $n-2$, etc., until when $k=2$ the matrix becomes

$$
\Lambda 2=\left[\begin{array}{lllll}
\sigma_{n-1,+-1}^{\prime} & \sigma_{n-1, n}^{\prime} & 1 & E y_{n-1}^{\prime} & 0 \tag{B47}\\
\sigma_{n,+-1}^{\prime} & \sigma_{4 n}^{\prime} & 1 & E y_{n}^{\prime} & 0 \\
1 & 1 & 0 & 0 & 1 \\
E y_{i-1}^{\prime} & E y_{4}^{\prime} & 0 & 0 & y_{r}^{\prime}
\end{array}\right],
$$

representing a set of 4 equations in 4 unknowns.

The resulting weights war and variances $Q_{4, k}^{\prime}$ were obtained in similar manner to those for $k=n$ in (B45) and (B46). These, it will be recalled, are primed quantities, associated with descending order of the order statistics. Because the ohservations, x, for successive failures naturally occur in ascending order, it is more useful for actual application, in contrast to theoretical development, to tahuiate the weights and covariances for the order statistics in ascending order. This has been done in table B-2, giving the weights $w_{1}=a_{i}+b_{4} y_{p}$, and in table $\mathrm{B}-3_{7}$, giving the variances $Q_{n, k}=A+2 B y_{p}+$ Cyr for the astimators $T_{n, k}$ formed with the above weights. These variances are also evaluated for the parameters $x_{10}=\ln L_{10}, x_{60}=\ln L_{\text {rd }}$. The relationshipa of these unprimed quantities to the primed ones of the previous theoretical development is merely a reversal of the order throughout, as indicated by subscripts: i. e., every a_{s}^{\prime} is changed to the corresponding a_{k-1+1} and similarly for b_{i}^{\prime} athd w_{i}^{\prime}. The variauces Q may be shown to ramain unchanged.

b. Extensian to Larger Samplea

Samples of more than six items are broken up into independent samples of 6 with a remainder subgroup, if necessary, of from 2 to 5 items. Because the endurance data were arranged in increasing order of life, independent random subgroups could not be obtained by simply taking groups of 6 in the (numerical) order in which they appeared on the worksheets. It was therefore first necessary to randomize the endurance lives on each data worksheet. This was accomplished by use of random numbers that were generated in the electronic computer (the SEAC) as needed.

Such artificial randomization is not desirable when it can be avoided, because the results of the calculations are then not unique, but may depend to a limited degree on the particular get of random numbers used. ${ }^{13}$ It is therefore recotomended that when the bearings in a test group are to be simultaneously run on a battary of fatigue-testing machines, the individual bearings should be recorded in advance in some more or less natural order independent of the order in which failure takes place in the course of the test. Natural order might be order of manufacture, order of lesting, etc.

In the present investigation, each subgroup was treated as a random sample by the methods already developed for size 6 or less. That is, a "subestimator" was calculated for each subgroup and the results averaged to produce an over-all sample estimator.

An estimator, botb for the individual subgroup and for the over-all sample, was obtained for each of the four population quantities:

$$
\begin{equation*}
u, \quad \beta, \quad t_{90}=x_{[0}=\ln L_{10}=u+y_{-\alpha p}, \quad t_{50}=x_{50}=\ln L_{60}=u+y_{s 0} A . \tag{B48}
\end{equation*}
$$

For subgroups, these four parameter estimates are given by (caret denotes "estimate of")

$$
\begin{equation*}
\hat{\psi}=\sum_{i=1}^{k} a_{1} x_{i}, \quad \hat{\beta}=\sum_{i=1}^{k} b_{1} x_{i}, \quad \hat{x}_{10}=T_{x, 2}(10)=\hat{\psi}+y_{.00} \hat{\beta}, \quad x_{50}=T_{n, 2},(50)=\hat{u}+y .40 \hat{\beta}, \tag{B49}
\end{equation*}
$$

where $y_{. \infty}=-2.25037, y_{-50}=-0.36651$, and $x_{1} \leq x_{2} \leq \ldots . x_{\kappa}, 2 \leq k \leq n \leq 6$, are the logarithms of the actual observed lives in a subgroup arranged in ascending order, and the a_{1} and b_{1} are read directly from table $\mathrm{B}-2$. For the over-all sample catimator, the subestimators $T_{n, \star}$ are moroly averaged.

For later use (appendix C) the variance of the over-ail estimator, T, and its relation to sample siza will be considered here. Consider first the ease of a complete sample, where no intact bearings are present because the test is run to completion. Let n be the sample size; then there are two cases, according as (1) $n \leq 6$, or (2) $n>6$.

[^9]

Figure 2. Retationahip of poriances Quand Qso to aomple size n for $n \mathrm{~m} \mathrm{E}$ to E (Loparithmic scate in each ditection).

(1) $n \leq 6$. Table $\mathrm{B}-3$ gives the numerical variances, Q_{10} and Q_{60}, for $n=2$ to 6 . These values are plotted in figure 2 on double-logarithmic paper. The values for Q_{60} (right-hand scale) are seen to lie on a straight line of slope negative unity. This shows that at least in this case, variance is inversely proportional to sample size. For the other case, θ_{10}, a straight line also gives a reasonably good fit, and its alope appears to differ only a little from -1. Hence the underlined statement is approximately applicable here too.
(2) $n>6$. If a sample of size $n>6$ is broken into equal subgroups (of size 6 , for example) there will generally be a remainder of size less than b. The preceding development, when suitably modified, shows that for large n the influence of this remainder is small compared to the remaining bulk of the sample and thus the rule in question holds approximately in this case. Agreement with the rule is less close for a few cases of moderate $\boldsymbol{r}_{\text {, }}$, but for simplicity the inverse relationship will be taken as a reasouable rule of thumb in all cases for the over-all purposes of analysic.

Two complete runs were made on the SEAC for each of the 213 test groups of data, and the two results were averaged for each group, giving values of the averages

From these, the values of $L_{t 0}$ and L_{50} were obtained from a talle of exponentials and the Weibull slope $\varepsilon=1 / \bar{\beta}$ obtained es a consequence of formula (B 5). An example showing the steps in calculation of $L_{20}, L_{50,}$ and e is diecussed below.

Because this investigstion represents probably the most oxtensive mass fitting of the Weibull distribution made to date, a tabulation of the 213 values of the parameter 6 will be of considerable value to future applications of this distribution. This is shown in table B-6. The corresponding histogram is given in figure 3. Particular items of interest are

$$
\begin{aligned}
& \text { mean of } e(\text { all } 4 \text { companies })=1.51, \\
& \text { median } e(\text { all } 4 \text { companies })=1.43 .
\end{aligned}
$$

Note that 50 percent of the values are in the interval $e=1.17$ to 1.74 .

 Data in table $\mathbf{B - A}$
c. Worked Krample

The example that will be given to illustrate the foregoing procedures will be the one that was worked out as a "test problem" for the SEAC before using the full set of data. The test group of bearings selected for this purpose was No. 1-1 in table A-1, for company A. The test group consisted of 24 ball bearings, of which 4 remained intact when the test was discontinued. The details of the computation for obtaining values of L_{10}, L_{50}, and Weibull slope e from tho test group of data are contained in table B-5 and described in the steps below.

The endurance lives in observed (inereasing) order are listed in column (1). The arrows indicate the four "run-outs," or "intsets," whose testing was discontinued at the number of million revolutions indicated. All that is known about these four bearings is that their fatigue lives exceeded the values shown.

Step 1. Randomization. The order of endurance lives in column (1) was randomized by use of a set of random numbers generated in the SEAC as part of the computation work. The result is shown in column (2) of table B-5.

Step 2. Subgroups. The lives in randomized order were divided, as shown by the lines of aparstion, into subgroups of size $n=6$, the maximum size for which the order-statisties weights had been computed. ${ }^{14}$ Each subgroup was then prepared for the application of the orderstatistics method by rearranging in increasing order (column (3)). Natural logarithms were then taken as in column (4).

Step 3. W6ights. Each subgronp was regarded as consisting of k actugl observations out of a censored aample of n. It happenced here that n was 6 for every subgroup; k took the values $6,5,6,3$. These values are bhown in the subscripts of $T_{4, x}$ written in column (3), and they determined the weights a_{5} and b_{c} to be selected from table $\mathrm{B}-2$. These weights are rapresconted in columne (5) and (6).

Step 4. Cross-products. The cross-products

$$
T_{H_{1}}=\sum_{i=1}^{k} a_{1} x_{i} \quad \sum_{i=1}^{k} b_{i} z_{i}
$$

were then evaluated and placed as ahown for each of the subgroups.

[^10]Step 6. Estimates. A simple arithmetic average of the four values was taken for each of the two columns (5) and (6), and denoted by $\bar{T}_{1}=\hat{u}, \bar{T}_{2}=\hat{\beta}$, respectively. Thase are the orderstatistics estimates of the two parameters u and f of the extreme-value distribution that represents the underlying Weibull distribution.

The reciprocal of $\hat{\beta}$ yields the Weibull slope $\epsilon=1.32497$.
The following logarithmic bife estimates were given by following linear combinations of the estimates \hat{u} and $\hat{\hat{\beta}}$, using the given values of $y_{\text {,00 }}, y_{\text {sp }}$:

$$
\begin{align*}
& x_{10}=\ln L_{10}=\hat{\mathrm{v}}-2.25037 \hat{\beta}=2.982305 \\
& x_{50}=\ln L_{40}=\hat{\mathrm{u}}-0.36651 \hat{\beta}=4.404120 \\
& \text { rating life } L_{10}=\text { antilog }\left(\hat{x}_{10}\right)(\text { base } \epsilon) \tag{B}\\
& \text { median life } L_{50}\left.=\text { antilog }\left(\hat{x}_{50}\right) \text { (base } \epsilon\right)=81.7833 \text { million rev } \tag{C}\\
& \text { million rev. }
\end{align*}
$$

These three values (A), (\mathbf{B}), and (C) represent the outcome of the calculation.
In the full-scale computing program, calculations were carried out by the SEAC to a larger number of places than is shown in the table for presentation purposes. In general, however, the number of places shown here should be adoquate. The values L_{10}, L_{50}, and e shown here differ elightly from those recorded in table A-1 because the latter represent averages of two separate runs.

Table B-1. Means, wariancet, and covariances of order todititics yit in samplet of \boldsymbol{n} from the reduced extremeralue disfribution $G(y)=\exp (-,-x), n=\mathscr{F}$ io E

For diatributhon of कmoldes values, $y_{1}^{\prime} \geq p_{1}^{\prime} \geq$. . . $\sum y_{2}^{\prime}$

n	i	$\begin{gathered} M_{\text {feana }} \\ E_{e}(y) \\ =-E_{i}(y ;) \end{gathered}$	Verlanees and covariances ${ }_{1} * \sigma_{i i}^{\prime}=\sigma_{i t}^{\prime}=\sigma_{i q}=\sigma_{j}$					
			$j=1$	$j=2$	$j=3$	$j=4$	$j=5$	$j=6$
2	$\left\{\begin{array}{l}1 \\ 2\end{array}\right.$	$\begin{array}{r}0.11593152 \\ -1.27034 \\ \hline 185\end{array}$	0.68402 804					
3	$\left\{\begin{array}{l}1 \\ \mathbf{2} \\ 3\end{array}\right.$	$\begin{array}{r}0.40361359 \\ -45943 \\ -1.67582 \\ \hline 895\end{array}$	$.44849790$	$\begin{array}{r} 0.30137 \\ +86802 \\ +45 \end{array}$	0. 24375 810 i. 8629 438 1. 408			
4	$\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right.$. 34402417	$\begin{aligned} & .22456 \\ & .41553 \\ & .418 \end{aligned}$	$\left\|\begin{array}{rr} 0.17903 & 464 \\ .33720 & 966 \\ .65180 & 236 \end{array}\right\|$	$\begin{array}{r} 0.15388 \\ -292718 \\ -57432 \\ 1.688 \\ 1.64498 \\ \hline 07 \end{array}$		
5	$\left\{\begin{array}{l}1 \\ \mathbf{2} \\ 3 \\ 4 \\ 5\end{array}\right.$	0.69016 715	. 28486447	$\begin{aligned} & 18808 \\ & .30840 \\ & \hline 748 \end{aligned}$	$\begin{aligned} & 14358 \\ & .24676 \\ & .40598 \\ & \hline 292 \end{aligned}$		a. 10901 -18967 .389 .31716 38989 1.64493 619 6407	
	$\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right.$. 2486820	$\begin{aligned} & 1548874 \\ & .2485456 \end{aligned}$	$\begin{array}{r} 1212161 \\ 1967068 \\ .2976150 \end{array}$	$\begin{array}{r} 1029164 \\ .1680628 \\ .256116616 \\ .4018562 \end{array}$	$\begin{array}{r} 0.0911619 \\ .14845 \\ .22897 \\ .36145 \\ .855 \\ .64769 \end{array}$	0.0828542 .1361410 . 20092546 .3580451 .5998567 1. 6449341

*The menne are for हmallest values (denoted by subsoript $\$$); for largest values, change all signs and reverse order of y^{\prime}, The $\boldsymbol{o}_{i j}$ are ihe ssme for both.

Table B－2．Weighta wi for the order－statisties eatimator $T_{x, i}$ for the parameter $t_{p}=u+B y r$ of the exireme－value

n	k		x_{1}	x_{3}	x_{1}	54	x_{4}	x_{0}
2	2	\boldsymbol{a}_{i}	0.0836268	0． 9163731				
	2	教；	－． 7213476	－ $\begin{array}{r}7213475 \\ \text { 1．} 3777001\end{array}$				
	${ }^{2}$	放	－． 8221012	0． 8221012				
3	3	S a_{5}	.0879664 -.3747251	． 2557135	0． 6563201			
4								
	2	$\left\{a_{i}\right.$	－， 7063194	1． 7063194				
			－． 86900140	$0.8690] 48$.0604316	1． 0108741			
	3	$\left\{\hat{b}^{a_{*}}\right.$	－， 4143997	$-.3258576$	0．7402578			
		\｛ z_{6}	． 0713800	． 1538799	． 2639426	（0，5109975		
		${ }^{16}$	－． 2487965	－． 2239192	－．0859035	5586192		
5		χ_{i}	－．0508637	1． 9.5988627				
		教；	－，8962840	0． 8962840				
	3	$\left\{{ }^{a_{i}}\right.$	－． 2101141	－．0860231	1． 29661372			
		faid	－． 4343419	－． 3642483	0． 3983882			
	4		－． 27303842	.0518642 -.2499429	－ 61520450	$\begin{array}{r} 8113440 \\ -8720865 \end{array}$		
		Ca_{4}	． 0683502	． 1088236	． 1676091	2462881	0． 4189841	
		t b_{i}	－． 1844826	－． 1816564	－．1304534	－． 0065354	， 5031278	
6		fai	－1．1655650	2． 1655650				
		6ic	－0． 0141358	0.9141358				
	3	fa_{1}	－． 3153968	-2034315	1． 51888283			
		b_{i}	－． 4466018	－． 3886492	0.8352510			
		${ }^{\text {a }}$	－． 08853378	－． 02881534	． 0649390	1． 0498651		
		b_{i}	－． 28058817	-.2054739 .0465729	－ 1858758 -1002523	0． 7372142 .1722784		
		bi	－． 2015431	－． 1978753	－． 15360040	－ 06646894	， 6170118	
		d A_{i}	． 0488669	． 0835221	． 1210527	． 1656192	2254909	0． 3554481
		6f	－． 1458072	－． 1495332	－． 1267277	－．0731937	． 0359868	． 45982751

 contored sample of $\mathrm{n} \rightarrow 8$ to 0

$$
\begin{aligned}
& \text { Varianves in units of }{ }^{6}{ }^{2} \\
& \theta_{5, d}=A+2 E_{y}+C_{7 y}
\end{aligned}
$$

n	π		B	c	$9 *$	0
2	2	0. 6595467	0.0643216	0.7118574	3. 975015	0.708021
3	$\left\{\begin{array}{l}2 \\ 3\end{array}\right.$	$\begin{array}{r} 9160386 \\ .4028037 \end{array}$	- 4688465	$\begin{array}{r} .8188954 \\ .3477117 \end{array}$	$\text { 2. } 952920$	$\begin{array}{r} .682735 \\ .467327 \end{array}$
4	$\left\{\begin{array}{l}2 \\ 3 \\ 4\end{array}\right.$	1. 3340189 0.4331573 .2934587	.7720898 -1180273 -.0846903	$\begin{array}{r} 88702200 \\ .3922328 \\ .2252828 \end{array}$	2. 250056 1, 888278 1. 580460	$\begin{array}{r} .884572 \\ .3894329 \\ .849150 \end{array}$
5	$\left\{\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right.$	1. 7891720 0. 5298958 2918142 2313953	1.0115694 0.2353740 -.03837708 -.039065	$\begin{aligned} & 8950462 \\ & 4168165 \\ & 2537913 \\ & 1689472 \end{aligned}$	1. 709088 1. 580861 1. 403458 1. 228807	1.187910 0.412852 .297633 .278697
6	$\left\{\begin{array}{l}2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right.$	2. 2440055 0. 6529409 . 3237185 . 2236063 .1911738	1. 20822248 0.3332488 .1020223 -.0105929 -.0813731	$\begin{aligned} & .9132926 \\ & .4321100 \\ & .2697162 \\ & .1881069 \\ & .1819601 \end{aligned}$	1. 431164 1. 341381 1. 230430 1. 118677 1. 000644	$\begin{array}{r} 1.481035 \\ 0.466709 \\ .285165 \\ .240885 \\ .231897 \end{array}$

Table B-4. Effeiency of order-atatiolice cetimatar of logarilhmic lifs $x_{n}=\ln L_{10}$ and $x_{t}=i_{n} L_{50}$ for complete stamples ($\mathbf{L}=n$) of size $n=2$ to θ

7	Efficiency (in percent) with respect to	
	$x_{10}=\ln L_{20}$	$x_{\text {ct }}=\ln L^{30}$
2	67.2	97.4
3	78.8	98. 3
4	840	98.7
5	87.0	98.9
6	88.0	90.1

 data

Test aroup l-1, compens A

TAblif B-b. Tabulation of estimated valuas of Weibuld toper, e, for the 915 teat groups of confanies A, B, C, and D

Weibull slope, ${ }^{\text {a }}$	Company				Total
	A	B	C	D	
$\begin{aligned} & 0.50 \text { to } 0.74 \\ & .75 \text { to } .99 \end{aligned}$	2	11	2	1	$2{ }^{3}$
1,00 to 1,24	16	22	3	2	43
1.25 to 1.49	11	40	5		56
1.50 to 1.74	7	32	1		40
1.75 to 1,99.	6	17	----------	----------	23
2.00 to 2.24 -	2	12	1	. . . ----	15
2.25 to 2.49 ------		2	---------	---------	2
2.50 to $2.74 \ldots .$. 2,75 to $2,99$.		4	-..------ -	4
		1	. $\cdot----$	-...-..---	1
3.50 to 3.94------		-------------	---------		--..---------
3.75 to 3.90.-					I
$\begin{aligned} & 4,00 \text { to } 4,26 \ldots \\ & 4,25 \text { to } 4,49 \ldots \end{aligned}$		1	. - \cdot-----	-----.....	1
Total	50	148	12	3	213
Mean Median.	1. 33	1. 80	1. 31 1. 30	1. 04	1. 1.41
50\% interval*-..-	1.07 to 1. 59	1. 27 to 1.82	1. 08 to 1.45	0.94 to 1.16	117 to 1. 74

*First quartile to third quartile.

6. Appendix C. Evaluation and Analysis of the Unknown Parameters in the Life Equation with Respect to Companies and Bearing Types

6.1. Summary

Equation (2 a) of the main text,

$$
L=\left[\frac{f_{6} Z^{\alpha_{1}} D_{\mathrm{a}}^{a_{2}}}{P}\right]^{p},
$$

expresses the dependence of fatigue-life L on the design characteristics of the deep-groove bearing (Z, D_{a}), the bearing load P_{1} and the "workmanship factor" f_{c}. This appendix outlines the statistical methods that were used (a) to determine "best" empirical values for the paramaters f_{c}, a_{1}, a_{3}, and p of this life formula, (b) to derive the associated intervals of uncertainty, and (c) to answer various questions about the values of these parameters, from the basic endurance data fumished by the ASA Suboommittee, which are summarized in appendix A. These methods are applied separately in each case to the rating fife L_{10} and median life $L_{s 0}$ velues derived from the endurance test data as described in appendix B.

Section 6.2 summarizes the application of the statistical methods used to determine best empirical values and intervals of uncertainty for the parameters f_{c}, a_{1}, a_{2}, and p in the casc of deep-groove bearings. Sections 6.3 to 6.6 outline the statistical analyses employed to answer various questions about the values of f_{0}, a_{1}, a_{2}, and p for the ball bearings of companiees A, B, and C. In particular, section 6.3 gives the analysis employed to detcrmine whether values of these four parameters are the same for the bearings of the three companies. This analysis is carried out separately for rating life L_{10} and median life $L_{\text {so }}$ and the postulated "complete between-companies homogeneity" is not supported in either instance. Section 6.4 gives the analysis appropriate to determining whether the data are consistent with the supposition that the value of p is the same for the three companies (regardless how the values of the other
parameters may differ); this analysis is applied to the L_{70} and L_{50} data, with an affirmative conclusion in both instances. It is concluded further that the data are consistent with the supposition that this common value for p is equal to 3 .

Section 6.5 presents the analysis employed to determine whether the values of the parameters $f_{c} a_{t}, a_{2}$, and p are the same for the thren types of decp-groove bearings ($\mathrm{B}-1, \mathrm{~B}-2$, and $\mathrm{B}-8$) for which the data from company B were available. A negative conclusion is reached. These data are then reanalyzed to determine whether they are consistent with the supposition that $p=3$ for each of the three types, regardiess of differences in the other parameters. An affirmative conclusion is reached in this case.

Section 6.6 concerns (a) the extent to which the L_{10} and L_{50} values are consistent with the supposition that the values of $a_{1,}, a_{2}$, and p are $2 / 3,1.8$, and 3 , respectively, as given in [15]; and (b), the determination of more precise values for f_{0} in those cases in which the foregoing supposition is supported.

6.2. Determination of "Beat" Valnes for the Parameters and Their Associated Intervals of Uncertainty

As shown in section 2.2 of the main text, if natural logarithms are taken of both sides of the life equation (eq (2a)), the resulting equation expresses tho logarithm of rating life L_{10} (or median life L_{50}) as a linear function of the logarithms of the characterigtics of the bearing (Z_{1}, D_{2}), and the bearing load P, with coefficients that are simple functions of the "workmanstip factor ${ }^{\prime \prime} f_{c}$ and the exponents, a_{1}, a_{2}, and p; i. e.,

$$
\begin{equation*}
Y=b_{0}+b_{1} x_{1}+b_{2} \tau_{2}+b_{2} x_{z_{2}} \tag{C1}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
Y=\ln L \tag{C2}\\
x_{1}=\ln Z \\
x_{2}=\ln D_{s} \\
x_{d}=\ln P
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
b_{0}=p \ln f_{e}=p a_{0} \tag{C3}\\
b_{1}=p a_{1} \\
b_{2}=p a_{2} \\
b_{2}=-p
\end{array}\right\}
$$

are unknown constants to be estimated from the data.
The variables x_{I}, x_{2}, and x_{3} are fixed variates. Their values are uniquely determined by the design of the bearing and the bearing loads that are used in the teats. The variable Y, on the other hand, denoteg the mean values of $\ln L_{10}$, or $\ln L_{50}$, for the population of all bearings with characteristics x_{1} and x_{2}, tested at load x_{3}.

In the practical situation Y is never known, but must be determined from the results of endurance tests. The methods used for obtaining such estimates of Y from endurance-test data are giveu in appendix B. To distinguish Y from an empirical estimate of it, the estimate will be denoted by the lower-case letter y.

Generally speaking, an estimate y is a random variable, having a probability distribution that depends on x_{1}, x_{2}, and x_{3}. We assume that the mean of this distribution is $Y=Y\left(x_{1}, x_{2}, x_{2}\right)$, and that its dispersion, or more precisely, its variance, is inversely proportional to the rumber of bearings w in the test group from which the estimate $y=y\left(x_{1}, x_{2} ; x^{\prime}\right.$; w) is derived (cf.
appendix B); that is,

$$
\left.\begin{array}{l}
\text { mean of } y=Y \tag{C4}\\
\text { pariance of } y=\frac{\sigma^{2}}{w^{\prime}}
\end{array}\right\}
$$

where σ^{2} denotes some positive cor stant, and w is the number of bearings in the test group.
The statistical methods used to estimate the unknown parameters b_{0}, b_{1}, b_{2}, and b_{3} from the date are termed regression techniques. The books by Andereon and Bancroft [1], Dixon and Massey [3], Hald [10], Kempthorne [11], Mood [16], and Wiike [20] give extensive discussion of these techniques. For completeness, some of the techniques and rationsle of regression analygis bearing on the work embodied in this report are summarized below. More detailed discussions can be found in the above references.

Estimation. The problem of estimating the unknown parameters in the life equation can be stated as follows: Given independent observations ($y_{\alpha} ; x_{1 a}, x_{7 a}, x_{3 a} ; w_{a}$) from n test groups $(\alpha=1,2, \ldots, n)$ where y_{a} is the estinnate of $\ln L_{10}$ or $\ln L_{s p}, x_{1 a}, x_{2 \alpha}$ are the logarithms of the bearing cbaracteristics Z and $D_{a}, x_{a \alpha}$ is the logarithm of the load, and w_{a} is the number of individual bearings tegted for the α th test group; required to estimate the valucs of the parameters b_{6}, b_{1}, b_{2} and b_{2} in eq (C1) using some optimum method of estimation.

Estimates for the $b_{i}(i=0,1,2,3)$ that are free of systematic error and have smaller variances than any other linear unbiased estimates are obtained by minimizing the quadratic form,

$$
\begin{equation*}
Q=\sum_{\alpha=1}^{n} w_{\alpha}\left(y_{\alpha}-b_{4}-b_{1} x_{1 \alpha}-b_{i} x_{z a}-b_{3} x_{k a}\right)^{2}, \tag{C5}
\end{equation*}
$$

with respect to each of the $b_{1}(i=0,1,2,3)$.
The resulting normal equations defining the parameter estimates can be written in the form, ${ }^{15}$

$$
\left.\begin{array}{l}
a_{00} \hat{b}_{0}+a_{01} \hat{b}_{1}+a_{02} \hat{b}_{3}+a_{08} \hat{b}_{2}=g_{0} \tag{C8}\\
a_{10} \hat{b}_{0}+a_{11} \hat{b}_{1}+a_{29} \hat{b}_{2}+a_{12} \hat{b}_{2}=g_{1} \\
a_{28} \hat{b}_{0}+a_{31} \hat{b}_{1}+a_{20} \hat{b}_{2}+a_{24} \hat{b}_{2}=g_{2} \\
a_{a_{0} b_{0}}+a_{n 1} \hat{b}_{1}+a_{38} \hat{b}_{2}+a_{n} \hat{b}_{3}=g_{3}
\end{array}\right\}
$$

where

$$
\begin{array}{cc}
a_{y}=\sum_{\alpha=1}^{n} w_{\alpha} x_{t \alpha} y_{j a} & i, j,=0,1,2,3 . \\
g_{s}=\sum_{a=1}^{n} w_{\alpha} x_{i \alpha} y_{k} & i=0,1,2,3 . \tag{C8}
\end{array}
$$

and $x_{0 \alpha}=1$ for all α.
If one defines the residual sum of squares by

$$
S=\sum_{\alpha=1}^{n} w_{a}\left[y_{\alpha}-\sum_{i=0}^{s} \hat{b}_{t} x_{c \alpha}\right]^{\alpha},
$$

which also can be written in the alternative form

$$
\begin{equation*}
S=\sum_{x=1}^{n} w_{n} y_{u}^{2}-\sum_{i=1}^{z} \hat{b}_{i} g_{i}, \tag{C0}
\end{equation*}
$$

then the optimum estimate of σ^{2} is

$$
\begin{equation*}
s^{2}=\frac{S}{n-4}, \tag{Cl0}
\end{equation*}
$$

[^11]The quantity ($n-4$) is the rank of the quadratic form S, and is termed the degrees of freedom aspociated with S.

The above mathod of estimation doe not depend on η_{α} having a particular assumed probability distribution. All that is necessary to specify about the probability distribution of y_{e} is that it possass a finite mean and variance. The solution of the normal equations (C6) has the property that the weighted sum of squares of the deviations about y_{α} will be a minimum. This is a so-called "lenst-square" property of the solutions, but it is only a consequence of the method and is not the justification for using this method of estimation. The justification for the method is that this is the only one that results in minimum variance unbiased estimates for the $b_{i}(i=0,1,2,3)$.

Values for $b_{i}(i=0,1,2,3)$, and hence for a_{f} and p, can be obtained by using either the $\ln L_{t 0}$ or $\operatorname{In} L_{s 0}$ values for y_{a}. In all cases where the a_{t} and p have been obtained for rating life L_{10}, another set of parameters have also been calculated for median life $L_{\text {so }}$.

Interads of uneertainty and inferences. The methods so far discussed for finding estimates of unknown parameters need no assumption as to the form of the underlying probability diatribution of y_{a}. However, something more must be assumed about the distribution of y_{∞} if (a) one wrishes to place an interval about an estimate of a parameter that will include the "true" (or population) value of the parameter with given assurance, or (b) if one desires to make inferences about the parameters of the life equation for the population from which the bearings are a sample.

Although the endurance lives for individual bearings may follow a Weibull distribution, the distribution of y_{e} will not be of this form. However, the cstimate y_{n} (cf. appendix B) is an aterage of several independent estimates, each besed on linear functions of six or less order statistice. Hence, by the central Limit theorem, the distribution of the estimate y_{a} will be approximated by a normal distribution when n is large (cf. Cramer [2, p. 213]). The statistical tests of significance used in this report are not greatly affected by moderate departures from normality. Therefore, for making all inferences, it will be further assumed that the estimates y a follow a normal distribution.

The intervals of uncertainty calculated for each parameter are 95 -percent confidence limits (equivalent to the usual "two-sigma" limits), which were referred to in the main text. Confidence limits for the parameter $p=-b_{s}$ can be calculated by using conventional methods. However the confidence limits for a_{3}, a_{1}, and a_{2} are bomewhat more complicated. The method used here, for this purpose, is sometines referred to as Fieller's thoorem (cf. Fieller [4]).

In order to make inferences about the parameters with respent to the different companies or bearing types, certain statistical tests of significance were used in this paper. These are all based on a test statistic F, termed the variance ratio or F-ratio, which takes the form

$$
F=\frac{Q_{1} / v_{1}}{Q_{2} / v_{2}},
$$

where Q_{1} and Q_{2} are quadratic forms calculated from the data and $y_{1} y_{2}$ are the respective ranks of the quadratio forms. The explicit expressions for Q_{1} and Q, depend upon the particular hypothesis being tested. The subsequent sections that employ a variance-ratio statistic also give the explicit expressions for the two quadratic forms.

If the hypothesis being teated is true, then the calculated variance ratio will deviate from unity in accordence with its tabulated distribution. However, if the hypothesis is fales, then the variance ratio will be substantially greater than unity, ad the "more false" the stated hypothesis, the larger the value for the variance ratio. Thus when the hypothesis tested is false, this will be detacted by an abnormally large F-ratio. In order to objectively determine whether a calculated variance ratio is significandy greater than unity, one selects from tables of the variance-ratio distribution a crilical value of F, such that there is only a small probability of the calculated variance ratio exceeding the critical value from purcly chance causes. The critical value for F used for all varinnce-ratio tests, in this paper, has been selected so that were
is only a probability of .05 of its being exceeded by a calculated variance ratio from purely chance causes. This critical value will be denoted by $F_{.15} .\left(\nu_{1}, \nu_{2}\right)$. More extensive discussions of these procedures are given in Kempthorne [11, chap. 5].

All statistical tests of significance to test relevant hypotheses have been carried out both for rating life L_{10} and median life L_{50}.

6.3. Analysils to Determine Whether Companies Have Common Values for All the Parometers in the Life Equation

This section deale with the details of estimating the values of the parameters in the life equation for each company. Furthermore, a statistical analysis is made to determine whether the companies have common values for all the parameters is the life equation. The F-ratio (eq (C16)), which is used to test this hypothesis, is obtained from the following procedures: A single set of parameters, b_{i} ($8=0,1,2,3$), is obtained by first fitting all the data, irrespective of company, to the logarithmic life equation, and then calculating the resulting residual sums of squares S (eq (C14) having 200 degrees of freedom. If the hypothesis of common vulues for all the parameters is not true, then a better fit to the data can be made by fitting the life equation separately to each company. These calculations result in the individual residual sums of squares S_{1}, S_{t}, and S_{5} (eq (C13)) having $4(i, 144$, and 8 degrees of freedom, respectively. Thus the total residual sums of squares ($S_{1}+S_{2}+S_{3}$) will have $46+144+8=198$ degrees of frecdom. Then the difference between S and $\left(S_{\mathrm{t}}+S_{2}+S_{2}\right)$, i. . $\mathbf{e}_{1},\left\{S-\left(S_{\mathrm{t}}+S_{7}+S_{9}\right)\right\}$, is also a quadratic form having $200-198=8$ degrees of freedom. If a substantially better fit was obtained by fitting a separate life cquation to the data for each company, as compared to a single life equation, the difference between the two residual sums of squares $\left\{S-\left(S_{1}+S_{2}+S_{3}\right)\right\}$ will be large. To determine whether this difference is statistically significant the variance ratio (C16) is employed.

Mathematical formulation. It will be convenient to adopt the following notation: Let the superscript $(u)=1,2,3$ refer to companies A, B, and C, respectively. Also, for each company,
 the sums of cross products defined in eq (C7) and (C8)'4. Then the normal equations that give the parameter estimates for the wth company are

$$
\begin{equation*}
\sum_{j=0}^{3} a_{i}^{(v)} \hat{b}_{j}^{(t)}=g_{i}^{[d i} \quad i=0,1,2,3, \tag{Clis}
\end{equation*}
$$

and the estimates for the parameters $a_{1}(i=0,1,2)$ and p, in the life equation, are obtained from the relations given by eq (C3). These results are summarized in tables 6 and 3 , respectively, in the main text.

Tho hypothesis that all parameters in the life equation are the same for each company is equivalent to the hypothesis that

$$
\begin{equation*}
b_{i}^{(1)}=b_{1}^{42}=b^{(9)} \quad i=0,1_{2} 2_{r} 3 . \tag{C12}
\end{equation*}
$$

Define the residual sum oi squares for the uth company by

$$
\begin{equation*}
S_{u}=\sum_{\alpha=1}^{n_{v}} w_{\mathrm{k} \alpha} y_{v a}^{*}-\sum_{f=0}^{3} f_{i}^{(t)} g_{j}^{(\omega)} \quad z=1,2,3, \tag{C13}
\end{equation*}
$$

and let
where $b_{1}(i=0,1,2,3)$ are the estimates obtained from the solutions of the normal equations

[^12]without regard to company differences, i. e.,
\[

$$
\begin{equation*}
\sum_{j=0}^{3}\left[\sum_{u=1}^{3} a_{i j}{ }_{j}^{7}\right] \hat{b}_{t}=\sum_{w=1}^{3} g_{\psi}^{(\mu)} \quad i=0,1,2,3 \tag{C15}
\end{equation*}
$$

\]

Then the variance ratio for testing the hypothesis given by eq (C15) is

$$
\begin{equation*}
F=\frac{\left(S-S_{1}-S_{2}-S_{2}\right) / 8}{\left(S_{1}+S_{2}+S_{2}\right) / 108} \tag{C16}
\end{equation*}
$$

and the critical F value is $F_{, 05}(8,198)=1.98$.
Table C-1 summarizes the values for $S_{u}(z=1,2,3)$ and the other quantities needed to evaluate eq (C16).

Table C-1. Synopsio of calculationg to determine tohether companies haw commor talues for all parameters in life equation

	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	L_{0}		$L_{* 1}$	
		$S_{ \pm}$	Mean squtare	s_{u}	Mesn aquare
Companies combined.	208	448. 684693	------	348. 285324	------
A.	46	102. 5522812		89.734079	------
	144 8	20.160858		201. 985782 8. 357822	-------
Sum	198	393. 835082	1. 0801	300. 027698	1. 5153
Difference	8	52. 84980 J	6. 40002	48.257626	0.0322
From eq (C10) --		$F=\frac{0.6062}{1.9891}=3.32$		$\mathrm{F}=\frac{6.0322}{1.5153}=3.08$	

The values of the F-ratio (eq (C16)) calculated from the quantities in table C-1 are

$$
\begin{aligned}
& L_{10}: \quad F=3.32 \\
& L_{80}: \quad F=3.98
\end{aligned}
$$

These calculated F values are both larger than the critical value, $F_{\text {.06 }}(8,198)=1.98$; actually the probability is less than 0005 of having an F-ratio as large as those above from purely ehance causes. Thus from the above statistical tests of significance, the conclusion is reached that the three companies do not have comnon values for all of the parameters in the life equation.

6.4. Analysis to Determine Whether Companies Have a Common Value for the Exponent p

The previous analysis resulted in the conclusion that the parameters in the life equation are different for ench company. However, this does not exelude the possibility that all companies may have a common p, even though the $\boldsymbol{a}_{\boldsymbol{c}}(i=0,1,2)$ differ from company to company. This section discusses the analysis made to determine whether the companies have a common value for the exponent p. The analysis given here consisted of the following procedure. First, the logarithmic hife equation (C17), having a common value of p, but allowing the a_{4} to vary for each company, was fitted to all the data, and the resulting residual sum of squarca S^{\prime} (eq (C20)), baving 200 degrees of frcedom, was calculated. The total residual sum of squares from fitting the life equation separately to each company (allowing p to vary in addition to the a_{f}) is given by ($S_{1}+S_{2}+S_{3}$) having 198 degrees of freedom (cf. section 8.3 of this appendix).

Then the reduction in the residual sum of squares achiered by using a different exponent p for each company is $\left\{S^{\prime}-\left(S_{1}+S_{8}+S_{5}\right)\right\}$ having $200-108=2$ degrecs of freedom. To test whether this reduction in the residual sums of squares is statistically significant, the variance ratio (C21) is employed.

Mathematical formulation. The logarithmic life cquation, having a common value for the exponent p, can be written for the α th test group in the u th eompany as

Note that althougt each company has the same parameter b_{3} in the above equation, the parameters $b_{0}^{(L)}, b_{1}^{(\omega)}$, and $b_{2}^{(x)}$ are different for each of the three companies. Thus there lare 10 different parameters, i. e., $b_{s}^{[8 \%}(i=0,1,2 ; u=1,2,3)$ and b_{s}, to be estimated from the data.

The normal equations for estimating these parameters are

$$
\left.\begin{array}{l}
\sum_{j=0}^{2} a_{i j}^{(0)} \hat{b}_{j}^{(s)}+a_{i 3}^{(v)} \hat{b}_{3}=g_{k}^{(2)} \quad i=0,1,2 ; v=1,2,3 \tag{C18}\\
\sum_{w=1}^{3} \sum_{j=0}^{2} a_{j}^{(4)} \hat{b}_{j}^{(w)}+a_{a s} \hat{b}_{3}=g_{21}
\end{array}\right\}
$$

where

$$
a_{z z}=\sum_{\mathrm{N}=1}^{3} a_{s z_{j}}^{(w)} \quad y_{3}=\sum_{\mathrm{N}=1}^{\mathrm{a}} \mathrm{~g}_{\mathrm{a}}^{(\mathrm{s})},
$$

Thus the set of equations given by (C18) is a system of 10 linear equations in 10 unknowns. Once the solutions are obtained, the estimates for $a_{1}(i=0,1,2)$ in the life cquation are calculated from the relationship

$$
\begin{equation*}
\hat{a}_{\xi}^{(\omega)}=-\frac{\hat{b}_{b} \dot{\prime}}{\hat{b}_{3}} \quad i=0,1,2 ; u=1,2,3 . \tag{C19}
\end{equation*}
$$

The residual sums of squares (denoted by $S^{\prime \prime}$) associated with fitting the life formula (C17) to the data is given by

$$
\begin{equation*}
S^{\prime}=\sum_{\pi=1}^{3} \sum_{\Delta=1}^{n_{5}} w_{\pi \times} y_{w_{a}^{2}}^{2}-\sum_{\pi=1}^{3} \sum_{i=0}^{2} \hat{b}_{i}^{(w)} g_{i}^{(\omega)}-b_{d g 3} \tag{C20}
\end{equation*}
$$

Thent, to test the hypothesis that the companics have a common value of p, regardless of the values for the other parameters in the life equation, the variance ratio

$$
\begin{equation*}
F=\frac{\left(S^{\prime}-S_{1}-S_{2}-S_{2}\right) / 2}{\left(S_{1}+S_{2}+S_{3}\right) / 198} \tag{C21}
\end{equation*}
$$

having 2 and 198 degrees of freedom is used. The critical F value is F.os $(2,198)=3.04$.
The values of S^{\prime} for both L_{10} and $L_{y y}$ are

$$
\left.\begin{array}{lll}
L_{10}: & S^{\prime}=393.272847 & \text { d. } f=200 \tag{C22}\\
L_{50}: & S^{\prime}=301,687871 & \text { d. } f .=200,
\end{array}\right\}
$$

and the calculated ${ }^{17} F$ values (using eq (C21)) give

$$
\left.\begin{array}{ll}
L_{(00}: & F=-0.141 \tag{C23}\\
L_{y)}: & F=0.548 .
\end{array}\right\}
$$

[^13]Because both variance ratios are smaller than the critical value $F_{.05}(2,198)=3.04$, the conclusion dramn from this statistical analysis is that the data support the hypothesis of a common value of p for the three companies. This holds both for rating life (L_{10}) and median life ($L_{\delta_{0}}$). The values for the common p are given in table 2 of the main text. The values for the remaining constants in the life equation $a_{t}(i=0,1,2)$ are found from the relations (C19). These results are summarized in table 5 of the main text.

6.5. Analysis to Determine Whether the Three Bearing Types From Company B Have Consistent Parameter Values

The analyses, discussed in previous sections, dealt with determining whether there are differences in the parameters of the life equation between companies. This section investigates (a) whether three different bearing types made by company B have cormmon values for all the parameters in the life equation, and (b) whether the exponents p calculated for each bearing type are consistent with the value of $p=3$.

The analysis for (a) is similar to the analysis made in section 6.3 of this appendix; i. e., separate life equations wore fitted to ach bearing type and the resulting residual sum of squares was compared with the residual sum of squares arising from fitting a single equation to all data from company B, irrespective of bearing type. The variance ratio for statistically testing (a) is given by eq (C27).

The analysis for (b) was governed by the following considerations. If the true (or population) value of the exponent p is $p=3$, regardless of bearing type, then the estimates for p obtained by fitting a separate life equation to each bearing type should not differ from $p=3$ by more than the dispersion imherent in the endurance lives of the bearings. The agreenent of the values of p estimated for each bearing type with $p=3$ is tested for statistical significance by the variance ratio (C28).

Mathematical formulation. The 148 tost groups from company B can be divided into thres bearing types corresponding to 37 groups for B-1, 94 groups for B-2, and 17 groupe for B-3-type bearings. Let these types be denoted by $v=1,2,3$, respeetively. Also define
where n_{g} is the number of test groups for bearing typa n. Then the normal equations, which determine the eatimatos for the parameters in the Iogarithmic life equation, are

$$
\begin{equation*}
\sum_{i=0}^{3} A_{i}\left(\eta \hat{b}(p)=G f^{(p)} \quad i=0,1,2,3 ; v=1,2,3 .\right. \tag{C25}
\end{equation*}
$$

Thus for each bearing type, the values for the parameters $a_{d}(i=0,1,2)$ and p in the life equation can be estimated from the relations

$$
\begin{aligned}
& \hat{a}_{a^{(p)}}=-\frac{\hat{b}\left[a^{(a)}\right.}{\hat{b}_{3}\left[{ }^{(a)}\right.}, \\
& \hat{p}^{(r)}=-\hat{b}^{(\underline{+1})} .
\end{aligned}
$$

Therefore the residual sum of squares for the oth bearing type is

$$
\begin{equation*}
S^{(0)}=\sum_{a=1}^{n_{n}} w \omega_{u *} y_{j_{a}^{2}}^{2}-\sum_{j=0}^{3} b_{1}^{n} G\left\{^{p} \quad n=1,2,3,\right. \tag{C26}
\end{equation*}
$$

having ($n_{\mathrm{n}}-4$) degrees of freedom. Then the hypothesis of common parameters for the three bearing types can be tested by the variance ratio,

$$
\begin{equation*}
F=\frac{\left(S_{1}-S^{(d)}-S^{(1)}-S^{(9)}\right) / 8}{\left(S^{(1)}+S^{(2)}+S^{(a)}\right) / 136}, \tag{C27}
\end{equation*}
$$

having a critical value of $F_{.06}(8,136)=2.01$.
Sines the analysis given in section 6.4 of this appendix reached the conclusion that all companies have a common value for p, and since this value (ef. table 2 of main text) with its associated uncertainty iucludes the value $p=3$ given in [15], it seems also desirable to test a second hypotbesis that the value of p for each bearing type is cousistent with $p=3$. The f-ratio for this hypothesis is given by
whore the $p^{(p)}(\nu=1,2,3)$ refer to the estimates of p obtained for each bearing type, and $C 85$ ($v=1,2,3$) is the element occurring in the last row, last column of the inverse matrix to $\| A_{i}\left\{^{\circ} \|\right.$ $(v=1,2,3)$. The critical value for the variance ratio (C28) is $F_{05}(3,136)=2.67$.

The estimates of $a_{f}^{(0)}(i=0,1,2)$ and $p^{(x)}$ obtained from the solutions of the normal equations (C25) are summarized in tables 7 and 4, respectively, in the main text. The calculations for the variance ratio (C27) are summarized in table C-2.

Corresponding to the hypothesis that the three bearing types have the same parameters in the life equation, the caleulated variance ratios (C27) yield

$$
\left.\begin{array}{ll}
L_{10}: & \vec{\prime}=2.05 \tag{C29}\\
L_{80}: & F=2.88 .
\end{array}\right\}
$$

Table C-2,-Symopsif of calcutations to determine whether ad bearing types huwe common parameters in life egitation (company B only)

Type of bearing	$\begin{aligned} & \text { Degrees } \\ & \text { of of } \end{aligned}$	L_{14}		$L_{\text {b }}$	
		S*1	Mean square	$8(\cdot)$	Mean вquare
All types combined.	*144	+285. 121日62		*201. 985797	
B-1			...- --	33.016973	
B-2	90 13	174. 32.54381--	131.142017 8.505638	
Sum	186	254. 421716	1. 8707	172664828	1.20\%6
Difference	8	30.700246	3.8375	29.271169	3. 6588
From oq (C27).		$F=\frac{3.8375}{1.8707} \ldots 2.05$		$F=\frac{3.6589}{1.2696}=2.88$	

*Rralm table c-1.

Because the critical F value is $F_{\text {.06 }}(8,136)=2.01$, both the $L_{r t}$ and $L_{p p}$ calculated variance ratios are statistically significant. Therefore, one could conclude from the above F-ratios that the data swpport the hypothesis that parameters do differ betweer bearing types. However, this does not exclude the possibility that the values for the exponent p are consistent with the value $p=3$. Substituting the appropriate quantities in eq (C28) results in

$$
\left.\begin{array}{ll}
L_{10}: & F=1.18 \tag{C30}\\
L_{40}: & F=2.32
\end{array}\right\}
$$

where

$$
\begin{aligned}
& C H=0.53294 \\
& C_{53}^{[5 F}=0.107395 \\
& C_{3}^{45}=0.396744 .
\end{aligned}
$$

Thus, as both of the above calculated F-ratios are less than the critical value, $\mathrm{F}_{\text {.as }}(3,136)$ $=2.67$, the conclusion can be made that the salues of p are consistent with $p=8$ for different bearing types, although possibly some (or all) of the other parameters in the life formula (i. e., $a_{i}(i=0,1,2)$ may differ among the different bearing types.

The valuas for $\hat{a}_{(}^{(b)}(i=0,1,2 ; \boldsymbol{n}=1,2,3$) arising from the analysis by ball-bearing types have very large confidence limits (intervals of uncertainty). This is mainly due to the frect that an analysis restricted to one bearing type is essentially an analysis on bearings having almost the same values for Z and D_{a}. In order to estimate the $a^{\prime \prime}$ with good precision, it is necessary to have results for bearings having wide variations with respect to Z and D_{a}. Thus the estimates for a_{4} based on all bearing types for company B (table 5 or table 6) have substantially smaller confidence intervals as compared to the intervals based only on a single beariag type.

$$
\begin{aligned}
& \text { 6.6. Determination and Analysis of } f_{c} \text { Based on the Parameter Values } \\
& \qquad a_{1}=2 / 3, A_{2}=1.8 \text {, and } p=3
\end{aligned}
$$

The values for the parameters a_{1}, a_{2}, and p given in [15] are $a_{1}=2 / 3, a_{2}=1.8$, and $p=3$. If these parameter values are valid for the data al hand, then more precise estimates for the "workmanship" parameter a_{0} (or f_{c}) can be made for each company or bearing type. These will generaliy have better precision compared to the estimates of a_{0} made when the other parameters in the life equation are simultaneously estimsted along with a_{0}. This section considers the problem of verifying whether the parameter values, given above, are valid for the given data, and for those cases where this is true, estimates of a_{0} (or f_{0}) are obtained assuming these values for the other parameters.

The procedure for determining whether the values $a_{2}=2 / 3, a_{2}=1.8$ and $p=3$ are valid for \& given classification of the data (with respect to a company or bearing type) is to fit the data to the life equation, using the assumed values for a_{1}, a_{2}, and p. Thus there is only one unknown parameter, a_{0}, in the life equation to be estimated. Then the resultant reaidual sum of squares, denoted by R (eq (C37), can be calculated having ($n-1$) degreea of freedom. Alternatively, the life equation can be fitted to the data such that all the unknown parameters are simultaneously estimated. The residual sum of squares from this latter fit, S, will have ($n-4$) degrees of freedom. Then, if the above parameter values are not consistent with the given data, R will be appreciably larger than S. The variance ratio (C38) is used to determine if the difference between these two residual sums of squares, i. e., $(R-S)$ having $[(n-1)-(n-4)]=3$ degrees of frecdorn, is statistically significant.

Mathematical formulation. Let n be the number of test groups within a particular classification (either by company or bearing type). Then, assuming the values $a_{1}=2 / 3, a_{2}=1.8$, and
$p=3$, the logaritbmic life equation for the ath test group can be written as

$$
\begin{equation*}
Y_{\alpha}=3\left\{a_{0}+x_{a}\right\} \quad \alpha=1,2, \ldots, n \tag{C3I}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{\alpha}=\left[\frac{2}{3} x_{1 \mathrm{a}}+1.8 x_{2 \pi}-x_{3 a}\right] . \tag{C32}
\end{equation*}
$$

The resulting normal equation for estimating a_{0} is

$$
\begin{equation*}
\hat{a}_{a}=\frac{\sum_{\alpha=1}^{n} \frac{w_{d} y_{\alpha}}{3}-\sum_{\alpha=1}^{N_{i}} w_{a} x_{\alpha}}{\sum_{\alpha=1}^{n} w_{\alpha}} \tag{C3s}
\end{equation*}
$$

which also can be written as a function of the sums of cross products g_{i}, $a_{s f}$, e. g.

$$
\begin{equation*}
\hat{a}_{0}=\frac{1}{a_{\infty}}\left\{\frac{g_{0}}{3}-\left(\frac{2}{3} a_{01}+1.8 a_{0 z}-a_{02}\right)\right\} \tag{C34}
\end{equation*}
$$

Hence the estimated variance of \hat{a}_{0} is

$$
\begin{equation*}
\text { variance }\left(\hat{a}_{0}\right)=\frac{s^{*}}{9 a_{\infty}}, \tag{C85}
\end{equation*}
$$

where

$$
\begin{equation*}
s^{2}=\frac{h}{n-1}=\frac{\vartheta\left[\sum_{\alpha=1}^{n} w_{0}\left(\frac{y_{\alpha}}{3}-x_{\alpha}\right)^{2}-a_{\mu} \hat{a}_{0}^{2}\right]}{n-1} . \tag{C36}
\end{equation*}
$$

The residual sum of squares R, heving ($n-1$) degrees of freedom, can also be written as a function of the sums of eross products,

$$
\begin{equation*}
R=9\left\{\frac{1}{9} \sum_{a=1}^{n} w_{a} y_{\pi}^{2}-\frac{4}{9} g_{1}-1.2 g_{2}+\frac{2}{3} \sigma_{3}+\frac{4}{9} a_{11}+3.24 a_{a z}+a_{43}+2.4 a_{12}-\frac{4}{3} a_{\tau 3}-3.6 a_{25}-a_{00} \hat{a}_{0}^{z}\right\} . \tag{C37}
\end{equation*}
$$

In the analysor made in the preceding sections, the ball-bearing data have been analyzed with respect to individual companies or bearing types. It thus seems desirable to determine whether the data within these classifications support the hypothesis that $a_{1}=2 / 3, a_{2}=1.8$, and $p=3$. The variance ratio used to test this hypothesis is

$$
\begin{equation*}
F=\frac{(R-S) / 3}{S(m-4)} \tag{C38}
\end{equation*}
$$

where, for testing within companies,

$$
S=\left\{\begin{array}{l}
S_{1} \text { for company } A \\
S_{z} \text { for company } B \\
S_{z} \text { for company } C
\end{array}\right\} \quad \text { defined by on (Cl3) and given in table C-i, }
$$

and for testing within bearing types, any is replaced by $A_{i f y}^{[5]}$,

$$
S=\left\{\begin{array}{l}
S^{(1)} \text { for } \mathrm{B}-1 \\
S^{4 t} \text { for } \mathrm{B}-2 \\
S^{(3)} \text { for } \mathrm{B}-3
\end{array}\right\} \text { defined by eq (C26) and given in table C-2 }
$$

and \boldsymbol{R} (eq (C37)) refers to the calcuisted residusl sum of squares within the particular classification.

Table C-3 summarizes with respect to companies A, B, and C the velues of $\hat{a}_{\text {fr }} R$, the caleulated F-ratio (eq C38), and the critical F value. Table $\mathrm{C}-4$ summarizes the same quantities for the B-1, B-2, and B-3-type bearings made by company B.

The results of this analysis show that the values $a_{2}=2 / 3, a_{2}=1.8$, and $p=3$ are consistent for rating life $L_{n 0}$ data with respect to each of the three companies. Howfyer, for median life L_{60} these assumed parameter values are consistent only for the data from company A.

The results for the same analysis made on the three different bearing types, indicate that the assumed parameter values are consistent only for the $\mathrm{B}-1$ and $\mathrm{B}-2$-type baarings with respect to median life L_{50}.

It is interesting to note that the analysis for company \mathbf{B} (ignoring bearing types) ahowed that the assumed values for the parameters are consistent with the L_{10} data. However, a finer analysis by bearing type revealed that these values are not valid for the B-3-type bearings. This apparent inconsistency stems from the fact that the aoalysis for oompany B, taken as a whole, is dominated by those bearing types having the larger number of test groups, i. e, B-1 and B-2, and for these types the parameter values were found to be consistent with the $L_{\text {to }}$ data

The cstimates for f_{c}, assuming $a_{1}=2 / 3, a_{2}=1.8$, and $p=3$, are summarized in talle 8 of the main text for rating life L_{10}. This summary also includes the value of y_{t} for company D computed from ordy three test groups. (Because of the small number of test groups, it was not possible to verify whether the assumed parameter values are valid for theee data.)

Thble C-3. Stmmary of eomputations (by companies) to test hypothesis that data are consistent with assumed valtues $a_{1}=2 i f, a_{2}=1.8_{r}, p=9$

Company	$L_{\text {n }}$			$L_{3 *}$			$\underset{F}{\text { Criticel }}$
	$4_{0}=\ln f_{c}$	H	F	$a_{0}=\ln \int_{c}$	R	\boldsymbol{F}	
A	84205	102. 539286	*-0.06	8. 9382	94.367910	0.79	2. 80
B	8.5021	287. 613198	0.42	8.9254	2)7. 5600672	3.71	28.8
C.	8.1001	8. 375562	0.96	8. 5882	8,488584	9. 92	3. 59

${ }^{*}$ Negutivn vuluce duc to rimoling in culculatima

Table C-4. Summary of computations (by bearing type) for company B to test hypothegis that data are consistent with itstumed valuet $a_{1}=2 / 9_{1} a_{1}=1.8, p=3$

Type	L_{10}			L_{50}			$\underset{F}{C r i t i c a l}$
	$A_{0}=\ln f_{c}$	\boldsymbol{R}	F	$\hat{a}_{0}=\ln f_{0}$	\boldsymbol{R}	F	
B-1.	8. 4575	73.821978	0.84	88636	44.883126	3.85	286
P-2.	8. 5236	181. 128312	1. 17	89482	141.731604	242	2.70
B-3	8.5203	27. 014247	6. 81	9. 0022	18.905517	5. 21	3. 24

7. References

[1] R. L. Anderson and T. A. Bancroft, Statistical theory in research, ch. 13, 14, I5 (MeGraw-Hill Book Co., Ine, Now York, N. Y., 1952).
[2] H. Cramér, Mathemstical methodz of atatistice (Princeton University Prees, Princeton, N. J.+ 194f).
[3] W. J. Dixon and F. J. Msesey, Introduction to etatistical analysis, ch. 1I (MeGraw-Hill Book Co., Ino., New York, N. Y., 1951).
[4] M. A. Fieller, Sone problems in interval atimation, J. Roy. Btat. Sot. [B] XYI, 175 (1954).
[5] R. A. Figher and L, H. C, Tippett, Limiting forms of the frequency distribution of the largest or amalleat member of a sample, Proe. Cambridge Phil. Soo. 24, pt. 21 180 (1928).
[6] A. M. Froudenthal and E. J. Gumbel, On the statistical interpretation of fatigue teata, Proc. Royal Soc. [A] 218, 309 (1953).
(7] F. J. Gumbel, Les valeurs extremes der distributions statistiques, Ann, inst. Henri Poincaré \$, pt. 2, 110 (1935).
[81 E. J. Gumbul, The retumperiod of flood flows, Anu. Math. Stat. 12, 183 (June 1941).
[$\theta]$ E. J. Gumbel, Statistical theory of extreme values and some practiogi applications, National Bureau of Standarda AppLed Mathematics Series 33 (1954) (U. S. Government Printing Offce, Washington 25, D. C.).
[10] A. Hald, Ststisticsl theory with engineering spplicstions, ch. 18, 20 (John Wiley \& Eons, New York, N. Y., 1052).
[11] D. Kempthorne, The design and anelysis of experiments, ch. 4, 5 (John Wiley \& Sons, New York, N. Y., 1952).
[12] J. Lieblein, On the expet evaluation of the variancers and covarisncers of order statigtics in samples from the extreme-value distributiom, Ann. Math. Stat. 34, 282 (June 185S).
[Ja] J. Ileblelu, A new method of analyzing extreme-value dala, Nat. Advianry Conm. Aeronau. Tech. Nate 3053 (Janusry 1954).
[14] J. Lieblein and H. E. Salzer, Table of the first moment of ranked extremes (to be submitted to a technical journal).
(Id) G. Lundberg and A. Palngren, Dynanic capsetty of rolling bearinge, Acts Polytech. 7, Mech. Eng. Series, 1, No. 3 (1947).
[16] A. M. Mood, Introduction to the theory of statistice, ch. 13 (MeGraw-Hill Book Co., Inc., New York. N. Y. 1950).
[17] Probability tables for the analysis of extreme-value dista, Nstional Buresu of Stsndards Applied Mathematics Series 22 (1953) (U. S. Government Printing Office, Washington 2b, D. C.).
[18] W. Welbull, The phenomenon of rupture in solids, Ing. Vetenskaps Akad., Hand. No. 153 (1939).
[Ig] W, Weibull, A atatistical repregentation of fatigue failure le achids, Trsns, Roy. Intt. Technol., Stockholm. No. 27 (1049).
[20] S. S. Wilkg, Mathematical statistice, eh. VIII (Princeton University Press, Princeton, N. J., 1946).
[21] S. S. Wilks, Order ststititiea, Bul. Am. Math. Soc. 5it, 6 (Jamuary 1948).
Washington, March 22, 1956.

[^0]: t Figures in brackets indicale the jiteraturi referenced at ilje end of thls paper.

[^1]: date 日uhb. Itied Jar amivisls.

[^2]: ${ }^{1}$ Natural logatiluras to the baso emre used tbroughout.

[^3]:

[^4]: *Arsumed values of parameters a_{1}, a_{2}, snd p not compatible with terpt results for bearings of this meries.

[^5]:

[^6]:
 ${ }^{1}$ The use of a conthnous instrad of discrete probsbility dittibution will introduce no apprectible eivor.

[^7]: will be clear frown the context

[^8]:

[^9]:

[^10]:

[^11]: Hop parmaterat themselveg,

[^12]:

[^13]:

 should be of no consequenter

