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Statistical Investigation of the User Effects on
Mobile Terminal Antennas for 5G Applications

Igor Syrytsin, Shuai Zhang, Gert Frølund Pedersen, Senior Member, IEEE, Kun Zhao, Thomas Bolin, Zhinong

Ying, Senior Member, IEEE

Abstract—In this paper the user effects on mobile terminal
antennas at 28 GHz are statistically investigated with the param-
eters of body loss, coverage efficiency and power in the shadow.
The data are obtained from the measurements of 12 users in
data and talk modes, with the antenna placed on the top and
bottom of the chassis. In the measurements, the users hold the
phone naturally. The radiation patterns and shadowing regions
are also studied. It is found that a significant amount of power
can propagate into the shadow of the user by creeping waves
and diffractions. A new metric is defined to characterize this
phenomenon. A mean body loss of 3.2-4 dB is expected in talk
mode, which is also similar to the data mode with the bottom
antenna. A body loss of 1 dB is expected in data mode with the
top antenna location. The variation of the body loss between
the users at 28 GHz is less than 2 dB, which is much smaller
than that of the conventional cellular bands below 3 GHz. The
coverage efficiency is significantly reduced in talk mode, but only
slightly affected in data mode.

Index Terms—user effects, antennas, mobile handset, radiation
patterns, body loss, coverage efficiency, 5G applications.

I. INTRODUCTION

R
ECENTLY communications at the millimeter wave fre-

quencies have become more relevant, because of the

design considerations for the upcoming 5G communication

systems [1]. It has been considered to use beamforming at both

the base and mobile stations to overcome the path loss at the

high frequencies, as described in [2]. The 28 GHz band is one

of the candidate bands for the upcoming 5G communication

systems.

Different phased antenna array systems have already been

designed to operate at this frequency in [3], [4]. An antenna

for the next generation should be able to achieve high EIRP

and at the same time high antenna coverage with low power

consumption [5]. Furthermore, the user effects should not be

neglected when designing an antenna for the mobile terminal

[5]. Interactions between the human body and millimeter-

wave devices at 60 GHz have been studied in [6]. In the

[7] absorption of the millimeter waves by humans has been

studied. However, for the 5G communication systems, it is

interesting to study interactions between a mobile terminal

antenna and a human head and hand. Early investigations
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in [8] suggested that a resonance frequency of the antenna

tunes down when used by a person. Big amount of power

will be lost in the human hand and head and a significant

change in the shape of a radiation pattern will occur. At the

frequencies from 0.5 to 3 GHz, the absorption due to the user

presence has been studied in [9]. The performance of the

mobile handsets has been evaluated using mean effective gain

(MEG) in [10] and [11]. Absorption and missmatch losses of

the four antennas at 900 and 1800 MHz has been investigated

in [12]. In [13] the total and missmatch efficiency and MEG of

the GSM 900 antennas have been investigated. In [14] it has

been concluded that 8 to 13 persons are required to obtain a

reasonable estimate of the body loss mean and variation. The

effects of the human body on the total radiated power (TRP)

and the radiation pattern has been studied in [15] by using

phantoms and humans. The impact of the user’s hand/hands

on the mobile antenna performance has been studied in [16]

and [17], where it has been concluded that the position and

height of the antenna and position of the fingers on the mobile

terminal play a major role in the mobile antenna performance.

The effect of the user on the coverage and the radiation pattern

of a phased antenna array has been studied in [18]. However

the statistical investigation of the user impact or coverage

efficiency of the mobile antenna at 28 GHz has not been done

yet.

This paper will focus on the investigation of the user effects

on the performance of the mobile antenna at 28 GHz by

measuring the mobile device prototype. The prototype includes

a battery and a screen. Body loss, coverage efficiency, and

shadowing effects will be studied by measuring the antenna

prototype in the anechoic chamber with a user in data and talk

modes. The chosen parameters will be presented in terms of

the variation and mean values of the measurements on the 12

users. A new parameter will be introduced to characterize the

shadowing area, which can be used to investigate how much

energy can propagate around the user by creeping waves and

diffractions. The coverage efficiency of the antenna is also

evaluated.

II. METHODS

A. Measurement Setup

In this paper, it has been chosen to use a prototype, provided

by Sony Mobile, for all of the measurements. The front and

the back views of the Sony prototype are shown in Fig. 1.

The prototype has 10 antennas built in it. The 10 antennas

are combined into two groups of the 5 antennas. Groups are
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located on the left and the right side of the phone prototype

and mirrored in respect to the center of the prototype. All

of the antennas have a center frequency at 28 GHz and a

−10 dB bandwidth of at least 2 GHz. A screen and a battery are

included in the prototype to further investigate how the antenna

will perform in the real mobile device. In this paper, only one

antenna will be used throughout all of the measurements. The

chosen antenna is located on the right side of the prototype,

as shown in Fig. 1(a). The antenna used in the measurements

consists of the multiple slots located along an edge of the

ground plane with a dielectric layer as shown in Fig. 2.

The antenna is configured to resonate at a chosen frequency

by excitation of one of the slots by the stripline on the

dielectric layer. The chosen antenna geometry and applications

are described in the detail in [19].
The prototype measured in the free space is shown in

Fig. 3(a). The chosen notch antenna has a broad endfire radi-

ation pattern in the direction of z-axis, as shown in Fig. 3(b).

In Fig. 3(c) the polar plot of the radiation pattern in yz-plane

at the frequency of 28 GHz is shown. Furthermore, there is

also a little more radiation in the –y axis direction (screen

direction) than in the +y axis direction, where the screen can

support surface waves at the chosen frequency range.

Left group Right group

Measured antenna feed

Battery

(a) (b)
Fig. 1. Sony prototype overview: (a) back and (b) front.

For the measurements with the user a safety is added to

the measurement setup, thus chosen measurement system is

unable to measure 14° on the top of the coordinate system.

The elevation cut of the measurement system is shown in

Fig. 4. The 40° on the bottom can not be reached because

of the rotating podium size limitations. The 14° on the top

in θ is chosen as a starting point to be able to fix persons

under test to the crane on the top with a safety rope. The

“holes” in the measurement system are shown in red color

and the parts where the system is able to measure are shown

in green color. The “holes” will induce errors on the TRP

calculation accuracy. However, those errors are acceptable,

because the total area in the “holes” is much smaller than

the area where the system is able to measure. From the solid

angle view, the number of steradians in the holes equals to

1.6566 sr in comparison to the rest of the measurement system:

4π − 1.6566 = 10.9097sr. The solid angle in the holes is

13.13 % of the whole sphere. The solid angle of the top hole

is only 0.1866 sr, which corresponds to 1.48 % of the whole

sphere. Furthermore, the antenna is oriented in such way so

the strongest part of the radiation pattern is located outside of

the “holes”. By doing so it has been ensured that the power

missed in the holes is very small in comparison to the rest of

the measured power. The rotary positioner with the chair is

placed at θ = 180°, which will limit the amount of the energy

propagating towards the bottom of the measurement setup.

Fig. 2. Geometry of the measured antenna [19].

It has been chosen to measure the mobile prototype with

the influence of a user in the four positions:

• Mobile in talk mode – antenna located on the top, as

shown in Fig. 5(a).

• Mobile in talk mode – antenna located on the bottom, as

shown in Fig. 5(b).

• Mobile in data mode – antenna located on the top, as

shown in Fig. 5(c).

• Mobile in data mode – antenna located on the bottom, as

shown in Fig. 5(d).

In all of the measurements, a user has been told to held the

phone naturally. However, in the data mode, the requirement

was to hold the phone horizontally and the distance between

the user and the phone has been adjusted to be around 30 cm.

This means that the chosen experimental setup represents the

worst case scenario because the grip of the user has not been

controlled. It has also been known for a long time, that a user

is usually holding a phone by utilizing one of the two most

common grips: firm and soft grips [12], which for the higher

frequencies will introduce variation in the shadowing from the

user’s hand.

B. Measures

Measures of the body loss and coverage efficiency are

used in this paper to evaluate the results obtained by the

measurement campaign. Furthermore, this paper will focus on

investigation of the shadowing caused by the person presence

in the measurement setup. The new metric of shadowing power

ratio will be introduced later in the paper to describe the

amount of power that has propagated around the user.

To find the body loss it is important to calculate the

total radiated power of the antenna. The equation for the

approximate total radiated power can be written as [9]:

Prad = ∆φ∆θ
θmax

∑
θmin

φmax

∑
φmin

(PV (θ ,φ)+PH(θ ,φ)) · sin(θ) (1)

where:

• ∆φ is a sampling step in φ , in the chosen setup the step

equals to the 2°

• ∆θ is a sampling step in θ , in the chosen setup the step

equals to the 14°
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(a)

(b) (c)
Fig. 3. (a) the picture of the prototype in free space, (b) and (c) are
the radiation pattern of the chosen antenna.

Fig. 4. The elevation cut of the measurement system.

• φmin and φmax are minimum and maximum angles, which

are respectively defined to the 0° and 360°

• θmin and θmax are minimum and maximum angles, which

are respectively defined to the 14° and 140°

• PV and PH are the power components received by the

probe antenna in vertical and horizontal polarizations.

The body loss is defined in this paper as:

Lbody =
η f ree

ηuser

(2)

where η f ree and ηuser are the antenna total efficiency with and

without the user.

The antenna impedance mismatch due to the user effects

has been checked carefully before the measurement campaign.

The reflection coefficient is always lower than -10 dB in the

frequency range from 27 to 29 GHz in all the user cases.

Therefore, the return loss of the cm-wave antenna is much

less sensitive to the user effects than that of the low frequency

antennas (< 6GHz). The body loss at the cm-wave frequencies

mainly comes from the shadowing and absorption losses

(a) (b)

(c) (d)
Fig. 5. The overview of the measurement setup with the user in (a)
talk mode – antenna on top, (b) talk mode – antenna on bottom, (c)
data mode – antenna on top, (d) data mode – antenna on bottom.

instead of antenna detuning. The mismatching losses of the

antenna are neglected in this investigation.

The coverage efficiency can be defined as: [20]

ηc =
Coverage solid angle

Maximum solid angle
(3)

where the maximum solid angle is chosen to the 4π steradians

(whole space).

C. Measurement Sample

In this measurement campaign, 12 users have been mea-

sured. However, only 11 measurements has been used for the

characterization of the data mode with the antenna on top of

the device as the one of measurements has provided incorrect

results. All of the persons in this study are males and has

been chosen from the university students under 30 years old.

It has been chosen to measure 12 users because, as described

in [14], this number of users is enough to provide the reliable

statistical data about the variation and the mean of the body

loss. The histograms over the heights and weights of the users

are shown in Fig. 6(a) and Fig. 6(b), respectively. It can be

noticed that the relative variation in the user weight is higher

than the variation the user height. A big group of the people

used in the measurements is over 180 cm high.
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Fig. 6. The histogram of the (a) users’ heights and (b) users’ weights.

The photos of all the measured users in the data mode are

shown in Fig. 7. The pictures give more insight on the shape

of the users and gestures used.

III. EXPERIMENTAL RESULTS

In this section the results of the measurement campaign will

be presented.

A. Radiation Pattern

The 3D radiation patterns of the antenna in all the four

measurement setups are plotted in Fig. 8. It can be seen that

the radiation patterns have similarities to the measured patterns

in [18], but the position of the antenna makes a big difference

on the radiation pattern shape. In the talk mode, the radiation

pattern is mainly distorted by the user’s head. In the data mode,

the shadowing from the user’s body is significant, particularly

when the main beam of the antenna is pointed towards the

user.

In Fig. 8(a) the radiation pattern of the antenna with the user

in talk mode and the antenna located on the top is shown. The

shadowing area spans 126° in θ and 150° in φ . The head is

very close to the antenna, and thus the shadowing area is big.

However, by exciting surface waves on the user’s skin, the

antenna can still radiate in the region from φ = 100° to 190°.

In Fig. 8(b) the radiation pattern of the phone in the talk

mode with the antenna on the bottom is shown. In comparison

to the radiation pattern in Fig. 8(a) the pattern does not look

smooth because of the waves propagating through the finger

openings of the hand. The head has less impact on the antenna

radiation pattern due to the larger antenna-head distance than

placing the antenna on the top. Furthermore, in this position,

the user‘s palm covers directly over the antenna. It means

that there is only a small window where the antenna can

radiate (φ = 20° to 120°), because the user blocks the radiation

pattern either by the palm or by the head. The radiation pattern

is mainly supported by the scattering from the user’s hand,

fingers, and head.

Fig. 7. All of the measured users in the data mode.

In Fig. 8(c) the radiation pattern of the antenna on the top

in data mode is shown. The main beam of the radiation pattern

at 90° φ is pointing away from the user, and thus it is nearly

not distorted by the user presence because nothing is blocking

the radiation pattern in the direction of the main beam. The

shadow of the standing person is very clear at φ = 270°.

In the last case, in Fig. 8(d), the radiation patterns of a

user in the data mode with the antenna on the bottom of the

prototype are shown. The radiation pattern is uneven and looks

similar to the radiation pattern in Fig. 8(b) . However, the

person’s shadow looks different from that in Fig. 8(c). It can be

noticed that there is a big amount of the energy passing around

the user and radiating from the back. The power radiated from

the back of a person is 20 dB higher than the power in the case

with antenna on the top in Fig. 8(c). The amount of the energy

that is able to propagate around the user depends on the user

width, height, grip type and the phone – user distance. More

energy will be propagating around the user to the back if the

distance is larger and the user is thinner. Here the user’s body

acting as a scatterer of the main beam.

In order to understand how much power has propagated

around and behind the user (by creeping wave and diffraction)

a new metric has been defined. The amount of the power in

the shadow in comparison to the total power in whole space

will be called a shadowing antenna power ratio(SAPR) in this

paper.

The SAPR is defined as:

SAPR(δθ ,δφ),
Pshadow in the window

Ptotal

(4)

=

∆φ∆θ
θmax

∑
θmin

φmax

∑
φmin

(Pant,V (θ ,φ)+Pant,H(θ ,φ)) · sin(θ)

∆φ∆θ
140°

∑
14°

360°

∑
0°

(Pant,V (θ ,φ)+Pant,H(θ ,φ)) · sin(θ)

(5)
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(a)

(b)

(c)

(d)
Fig. 8. The radiation pattern of the antenna with the user in (a) talk
mode – antenna on top, (b) talk mode – antenna on bottom, (c) data
mode – antenna on top, and (d) data mode – antenna on bottom.

where:

• δθ = θmax − θmin is chosen to be constant at maximum

of 126°, because of the system constraints.

• δφ = φmax −φmin varies from 1° to 60°.

• Pshadow is the power in the shadow (in the chosen area of

a radiation pattern).

• Ptotal is the total radiated power with the user.

The physical meaning of the formula is: how many dB in the

shadow is lower than the total radiated power (TRP).

If SAPR is low then the shadowing is strong, on the other

hand, if the SAPR is high then the shadowing is weak. The

windows where SAPR has been calculated are displayed in
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(d)
Fig. 9. SAPR of the antenna with the user in (a) talk mode – antenna
on top, (b) talk mode – antenna on bottom, (c) data mode – antenna
on top, and (d) data mode – antenna on bottom.

0 10 20 30 40 50 60

 window size [deg]

-40

-30

-20

-10

0
P

s
h
a
d
o
w

/P
is

o
tr

o
p
ic

 [
d

B
]

(a)

0 20 40 60

 window size [deg]

-40

-30

-20

-10

0

P
s
h
a
d
o
w

/P
Is

o
tr

o
p
ic

 [
d

B
]

(b)

0 10 20 30 40 50 60

 window size [deg]

-40

-30

-20

-10

0

P
s
h
a
d
o
w

/P
is

o
tr

o
p
ic

 [
d

B
]

(c)

0 10 20 30 40 50 60

 window size [deg]

-40

-30

-20

-10

0

P
s
h
a
d
o
w

/P
is

o
tr

o
p
ic

 [
d

B
]

(d)
Fig. 10. SIAPR of the antenna with the user in (a) talk mode –
antenna on top, (b) talk mode – antenna on bottom, (c) data mode –
antenna on top, and (d) data mode – antenna on bottom.

Fig. 8. The location of the window depends on the loca-

tion of the shadowing region of interest. If more power is

transmitted towards the shadow the SAPR would show the

amount power propagated behind the shadow by creeping

waves and diffraction. The shadowing region location in this

paper depends on the user and a mobile phone orientation. In

Fig. 8(a) the shadow region is located at φ = 180°. In the rest

of the sub-figures in Fig 8 the shadowing region is located

at φ = 270°. The window length is fixed in elevation plane

as θ = 0° to 140°. The SAPR is calculated for the different

azimuth window lengths for all of the users at 28 GHz.

An error-bar SAPR plot is displayed for the different φ
window lengths in Fig. 9. In Fig. 9(a) the SAPR is shown

for the talk mode and top antenna location. As expected, the

SAPR is very low because of the big shadowing from the head.

The variation in SAPR does not exceed 10 dB. The variation
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is smaller for the low SAPR values. In Fig. 9(b) the SAPR

for the talk mode and antenna bottom location is shown. The

SAPR error-bar plot has bigger variation, especially for the

small window sizes than SAPR in Fig. 9(a). Furthermore the

mean SAPR curve is steeper. In Fig. 9(c) the SAPR for the

data mode and antenna top location is plotted. The mean SAPR

is higher than in the talk mode. The variation is on average

5-10 dB smaller than the SAPR for the talk mode.Finally, in

Fig. 9(d) the SAPR for the data mode and antenna on the

bottom is shown. Up to 20 dB of variation between the users

can be observed.

The curves of the mean SAPR for all four setups are shown

in Fig. 11. For the small window sizes, the difference in SAPR

between the curves tends to decrease. The mean SAPR curve

for the talk mode and top antenna location is on average 10 dB

lower than the curve for the talk mode and bottom antenna

location. The curves for the data mode are on average 5 dB

higher than the curve for the talk mode and antenna on the

bottom. It is important to address that on average the SAPR

for the bottom and top antenna locations in data mode is very

similar. However, the variance in SAPR for the bottom antenna

location is higher. From the physical point of view, it can be

explained that for the bottom antenna location sometimes a

big amount of energy can propagate around the user, but on

average the power in shadowing region is the same as in the

case with antenna top location in data mode.

Fig. 11. Mean SAPR for all four measurement setups.

Next, the another parameter of shadow isotropic antenna

power ratio (SIAPR), which is not related to antenna TRP. The

SIAPR uses a dual polarized isotropic antenna as a reference

(gain = 0 dB) instead of the antenna under the test itself. Where

the SAPR involves the antenna radiation characteristics the

SIAPR only focus on shadowing power characteristics. The

SIAPR is defined as:

SIAPR(δθ ,δφ),
Pshadow in the window

Pisotropic antenna in the window

(6)

=

∆φ∆θ
θmax

∑
θmin

φmax

∑
φmin

(Paut,V (θ ,φ)+Paut,H(θ ,φ)) · sin(θ)

∆φ∆θ
θmax

∑
θmin

φmax

∑
φmin

(Piso,V (θ ,φ)+Piso,H(θ ,φ)) · sin(θ)

(7)

where:

• δθ = θmax − θmin is chosen to be constant at maximum

of 126°, because of the system constraints.

• δφ = φmax −φmin varies from 1° to 60°.

• Pshadow is the power in the shadow (in the chosen area of

a radiation pattern).

• Pisotropic antenna is the power calculated for the same area

in space for the isotropic antenna.

• Paut,V and Paut,H are vertical and horizontal power com-

ponents of the antenna under the test.

• Piso,V and Piso,H are vertical and horizontal power com-

ponents of the isotropic antenna.

The SIAPR for the all four test setups has been plotted in

Fig.10. It can be noticed that all of the curves are flatter in

respect to the curves in Fig.9, and variation between the users

is more constant across the window widths. The SIAPR can be

used when comparing the power in the shadowing of antennas

with the different radiation patterns. In the talk mode, the

different types of antennas (e.g., patch, slot, endfire-radiated

notch, dipole and so on) mainly change the power distribution

outside the shadow. The SIAPR is similar if different types

of antennas are placed at the same location of the chassis

under the same user gesture. In data mode, we choose the two

cases of antenna (endfire) beam pointing at a user and pointing

against a user. If the pattern is broadside, the SIAPR should be

between the values of these two cases. Therefore, even though

in this paper only the antenna with endfire radiation patterns

are studied, the SIAPR obtained in this paper can still provide

some guidance for the antenna with other radiation patterns

(e.g. broadside radiation pattern).

B. Body Loss

In this section, the measured body loss will be presented.

The early investigations in [8] have shown that more than

45 % of the power is lost in the head and hand at the GMS

and DECT frequencies. In [13] has been found that around

10.9 dB of body loss is expected for the GSM frequencies.

In [15] it has been found that the variation in the body loss

between persons is higher when the user selected grip is used.

Furthermore, a 3 dB in a standard deviation of a body loss

has been observed. In [11] a body loss at the 776 MHz and

2300 MHz has been measured. The measured mean body loss

has a range of 0-15 dB, of which most of the values were

located under 6 dB.
The body loss has been illustrated in Fig. 12 by an error bar

graph. The body loss for the measurement setup in the talk

mode and the antenna located on the top of the phone is shown

in Fig. 12(a). It can be observed that on average around 4 dB

of the body loss is expected. However, the variations in the

body loss between the users are much lower in comparison to

the studies done for the lower frequency in [9] and [21] when

a user selected grip is used.
In Fig. 12(b) the body loss for the antenna on the bottom

of the phone in the talk mode is displayed. From the plot,

it can be noticed that the mean body loss is 0.2 to 0.3 dB

lower than in Fig. 12(a), which means that there is only a

small difference in the body loss when antenna located on the

top or the bottom of the mobile device in the talk mode. The

variation of the body loss in Fig. 12(b) is around 1 dB smaller

than in Fig. 12(a).
In data mode, in Fig. 12(c) and 12(d), the variation of the

body loss between the users is higher. It can be speculated that
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the loss is affected by the multiple variables, such as user’s

height, weight and grip type. If the distance between a user

and a phone is not controlled then the variation between users

is expected to increase dramatically because of the difference

in shadowing area.

The mean body loss in the data mode and the antenna top

location is very low. In Fig. 12(c) around 0.7 to 1.5 dB of the

body loss is expected for this particular setup.

On the other hand, in the setup with the antenna located

on the bottom of the mobile device in data mode the mean

body loss, shown in Fig. 12(d), is comparable to the losses in

the talk mode. The expected mean body loss ranges from 3.5

to 4 dB. The variance of the body loss, calculated from the
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Fig. 12. The minimum, maximum and mean body loss in frequency
band from 27 to 29 GHz for the users in (a) talk mode – antenna on
top, (b) talk mode – antenna on bottom, (c) data mode – antenna on
top, and (d) data mode – antenna on bottom.

statistical data, is shown in Fig. 13. A variance of the body

loss in the talk mode and antenna on top varies from 0.4 to

0.7 dB in the measured band. The body loss in talk mode and

antenna on the bottom has less variation in the band. Those two

curves have same variance value at 28.7 GHz. The variance in

the data mode and bottom antenna location is 0.2 to 0.5 dB

lower than the variance of the body loss in the talk mode. The

variance of the body loss for the setup in the data mode and

antenna top location is the lowest of all four, which is under

0.1 dB.

Fig. 13. Variance of the body loss for the all four setups.

C. Coverage efficiency

In this subsection the impact of the user on the antenna cov-

erage at 28 GHz will be studied. Usually, coverage efficiency

metric is used to calculate the coverage of the phased array.

However, in this paper, the coverage efficiency of only one

antenna element is calculated. If the element is placed into an

array the antenna gain should be multiplied by the array factor.

For example, for an array of 8 elements an increase of 9 dB is

expected. The behavior of the antenna array can be predicted

to some extent by looking on the coverage of the one element.

The coverage efficiency of the antenna in all four of the case

studies is plotted in Fig. 14, where the red curve represents

the coverage efficiency of the antenna in the free space.

Both curves for the talk mode in Fig. 14(a) and 14(b) look

very similar. The variation in the coverage for different users

increases with the bottom antenna. Both curves follow the red

curve only for the high and very low antenna gains.

The coverage efficiency error bar plots for the data mode are

shown in Fig. 14(c) and 14(d). Both mean coverage efficiency

curves have a shape very similar to the curve of the antenna

coverage in the free space. However, the variance between the

users is higher for the antenna located on the bottom of the

mobile device in Fig. 14(d). It can be observed in both pictures

that the user effects actually very close to the free space curve.

IV. COMPARISON OF THE RESULTS

The variation of the SAPR is different for each of the four

measurement setups. The SAPR mean, variance, minimum and

maximum measured values are shown in Tab. I for the window

of 30°. This shadowing window width is encountered in all

four setups.

The mean body loss of at least 3.2 dB is expected in the talk

mode. In data mode when the antenna is located on the bottom
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Table I. Measured parameters at 28 GHz
Setup SAPR @ 30° [dB] Body loss [dB] Coverage efficiency @ 0 dBi

Mean Var Max Min Mean Var Max Min Mean Var Max Min
Talk – top -35.95 4.07 -33.13 -38.85 3.86 0.45 5.1 2.8 0.14 4.14E−4 0.18 0.1
Talk – bottom -27.15 9.77 -20.44 -31.32 3.25 0.64 4.8 1.9 0.12 9.74E−4 0.19 0.08
Data – top -20.98 2.60 -17.07 -22.67 1.45 0.02 1.5 0.8 0.20 0.0027 0.36 0.17
Data – bottom -22.25 12.84 -14.03 -28.17 3.45 0.13 4.5 3 0.11 0.0025 0.26 0.07

(a)

(b)

(c)

(d)
Fig. 14. The coverage efficiency of the (a) antenna on top in talk
mode, (b) antenna on bottom in talk mode, (c) antenna on top in
data mode, and (d) antenna on bottom in data mode. The red curve
represent the coverage efficiency in the free space.

of the mobile device, a loss of 3.5-4 dB is expected. In the data

mode and antenna top location, only 1 dB of the body loss is

expected. The variation in the loss between the users does not

exceed 2 dB. Higher body losses in data mode are expected

when the distance between a user and a mobile device is

smaller than the chosen 30 cm. The mean, variance, maximum

and minimum values for the antenna center frequency of

28 GHz are shown in Tab. I.
The coverage efficiency of the antenna at the 0 dBi is at least

30 % lower for the antenna used in talk mode in comparison to

the free space. The coverage of the antenna in the data mode

is very similar to the coverage of the antenna in free space.

The more detailed overview of the mean, variance, maximum

and minimum values of the coverage efficiency at 0 dBi is

shown in Tab. I. The realized gain of 0 dBi is chosen to show

how much coverage the antenna has compared to the ideal

isotropic antenna. When antennas are combined into array, a

gain increase of 9 dBi over a single element is expected for the

8-element array. Thus, the coverage efficiency value at 0 dB

will tell approximately how much coverage an array composed

of such antenna elements would have at 9 dBi gain.

V. CONCLUSION

In this paper, a study of the body loss, shadowing area and

coverage efficiency of the mobile terminal antenna at 28 GHz

has been presented. The results are based on the measurement

campaign involving 12 persons.
From all the studies of the multiple radiation patterns, it can

be concluded that in data mode, when the beam is pointing

towards the user, it is still possible to decrease the power in

the shadowing region by the creeping waves and diffractions.

Furthermore, when antenna located on the bottom of the

mobile device the palm and the fingers of the user will affect

the radiation pattern. A significant amount of power is still

able to propagate through the hand. A measure of shadowing

power ratio has been proposed to characterize the shadowing

region. The highest mean SAPR has been obtained from the

measurements in the data mode with the antenna on the bottom

of a device.
The measure of SAPR has been proposed and calculated

statistically from the radiation patterns in talk and data modes.

For the small window sizes the biggest shadowing in expected

for the talk mode with the antenna on top. The smallest

variation of SAPR can be observed for the setups where the

antenna was positioned on the top of the mobile device.
The mean body loss of less than 4 dB for all of the

measurement setups has been observed. The body loss is much

lower than the body loss observed for the low frequencies

(<6 GHz). Furthermore, the variation in the body loss between

the users is less than 4 dB, and even less than 1 dB in some

cases.



0018-926X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2017.2681701, IEEE

Transactions on Antennas and Propagation

9

The coverage efficiency for the antenna at 0 dB gain is

between 10 and 20 %. The variation in the coverage efficiency

of 19 % in the worst case and 11 % in the best case has been

observed.

To make the presented study more general the measurement

with the children, woman and people older than 30 could be

carried out in the future. From the study, it can clearly be

seen that to obtain the optimal antenna performance at least

two antennas on the top and bottom should be integrated into

the design of a mobile device.
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