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Statistical Issues in Studies of the
Long-Term Effects of Air Pollution:
The Southern California Children’s
Health Study
Kiros Berhane, W. James Gauderman, Daniel O. Stram and Duncan C. Thomas

Abstract. In this article we discuss statistical techniques for modeling data
from cohort studies that examine long-term effects of air pollution on chil-
dren’s health by comparing data from multiple communities with a diverse
pollution profile. Under a general multilevel modeling paradigm, we discuss
models for different outcome types along with their connections to the gener-
alized mixed effects models methodology. The model specifications include
linear and flexible models for continuous lung function data, logistic and/or
time-to-event models for symptoms data that account for misspecifications
via hidden Markov models and Poisson models for school absence counts.
The main aim of the modeling scheme is to be able to estimate effects at var-
ious levels (e.g., within subjects across time, within communities across sub-
jects and between communities). We also discuss in detail various recurring
issues such as ecologic bias, exposure measurement error, multicollinear-
ity in multipollutant models, interrelationships between major endpoints and
choice of appropriate exposure metrics. The key conceptual issues and re-
cent methodologic advances are reviewed, with illustrative results from the
Southern California Children’s Health Study, a 10-year study of the effects
of air pollution on children’s respiratory health.

Key words and phrases:Mixed effects, time series, measurement error, eco-
logic regression, chronic effects, air pollution.

1. INTRODUCTION

Health effects of air pollution can be broadly clas-
sified into two types:acute effects associated with
short-term fluctuations in pollution levels andchronic
effects of long-term exposures to pollution. The acute
health effects of ambient air pollution on daily mor-
tality and morbidity are manifest in numerous epi-
demiologic (e.g., Schwartz, 1994; Dominici, Samet
and Zeger, 2000) and chamber studies (Gong et al.,
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1998). These results have been instrumental in set-
ting air quality standards. In contrast, health effects
of longer-term exposures have not been as extensively
investigated despite their importance in the regulatory
process.

Some of the important cohort studies of chronic
effects of air pollution in adults are the Harvard Six-
Cities study (Dockery et al., 1993), the American Can-
cer Society (ACS) study of U.S. veterans (Pope et al.,
1995), and the Seventh Day Adventist study (Abbey
et al., 1999). These studies examined effects of long-
term levels of pollution on mortality using multilevel
analogues of the Cox proportional hazards model (Cox,
1972; Ma, Krewski and Burnett, 2000). The Harvard
Six-Cities and the ACS studies have been reanalyzed
by Krewski et al. (2003).
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The Southern California Children’s Health Study,
hereafter referred to as the CHS, is one of very few
prospective studies of children. It was designed to ex-
amine long-term effects of air pollution on respiratory
health, using comparisons between communities, be-
tween children within communities and within children
over time. The CHS is the longest currently running
prospective study on chronic effects of air pollution in
children.

Other studies on children that have played major
roles in regulatory decisions include an Austrian study
(Frischer et al., 1999), the Harvard Six-Cities study
(Ferris et al., 1979) and 24-Cities study (Raizenne
et al., 1996). The Austrian study followed 1150 chil-
dren from nine communities. Lung function tests were
conducted bi-annually for three years (1994–1997)
and their association with air pollution was studied.
The Harvard Six-Cities study enrolled (1974–1979)
13,378 first and second grade school children from six
U.S. cities. Questionnaire and lung function data were
then collected until their graduation from high school.
The 24-Cities study collected questionnaire and lung
function data (1988–1991) from 10,251 8–12-year-old
children in U.S. and Canadian communities with a di-
versity of pollution levels.

These studies all sought to include communities
with a diverse pollution profile. They also provide
the opportunity to examine within-subject effects over
time. The resulting data have a rich structure, allow-
ing comparisons (1) over time (within subjects or com-
munities), (2) between subjects and/or (3) between
communities. A comprehensive discussion of statisti-
cal methods for analyzing data from such study designs
is of public health importance.

This article discusses modeling of and related meth-
odologic issues for data from such multilevel designs.
Some recurring themes that already receive method-
ologic attention or require further research are out-
lined. We discuss a broad range of issues that arise in
many epidemiologic studies in environmental health,
not necessarily restricted to respiratory diseases or air
pollution. The CHS results will be used to highlight rel-
evant methodologic issues. Methodologic comparisons
are made to other studies when appropriate.

The design of the CHS is outlined in Section 2.
Section 3 discusses statistical issues in longitudinal
analysis of major endpoints and presents a general mul-
tilevel modeling approach. Section 4 discusses various
recurring themes, such as ecologic bias, measurement
error and choice of exposure metrics. Finally, Section 5
provides further discussion of the main methodologic

issues and outlines areas that require additional re-
search.

2. DESIGN OF THE CHILDREN’S HEALTH STUDY

The primary aims of the CHS are to assess rates of
lung growth, incidence of respiratory disease and fre-
quency of respiratory symptoms or school absences in
relation to long-term air pollution levels. Secondary
aims include studying the relationships between the
health outcomes, the confounding or modifying effects
of personal risk factors, underlying disease processes,
exposure factors, and time/activity patterns, the shape
of the dose–response relationships, and disentangling
the effects of multiple pollutants.

Selection of communities.At the outset between-
community comparisons were considered likely to be
the most informative. This view motivated the selec-
tion of communities that exhibited maximum vari-
ability with respect to ambient levels of ozone (O3),
particulates (PM10), nitrogen dioxide (NO2) and acid
(including nitric, acetic and formic acids). Initially,
86 Southern California communities with routine air
quality monitoring were classified as “high” or “low”
on each pollutant, using 1986–1990 multiyear average
levels. Only 8 of the 24 = 16 possible pollution “pro-
files” were represented in sociodemographically com-
parable communities that had reliable monitoring data
(Table 1). Then the 12 most promising communities
(Figure 1) were selected, based on cost, feasibility and
statistical power (Navidi et al., 1994). On-study mea-
surements have confirmed the original pollution pat-
terns.

Enrollment of cohorts.Approximately 150 fourth
graders and 75 seventh and tenth graders were enrolled
in 1993 from each community. Whole classes were in-
vited to participate, and the 3681 students who returned
a signed consent form were enrolled. In 1994, 386
fifth and 111 eighth graders were added from the same
schools. A second fourth grade cohort of 2081 children
was enrolled in 1996. Thus, 6259 children have en-
tered the study for observation. Attrition was about 8%
per year, with 95% due to moving away from partici-
pating schools. A survey of children who moved away
was conducted in 1998 to examine the effects of mov-
ing from less to more polluted areas or vice versa (Avol
et al., 2001).

Health assessments.The primary care giver of each
child completed a baseline questionnaire that cov-
ered residential history, current residential characteris-
tics (e.g., ventilation and sources of indoor pollution),
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TABLE 1
Average ambient air pollution levels for 1994 in12 Southern California communities selected for the Children’s Health Study

Design strata 1994 ambient measurements

O3 PM10 NO2 Acid Communities O3
a PM10

b PM2.5
c NO2

d Acide

H H H H San Dimas (SD) 82.9 36.7 22.1 36.2 5.0
Upland (UP) 73.3 49.0 24.0 42.6 4.7

H H H L Mira Loma (ML) 76.3 70.7 31.5 31.3 3.1
Riverside (RV) 80.6 45.2 25.5 33.9 3.7

H H L H Lancaster (LN) 59.7 33.6 9.3 17.8 2.3
H H L L Lake Elsinore (LE) 76.1 34.7 13.4 21.9 3.3
H L H H Lake Gregoryf (LA) 97.5 24.2 11.1 8.5 3.5
H L H L
H L L H
H L L L Alpine (AL) 71.3 21.3 9.2 13.2 2.6
L H H H Long Beach (LB) 41.3 38.8 16.3 36.4 3.5
L H H L
L H L H
L H L L
L L H H
L L H L
L L L H
L L L L Atascadero (AT) 50.1 20.7 7.6 14.1 1.3

Santa Maria (SM) 35.5 29.2 6.7 4.3 1.3
Lompoc (LM) 42.7 13.0 7.3 2.7 1.0

a10 AM–6 PM average (ppb).
b24-hour average (µg/m3).
cTwo-week average (ppb).
d24-hour average (ppb).
eTwo-week average (HNO3 + HCL; ppb).
fLake Gregory is identified as Lake Arrowhead (LA) in subsequent years.

FIG. 1. Geographical distribution of communities in the Children’s Health Study.
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personal risk factors, usual respiratory symptoms and
usual activities. An abbreviated yearly follow-up ques-
tionnaire collects data on chronic respiratory symp-
toms and diseases, and time-dependent covariates (see
Peters et al., 1999a, for details).

A field team visits participating schools in the
winter–spring of each year (January–June) to conduct
lung function tests (Peters et al., 1999b). Our examples
focus on one of the lung function measures, namely the
maximum mid-expiratory flow (MMEF). In contrast to
lung size measures such as the forced expiratory vol-
ume in one second (FEV1), MMEF measures flow rates
and tends to show larger deficits in susceptible sub-
groups (e.g., asthmatics). Daily school absences are re-
ported weekly or bi-weekly throughout the school year.
From 1996–1997, causes of absences were ascertained
by phoning parents of the second fourth grade cohort
within 4 weeks of each absence.

Air pollution assessments.In all 12 communities,
monitoring stations provide continuous hourly ambi-
ent O3, PM10 and NO2, and 2-week measures of PM2.5
and acid vapors. Individual exposure predictions us-
ing the “microenvironmental” approach were based on
data on ambient exposure, housing characteristics and
time/activity patterns. Dispersion models have been
used to estimate exposures from major roadways (see
Section 4.2 for details).

To date, most chronic effects analyses rely on yearly
or multiyear exposure data. Table 2 summarizes the
correlations of major pollutants, based on multiyear
averages of 1994–1997 data from hourly (PM10, O3
and NO2) or 2-week integrated (PM2.5 and acid) mea-
surements. Despite designing the study to minimize
them, many correlations remain quite high. The corre-
sponding correlations that were based on year-to-year
variations in pollution levels showed a similar pattern,
with the exception of those involving O3 (which ex-
hibited relatively higher correlations). This limits the

TABLE 2
Correlations between multiyear averages of pollutants
(1993–1997) in the12 communities selected for the

Children’s Health Study

Pollutant O3 PM10 PM2.5 NO2 Acid

O3 (10 AM–6 PM) 0.73 0.28 0.29 −0.03 0.46
O3 (24-h avg) −0.31 −0.33 −0.54 −0.09
PM10 0.96 0.67 0.73
PM2.5 0.76 0.82
NO2 0.85

ability to separate the effects of the various pollutants.
See Section 4.3 for details on an analytic approach to
deal with this problem.

3. STATISTICAL MODELS FOR
MAJOR ENDPOINTS

Assessment of chronic effects of air pollution has
relied to a large extent upon comparisons of aggre-
gate health outcomes between communities with di-
verse pollution profiles. The communities included in
such studies may not constitute a random sample from
a larger population of communities. If so, what then is
the interpretation of thep-values or confidence limits
that arise from the analysis at the community level?

To address this question, we argue that methods
for inference at the community level are those that
would be appropriate in a grouped randomization set-
ting. Under this scenario, air pollution levels would
somehow have been assigned at random to a sample
of communities, which may or may not have been se-
lected at random. Despite the randomization, residual
differences in aggregated health outcomes may remain
between the communities that are left unexplained by
the assigned levels of air pollution, even after adjust-
ing for subject-specific data. The random assignment
of air pollution levels to a community would permit
inferences to be drawn about the effect of air pollu-
tion on health outcomes in the community-level analy-
sis, while still allowing the residual heterogeneity to
remain between communities. The way in which com-
munities have been selected may impact the general-
izability of the results of the study to children living
in other places, but a nonrandom selection of commu-
nities would not invalidate the statistical tests, which
derive their validity from the randomization.

Of course, in most large-scale air pollution studies,
we observe, rather than manipulate, pollution levels.
The use of the same statistics (for the community-
level analysis) as would be appropriate to a group ran-
domization experiment assumes that the causal forces
that lead to any unexplained community differences
(residual heterogeneity) in outcomes are not them-
selves related to air pollution exposure. This amounts
to assuming that this residual heterogeneity is random
relative to air pollution. Admittedly, this assumption is
not directly statistically testable. However, the use of
subject-specific covariates (e.g., age, height, race) to
adjust for the effect of other determinants of the out-
come is designed to reduce the possibility that con-
founding is the root cause of the effects observed.
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We sought a modeling framework that can simul-
taneously handle all of the aspects that we have de-
scribed above including (1) time-dependent adjustment
variables; (2) between-community differences in ag-
gregate air pollution measurements and outcomes;
(3) within-community differences by time in aggregate
air pollution and outcomes; and finally (4) individual
differences in cumulative exposure or in predicted ex-
posure based on modeling. Such considerations lead
naturally to multilevel models as the analytic method
of choice.

3.1 The Multilevel Modeling Paradigm

Here, except for school absences (see Section 3.3),
we present the multilevel model using time-dependent
pollution measures that are based on yearly averages.
A discussion of the choices of exposure metrics is pre-
sented in Section 4.5. Our multilevel models are equiv-
alent to mixed effects models for Gaussian (Laird and
Ware, 1982) and non-Gaussian (Breslow and Clayton,
1993) data. These, in turn, are based on growth curve
models as in, say, Harville (1977).

General formulation.Denote byycij the health end-
point for subjecti in communityc at time tcij , where
j indexes year. Predictors can be time-dependent, time-
constant (depicting fixed subject-specific attributes)
or community-specific. Uppercase and lowercase let-
ters denote community-specific and subject-specific
quantities, respectively. Thus,zcij represents time-
dependent covariates (e.g., height, age),zci represents
time-constant fixed covariates (e.g., gender, ethnicity),
xci represents subject-specific average pollution levels
(e.g., from microenvironmental modeling),Xcj repre-
sents the community annual-average levels of pollution
and Xc represents the community-specific multiyear
average levels of pollution.

Consider a three-level generalized linear model of
the form

g(µcij ) = aci + bci tcij + γ T
1 zcij

(1)
+ αT

1 (Xcj − Xc),

aci = Ac + ηT
2 zci + αT

2 (xci − Xc) + eci,(2)

bci = Bc + γ T
2 zci + βT

2 (xci − Xc) + fci,(3)

Ac = α0 + αT
3 Xc + ec,(4)

Bc = β0 + βT
3 Xc + fc.(5)

Here,g(µcij ) denotes a link function (McCullagh and
Nelder, 1989),µcij = E(ycij ) and Roman letters rep-
resent random effects. In (1),aci and bci represent

subject-specific random intercept and slope of follow-
up time (or age),tcij , respectively. Model (1) is ad-
justed for time-dependent covariates and allows a test
of air pollution effects via the slopeα1 on deviations of
community annual-average ambient levels from their
long-term averages.

Models (2) and (3) include random effects for com-
munity (Ac and Bc), and subject-specific covariates.
They allow for a second test of air pollution effects via
the regression of subject-specific slopes or intercepts
from (1) on deviations of personal exposures from the
community means. The residualseci and fci are as-
sumed to be uncorrelated across subjects.

Models (4) and (5) relate the community mean ad-
justed intercepts and slopes to the long-term average
ambient pollution levels, allowing independent random
error terms. Community-specific covariates could also
be included (see Section 4.1).

Although the model can be fitted using a sequence of
regressions, the generalized linear mixed effect model
(Diggle, Liang and Zeger, 1994), where all levels are
combined with multiple error terms, provides a more
unified approach as given by

g(µcij ) = α0 + αT
3 Xc + ηT

2 zci

+ αT
2 (xci − Xc) + ec + eci

+ [
β0 + βT

3 Xc + γ T
2 zci(6)

+ βT
2 (xci − Xc) + fc + fci

]
tcij

+ γ T
1 zcij + αT

1 (Xcj − Xc),

whereeci ∼ N(0, σ 2
e,ci) and ec ∼ N(0, σ 2

e,c) are ran-
dom subject- and community-specific intercepts. Sim-
ilarly, fci ∼ N(0, σ 2

f,ci) and fc ∼ N(0, σ 2
f,c) are the

corresponding random slopes. For continuous out-
comes (e.g., lung function), an overall error term
ecij ∼ N(0, σ 2

cij ) is given. Model (6) assumes indepen-
dence between the random effects. This assumption
could be relaxed to allow for more complex temporal
and/or spatial correlation structures.

When model (6) is applied to non-Gaussian data
(e.g., disease symptoms), fixed effects are interpreted
conditional on the random effects. If distributional as-
sumptions for the random effects are violated, the es-
timates for ecologic comparisons (e.g.,β3) could be
biased. An alternative is to use marginalized multilevel
models that lead to fixed effects with marginal interpre-
tations. See Heagerty and Zeger (2000) and references
therein for details.
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3.2 Longitudinal Analysis

Linear models.To assess the chronic effects of air
pollution on lung function, the mixed effects model (6)
is used with the identity link, perhaps with a transfor-
mation (e.g., log transformation) to improve normality.

For the CHS, Peters et al. (1999b) applied a two-level
model to the baseline lung function measurements,
with subject- and community-level random effects, in
essence modeling the intercepts. We refer to this model
as a “cross-sectional” model. Gauderman et al. (2000)
applied model (6) to the first five years of lung func-
tion data, but treated the intercept termsaci as fixed
effects rather than as random effects using (2) and (4).
Treating the intercepts as fixed effects is equivalent to
forcing the variance of the intercept terms in a multi-
level model to infinity. This ensures robustness to pos-
sible misspecification of the models for the intercept
terms (Dempster, Rubin and Tsutakawa, 1981).

The above two models are compared in Table 3
with a full model that includes all five levels as in
(1)–(5), with ambient pollution levels appearing only in
the community-level model (multiyear averages in the
longitudinal models and baseline levels in the cross-
sectional model). All models included adjustments for
age, height, sex and race/ethnicity. Figure 2 depicts the
third-level “ecologic” regression of adjusted MMEF
growth rates on NO2, showing a significant negative
relationship. The standard error bars (Figure 2) illus-
trate the degree of within-community variance in the
estimated growth rates and the relative homogeneity
in these variances across communities. Similar results
were observed for PM10 and acid, but not for O3
(Table 3). The slope estimates and their standard errors

FIG. 2. Adjusted annual MMEF growth rates by commu-
nity-specific multiyear average pollution levels(1993–1997) of
24-h mean NO2. The community labels are as defined in Table1.
The solid line depicts the ecologic linear fit of the adjusted MMEF
growth rates on multiyear(1993–1997) average levels of24-h
mean NO2.

were insensitive to whether the subject-specific inter-
cepts were modeled as random or fixed effects.

As in any modeling process, diagnostic analysis
should be conducted to make sure that modeling as-
sumptions are not grossly violated. This could be done
via visual plots or by trial fitting of more complex mod-
els that test modeling assumptions. For the CHS data,
assumptions of linearity, normality and homoscedas-
ticity appear to be well supported. More research is
needed in the development of diagnostic techniques for
multilevel models.

Flexible models.As duration of follow-up is ex-
tended, the constant growth rate assumption for lung
function becomes less tenable. In the CHS this was

TABLE 3
Comparisons of ecologic regression effects of pollution from longitudinal and cross-sectional models for MMEFa

Cross-sectional
intercepts

Longitudinal
slopes

Full model

Intercepts Slopes
Pollutant (%) (%) (%) (%)

O3 0.80(0.93) −0.20(0.26) 1.15(1.14) −0.18(0.27)

PM10 −1.54(0.93) −0.49(0.20)b −1.65(0.80)c −0.45(0.21)b

PM2.5 −2.62(1.58) −0.74(0.34)b −2.83(1.44)c −0.68(0.37)c

NO2 −1.69(1.15) −0.47(0.25)c −1.97(1.07)c −0.46(0.27)c

Acid −0.44(1.15) −0.43(0.22)c −0.78(1.08) −0.41(0.24)c

aThe dependent variable in these models is log(MMEF). Estimates are the predicted percent difference in level (in-
tercepts) or growth rate (slopes) per increase of 20 ppb of O3 and NO2, 20 µg/m3 of PM10 and PM2.5 and 2 ppb
of acid.
bp < 0.05.
cp < 0.10.
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FIG. 3. Gender-specific growth curves for MMEF in
8–18-year-old participants of the Children’s Health Study.
The curves are smooth functions estimated by natural splines from
a mixed effects model with a random intercept.

clear from the growth trajectories across the fourth,
seventh and tenth grade cohorts (Figure 3). This was
also recognized in the Harvard Six-Cities study (Wypij,
Pugh and Ware, 1993). Exploratory analysis of CHS
data revealed that height and lung function are linearly
related over short age intervals, but both the intercept
and the slope vary with age. This leads to a model that
has a nonlinear function of age and a linear term of
height, with slope that is age-dependent.

While several parametric functions have been tried
for modeling lung growth in children (Wypij, Pugh and
Ware, 1993), regression splines (Hastie and Tibshirani,
1990) provide a flexible way to model the growth
curves. Here, the nonlinear growth trajectory is de-
picted via piecewise polynomials between breakpoints,
known as knots. These polynomials are then smoothly
joined at the knots. A set of basis functions with such
properties, known asB-splines, is

Bq(t) = (tq+4 − tq)

q+4∑
j=q

(tj − t)3+∏q+4
k=q,k �=j (tk − tj )

,

q = 1, . . . ,m + 4,

for a variable t at m knots. A variant set of basis
functions, known as natural splines, imposes additional
constraints of linearity beyond the boundary points.
Natural splines are less sensitive to sparsity of infor-
mation at the edges of the data due to their additional
constraints. Once the basis functions are constructed,
the resulting mixed effects model is then fully para-
metric, allowing for formal inference. For more details,

see de Boor (1978). Figure 3 depicts gender-specific
growth curves for MMEF using natural splines, from a
mixed effects model with subject-specific random in-
tercepts.

Berhane et al. (2000) used a flexible mixed effects
model analogous to model (1) to account for nonlin-
ear effects of age and height in modeling the effects of
asthma on lung function (see Section 4.4 for details).
Biologically important features of growth curves (such
as peak growth rate and maximum attained value)
can, in principle, be calculated for each subject us-
ing the first and second derivatives of the fitted curves.
Such features of nonlinear curves, known as function-
als, were studied by Ramsay and Silverman (1997).
Modeling functionals directly allows for examination
of air pollution effects on biologically meaningful as-
pects of children’s growth trajectories. Generalized
mixed additive models, which focus on fully nonpara-
metric smoothing techniques, have been introduced
(Lin and Zhang, 1999; Hastie and Tibshirani, 2000).
Further research is needed in the development of mod-
els with random flexible terms, with inferential focus
on functionals.

Logistic models.Annual reports of symptoms (e.g.,
bronchitis) can be modeled with a logistic mixed ef-
fects model (Breslow and Clayton, 1993). An alterna-
tive is to use conditional logistic models as outlined in
Diggle, Liang and Zeger (1994, pages 175–183). This
last approach is equivalent to that of stratified case-
control studies, where each subject is treated as a stra-
tum withyci· = ∑

j ycij cases andnci − yci· controls.
It is sometimes helpful to distinguish between preva-

lence and incidence for chronic diseases such as
asthma. This leads to a pair of first-level models
given as

logit Pr(yci1 = 1) = aci + γ T
1 zci1,(7)

logit Pr(ycij = 1|yciq = 0, q = 1, . . . , j − 1)
(8) = bci[�tcij ] + γ T

1 zcij + αT
1 (Xcj − Xc).

Second- and third-level models are as described in
(2)–(5). Thus, person-time would be counted only up
to the first appearance of a given symptom in this ap-
proach. Analyses of baseline symptoms using a two-
level logistic model were reported by Dockery et al.
(1989) and Peters et al. (1999a) for the Harvard Six-
Cities study and the CHS, respectively.

Subjects often report being diagnosed for a chronic
disease (e.g., asthma) on one or more occasions and not
subsequently. In this case, was the first report correct
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and the later negative reports incorrect or vice versa?
Models for such scenarios are not well developed.
A sensible approach to this problem would be via hid-
den Markov models (MacDonald and Zucchini, 1997).
Let Ycij represent the true disease status and letycij

represent the reported status. A multilevel model would
then be specified for logit[Pr(Ycij = 1|Yci,j−1 = 0)]
and logit[Pr(Yci1 = 1)] as above, together with mod-
els for misclassification rates, which take the form
logit[Pr(ycij |Yci1, . . . , Ycij )] contribution for each sub-
ject. The likelihood could be formed by summing the
product of these probabilities over all possible subject-
specific outcomes.

Time-to-event models.Risk factors for disease inci-
dence (e.g., using time to first asthma report) can be ex-
amined via proportional hazards models (Cox, 1972).
For the CHS, such models revealed that the risk of
asthma was elevated in those who played at least three
team sports in high ozone communities (McConnell
et al., 2002). Here, the effect of air pollution was
investigated by stratifying the communities into low,
medium or high ambient pollution levels or via a two-
level proportional hazards model (Burnett et al., 2001)
as in

λ(t) = λs0(t)
(9)

· exp(Ac + Bcz̃ci + γ T
1 zcij + γ T

2 zci),

Bc = β0 + β3Xc + fc,(10)

wherez̃ci denotes the variable assumed to modify the
effect of pollution (e.g., outdoor sports in McConnell
et al., 2002),λs0(t) denotes baseline hazards with
s strata (e.g., by age groups and gender) andfc ∼
N(0, σ 2

f,c) denotes a community-level random effect.
A unified random effects Cox model was proposed
by Ma, Krewski and Burnett (2000). This general ap-
proach was used to examine the effects of pollution on
adult mortality (Krewski et al., 2003).

3.3 Analysis of School Absence Count Data

Data on school absences provide a good opportu-
nity to study the effect of air pollution on children’s
health. In one notable study, Ransom and Pope (1992)
studied the relationship between PM10 and school ab-
senteeism in the Utah Valley between 1985 and 1990
based on weekly data from a school district and daily
data from one elementary school. They showed that
high PM10 levels were associated with significant in-
creases in school absenteeism.

In the CHS, data on school absences are being
collected from school records. In 1995–1996, a sub-
study known as the Air Pollution and Absences Study
(APAS) was conducted to ascertain whether absences
were illness related, and if so the specific health rea-
sons. Analysis of the resulting binary time series
data falls into the general multilevel framework with
a logit link. However, additional refinements are war-
ranted to handle the complex lag structure of the ef-
fects of air pollution and/or to account for the serial
autocorrelation induced by unmeasured confounders
(e.g., influenza epidemics). Several methods have been
proposed for examining associations between daily ag-
gregate mortality and morbidity counts. These include
the filtered least squares approach (Zeger, 1988; Samet,
Zeger and Berhane, 1995; Berhane and Thomas, 2002),
generalized additive models (Schwartz, 1994; Kelsall,
Zeger and Samet, 1999; Zanobetti et al., 2000;
Dominici, Samet and Zeger, 2000) and transition mod-
els (Brumback et al., 2000).

Given this article’s focus on the “chronic” effects
of air pollution, we give details only for models that
collapse the binary school absence data over time to
yield absence counts per subject. Letycij and rcij be
binary indicators of an incident absence and for being
“at risk” on that dayj , respectively. LetYci = ∑

j ycij

be the total number of absences for childi. After
computing an expectation under the null hypothesis
of no air pollution, community or covariate effects
as Eci = ∑

j λj rcij , where λj = ∑
c Ycj /

∑
c Rcj , an

overdispersed Poisson mixed effects model [i.e., allow-
ing for V (Yci |µci) > µci in (11)] is

µci = E(Yci) = Eci exp(Ac + ηT
2 zci),(11)

Ac = α0 + αT
3 Xc + ec.(12)

Here,Ac are logarithms of the community mean ab-
sence rates, adjusted for personal covariates, andα3 de-
notes a vector of parameters for long-term average
pollution levelsXc. For the CHS, high levels of body
mass index (p = 0.03), current smoking by the mother
(p = 0.02), wheezing (p = 0.01) and active asthma
(p < 0.01) were associated with elevated number of
illness related absences, but no long-term pollution ef-
fects were observed.

The models given by (11) and (12) allow adjustments
for personal time-constant covariates, while they do
not allow adjustments for time-dependent covariates.
On the other hand, time series models that aggregate
over subjects allow adjustments for temporal covari-
ates, but not for personal characteristics. Three-level
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models can be developed that incorporate both individ-
ual time-constant covariates and community-specific
time-dependent exposures. Details of one such model
explored by our group will be reported elsewhere.

3.4 Computational Issues

Model (6) has been implemented in several soft-
ware packages. For Gaussian data, PROC MIXED in
SAS (Littell, Milliken, Stroup and Wolfinger, 1996) fits
mixed effects models via maximum likelihood or re-
stricted maximum likelihoods. For non-Gaussian data,
PROC NLMIXED or GLIMMIX in SAS could be
used. PROC NLMIXED maximizes an approximation
(e.g., a first-order Taylor series) to the likelihood in-
tegrated over the random effects. The estimation al-
gorithm implemented in the SAS macro GLIMMIX
is also based on a Laplace approximation to the in-
tegrated likelihood function (Breslow and Clayton,
1993). Inadequacies of these approximations may lead
to biased estimates (Breslow and Lin, 1995; Lin and
Breslow, 1996).

The R/Splus NLME library of Pinheiro and Bates
(2000) provides an alternative way to fit the mixed ef-
fects model. The well developed routines for regres-
sion splines in R/Splus are particularly useful for the
flexible models discussed in Section 3.2. Splus func-
tions for fitting flexible mixed effects models can be
obtained from the authors of this paper.

Other computationally efficient software [e.g., MLn
(Rasbash and Woodhouse, 1995) and HLM (Bryk,
Raudenbash and Congdon, 1996)] also is available.
Model (6) could be extended to allow random compo-
nents ofη2 andα2, which allow subject-specific effects
of time-dependent variables such as height. Because
age and height are correlated and due to the general
monotonic pollution trends, it would be difficult to
distinguish between subject-specific variation in these
terms and the variation in subject-specific intercepts
and slopes on age.

We now briefly discuss the conditions under which
the combined mixed effects model (6) and the sequence
of regressions (1)–(5) could be equivalent. This is im-
portant because some modeling situations are not suit-
able for fitting the unified mixed effects model as in (6).

In a pure growth curve model for lung function,
the fixed effects may all be regarded as modifying the
means of the subject-specific random effects. More for-
mally, the columns of the fixed effects design matrices
in a growth curve model are all linear combinations
of the columns of the random effects design matrices
(Laird and Ware, 1982). The main interest here is in

such main effects; for example, we are interested in
how air pollution affects lung function level at baseline
(the subject-specific intercept parameters) or growth in
lung function over time (the slopes). The inclusion of
other time-dependent variables that are not modifiers
of subject-specific intercepts or slopes is required to
incorporate adjustments for factors such as tempera-
ture at the time of the examination. A pure growth
curve model would correspond to eliminating the time-
dependent covariates and air pollution variables in (1)
and the subject-specific adjustment and air pollution
variables in level 2. Then, focusing on the subject-
specific slopes, models (3) and (5) could be modified to
allow for uncertainties in the estimates of the subject-
specific slopes, that is,

bci = Bc + γ T
2 zci + βT

2 (xci − Xc) + fci + ψci,
(13)

Bc = β0 + βT
3 Xc + fc + ψc,

whereψci ∼ N(0,Vci) and ψc ∼ N(0,Vc) are addi-
tional random effects withVci and Vc given by the
sampling variances ofbci andBc, respectively. Here,
fci andfc are residual error terms as in (3) and (5),
respectively. In either level, estimation proceeds iter-
atively between estimations for regression parameters
and the residual variances.

A multilevel model that uses this meta-analytic
scheme gives results that are nearly equivalent to those
from (6) for a growth curve model (Ware and Stram,
1988; Stram, 1996). Complications arise when time-
dependent covariates are included in (1), because cor-
relations are induced between estimates ofBc for
various communities, due to shared sampling errors in
the estimation ofη2, γ 1, γ 2 andβ2 in (6). Incorporat-
ing these covariances intoVci andVc in the multilevel
approach would lead to results which are nearly equiv-
alent to those obtained using (6). This near equivalence
of estimates follows from the fact that, for normally
distributed data, the full mixed effects model can be
fitted using a set of sufficient statistics for the random
effects rather than using the full data set of all mea-
surements. In fact, this is how the multilevel modeling
software HLM fits the full model (Bryk, Raudenbash
and Congdon, 1996).

4. RECURRING THEMES

4.1 Ecologic Bias

In the classic “ecologic correlation” study, the rate
of disease or some average health effectYc in a set
of populations (typically geographically defined) is
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related to some measure of average exposureXc,
possibly adjusted for group-level covariatesZc. The
so-called ecologic fallacy (Selvin, 1958) or cross-level
bias (Firebaugh, 1978) concerns the difference be-
tween the regression estimates from such an analy-
sis and those estimated from individual data, that
is, a regression ofyci on xci and zci . Greenland
and Morgenstern (1989) described three ways such
bias can come about: (1) within-group confound-
ing that acts differentially across groups, (2) con-
founding by group effects and (3) effect modification
by group. Omitting covariates and focusing only on
baseline data, the multilevel model (6) with iden-
tity link is yci = α0 + α2(xci − Xc) + α3Xc + eci + ec.
Then the absence of cross-level bias can be writ-
ten as α2 = α3. Equivalently, rewriting the model
asyci = α0 + α2xci + (α2 − α3)Xc + eci + ec, we see
that the absence of ecologic bias corresponds to no
effect of Xc on yci beyond its effect throughxci .
Such a group-level effect could arise, however, not
as a causal effect, but by confounding by some omit-
ted group-level covariateZc. This understanding of
ecologic bias appears to have been expressed first by
Robinson (1950) and has been treated in numerous
reviews (Greenland, 2002; Morgenstern, 1982, 1995;
Wakefield and Salway, 2001). A lengthy series of arti-
cles (with numerous letters to the editor and rejoinders)
on the subject of the ecologic regression of lung cancer
rates on domestic radon levels is particularly revealing
about these issues (Cohen, 1990; Darby et al., 2001;
Greenland and Robins, 1994; Lubin, 1998; Stidley and
Samet, 1994).

The CHS differs from the classic ecologic study in
that outcome and covariate data are available on indi-
viduals, but the exposure variable of primary interest—
ambient air pollution—is measured only at a central
site and varies much less within communities than be-
tween them. Several authors (Künzli and Tager, 1997;
Sheppard, 2003) distinguished four types of design: the
truly individual design where all variables are mea-
sured at the individual level; the “semi-individual” de-
sign, in whichy andz are measured at the individual
level, butXc is measured only at the aggregate level;
the “aggregate” design, in whichx andz are measured
at the individual level (say via sample surveys in each
group), butYc is measured only at the aggregate level
(Prentice and Sheppard, 1995); and “ecologic” designs,
where all variables are measured only at the individual
level. The CHS corresponds to the semi-individual de-
sign for which multilevel models are particularly rele-
vant (Greenland, 2002).

In Section 4.2, we describe some approaches, based
on microenvironmental and spatial modeling, to as-
sess interindividual variation in personal pollution ex-
posuresxci . To date, such variation appears to be small
compared to the between-community variation in am-
bient pollution. Community-level confounding vari-
ables, such as altitude or weather, may interact with
individual-level exposure (or confounding) variables.
For example, the effect of personal variation in expo-
sure (due to time–activity patterns, indoor sources or
within-community spatial variation in pollution) may
have a relatively larger effect in low ambient pollution
communities. It is also possible that exposure measure-
ment error could act differently at the different levels.
Suppose that temperature is measured with less error
than air pollution levels. An analysis of health end-
points may then provide stronger statistical evidence of
a temperature effect than an air pollution effect, even
if temperature is only a determinant of pollution lev-
els and has no direct impact on health (Zidek, Wong,
Le and Burnett, 1996; Zeger et al., 2000). See Brenner
et al. (1992) and Wakefield and Elliott (1999) for the
effect of measurement error on ecologic regressions
and see Greenland and Brenner (1993) for methods for
correction.

With only a few communities, the prospects for in-
cluding many ecologic covariates are limited and there
is some danger of “overadjustment”—controlling for
variables which do not have a causal effect on health
outcomes, but are simply determinants of pollution
variables that are the real causal factors. Weather pat-
terns, for example, are major determinants of pollution
levels and thus one must think carefully about whether
they are plausibly direct risk factors for health out-
comes. There is evidence that temperature and humid-
ity are associated with mortality and hospitalization
rates, independent of air pollution (Schwartz, 1994),
so inclusion of such variables in the third-level model
might be justified. However, there is less evidence that
wind is associated with health outcomes. Inclusion of
wind in the model might constitute overadjustment,
since it is probably an even stronger determinant of
pollution level than is temperature.

We analyzed personal income as a potential con-
founder of the association between air pollution and
lung growth. The estimated difference in MMEF
growth rate per increase of 20 ppb of NO2 was
−0.46%, with standard error 0.27% (Figure 2). Per-
sonal income at the individual level was a significant
(inversely related) predictor, but did not appear to be
a confounder of the third-level NO2 effect. It has been
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argued, however (cf. Pearce, 2000), that the within-
community income disparities may have a stronger
impact on health than does one’s own personal in-
come. Thus we may consider as predictors, in ad-
dition to personal income, the average level within
the community or some other statistic (e.g., the vari-
ance of income within each community). Using the
community-average personal income as an adjustment
variable in (4) and (5) produced little change in the
estimated NO2 effect (−0.45%), although the stan-
dard error got larger (0.31%). Using an average in-
come variable computed at the neighborhood school
level (between levels 2 and 3) also had a somewhat
more important effect. From this model the estimated
NO2 effect was reduced to−0.35% with standard
error 0.39%. Although school-zone average income
was not significantly related to MMEF growth rate
(p = 0.49), some people would argue that it should
be treated as a confounder since it caused a moder-
ate change (24% reduction) in the NO2 effect estimate
(of course the difference seen here in NO2 effects
between these analyses was not itself statistically sig-
nificant). Additional models did not reveal any interac-
tion of personal income with community-level income.
Nevertheless, it as important to consider the potential
“contextual” effect (Greenland, 2001) of possible con-
founders, even when they are measured at the individ-
ual level.

4.2 Personal Exposure Models and
Measurement Error

Most studies tend to focus on between-communities
comparisons of pollution effects. Some additional
comparisons may also be made at the temporal level
(by year-to-year or daily variation in ambient expo-
sures as in Sections 3.2 and 3.3). While such analyses
address questions of immediate public policy concern,
the evidence for causality would be enhanced if it
were possible to assess exposure–response relation-
ships at the individual level. There are three principal
approaches to quantifying individual variation in expo-
sure: (1) using time–activity patterns and housing char-
acteristics to model personal exposure; (2) exploiting
spatial variation in measured pollutant concentrations
and traffic density within communities; and (3) com-
paring lifetime exposures of permanent residents and
those who moved from areas of higher or lower pollu-
tion (or subsequently moved away). Any of these com-
parisons could entail substantial measurement error. In
this section we describe our approaches to estimating
these three sources of interpersonal variation and their

uncertainties, and then discuss their use in the hierar-
chical model for health effects in the context of mea-
surement error models.

Microenvironmental models.A standard approach
to estimation of personal exposure in the occupational
and environmental hygiene literature, the “microenvi-
ronmental model,” was first introduced by Duan (1982,
1991) and was further developed by Lioy et al. (1992),
McCurdy (1995), Johnson, Long and Ollison (2000)
and Burke, Zufall and Özkaynak (2001). This approach
has been implemented for the CHS as in Navidi and
Lurmann (1995). For each subject, we obtained an-
nual questionnaire data on usual time–activity patterns,
namely the proportion of timepcijm spent in microen-
vironmentm (home, school, outdoors, car, etc.) and
data used to estimate ventilation rates (sports, etc.).
Using measurements made in a sample of homes and
schools, supplemented with data from the literature, we
have constructed modelsfm(wcijm,Xcj ) for the mean
exposure level in each microenvironment as a function
of ambient exposureXcj and various characteristics of
the microenvironmentwcijm (indoor sources, air con-
ditioning, etc.). Combining the two components, we
estimate personal exposure as

xcij = ∑
m

pcijmfm(wcijm,Xcj ).(14)

The time–activity patterns and the microenvironmental
models may have uncertainties characterized by prob-
ability distributions. These distributions are informed
in part by data from a sample of children with short-
term personal measurements of O3 and concurrent
daily diaries of time–activity patterns (Avol, Navidi
and Colome, 1998). To allow for these uncertainties,
we repeatedly evaluate (14) with random samples from
the various inputs (times, exposures, model parame-
ters, etc.), and summarize these by the meanx̄cij and
its variance.

In general, between-subjects variation in assigned
exposures was small compared with between-commu-
nity—9% of the total variance for O3, 33% for PM10
and 3% for NO2—and the within-person uncertainties
were even smaller—1, 3 and 0.3% of the total, respec-
tively. While the use of community mean personal ex-
posures asXc instead of the central site measurement
led to modestly improved significance in some cases,
the small within-community variance has so far pre-
cluded finding any significant associations at the indi-
vidual level. We view these “assigned” exposures as
having a Berkson error structure (Fuller, 1987), that is,
the subjects’ true exposures are randomly distributed
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around these model predictions, as discussed further
below. Below we also discuss a Monte Carlo approach
to the problem that some components of these uncer-
tainties are correlated across children.

One approach to examining the effect of personal
modifying factors such as time–activity patterns views
them as determinants of personalexposurexcij , which
is the covariate of primary interest. This is the approach
taken to allow for time spent in different microenvi-
ronments in the models discussed in this section and
could, in principle, be extended to allow for breathing
rate differences in different activities to compute per-
sonaldoseto the lung.

Another approach views time–activity patterns as
modifiers of the effect of ambient exposureXcj ,
now viewed as the covariate of primary interest, to-
gether with its interaction with such factors. For
example, Gauderman et al. (2000) showed that the ef-
fect of ambient exposure was stronger in children who
spent more time outdoors. The difference in annual
MMEF growth rate per 20 ppb increase in NO2 lev-
els was−1.04% (p = 0.01) in more-outdoors children,
but only−0.62% (p = 0.17) in less-outdoors children.
This difference may be thought of as (1) due to better
correlation between ambient and personal exposures
or (2) due to modification of dose or risk by increased
ventilation rates for the more-outdoors children.

Modeling local dispersion patterns.Extensive ef-
forts are being made in the CHS to assess the het-
erogeneity of ambient exposure levelswithin study
communities. Due to cost constraints, we can only
obtain sample data at selected locations at particular
times. Low-cost integrating monitors (Palmes tubes)
were deployed for NO2 at all 34 elementary schools
and at a sample of 287 of the subjects’ homes for
2-week periods in winter and summer. A means of us-
ing these data to predict pollution levels at any location
is desirable.

Spatial interpolation techniques like kriging
(Cressie, 1993) could be used descriptively. However,
the sparseness of available measurements in space and
time could render this approach unreliable as an in-
dicator of the extent of the true variability in concen-
trations within communities. A promising alternative
is to build models for dispersion from known sources.
The strong observed associations with PM10 and NO2
suggest that the most relevant source of pollution may
be fresh motor vehicle exhaust. Fortunately, there are
abundant data available in geographic information sys-
tems on traffic density patterns. Proximity to roadways

may thus be a suitable surrogate for exposure to air
pollution from motor vehicles (generally the domi-
nant source of particulate and NO2 pollution in South-
ern California). Furthermore, since traffic patterns are
fairly stable, it may be a more accurate predictor of
long-term average exposure than actual measurements,
particularly where spatial interpolation is required.

Several models for predicting pollution have been
proposed. These range from empirical models based
on summing the traffic density on each nearby road-
way with weights depending on the shortest distance
(Pearson, Wachtel and Ebi, 2000; Rijnders et al., 2001)
to complex models that account for traffic speeds, vehi-
cle types and densities in each segment, along with me-
teorological information [e.g., U.S. EPA’s MOBILE6
model (U.S. EPA, 2002)]. The former do not account
for prevailing wind patterns, whereas the latter re-
quire more detailed information and more computa-
tion than would be feasible for large studies. We used
the CALINE4 model (Benson, 1989), which incorpo-
rates traffic counts on major roadways along with local
wind-rose data (the distribution of daily wind direction
and speed) to estimate traffic-derived pollutant levels
(e.g., NO2, CO) at each child’s residence and at study
schools.

For the CHS, both traffic density and measured
NO2 concentrations vary significantly from house to
house within all study communities. Spatial mixed ef-
fects models are being used (e.g., via PROC MIXED
in SAS) to describe the dependence of measured NO2
concentrations on traffic density and other factors. The
basic model is of the form

Xc ∼ MVN
(
Z′

cβ, σ 2I + ω2B(φ) + τ2Ac(θ)
)
,

whereXc is the vector of all the available home mea-
surements for communityc, Zc is a design matrix of
covariates such as the ambient levels at the central site
and the schools, and traffic density estimates of homes.
The covariance structure has three components: an un-
correlated residual varianceσ 2, a spatially correlated
community random effect with varianceω2 and dis-
tance parameterφ, and a spatially correlated home
random effect with varianceτ2 and distance parame-
ter θ . Both the community mean and several measures
of traffic density were significant predictors. As a pro-
portion of the total variance, 21% was independent
residual, 68% was spatially correlated community ef-
fect and 10% was spatially correlated within the com-
munity. The predictions from this model can then be
used to assign exposures to all study homes and esti-
mate their uncertainties for inclusion in the exposure–
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response analyses. Preliminary analyses suggest a
modest influence of the within-community deviations
on the subject-specific interceptsaci of MMEF, but not
on their slopes. The asthmatics (at baseline) among the
measured subset also tended to have the highest NO2
levels within most communities.

Lifetime exposure.Cumulative exposures could vary
substantially due to subjects’ differing residential his-
tories. We constructed exposure histories using data
from the U.S. EPA’s AIRS data base for the closest
monitoring stations for each child who moved from
outside of the study area. Here we required that at
least 90% of the residential history be complete and
located within the United States. A priori, one would
expect between-community comparisons of ambient
exposure to show a stronger effect on initial lung func-
tion in nonmigrants than in migrants, since the lat-
ter would also be influenced by their prior exposures.
On the other hand, within-community comparisons of
lifetime exposure up to entry into the study would be
more informative only among migrants, since there
would be no variation in nonmigrants at the same age.
Differences in outcomes between migrants and nonmi-
grants could be due to differences in their mean expo-
sures, to selection bias, to uncontrolled confounding or
to differential effects of exposure measurement error.
Exposures at certain critical periods of lung develop-
ment could also be important. Hence, we plan to ex-
amine the influence of personal exposures accumulated
over specific time windows to both baseline lung func-
tion and subsequent rates of change. To explore these
issues, a two-level version of model (6) could be set up
for baseline lung function, including personal covari-
ates, separate effects of ambient exposure in migrants
and nonmigrants, and the deviation of individual from
community exposure (zero for nonmigrants), together
with individual and community random effects:

Yci =




α0,N + α3,NXc,N + ηT
2 zci + ec + eci

for nonmigrants,

α0,M + α3,MXc,M + α2,M(xci − Xc,M)

+ ηT
2 zci + ec + eci for migrants.

The above setup allows tests on whetherα3,N = α3,M ,
α2,M = 0 or α2,M = α3,M . Preliminary results indi-
cate a significant effect of individual lifetime exposure
to O3 on MMEF in migrants. In between-community
comparisons for nonmigrants, associations tended to
be negative (but nonsignificant) with all three pollu-
tants. For migrants there was a significant protective
effect of NO2 that could be a reflection of its strong

inverse correlation with O3. There were no significant
differences betweenα0,N and α0,M . Further analysis
with longitudinal data is planned that will allow for
within-subject comparisons over time, in the hope of
learning whether differential migration rates explain
these observations. This also allows tests of whether
previous exposure affects only the lung function levels
at entry to the study or modifies the effect of current
exposures on subsequent rates of change.

There are two components of uncertainty in lifetime
exposure estimates: errors or gaps in residence histo-
ries and uncertainties in community- and year-specific
ambient concentrations. We plan to address these ar-
eas by using Monte Carlo methods similar to those
described above to repeatedly sample exposure levels
from their uncertainty distribution for each place of
residence (if location is known precisely) or for the
corresponding region (if known only approximately) or
from the distribution of all levels in that year (if com-
pletely unknown).

Measurement error models.The approaches dis-
cussed above to estimating personal exposure could
be combined by using the spatial estimates of local
outdoor exposures as input to the microenvironmental
model and integrating over time. The goal here is to
propagate the uncertainty in these personal exposure
assignments through to the exposure–response analy-
sis, so as to adjust for the bias due to measurement error
and to conduct inference that reflects this uncertainty.
There is a large literature on measurement error correc-
tion models (see, e.g., Fuller, 1987; Carroll, Ruppert
and Stefanski, 1995; Thomas, Stram and Dwyer, 1993;
Zeger et al., 2000).

There are two main conceptual models for mea-
surement error: the “classical model,” in which mea-
sured exposures are seen as distributed around the
true (unknown) exposures for each individual, and the
“Berkson model,” in which the true exposures of indi-
viduals are seen as distributed around some assignment
for a group with otherwise indistinguishable charac-
teristics. The classical model would be appropriate
for analysis of data derived from samples where per-
sonal exposures have been measured, say using a pas-
sive O3 badge or household NO2 exposures using
Palmes tubes. The Berkson model is more appropriate
for predictions from microenvironmental or traffic den-
sity models. Both models conventionally assume that
measurement errors are independent across subjects.
This assumption could be violated when subjects share
exposures (e.g., through attending the same school) or
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when the inputs to a prediction model are uncertain;
see Stram (2002).

To incorporate the uncertainties in exposure–re-
sponse modeling, the full likelihood that incorporates
the measurement error process is given by

L(β) =
∫

L(y|x;β)Pr(x|z) dz,

wherez denotes the available measurements or inputs
to the model predictions andx denotes the unknown
true exposures. We used a Monte Carlo approxima-
tion to this likelihood described by Thomas, Stram and
Dwyer (1993) via repeated realizations of predicted ex-
posureŝxcijr as

L(β) = R−1
R∑

r=1

L(y|xr ;β).

This likelihood is evaluated via hierarchical sampling
of realizations that reflect those components of un-
certainty that are shared between subjects or across
time. These could be shared uncertainties in true
ambient exposures by all members of the same com-
munity. For example, for a given sample of model
parameters and ambient exposures, we drew multi-
ple samples of time–activity profiles and personal–
microenvironmental covariates for each subject to
generate distributions ofxr vectors with appropriate
correlational structure.

4.3 Multipollutant Models

Due to high correlations between pollutants (Ta-
ble 2), it is difficult to separate the effects of the
different pollutants. In multipollutant models, rarely
do two pollutants both contribute significantly to the
same model. Rather than try to resolve the question
of which is the “best” model, we wish to draw infer-
ences on each pollutant’s effect that take into account
our uncertainty as to which other pollutants should be
adjusted for. This is the problem that “Bayes model
averaging” (Raftery, Madigan and Hoeting, 1997) at-
tempts to address. The basic idea is to fit all possible
models and then draw inference on the marginal dis-
tribution of model coefficients. These calculations are
difficult, but have been facilitated by recent develop-
ments in Markov chain Monte Carlo (MCMC) methods
(Gilks, Richardson and Spiegelhalter, 1996). We im-
plemented a MCMC version of an approach described
by George and Foster (2000) for application to the re-
gression of the community-level effectsBc on a vector
of p = 1, . . . ,P predictor variablesXc (e.g., multiple
pollutants) in the third-level model (5). The approach

is general and could be applied to other parts of the
mixed effects model described in Section 3.1.

Let D = {(Bc,Xc), c = 1, . . . ,C} denote the data,
let m = 1, . . . ,2P index the set of all possible re-
gression models with subsets of theP variables, let
qm denote the number of variables in modelm and
let SSm denote the corresponding regression sum of
squares. George and Foster (2000) suggested priors for
βm andm of the form

Pr(βm|m,γ ) = Nqm{0, γ σ 2(X′
mXm)−1}

(15)
for γ > 0,

Pr(m|w) = wqm(1− w)P−qm for w ∈ (0,1),(16)

whereγ and w are hyperparameters that control the
variance of the coefficients and the parsimony of the
models. They derived expressions for the full condi-
tional distributions ofm andβm givenD and the cur-
rent estimates ofγ and w, together with a marginal
likelihood forγ andw given onlyD . Finally, they sug-
gested a form of Bayes model averaging in which the
posterior density ofβ is obtained by averaging over the
set of all possible models,

Pr(β|D, γ̂ , ŵ)
(17)

= ∑
m

Pr(βm|D,m, γ̂ , ŵ)Pr(m|D, γ̂ , ŵ).

Rather than evaluating these probabilities at the max-
imum likelihood estimators (MLEs) ofγ and w,
we use a fully Bayesian approach to integrate over
the posterior distributions of these parameters using
MCMC methods. This entails five types of sampling:
[m|D, γ,w], [β|D, γ,w], [γ |D,m,w], [w|D,m,γ ]
and[σ 2|SSm,qm]. Details will be reported elsewhere.
Our results below are based on 1,000,000 iterations of
this process, after discarding 100,000 iterations to al-
low for convergence.

Inference can be based on the posterior distributions
for m andβ using informative priors forγ andw. This
takes into account prior knowledge about the antici-
pated degree of parsimony, if available. Lacking such
knowledge, we prefer to base our inferences on Bayes
factors (BF), which minimize the influence of prior
specifications by taking the ratio of the posterior to the
prior and can be thought of as a form of marginal likeli-
hood ratio (Kass and Raftery, 1995). Form, the Bayes
factor is defined as BF(m) = Pr(m|D)/Pr(m), where
the numerator is simply the frequency distribution ofm

from the MCMC iterations, and the denominator is∫
Pr(m|w)Pr(w)dw, computed by sampling a large
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number of values ofw from the prior and averaging the
resulting probabilities ofm. From Pr(m|D) other mar-
ginals such as Pr(βp �= 0) and Pr(qm) can be computed
readily for comparison with their corresponding poste-
rior distributions. Forβp we tabulated Pr(βp �= 0|D),
Pr(βp < 0|βp �= 0,D), Pr(βp < 0|D), E(βp|βp �=
0,D) and var(βp|βp �= 0,D), and compared them
with their corresponding priors to compute Bayes fac-
tors. We also computed Bayes factors to adjust for
other pollutants [e.g., based on Pr(βp < 0|βq �= 0,D)

and its corresponding prior probability].
We applied this approach to estimates of the com-

munity-specific adjusted 4-year rates of change in
MMEF separately for the two fourth-grade cohorts
(enrolled in 1993 and in 1996), as defined earlier;
thus C = 24 observations in total. They were re-
gressed on the community mean ambient levels over
1992–1995 and 1996–1999 for seven pollutants, re-
spectively: O3, NO2, PM10, PM2.5, elemental carbon
(EC), organic carbon (OC) and acid (EC and OC are
constituents of PM2.5). Linear regression (adjusted for
cohort) showed significant associations with all pollu-
tants except O3, with the strongest association for acid
(p = 0.0012). No two-pollutant model had significant
contributions from both pollutants, although O3 was
marginally significant (p = 0.056) in a model which
included NO2 (p = 0.006).

The posterior probability that no variables contribute
to the model was 0.112, much less than its prior prob-
ability 0.419, for a BF(m) of 0.268 relative to all mod-
els combined. Models with one or two variables had
BFs greater than 1 relative to the set of all possi-
ble models, or 7.58 and 5.29, respectively, relative to
the null model. According to guidelines suggested by

Kass and Raftery (1995), a BF of 1–3 is interpreted
as “very mild evidence,” 3–20 as “positive,” 20–150
as “strong” and greater than 150 as “very strong.” By
these criteria, the evidence for the single best-fitting
model that contains only acid is “strong” (BF= 30 rel-
ative to the null model). Marginally, the evidence that
implicates acid is only “positive.” Eight two-pollutant
models had BFs greater than 2, including all mod-
els with acid. No three-pollutant or higher models
had BF(m) > 2, although 22 of the 35 possible three-
pollutant models had BFs greater than 1, again predom-
inantly those which included acid. Single-pollutant
models with NO2, PM10 and EC also had BFs greater
than 1, relative to all models.

Table 4 summarizes the marginal distribution of
the βp for each pollutant, averaging over the entire
model space. The evidence for acid is the strongest,
with a BF(βp �= 0) = 5.27, BF(βp < 0|βp �= 0) = 3.79
and BF(βp < 0) = 7.53. However, the marginal dis-
tribution has a much larger variance than the con-
ditional distribution for the model with only acid:
the conditional MLE and its standard error (SE) is
−0.124± 0.033, whereas the marginal mean and stan-
dard deviation (SD) is only−0.024 ± 0.054. This
difference reflects the larger conditional SEs for the
multipollutant models which include acid and the
between-model variance in thêβp ’s.

Ultimately, we suspect that even the use of sophis-
ticated techniques may not resolve the multipollutant
issue without exploiting comparisons at other spatial
and/or temporal levels.

Summarization across subgroups.Bayesian model
averaging techniques also could be used to explore ef-

TABLE 4
Marginal distribution ofβp for the seven pollutants under consideration in the Children’s Health Study

Posterior summary O3 NO2 PM10 PM2.5 ECa OCb Acidc

Pr(βp �= 0|B) 0.1312 0.1653 0.1116 0.1339 0.1051 0.2039 0.5061
BF(βp �= 0) 0.78 1.02 0.65 0.79 0.60 1.32 5.27

Pr(βp < 0|βp �= 0,B) 0.6280 0.6672 0.5210 0.5926 0.5525 0.7118 0.7911
BF(βp < 0|βp �= 0) 1.69 2.00 1.09 1.45 1.23 2.47 3.79
Pr(βp < 0|B) 0.0824 0.1103 0.0582 0.0793 0.0580 0.1452 0.4004
BF(βp < 0) 1.01 1.40 0.70 0.97 0.70 1.92 7.53

E(βp|βp �= 0,B) −0.0034 −0.0051 0.0006 −0.0039 −0.0061 −0.2093 −0.0338
SD(βp|βp �= 0,B) 0.0121 0.0196 0.0218 0.0337 0.0706 0.5344 0.0535

NOTE: Pr(βp �= 0)= 0.1629; Pr(βp < 0|βp �= 0)= 0.5000; Pr(βp < 0|βp �= 0)= 0.5000.
aElemental carbon (in ppb).
bOrganic carbon (in ppb).
cComposed of HNO3 and HCl (in ppb).
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fect modification and to assess the consistency of find-
ings over several stratification factors. Some factors are
expected to modify the slope of air pollution effects
and some of these modifying factors may interact with
each other, for example, girls reach their growth spurts
earlier than boys, leading to the need for joint strati-
fication by age and sex due to the possible three-way
age×sex×pollution interaction effect. As the num-
ber of such stratification factors increases, we expect to
see some spurious interaction effects simply by chance,
due to the increase in the number of strata and the
corresponding reduction in sample size per stratum.
Hence, lacking a strong prior belief that there ought
to be many higher-order interactions, one ought to try
to average stratum-specific slope estimates over simi-
lar strata and thus improve the power for detecting real
heterogeneity. Bayes model averaging techniques offer
a way to average over the set of all possible interaction
models. See Chipman (1996) for more discussion on
models with main effects and interactions.

4.4 Integrated Analysis of Several
Longitudinal Outcomes

The methods discussed so far deal with each type of
outcome (lung function, symptoms, school absences)
univariately. It is of interest to perform integrated
analysis of several outcomes to be able to examine pat-
terns in lung function tests and/or to identify biologi-
cally meaningful trends in the effects of air pollution
on children’s health. For example, we may wish to test
whether respiratory illnesses lead to long-term decre-
ments in lung function or, conversely, whether poor
lung function is a risk factor for respiratory illness.
A major strength of longitudinal studies is that they
offer a way to disentangle such complex interrelation-
ships. Nevertheless, the autocorrelation of the different
endpoints may make it difficult to infer the direction of
causation even in longitudinal data.

An overall strategy for addressing this question
could be set up as follows. Letycij = (y

(1)
cij , y

(2)
cij )

denote a vector of multivariate responses over time,
where, for example,y(1)

cij might be lung function mea-

surements at timetcij andy
(2)
cij might be the number of

school absences for respiratory illness betweentci,j−1
andtcij . For simplicity, we treat both endpoints as con-
tinuous, although other types of outcome as in the gen-
eralized linear models framework could be considered.
We consider a coupled set of models of the form

E
(
y

(1)
cij − y

(1)
ci,j−1

) = a
(1)
ci + b

(1)
ci (tcij − tci,j−1)

+ γ
(1)
1

T
zcij + φ(1)y

(2)
ci,j−1,

E
(
y

(2)
cij

) = a
(2)
ci + b

(2)
ci (tcij − tci,j−1)

+ γ
(2)
1

T
zcij + φ(2)y

(1)
ci,j−1.

Here,φ(1) measures the dependence of lung function
changes on previous school absences andφ(2) mea-
sures the dependence of school absences on previous
lung function levels. The models account for intrasub-
ject serial correlation.

In the CHS, all lung functions [except for forced vital
capacity (FVC)] showed qualitatively similar associa-
tions with all pollutants. Associations were somewhat
stronger with measures of flow rates (e.g., MMEF)
than with measures of lung volume (e.g., FEV1). This
suggests that air pollution may be a stronger determi-
nant of small airways obstructive disease. Univariate
analysis provides a means to describe such patterns,
but it may fail in formally testing whether the associ-
ations for several measures are significantly different.
Moreover, it may lead to a proliferation of significance
tests with elevated risk of false positive inferences.
However, because of their relatively high correlation,
simple Bonferroni adjustment ofp-values may not suf-
fice. Some form of multivariate analysis would there-
fore be desirable.

A two stage least squares approach for model-
ing two continuous outcomes by modeling one out-
come, followed by a model for the second outcome
with predicted values from the first model as covari-
ates, was proposed by Amemiya (1985). This was
later extended to allow for joint analysis of a dis-
crete and a continuous outcome via a latent variable
approach (Bartholomew, 1987; Catalano and Ryan,
1992). Fitzmaurice and Laird (1995) proposed an alter-
native model that instead focused on the discrete out-
come. Direct extensions of the work of Laird and Ware
(1982) for inference on multiple outcomes also have
been proposed for balanced data (Reinsel, 1984) and
unbalanced designs with possibly missing data (Shah,
Laird and Schoenfeld, 1997).

A descriptive analysis of the relationship between
lung function tracking and asthma status by age at di-
agnosis was reported by Berhane et al. (2000) using the
model

E
[
log

(
y

(1)
cij

)] = aci + f1(tcij ) + f2(tcij ) · log(height)

+ α
y

(2)
cij

+ β
y

(2)
cij

tcij + γ
(1)
1

T
zcij ,

whereaci ∼ N(0, σ 2
a ) is a subject-specific random in-

tercept,f1(t) is a smooth function of age (t) andf2(t) is
a smooth function of age that depicts the age-dependent



430 K. BERHANE, W. J. GAUDERMAN, D. O. STRAM AND D. C. THOMAS

TABLE 5
Gender-specific effects of asthma on MMEF by age at diagnosis based on4-year follow-up data on

participants of the Children’s Health Study

Asthma by age
at diagnosis Main effect of asthma Trend (asthma × age)

Gender (years) % difference 95 C.I. % difference 95 C.I.

Female 0–2 −15.7a (−25.6, −4.4) −0.8 (−3.4,1.8)

3–5 −2.8 (−15.8,12.2) −0.4 (−3.5,2.8)

6–9 −2.2 (−9.4, 5.7) 0.1 (−1.6,1.8)

≥ 10 −5.7b (−9.7, −1.5) −0.01 (−0.9,0.9)

Male 0–2 −18.8b (−26.0, −11.4) 0.6 (−1.0,2.2)

3–5 4.3 (−5.9, 15.6) −0.1 (−2.0,1.8)

6–9 −7.3a (−13.4, −0.8) −1.0 (−2.3,0.4)

≥ 10 −6.5b (−11.0, −1.7) −0.2 (−1.1,0.8)

ap < 0.01.
bp < 0.05.

slopes of log(height), both fitted using regression
splines (see Section 3.2 for details). Here,αy mea-
sures parallel deviations between the four asthma
groupsy(2), andβy depicts the trend in the deviations
over time between the four groups. Table 5 summarizes
the estimates of the deviation and trend parameters.
Early diagnosis of asthma is associated with a signif-
icant deficit in MMEF in both females and males, but
the percent differences do not seem to change with in-
creasing age. Figure 4 depicts this relationship for fe-
males in various “age at diagnosis” categories.

4.5 Exposure Metrics

For annual outcomes such as lung function, an-
nual averagesXc of daily summary exposure mea-

FIG. 4. Growth curves for MMEF by age at diagnosis of asthma
for 8–18-year-old participants of the Children’s Health Study.

sures (e.g., 24-hour mean) could be used. However, the
choice of an appropriate “metric” is crucial, since pol-
lution levels vary across the year and even within days,
and the biological effect of this variation is not well
understood.

For the CHS, our choice of the time-weighted
average is based on a hypothesis that chronic effects
represent an accumulation of small insults received
continuously over time and these insults depend lin-
early on pollution levels. This approach can be ex-
tended to allow for nonlinearities in the instantaneous
dose–response relationship or interactions between
pollutants, possibly lagged over time. Our approach is
not to try to estimate the parameters of this unobserved
continuous process. Instead, we use the predictions of
such a process to motivate the choice of exposure met-
rics for the chronic effects analysis that could test hy-
potheses about nonlinearities and interactions.

We are currently evaluating a family of additional
exposure metrics which are motivated by a Taylor se-
ries approximation to a general dose–response relation-
ship of the formY = ∫

g[X(t)]dt , whereg(X) denotes
the effect of ambient exposure on the instantaneous
rate of change ofY . Following this line of reasoning,
a general test of nonlinearity ing(X) is obtained by
adding as a covariate in a community-level model the
varianceVc of exposure over time in each commu-
nity (Thomas, 1988). These variances can be decom-
posed into hourly, daily, weekly, seasonal and annual
components.

To distinguish nonlinearities in the instantaneous
dose–response from nonlinearity in the relationship
betweenY and X, variance-based metrics could be
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added to a model that includes not justX, but also
some transformation(s) thereof, such asX2 or X lnX.
Transformations of theX axis leave the rankings of
the communities intact, whereas addition ofVc to the
model can change their rankings and, hence, contribute
additional information.

This approach could be extended to allow for (1) ef-
fects of rate of change of exposureX′(t) = dX/dt

via metrics of the form
∫

X(t)X′(t) dt ; (2) inter-
actions between pollutants via metrics of the form∫

X1(t)X2(t) dt to be added to a model that includes
the main effects ofXp (p = 1,2), their product and
their respective variancesVp; and (3) lag effects
via metrics of the form

∫
X1(t)X

′
2(t) dt . Various in-

dices of interest to the regulatory community may
be considered, such as threshold models of the form∫

max{X(t) − τ,0}dt for values of thresholds,τ , such
as the current standards and proposed smaller values.

5. CONCLUSIONS

The Southern California Children’s Health Study is
an ongoing longitudinal study that is already yield-
ing results that are likely to help in understanding the
chronic effects of air pollution on children’s health.
Because of the regulatory significance of such results,
the development and use of appropriate state-of-the-
art statistical methods are of paramount importance.
The unique study design and the complexity of the
substantive research questions provide an exciting op-
portunity for development of new statistical methodol-
ogy. By publishing this general approach and review of
methodologic issues and developments while the study
is in progress, we invite input from the broader scien-
tific and statistical community about ways to refine the
approach or alternative approaches we should consider.

This study is presently the longest running cohort
study in the United States of the health effects of air
pollution specifically targeted at children. Although the
original funding will terminate upon graduation of the
last fourth-grade cohort from high school, a new study
will investigate the potential for long-term effects to
continue into adulthood and will enroll a new cohort of
kindergarten children that will have a special emphasis
on early life influences on asthma incidence.

Although the methods described here are motivated
by cohort studies on the effects of air pollution, such
as the CHS, they do have potential applicability to a
broader range of studies in environmental health, not
necessarily restricted to air pollution, to respiratory dis-
ease or even necessarily to designs that entail longitudi-
nal observation and comparisons at both the individual

and ecologic levels. Many environmental agents are ge-
ographically determined, necessitating some form of
ecologic comparison (Thomas, 2000).

The development of optimal study designs that in-
volve careful selection of geographic areas and ap-
propriate balancing of resources between ecologic,
individual and temporal observations should be of high
priority. Numerous analytical challenges remain, many
of which have been touched on herein. In particular,
the problem of exposure measurement error is ubiqui-
tous and serious in environmental epidemiology, and
has been an active area of statistical research; epidemi-
ologic applications, however, remain in their infancy.
It is hoped that this article will stimulate further re-
search along these lines.
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Comment
Wendy Meiring

1. INTRODUCTION

I thank Berhane, Gauderman, Stram and Thomas
(hereafter referred to as BGST) for providing a valu-
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of Statistics and Applied Probability, University of
California, Santa Barbara, CA 93106-3110, USA
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able review of the analyses used in the Southern
California Children’s Health Study (CHS). This co-
hort study of chronic air pollution effects follows
children over several years. The task of designing,
implementing and analyzing such a study presents
enormous challenges, especially since pollution expo-
sure monitoring is limited by cost. The authors and
the CHS researchers are to be congratulated on every-
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thing they have achieved with limited resources. There
remain numerous challenging opportunities for contin-
ued research, combining statistics and science to as-
sess air pollution health impacts on children. I refer
to Dominici, Sheppard and Clyde (2003) for a com-
plementary review of methods and designs for both
acute and chronic health effect studies on a variety of
time scales and age groups, and to Piegorsch, Smith,
Edwards and Smith (1998) for an environmental statis-
tics review that also discusses health impacts.

2. GENERALIZED LINEAR MIXED MODEL,
DIAGNOSTICS AND INFERENCE

As BGST indicate, their model (6) is a generalized
linear mixed model (GLMM). Many recent GLMM re-
search advances were reviewed by McCulloch (2003),
together with further research needs. For example, ad-
ditional diagnostics are needed to evaluate sensitivity
to the random effects distribution, and likelihood in-
ference for GLMM variance components is not well
understood for small samples. BGST also mention the
need for additional research on both diagnostics and
inference. In this section I elaborate further on this
need. I later pose several scientific questions that relate
to model specification in the CHS study and discuss
spline-type models to study interactive air pollution
health impacts.

By grouping together subject- and community-
specific terms, Equation (6) in BGST may be written in
the general GLMM form (see, e.g., McCulloch, 2003,
Equation 4.5)

Yi |u ∼ fYi |u(yi |u),(1)

E[Yi |u] = µi,

g(µi) = x′
iβ + w′

iu,

u ∼ fU(u),(2)

wherefYi |u(yi |u) is an exponential family probability
density/mass function,u is a vector of random effects,
wi indicates the multipliers of random effects for re-
sponsei, xi are the fixed effect explanatory variables
for responsei, β are parameters that correspond to the
fixed effects andg is a link function. Correlation is in-
corporated through correlated random effectsu in (2)
or by random effects that are common to sets of ob-
servations. The conditional distributions in (2) often
are assumed independent, but this assumption may be
relaxed. Generalized linear mixed models extend sev-
eral commonly used families of models, including gen-
eralized linear models and linear mixed models (for

Gaussian data), as reviewed by McCulloch and Searle
(2001) and McCulloch (2003).

Several components in the GLMM [BGST, (6)]
were chosen, including the random effects distribu-
tion fU(u), and the fixed and random effect design
matrices. Similar components were chosen in their hi-
erarchical models (1)–(5). Please would the authors
comment further on their choice of design matrices, in-
cluding whether interactions were included. In BGST
model (6), the authors assume normally distributed
random effects on the link scale and mention poten-
tial bias of ecological comparisons if the distributional
assumptions are violated. I would value further discus-
sion on available diagnostics for nonnormality of these
effects, especially for non-Gaussian data, and sensitiv-
ity to these assumptions.

3. FLEXIBLE MODELS

In BGST models (1)–(5) and (6), fixed effect pa-
rameters and random effects enter linearly in the in-
tercept and slope components. BGST later describe
flexible B-spline models for age-dependent growth
rate and the need for further inference methodology
for functionals. The methodology for flexible mod-
els for functional/longitudinal/spatial data is expanding
rapidly, including approaches with spline and mixed
model connections (in addition to references pro-
vided by BGST, see, e.g., Diggle, 1997; Brumback
and Rice, 1998; Ke and Wang, 2001; Ramsay and
Silverman, 2002; Wand, 2003; Liu, Meiring and Wang,
2005; Zhang and Lin, 2003). Flexible spline-based
models may prove valuable in both modeling and
model diagnostics, in the spirit of BGST’s comment
on fitting “more complex models that test modeling
assumptions.”

Certain families of flexible models have earned pop-
ularity in epidemiological health effect studies, in-
cluding generalized additive models (GAM; Hastie
and Tibshirani, 1990; Dominici, McDermott, Zeger
and Samet, 2002; Dominici, McDermott and Hastie,
2003, and references therein). The GAMs also may be
viewed as special cases of functional analysis of vari-
ance (ANOVA) models. Functional ANOVA models
extend analysis of variance concepts to include func-
tional spaces, enabling the study of main effects and
interactions between combinations of functional or dis-
crete covariates. Suppose that a vector of explanatory
variablesv = (v1, . . . , vM) hasM components, each
of which may be multidimensional. Ifn observations
were made, theith observation would correspond to
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a vector of explanatory variablesvi = (vi1, . . . , viM),
for eachi ∈ {1, . . . , n}. A functional ANOVA model
decomposes a modeled function

f (vi ) = ν +
M∑

k=1

fk(vik) + ∑
k<l

fkl(vik, vil) + · · ·

+ f1···M(vi1, . . . , viM),

where the first termν is an overall intercept and the
second term on the right-hand side is the sum ofM

flexible main effects, followed by additive functional
interaction terms of different orders. Some components
may be parametric (such as linear terms) and other
components may be spline-based. Functional ANOVA
models include smoothing spline (SS) ANOVA (e.g.,
Wahba et al., 1995; Gu, 2002; Wang, 1998; with
smoothness controlled by multiple smoothing para-
meters) and the reduced basis approach of Stone,
Hansen, Kooperberg and Truong (1997). The GAM
corresponds to a model with only the intercept and
main effects. Each estimation approach has its own
challenges. I do not attempt a unified review here,
but I note that GAM standard errors and the choice
of smoothness recently have been improved for cer-
tain time series health impact studies (see Dominici,
McDermott and Hastie, 2003, and references therein).
Concerns have been raised about biased GAM stan-
dard error estimates for spatial air pollution data due
to concurvity (Ramsay, Burnett and Krewski, 2003).
The GAM constraints for model identifiability may
need investigation for certain sampling schemes and
covariate models.

These models also have been extended. Of particu-
lar relevance to BGST, Karcher and Wang (2001) de-
veloped generalized nonparametric mixed effect model
extensions of GLMM that include SSANOVA-type
components in the explanatory fixed and random ef-
fects. Such approaches hold promise for investigating
model form and interactions in health impact studies,
motivating continued research. Further understanding
is needed on sensitivity to multiple smoothing parame-
ter selection and thecurse of dimensionalityfor multi-
ple explanatory variables, together with computational
improvements for large data sets. Rapid advances in
the areas of GLMM and flexible models testify to their
value to address particular questions, with further need
of diagnostic and inference methods, including infer-
ence about interactions.

4. INTERACTIVE EXPOSURE PROCESSES

Many of the pollutants under study are produced or
depleted in complex chemical reactions that rely on
other pollutants and meteorological factors (see, e.g.,
Meng, Dabdub and Seinfeld, 1997; Seigneur, 2001).
They also are measured subject to error at both the
community and individual levels. As BGST notes, it is
extremely difficult in observational studies to identify
the effects of individual pollutants due to these chemi-
cal associations. The difficulties of studying health im-
pacts of individual pollutants potentially also rise from
interactive and compounded health impacts within the
human body. For example, Brunekreef and Holgate
(2002, referred to as BH in the remainder of this com-
ment) reviewed many recent air quality health impact
studies at a variety of time scales, together with state
of knowledge physical mechanisms of health impact.
BH discussed mechanisms by which ozone acts as a
strong oxidant in the human body and antioxidants in
the lung reduce the health impacts of inhaled ozone.
Less is known about the damage mechanisms and long-
term impact of nitrogen dioxide and particulate matter.
However, BH also indicated that both particulate mat-
ter and nitrogen dioxide have the potential toactivate
oxidant pathwaysthat impact on the respiratory and
cardiovascular systems. While the mechanisms may
be different and while pollutants may travel to differ-
ent parts of the lung (with ultra-fine particles penetrat-
ing further into the lung than larger particles), I would
value the authors’ comments on the potential presence
and form of interactive pollution health impacts. For
example, if different pollutants damage different as-
pects of the respiratory system simultaneously, even at
individual low to moderate levels, is there potential that
the health impacts will be more severe and reported
more frequently? Is there a combined point where the
effects increase in severity nonlinearly? Might flexible
spline-based models aid the investigation of possible
combined health impacts, including possible nonlin-
earities in the severity of health impact and frequency
of chronic disease diagnosis?

5. SPACE–TIME SCALES OF
POLLUTION VARIATION

Ambient pollution levels and personal exposure ac-
tivities vary on a variety of time scales, with long-term
trends as well as seasonal and daily cycles. To study
chronic effects, BGST usually use yearly averaged pol-
lutant levels as the shortest time scale (although there is
discussion of the need to examine other time scales in
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the paper, and it is not clear to me currently if models at
other times scales were implemented). Yearly pollutant
averages eliminate information on smaller time scales
that may be important in chronic air pollution studies.
It will be important to investigate whether there may be
increased cumulative risk for repeated exposure at high
levels compared with constant exposure at medium lev-
els. The amplitude and shape of the daily cycle may
be a very important factor for certain pollutants. For
example, surface ozone is a secondary pollutant pro-
duced in photochemical reactions. Daily patterns in
primary pollutant emissions (anthropogenic and bio-
genic), photochemical activity and transport lead to a
daily cycle in ozone levels. The shape of this daily cy-
cle varies in space and time (see, e.g., Guttorp, Meiring
and Sampson, 1994). In 1997, the United States Envi-
ronmental Protection Agency changed the ozone regu-
lation from a standard based on daily maximum hourly
ozone values to one based on daily 8-hour average
ozone levels. Have the authors tried to include counts
of days exceeding some standard, and possibly also
the duration of individual episodes (perhaps due to
persistent meteorological conditions) in their statisti-
cal models, related to the exposure metrics discussed
in Section 4.5? This may be a first step toward detailed
consideration of multiple time scales to investigate
whether the severity of the chronic impact increases
nonlinearly with exposure on a variety of time scales.
I would value the authors’ additional comments on this.

Due to large variation in NO2 levels within each
community, BGST use a spatial mixed model com-
bined with traffic estimates to estimate NO2 lev-
els at unmonitored locations. Spatial mixed models
have also been extended to spatial GLMM (see, e.g.,
Diggle, Tawn and Moyeed, 1998; Christensen and
Waagepetersen, 2002; Kammann and Wand, 2003),
which may be of value for predicting the number of
days exceeding pollution standards at an unmonitored
location/microenvironment, given the corresponding
number of days at monitoring sites. Space–time es-
timation methodology is constantly advancing and
detailed reviews appear elsewhere. In particular, hier-
archical space–time dynamic models are enabling the
inclusion of science in the statistical model through
a conditionally specified hierarchy (as reviewed by
Wikle, 2003). Many of the pollutant fields are non-
separable and nonstationary in space and time (see,
e.g., Guttorp, Meiring and Sampson, 1994; Sampson,
Damian and Guttorp, 2001; Zidek, Sun, Le and
Özkaynak, 2002). Stochastic simulation of potential
air pollution fields, conditional on observations, may

offer promise for assessing exposure uncertainty. This
ideally would be combined with scientific knowledge
about atmospheric chemistry, microenvironment varia-
tion and measurement error.

The error in using ambient measurements or mi-
croenvironment models versus true exposures varies
substantially with pollutant. For example, exposures
to some PM2.5 constituents are poorly represented by
ambient measurements, whereas some others corre-
late well with ambient outdoor measurements (e.g.,
Ebelt et al., 2000). Also, there is apersonal cloud
phenomenon related to activities that increase parti-
cle suspension levels, leading to higher personal ex-
posures than microenvironment measurements. Health
impacts of particulate matter currently receive high
research priority (see, e.g., National Research Coun-
cil, 1998; Lippmann et al., 2003) and new regula-
tions are introduced. However, little is known about
the impact of individual particulate matter constituents,
which vary substantially in relative proportion within
the United States and globally. Many analyses rely only
on size distribution (ford ∈ {2.5,10}, PMd consists
of particles less thand µm in aerodynamic diameter).
Both elemental and organic carbon (EC and OC) con-
stituents of particulate matter were used by BGST in
Section 4.3. Please would the authors comment on the
space–time variation in these (and other) particulate
matter constituents and their correlations on a variety
of space–time scales. Is there reason to believe that
the PM2.5 relative composition is similar across all the
sites in the CHS on an annual basis and throughout the
year? Do the authors have additional comments about
individual particulate matter composition and impact?

6. REGULATION POLICY AND
MODEL UNCERTAINTY

The development of regulations depends on the per-
ceived health impact. Sensitivity of analysis conclu-
sions to model choice has been found in mortality
studies on shorter time scales (e.g., Smith, Davis and
Speckman, 1999). Bayesian model averaging provides
valuable information on statistical model uncertainty
by combining inference from a family of statistical
models (BGST; Clyde, 2000; Dominici, Sheppard and
Clyde, 2003). This requires specification of the gen-
eral family of candidate models, including the nature
of any interactions. Model specification diagnostics re-
main crucial.

The valuable work by BGST and other health im-
pact researchers leads toward the challenge of incor-
porating uncertainty about individual and combined
pollution health impacts into emissions control deci-
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sions. Improved statistical approaches are needed to
contribute to decision making (Barnett and O’Hagan,
1997; Novartis Foundation, 1999). Atmospheric chem-
istry models are developed to investigate the changes
in pollution levels under different emissions scenar-
ios. These models must be evaluated under the current
scenario by comparison with observations (Sampson
and Guttorp, 1999) and ideally must be combined with

uncertainty measures. Statisticians must continue to
improve cost-effective sampling designs and proba-
bilistic models for exposure assessment at the indi-
vidual and community levels (see, e.g., Zidek and Le,
1999; Zidek et al., 2003). Continued study of the health
impacts of multiple air pollutants on children will be a
vital component of policy development to protect peo-
ple of all ages.

Comment
Lianne Sheppard and Jonathan C. Wakefield

The article by Berhane, Gauderman, Stram and
Thomas (BGST) addresses an array of statistical as-
pects that relates to estimation of the long-term effects
of air pollution. The Southern California Children’s
Health Study (CHS) is an important resource for the
community of scientists and policy makers who are
trying to understand the long-term effects of air pol-
lution on health. Many complex topics are discussed
by BGST, but we focus our discussion here on just
a small number of the issues considered. In particu-
lar, we discuss the role of complex hierarchical models
in environmental health research, the role of exposure
variation and measurement, and ecological inference.

1. HIERARCHICAL MODELS

Most air pollution studies attempt to address the
broad questions of whether and how air pollution is
associated with health outcomes. In the CHS, the ul-
timate goal is to understand the long-term effects of air
pollution on children’s health. Since this goal is broad,
it must be refined and translated into contrasts (para-
meters or functions of parameters) that can be esti-
mated from the available data. The approach described
in BGST is the specification of a complex hierarchical
model that is sufficiently general to allow for multi-
ple levels of variation and types of confounding, and
includes an array of parameters for the exposure ef-

Lianne Sheppard and Jonathan C. Wakefield are Re-
search Associate Professor and Professor, Depart-
ment of Biostatistics, Box 357232, University of
Washington, Seattle, WA 98195-7232, USA (e-mail:
sheppard@u.washington.edu).

fect (α1, α2, α3, β2, β3) that allow the consideration of
many possible scientific questions.

The hierarchical model described in (1)–(5) of the
paper includes exposure effects of yearly exposure
(α1), individual exposure(α2), community exposure
(including contextual contributions)(α3), individual
exposure modified by time(β2), and community expo-
sure (including contextual contributions) modified by
time (β3). The exposure parameterization therefore al-
lows for different effects for exposures that vary be-
tween cities(Xc), over time within cities (Xcj − Xc)
and across individuals within cities (xci − Xc). This
flexibility is a strength in the sense that one source of
exposure variation does not influence estimation of the
effect of another. For instance, the purely ecological
comparisons can be separated from the effects of ex-
posure variation across individuals or over time within
cities. However, scientifically, it becomes imperative to
question whether we expect these parameters to be the
same. For instance, cross-sectional(α2, α3) versus lon-
gitudinal (α1) effects are often believed to be differ-
ent. A contextual effectof exposure is the additional
modifying effect on the outcome of exposure through
belonging to a group. Cross-sectional contextual ef-
fects are present in BGST’s model whenα2 �= α3 (and
when the associated predictors have thesamedefini-
tion; see Section 2). However, it is often reasonable
to assume that contextual effects are absent for envi-
ronmental exposures (Sheppard, 2002). Furthermore,
even when the parameters are the same, their estimates
can be different, because of uncontrolled confounding
or covariate measurement error. Sheppard (2003) ar-
gued that biases operating at one level (or differently
at several levels) can drive the differences in the es-
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timates, even when the underlying parameters are the
same (an example of this follows). This suggests that
side-by-side comparisons of parameter estimates, such
as the cross-sectional versus longitudinal effects given
in Table 3, are a crucial step to identifying the poten-
tial biases in these studies. Note that the cross-sectional
estimates in Table 3 are 2–3 times larger than the lon-
gitudinal estimates (although nearly all the estimates
are within 2 standard errors of 0). It remains to be de-
termined whether the differing estimates reflect real
differences in the parameters or are merely different
biases. Separation of the parameters is useful for com-
paring estimates and identifying different sources of
bias (and this step should not be neglected). However,
because the exposure variation is partitioned into sev-
eral variables, reporting separate parameter estimates
may not be a desirable approach to answering the sci-
entific questions of whether there are, and how big are,
the exposure effects.

We demonstrate how contextual effects may be in-
duced by unmeasured confounding in a simple situa-
tion. Suppose the true model is given by

E[Yci |Xci,Zci] = exp(α + βXci + γZci),

where within areas[
Xci

Zci

]
∼ N

([
Xc

Zc

]
,

[
W2

x ρWWxWz

ρWWxWz W2
z

])
,

and between areas[
Xc

Zc

]
∼ N

([
µx

µz

]
,

[
B2

x ρBBxBz

ρBBxBz B2
z

])
.

If the confoundersZci andZc are unmeasured we
obtain

E[Yci |Xci,Xc] = exp
(
α� + Xci

{
β + γρWWz

Wx

}

+ Xc

{
ρBBz

Bx

− ρWWz

Wx

}
γ

)
,

whereα� does not depend onXci or Xc. Hence a con-
textual effect has beeninducedby unmeasured con-
founding. The effect of individual exposureXci is only
confounded in the presence of within-community de-
pendence (ρW �= 0), and confounding does not depend
on the between-community dependence between the
average exposure and confounder,ρB , because a con-
textual effect of exposure (Xc) has been included in
the model. If this term is excluded from the model,
then there will be confounding due toρB also. Hence
to prevent confounding from this source, a contex-
tual effect should be included in the above model.

A contextual effect is induced when there is either
within- or between-community dependence (ρW �= 0
or ρB �= 0), unless they cancel out, which is extremely
unlikely. The size of the induced contextual effect is re-
duced when either of the ratios of between- or within-
community variability in confounder to exposure is
small. This indicates that the interpretation of contex-
tual effects requires great care. The above development
is analogous to the role of unmeasured confounding in
longitudinal studies (see Palta and Yao, 1991).

The underlying scientific questions must be related
to the proposed contrasts. It is a dilemma for statis-
ticians to decide whether to present a simple model
that highlights a specific contrast of interest or to use
a very complex model within which the same contrast
is embedded. Presentation of the simple model is often
much easier, but risks hidden bias. Complex hierarchi-
cal models are difficult to convey to a broad audience
and are less straightforward to interpret since estimates
are only rarely direct functions of the data. However,
specification of the complex hierarchical model can in-
form the simple contrasts by giving a structure for de-
ciding which sensitivity studies should be done and
how to approach them. Simpler models can be de-
rived from the complex multilevel model by collaps-
ing over one or more levels or by dropping one or
more sources of variation. In BGST, very interesting
unanswered questions remain regarding whether either
of the simpler cross-sectional or longitudinal change
models shown in Table 3 is adequate relative to the full
multilevel model. The simpler models, while not ex-
plicitly shown in this paper, are easier to understand.
The coefficients suggest the simpler models perform
similarly for all pollutants except O3. In general, the
combination of data and comparison of results from
different analysis approaches and study designs, in-
cluding cohort, case-control, ecological and longitudi-
nal studies, is a vital area of research since the strengths
of each can be exploited and the potential for hidden
biases can be decreased.

We now discuss parameter interpretation with ref-
erence to a simplified form of the model given by
(1)–(5) of the paper, in which we ignore the time ef-
fects. (We would be interested in the authors’ interpre-
tation ofβ2 andβ3.) For clarity of exposition we take
a log link, a common choice for rare events. Hence we
have the model

µci = exp{α0 + α3Xc + ec + η2zci

+ α2(xci − Xc) + eci}.
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Suppose all of the exposures in areac are increased
by 1 unit. Then the relative risk associated with this
change for each of the individuals in communityc, as-
suming that individual confounders and random effects
remain constant, is given by exp(α3). The relative risk
between two individuals,i andi′ say, in the same com-
munity whose exposures differ by 1 unit but have the
same confounders, is exp(α2 + eci − eci′). Finally con-
sider individualsi andi′ in two communitiesc andc′,
and suppose they have the same individual exposures
and confounders, but the average exposure in commu-
nity c is 1 unit higher than in communityc′. Then the
relative risk is exp(α3 − α2 + eci − eci′ + ec − ec′).
The presence of random effects makes interpretation
of these relative risks more difficult, as discussed by
Heagerty and Zeger (2000).

The form of the random effects model may be sec-
ondary to other considerations when effect estimation
is the goal of the analysis. Wakefield (2003) argued that
in the ecological setting, spatial effects will frequently
be of secondary importance compared to issues of con-
founding and pure specification bias (see Section 3).
Guthrie, Sheppard and Wakefield (2002) showed that
the efficiency of an aggregate data model was unaf-
fected by ignoring the spatial dependence, unless the
exposures varied on the same scale as the random ef-
fects. When the exposures varied quickly in compar-
ison to the residual variation over space, the standard
error of the exposure effect estimates was similar for
models that incorporated spatial dependence as with
models that ignored its presence.

To the discussion of software for hierarchical mod-
els in Section 3.4, we mention the WinBUGS software
(Spiegelhalter, Thomas and Best, 1998). It is straight-
forward to fit complex hierarchical models within a
Bayesian framework using WinBUGS.

2. EXPOSURE MEASUREMENT

The relative variation of exposure at each level of the
hierarchy has implications for the relative information
about and interpretability of each of the exposure ef-
fect parameters in the model. When there is limited ex-
posure variation, the parameters are poorly estimated.
The standard error estimates given in Table 3 suggest
the between-community variability is lower than the
average temporal variability within community, even
though the design of CHS would suggest the opposite.
Reporting numerical summaries of the key predictors,
particularly exposure, at each level of analysis should

be a required part of a hierarchical analysis that focuses
on interpretation of exposure effects.

The exposure definition can be potentially problem-
atic too. BGST mention that two of the exposure pre-
dictors,Xc andXcj , are community levels of pollution,
implying that these are ambientconcentrationmea-
sures. However, distinguished by its notation,xci is
described as a subject-specific average pollution level
from microenvironmental models, suggesting that this
term is a measure of individualexposure. Since such
ambient exposures are often attenuated relative to am-
bient concentrations due to the amount of time people
spend indoors (Ott, Wallace and Mage, 2000; Wilson,
Mage and Grant, 2000; Sheppard and Damian, 2000),
this difference makes the parameterα2 inherently dif-
ferent from α1 or α3. Thus the comparability be-
tween theα’s and their interpretation will be lost when
the comparability between exposure predictors is not
maintained.

There are additional questions regarding exposure
that need to be incorporated into the modeling frame-
work. How do we know which exposure metric to
choose in these models? What implications does this
choice have on the parameters in the model? Fur-
thermore, measurement error distributions can vary by
level of analysis and exposure measurement proper-
ties, with a consequent impact on the parameter esti-
mates. For instance, while temporal variation within a
city may be reasonably assessed by a single fixed-site
monitor, the city-specific mean from that same fixed-
site monitor may still be subject to measurement error.

3. ECOLOGICAL INFERENCE

Although the CHS provides individual-level data,
since BGST devote a section to ecological bias we feel
it is useful to examine the effects of aggregation in a
purely ecological setting. In our own research in this
setting we have found it beneficial to begin with an
individual-level model and then average to determine
the effects of aggregation. For simplicity, consider a
single exposurex and a single confounderz, and sup-
pose that for individuali in communityc the risk is
given by the log-linear form

pci = exp(α + βxci + γ zci),

which, upon aggregation, yields average risk

pc = exp(α)

∫
exp(βx + γ z)fc(x, z) dx dz,

where fc(x, z) represent the joint distribution ofx
and z within areac. Unfortunately only marginal in-
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formation is typically available and the most diffi-
cult aspect of ecological analysis is to control for
within-community confounding (between-community
confounding is analogous to individual-level con-
founding in a study at the level of the individual).
Wakefield (2004) highlighted two sources of ecolog-
ical bias: that due to the noncollapsibility of nonlinear
association measures, and that due to confounding. The
presence of the former illustrates that even in the ab-
sence of confounding, bias may occur when a nonlin-
ear individual risk model is distorted upon aggregation.
Greenland (1992) referred to this aspure specification
bias. Note that if there is no variability in exposure
within an area, then this bias will be absent, which
provides one motivation for utilizing small area data.
As an example, Wakefield (2003) considered the case
in which the within-community variability is given by
N(Xc,σ

2
c ), whereσ 2

c = a + bXc. In this scenario we
obtain the aggregate model

pc = exp(α + β2a/2+ Xc[β + β2b/2]),
showing that the variance is acting like an unmeasured
confounder (so that if the variance is independent of
the mean, no bias will result). For environmental ex-
posures the variance typically increases with the mean
(b > 0), so for a harmful exposure (β > 0) the effect
will be overestimated (in the absence of other biases).
Contextual effects are an example of confounding in
whichZc corresponds to the average exposure.

There is a long history of ecological analysis in
the social sciences; this literature was reviewed by
Wakefield (2004), while Salway and Wakefield (2004)
compared and contrasted the aims and models of eco-
logical inference in epidemiology and the social sci-
ences. In a highly influential paper, Robinson (1950)
highlighted the inconsistency of summary associa-
tion measures across different levels of aggregation
(noncollapsibility) and, by example, illustrated that
the correlation between literacy and race ranged be-
tween 0.95 and 0.20 across different geographical
units. Selvin (1958) later coined the termecological
fallacy for the situation in which, “relationships be-
tween characteristics of individuals are wrongly in-
ferred from data about groups.” Much of the discussion
in the social sciences literature concerns the difficulties
associated with simultaneous estimation of individual
and contextual exposure effects. This difficulty is sim-
ply illustrated by consideration of what is known in
the social sciences literature as extended ecological re-
gression (Goodman, 1959; Achen and Shively, 1995).

In an epidemiological context, consider a single binary
exposure and the individual risk model

p0c = a0 + b0xc

for unexposed individuals in a community with ex-
posed proportionxc and

p1c = a1 + b1xc

for exposed individuals, which leads to the aggregate
form

pc = p0c(1− xi) + p1c = α + βxc + γ x2
c ,

whereα = a0, β = a1 + b0 − a0 and γ = b1 − b0,
so that the effects of interest are nonidentifiable, even
under the simplified model in which a common con-
textual effect for unexposed and exposed individuals,
b0 = b1, is assumed.

In an epidemiological context, a linear risk model is
less plausible and a log-linear form is more typically
used. Contextual effects are of great interest in social
epidemiology. For example, suppose we begin with the
individual-level model

Yci |xci, xc ∼ Bern{exp(α + βxci + δxc)},
so that the contextual effect,δ, is the same for ex-
posed and unexposed individuals. We then obtain the
aggregate-level model

pc = exp(α + δxc){(1− xc) + xc exp(β)}.
Simultaneous estimation of the individual and con-
textual effects is, therefore, theoretically possible, but
hinges on a nonlinearity, which is uncheckable from
the aggregate data and so would not be recommended.
Similar arguments (e.g., Little, 1985; Copas and Li,
1997) have been made against a class of methods for
avoiding selection bias, for example, those proposed
by Heckman (1979). Similarly, estimation of both ef-
fects is possible with the aggregate data approach of
Prentice and Sheppard (1995), but the amount of infor-
mation available on the contextual effect (in the pres-
ence of individual effects) is small (Sheppard, 2002).

As we hope is obvious from this discussion, we
found the paper very stimulating and we would like
to encourage the authors in their pursuit of the difficult
yet vital endeavor of investigating the complex rela-
tionship between air pollution and health.
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Comment
Nhu D. Le and James V. Zidek

We congratulate the authors on a stimulating and
comprehensive article on spatial epidemiology and en-
vironmental health risk. They provide a broad survey
of the methods that have been developed in this area as
well as the issues that arise in the analysis of that risk.
By couching their survey in terms of an ongoing inves-
tigation on the long-term effects of air pollution, they
endow their presentation with a sense of timeliness and
importance. Furthermore, their survey possesses a live-
liness that a mere review might well lack.

The importance of the study on which this paper fo-
cuses cannot be overestimated, for the potential im-
pact of chronic diseases greatly outweighs that of its
acute cousins. Indeed, cynics have suggested that the
treatment of acute morbidity would be a cheaper and
preferable option to the costly abatement programs
that would be needed to reduce pollution to the levels
needed to eliminate it! We find it hard to imagine that
the same could be said of chronic morbidity if, in fact,
that is a product of excessively high levels of pollution.
However, that brings us to the second important aspect
of studies like the one described in this paper.

Such studies are extremely difficult and expensive to
carry out, both in measuring health outcomes and expo-
sure to PM2.5. Thus, both responses and predictors are
susceptible to high levels of error, making detection of
association with chronic disease effects difficult. The
study in this paper is all the more remarkable in that it
is prospective, rather than retrospective, meaning that
subjects are subject to long-term follow-up and a large
response burden.

For comparison, we briefly describe another such
study, centered in the Northwest Center for Particu-
late Matter and Health Effects at the University of
Washington (UW), that seeks to make a comprehen-
sive exposure and health effect assessment in suscep-
tible subpopulations. Like the study addressed in this
paper, that at the UW integrates personal exposure as-
sessment, exposure characterization and the study of
health effects. Three subprojects are underway:

Nhu D. Le is Senior Scientist, British Columbia Can-
cer Research Centre, Vancouver, BC, Canada V5Z 4E6.
James V. Zidek is Professor, Department of Statis-
tics, University of British Columbia, Vancouver, BC,
Canada V6T 1Z2 (e-mail: jim@stat.ubc.ca).

1. The health of three susceptible and one healthy sub-
population in Seattle, Spokane and other cities is be-
ing monitored. The susceptible individuals are 65 or
older and have chronic obstructive pulmonary dis-
ease, cardiovascular disease or asthmatic children.
The health endpoints include such things as pulse
rate and blood pressure in the case of the adults and
symptoms of asthma in the case of the children.

2. In this subproject personal exposure measurements
are being collected for the subjects to determine
the contribution of ambient sources to personal
PM exposures. Models are being developed to pre-
dict such exposures for nonmonitored subjects.
Finally, the association between these measure-
ments/predictions and acute health outcomes will
be determined.

3. The third subproject characterizes chemical and
physical parameters of different sizes of ambient
and indoor aerosols in simulated airway conditions.

The UW study, in particular, is seeking to iden-
tify specific components of PM such as chemical con-
stituents that cause ill health. Of particular interest
are the high exposures to PM and associated products
of combustion in the Northwestern United States and
whether these are associated with acute cardiorespira-
tory physiologic health measures.

These two studies can be contrasted with that of
Le, Mao, Sun and Zidek (2004), which is a retro-
spective analysis of the cancer effects of air pollu-
tion. In this case-control study, cancer patients and
“healthy” (noncancer) individuals were identified
through population-based provincial registries. The
participants’ residential histories, along with informa-
tion on important confounding factors such as smok-
ing, diet and occupational histories, were collected
using the self-administered questionnaire approach.
The key feature of this study is the estimation of
lifetime exposure to air pollutants which is obtained
through the use of residential histories in conjunction
with historical air pollution measurements from fixed
monitoring stations; some have been in operation for
over 20 years. Concentration levels for pollutants at
residential locations are obtained through a Bayesian
spatial interpolation method which does not assume
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stationarity of the environmental fields. Cumulative
exposure levels for individual pariticipants are then
obtained by aggregating over the predictions at their
residential locations. Unlike cohort studies, this type
of study can only examine impact for one specific ad-
verse health outcome. However, for chronic and rare
diseases with long latency such as cancer, it can be
very cost-effective.

It should be added that in studies where the cumu-
lative exposure levels for individual participants are
available (e.g., cohort studies considered in this paper
and the type of case-control studies described above),
investigators have the flexibility to adjust for poten-
tial latency or for the induction period of the chronic
disease under examination. This flexibility may not be
available for ecological studies due to the mobility of
the population.

The authors focus on the methodological problems
and the substantive issues that arise in such studies,
and they provide a remarkably comprehensive list.
However, although they describe their study design,
they do not explicitly discuss its merits in compari-
son to others. In contrast, “design” does rate a sepa-
rate section in Dominici, Sheppard and Clyde (2003),
who considered strengths and weaknesses of various
types of studies: (1) ecological time series; (2) case
crossover; (3) panel (repeated measures); (4) cohort
studies (time to event), which in this paper would

be called a panel study. In particular, they note that
chronic effects and acute effects may not be separable
in a cohort study. They conclude that “[u]ltimately, the
choice of an optimal design depends upon the research
question and the availability of data.”

Dominici, Sheppard and Clyde (2003) also consid-
ered methodological problems, although not with re-
spect to a specific study like this paper. Their paper,
unlike this one, takes a hierarchical Bayesian model-
ing approach that comes equipped with an inferential
base. These authors face some conceptual difficulties
because of their seeming reluctance to adopt a more
subjectivist position. They note that their communities
are not a random sample. So what is to be made of their
results? More precisely, “. . . what is then the interpre-
tation of thep-values or confidence limits arising from
the analysis at the community level.” Their answer
is that “. . . air pollution levels would have somehow
been assigned at random to a sample of communities,
which may or may not have been selected at random.”
Hmmm. . . . No doubt the reader will be left with some
uncertainty about how to assess the validity of that
claim.

The (by now fairly standard) multilevel modeling
paradigm is imaginatively invoked here and yields an
analysis that allows time-dependent covariates, on the
one hand, while enabling a wide range of comparisons
at both individual and aggregate levels.

Rejoinder
Kiros Berhane, W. James Gauderman, Daniel O. Stram and Duncan C. Thomas

We thank all the discussants for their kind words and
their many insightful comments on the issues raised by
the paper. We truly believe that their discussions, with-
out exception, have immensely enriched our paper.

First, we feel obliged to explain the reasons for
our exclusive focus on cohort studies that examine
chronic effects of air pollution, as opposed to the
many other study designs that could potentially ex-
amine acute and/or subacute effects of air pollution.
The reasons were twofold: (1) the CHS (and hence
most of our related methodologic work) was mainly
intended to handle chronic effects of air pollution and
(2) the discussion easily could have gotten out of hand
if we tried to accommodate both acute and chronic ef-
fects. That said, methods for acute effects (as ably re-
viewed by Dominici, Sheppard and Clyde, 2003) are

of interest to us. In fact, one of our major substud-
ies, the Air Pollution and Absenteeism Study (APAS),
deals with the effects of day-to-day variation in air pol-
lution on school absenteeism. Upon analysis of daily
time series data from APAS, we showed that a 20-ppb
increase in daily 10 AM–6 PM levels of ozone is asso-
ciated with an 83% increase in illness related absen-
teeism (Gilliland et al., 2001). Technical details on a
two-stage model for daily time series of counts that
is based on the polynomial distributed-lag approach
were reported by Berhane and Thomas (2002) and a
three-level model for binary time series was reported
by Rondeau, Berhane and Thomas (2004). We also be-
lieve that a systematic review of methods that exam-
ine the interrelationships between acute and chronic ef-
fects of air pollution is timely. Such a review could tie
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together the issues that have been raised by BGST and
Dominici, Sheppard and Clyde (2003).

Meiring highlighted our point on the need for more
research on diagnostics and inference in the longitudi-
nal setting and we thank her for her elaboration on the
current state of methodologic work in this area. Our ap-
proach in the CHS for examining the adequacy of the
normality assumption about the various random ef-
fects, for both the Gaussian and non-Gaussian outcome
data, has been to fit preliminary models separately by
levels and then examine the residuals from each of the
levels. In our experience so far, this assumption was
not found to be violated. For the lung function models,
a log transformation was required to ensure the nor-
mality of the overall residual error term. We also note
that in situations where the random effects themselves
are of interest, one needs to check the adequacy of the
normality assumption. Currently available methods for
checking the adequacy of the normality assumption in-
clude the graphical approach to testing the adequacy of
normality (Lange and Ryan, 1989) and nonparametric
approaches to estimating the distribution of the random
effect (Davidian and Gallant, 1993). The former is lim-
ited to continuous outcomes and the latter could be too
complicated and computationally intensive for our ap-
plications. We are currently exploring a class of simple,
yet intuitive and quite general, approaches [based on
the Box–Cox transformation technique (Box and Cox,
1964)] to assessing the adequacy of the normality as-
sumption of the random effects and potential solutions
for any detected nonnormality. Development of meth-
ods to handle diagnostics for mixed effects models is
an area that could benefit from more research. Examin-
ing the effects of outliers and influential observations in
the longitudinal setting becomes challenging because
outliers and/or influential observations could appear at
the observation and/or the subject level.

We agree with Meiring that flexible models (e.g.,
generalized additive models) could also be used to
assess the adequacy of functional forms of covariate ef-
fects. This was the approach we used to flexibly depict
the nonlinear growth trajectory of lung function mea-
sures in children. Based on this exploratory finding, our
recent focus has been on developing functional based
multilevel models for our data on lung function growth
patterns. This has allowed us to examine the effects
of air pollution on biologically important aspects (e.g.,
maximum rate of growth) of the lung function trajecto-
ries. We welcome the comprehensive review of related
methodologic work in this area that Meiring provided,
including the more general functional ANOVA models.

To this, we add the work by Guo (2002) that developed
a general GLMM model that allows for nonparamet-
ric modeling at both the fixed and the random parts of
the GLMM. We share Meiring’s enthusiasm regarding
the usefulness of GLMM and flexible models, and the
continued need for more research in dealing with prob-
lematic areas, such as the well documentedcurse of
dimensionalityin models with multiple flexible terms
(Hastie and Tibshirani, 1990).

Meiring asks for some elaboration on our choice of
design matrices and whether interaction effects were
included. This question can be addressed separately at
each level of the model. At the temporal level, time-
specific covariateszcik included such factors as the
presence of an acute illness at the time of testing and in-
dicator variables for technician and spirometer. At the
subject level,zci included time-fixed covariates such
as race and baseline asthma status. Some interaction
effects were included, such as sex by race and sex by
asthma at the community level. Most analyses included
only a single pollutant at a time inXc, with no adjust-
ment for ecologic confounders except in an exploratory
mode, as discussed in our paper. With only 12 com-
munities at this level of comparison, we generally had
inadequate degrees of freedom to fit multipollutant
models. While we can fit the models including two-
way interactions, we just do not have enough infor-
mation to be able to parse out effects, let alone test
for interactions between pollutants. However, it is also
possible to test pollution effects at the temporal and
individual levels, which we did by including year-to-
year deviations(Xck − Xc·) of the ambient concen-
trations from the long-term average in the first level,
and deviations(xci − Xc·) of person-specific expo-
sures (based on spatial or microenvironmental model-
ing) from the ambient level in the subject-level model.
This can be helpful for unscrambling multipollutant ef-
fects because the correlations between pollutants can
be quite different within and between communities,
and across time as shown in our study of air pollution
and asthma exacerbation (McConnell et al., 2003). In
some cases we also tested for interactions between ex-
posures at different levels. For example, in our analyses
of school absences, we found that daily O3 levels had
a bigger effect in communities with low than high PM
exposure (Gilliland et al., 2001; Berhane and Thomas,
2002).

This question is related to Meiring’s later discus-
sion of biological processes, multipollutant models,
space–time correlations and time scales. The oxidative
stress hypothesis she discusses indeed underlies our
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thinking about mechanistic hypotheses, as discussed
by Gilliland et al. (1999). This indeed could guide the
selection of models for investigating multipollutant ef-
fects, such as providing a rationale for the observation
noted above about the apparent interaction between
O3 and PM on school absences. However, we feel that
the most promising line of research involves charac-
terization of the specific genes involved in modulat-
ing these processes (Gilliland et al., 2002b, c, 2003),
as well as dietary factors such as antioxidant intake,
which could modify host susceptibility (Gilliland, Li
and Peters, 2001; Gilliland et al., 2002a). Ultimately,
we hope to build comprehensive models for the en-
tire oxidative stress pathway, incorporating environ-
mental, genetic and host factors, perhaps using some of
the techniques discussed by Conti et al. (2003). Other
promising approaches to the multipollutant problem in-
clude using source apportionment methods and explor-
ing alternative temporal metrics.

In the source apportionment approach (Schauer
et al., 1996), the chemical species in PM are used to
estimate the proportions of pollutants that are derived
from such sources as automobile and diesel emissions,
wood burning and tire wear. We plan to extend the
Bayes model averaging approach described in our pa-
per to include such data as “prior covariates” in a hi-
erarchical model, thereby allowing improved estimates
of specific pollutant effects by borrowing strength from
other pollutants derived from similar sources and by
providing estimates of the overall health effects of
the source contributions themselves, information that
would be particularly useful for regulation.

We are exploring alternative exposure metrics based
on different temporal patterns of exposure. Most of the
results given in BGST are based on the long-term av-
erage concentration, under the hypothesis that chronic
effects represent the cumulative burden of incremental
exposure effects that are linear and additive. However,
it is certainly plausible (as suggested by Meiring) that
there are threshold, saturation or interactive effects that
act at different time scales and could violate this as-
sumption, implying that exposure metrics that allow for
these nonlinearities might predict chronic effects bet-
ter. Preliminary exploration of such effects for 4-year
changes in MMEF in the two fourth-grade cohorts
showed no evidence of nonlinear effects for the clus-
ter of highly correlated NO2/PM/acid pollutants, but
suggested a possible nonlinear effect for O3. While the
long-term average exposure to O3 was not significantly
associated with any lung function measurement, the
variance in O3 levels between hours (within days) and

between days (within weeks), and to a lesser extent be-
tween weeks (within seasons), was significantly asso-
ciated with slower lung function growth (unpublished
data), suggesting a possible threshold effect. We are
continuing to explore this phenomenon by studying a
flexible spline-based class of exposure indices that in-
volve the percentage of time above thresholds, which
may be useful for regulatory purposes.

We strongly concur with Meiring’s comments on the
regulatory policy implications of our work and, in par-
ticular, the importance of accounting for exposure and
model uncertainties. Künzli et al. (2003) elaborated
some of these implications, in particular, the trade-offs
between primary (emission) and secondary (personal
exposure) interventions. Further research on propaga-
tion of uncertainties through health effects analyses
and risk assessment is needed, as well as vigorous pub-
lic debate about the appropriate interpretation of uncer-
tainty in risk estimates to establish regulatory policy
without leading to paralysis.

On the issue of parameter interpretation, Sheppard
and Wakefield accurately point out that understanding
pollutant effects from a multilevel model can be diffi-
cult in the context of a log link (or other nonidentity
link functions). They demonstrate this issue in the con-
text of a model for the main effect of pollution on a bi-
nary outcome at the individual and community levels
[as parameterized byα2 andα3, respectively, in (1)–(5)
of BGST]. Although these equations also parameterize
an effect of time on the outcome (through theβ para-
meters), we do not envision these terms being used in
a model for a binary outcome. Rather, we have applied
the full model described in (1)–(5) to analyze contin-
uous outcomes in the CHS, most notably lung func-
tion. In this case, we have adopted the identity link.
The parametersβ2 andβ3 then quantify the effect of
pollution at the individual and community levels, re-
spectively, on average lung function. The parameters
α2 and α3 quantify the corresponding effects of pol-
lution on change in lung function over some time in-
terval. Under the identity link, all random effects in
(1)–(5) drop out (as they have expectation zero) in any
comparison of exposure effects on expected outcome.
All other things being equal, the expected effect of
one unit change in pollution will have similar interpre-
tations at either the individual or community level.

We should point out one subtlety in the interpretation
of theα’s from the model in (1)–(5) of BGST. As in any
model, the intercept quantifies some expectation of the
outcome at “baseline,” that is, when all other terms in
the model drop out. For the model in (1),aci denotes
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the individual specific intercept when all covariates
(zcij andXcj − Xc) and the time variable (tcij ) equal
zero. Whereas theaci are then treated as random ef-
fects to be modeled in the second and third level mod-
els, understanding what is being quantified byaci in the
first model is important for interpreting pollutant effect
estimates. As an example, consider a simplification of
the model in (1) of the formµcij = aci + bci(tcij − t∗).
The valuet∗ can be chosen to estimate pollutant effects
on lung function level at any point along the observed
age range. For example, ift∗ is chosen to be the aver-
age age at study entry, theα parameters will approxi-
mate the effects that would have been estimated from
a cross-sectional analysis of baseline data only. This
choice of t∗ was used for the “full model” (Table 3)
to facilitate comparisons of the pollutant effects on in-
tercepts from this model with those from the intercepts
from the pure cross-sectional analysis. However, one
may alternatively chooset∗ to be the average age over
some study period to quantify the overall average ef-
fect of pollution on level or the average age at the end
of the study period to quantify the effect of air pollution
on attained level.

We welcome the comments of Sheppard and
Wakefield about ecologic inference and exposure mea-
surement. In particular, we agree that associations with
the community ambient concentrationsXc and with
personal microenvironmental exposuresxci estimate
conceptually different parameters. Our use of the same
symbol for both quantities was perhaps confusing and
was adopted only to avoid proliferation of notation.
Conceptually, it might be simpler to think ofXc as
the community mean of personal exposures, although
in practice we do not have adequate measures of the
latter for most pollutants. Setting this issue aside, we
note that some of the complexities of contextual ef-
fects described arise from Sheppard and Wakefield’s
use of a log-linear model, whereas our discussion of
ecologic bias was focused on linear models. While cer-
tainly convenient for analysis of event data, many of
our analyses concern continuous normally distributed
traits such as lung function, for which we use an iden-
tity link. In this case, the dependence of the community
mean outcome on the variance of exposure induced by
a log-linear model at the individual level disappears,
as does the “contextual” effect ofXc in a model that
includesXci (but notZci) whenever the between- and
within-community correlations inX andZ differ. This
is also true for the comparison between individuals in
communities with different ambient exposures but the
same personal exposure, where the expected values of

their random effects cancel out in a linear but not in a
log-linear model. Nevertheless, we agree that it is gen-
erally helpful to test for a contextual effect. We believe
that our multilevel modeling approach, in which the
effects of individual exposures and confounders are as-
sessed by deviations from the community means, and
community mean exposures are also included, accom-
plishes this.

Le and Zidek provide some interesting comparisons
with their own Bayesian spatial modeling of pollu-
tion levels. We are exploring similar approaches using
our data on NO2 and O3 levels at sampled residences
and traffic density measures available on all homes.
Our approach relies on Bayesian spatial modeling, in
which the (log) true pollution levels are assumed to
be normally distributed with means given by a regres-
sion on traffic density and a spatial covariance within
communities (note that, like Le and Zidek, this does
not assume stationarity of the environmental field).
Measured values are assumed to be distributed inde-
pendently around these true values and the health ef-
fects are regressed on the true exposures. We have
implemented this model using the WinBUGS soft-
ware, thereby providing an estimate of the relation-
ship between health outcomes and exposure at the
individual level in the entire cohort, combining the
actual measurements on the subset and the predic-
tions on everybody. For MMEF and NO2, we find a
marginally significant negative association using this
approach, whereas the small sample of actual mea-
surements alone is inadequate to demonstrate such
an effect (Molitor et al., private communication). We
are currently attempting to extend this approach to
joint modeling of NO2 and O3, allowing for the pre-
dicted negative correlation between the two due to
scavenging.

The design of the CHS was aimed purely at esti-
mating chronic effects of air pollution, unlike those
reviewed by Dominici, Sheppard and Clyde (2003).
A major outstanding question is whether acute and
chronic effects studies estimate the same quantity
(Künzli et al., 2001; Rabl, 2003) and, if not, whether
both can be derived from an appropriate multilevel
study design that incorporates temporal and spatial
comparisons.

Le and Zidek raise interesting points regarding our
choice of communities and its implications on inter-
preting results from the study. The evaluation of long-
term effects of air pollution exposure has relied to a
very large extent (and not just in our study) on the com-
parisons of health outcomes in communities with dif-
ferent levels of air pollution. It is often asked whether
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the communities studied constitute a random sample of
communities from a larger population and, if not, then
how arep-values to be interpreted? In the main paper
we rationalize our statistical inferences not by assum-
ing that the communities are a random sample of a pop-
ulation of communities, but rather by assuming that air
pollution levels are independent of other unmeasured
confounders that influence disease risk so that air pol-
lution may be regarded as having been applied to the
communities at random. For related discussions on the
general topic of randomization and causal inference,
refer to Greenland (1990) and references therein.

We make three brief further comments about this
view. First, we recognize that the independence of
community aggregate air pollution levels from other
unmeasured variables that affect a child’s disease risk
is not a testable assumption in our strictly observa-
tional setting, and so it is particularly important that
efforts to identify, measure and adjust for other vari-
ables be continued and improved upon in this and in
future studies. Second, taken literally, this view of our
study design leads naturally to permutation-based test-
ing of the significance of regression estimates at the
between-community level of analysis, by developing
a permutation distribution of the regression estimate
under the null hypothesis of no influence of air pol-
lution on risk. However, it seems unlikely to us that
important differences would arise between the results
of such permutation-based tests and those based on
using regression-based inference that allows for ran-
dom effects for community. Third, a community level
view of our analyses is required because we are cer-
tain that other unmeasured risk factors that cluster by
community exist, so the children in our study cannot
be assumed to have been sampled at random with re-
spect to their sensitivity to the effects of air pollution.
Ultimately, however, it is individual children rather
than communities that make up the fundamental popu-
lation at which that inference is aimed.

In conclusion, we are encouraged by this discussion
that our aim to stimulate further methodologic research
in environmental epidemiology has been fruitful and
we hope to see further developments in this field.
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