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Statistical issues in the use of the comet assay
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The comet or single-cell gel electrophoresis assay is now
widely used in regulatory, mechanistic and biomonitoring
studies using a range of in vitro and in vivo systems. Each of
these has issues associated with the experimental design
which determine to a large extent the statistical analyses
than can be used. A key concept is that the experimental
unit is the smallest ‘amount’ of experimental material
that can be randomly assigned to a treatment: the animal
for in vivo studies and the culture for in vitro studies.
Biomonitoring studies, being observational rather than ex-
perimental, are vulnerable to confounding and biases.
Critical factors in any statistical analysis include the
identification of suitable end points, the choice of measure
to represent the distribution of the comet end point in a
sample of cells, estimates of variability between experimen-
tal units and the identification of the size of effects that could
be considered biologically important. Power and sample size
calculations can be used in conjunction with this informa-
tion to identify optimum experimental sizes and provide
help in combining the results of statistical analyses with
other information to aid interpretation. Interpretation based
upon the size of effects and their confidence intervals is
preferred to that based solely upon statistical significance
tests. Statistical issues associated with the design and sub-
sequent analyses of current validation studies for the comet
assay include the identification of acceptable levels of intra-
and inter-laboratory repeatability and reproducibility and
criteria for dichotomizing results into positive or negative.

Introduction

The comet or single-cell gel electrophoresis assay is now widely
used as a quick, sensitive and cheap method for measuring DNA
strand breaks in eukaryotic cells for the investigation of genetic
damage associated with exposures to potentially genotoxic
agents. The method has evolved over the last 20 years since first
described by Östling and Johanson (1) and is now used in
regulatory, mechanistic and biomonitoring studies in a range of
species in in vitro and in vivo systems (2,3). The assay has the
advantage that it can be carried out in non-proliferating cells and
single cells from different tissues can be evaluated in large
numbers. Guidelines based upon the Organisation for Economic
Co-operation and Development (OECD) genotoxicity guide-
lines are being developed for the alkaline version of the in vivo
comet assay [single cell gel (pH . 13)] and a validation study of

the in vivo comet assay is currently being planned by the
Mammalian Mutagenesis Study Group (MMS)/Japanese Center
for the Validation of Alternative Methods (JaCVAM) (4). In vitro
methods are being developed with the aim of future validation.

An overview of the uses of the comet assay is given by
Collins (3) and the recent Comet Workshop (papers in this
issue) showed the range of applications from traditional
genotoxicity in vivo and in vitro studies, through mechanistic
studies to its use in ecotoxicology such as for aquatic
toxicology. Other examples of its use include investigations on
industrial chemicals, pharmaceuticals, biocides, agrochemicals
and food chemicals such as additives. It is also used as a
biomarker in cancer and nutrition studies (papers in this issue).

A number of protocols have been developed for use in
different types of investigations, for instance, for the neutral
and the alkaline versions. Guidelines and recommendations for
the conduct of studies have been published (5,6). A number of
modifications of the comet assay have been developed, for
instance, to measure cross-links by determining the reduction
of induced DNA migration (7) and for investigating base
excision repair and nuclear excision repair (8).

Continuing development of the assay means that a range of
statistical methods may be used. Many of them are likely to be
interchangeable and, although giving numerically different
results, are likely to lead to qualitatively similar conclusions.
Where different statistical methods produce different conclu-
sions, this is often an indication that a careful inspection of the
data is needed. It is, though, unlikely that a single statistical
method will meet every requirement (9).

This paper not only addresses generic issues associated with
the comet assay but also discusses specific issues associated
with the protocols being developed for in vivo and in vitro
studies and which will be used in validation studies. The
statistical input into the development of experimental design is
emphasized. Many of the experimental design and statistical
analysis issues associated with comet assay are common to
many other genotoxicity studies and, in general, to other experi-
mental systems. Comments made here may apply to other assays.
It is stressed that the size of an effect [and some indication of the
confidence interval [CI] associated with it] is more important
than determining statistical significance by itself.

Image analysis and end points

The comet has a complex form which after visualization can be
simplified to a set of multivariate data representing the shape.
Image analysis methods are capable of collecting a large
amount of information on the image and various proprietary
automated systems exist and public domain programmes have
been developed for image analysis (10). Automated scanners
can measure many different components relating to the shape
of the comet.
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Debate continues over whether manual or automatic scoring
is best (4). For instance, while manual scoring using an eyepiece
micrometre to measure tail length is permitted, image analysis is
recommended (11). The key point is that the method should be
consistent over a study or combination of studies. The method of
scoring is relevant if meta-analysis is planned and where the
absolute size of effect is important. It is important to avoid bias
in the identification of cells to measure comets (3). Cells with
large tails may overlap and thus may not be selected for
measurement which could violate the assumptions underlying
statistical tests that the cells represent a random sample.

Three measures of DNA migration are commonly used: tail
length, tail moment and % of the DNA in tail (% tail DNA).
Metrics on tail or head length and moment are measured in
arbitrary units and may vary from study to study or from
laboratory to laboratory. Tail length is considered unsatisfac-
tory as a measure because the length only increases at relatively
low damage levels and is sensitive to the background intensity
of the image analysis system which affects the criteria for
determining the end of the tail (3). Tail moment, an index
taking account both the migration of the genetic material and
the relative amount of DNA in the tail, can be calculated
a number of ways. The Olive tail moment, for instance, is the
product of the tail length and the % tail DNA. The % tail DNA
is a measure of the relative fluorescent intensity in the head and
tail (3). The % tail DNA values are constrained to a maximum
of 100 and a minimum of 0 with no variability at the extremes
and maximum variability at intermediate values such as 50%.

The % tail DNA has the advantage that it can be
‘standardized’ over studies while tail length and moment,
although consistent within a study, may not be comparable
across studies. There is a increasing emphasis on the use of the
% tail DNA as the preferred metric or the primary end point (12)
and it was recognized as the most suitable primary end point at
the International Workshop on Genotoxicity Test Procedures at
San Francisco in 2005 (4). Hartmann et al. (11), for instance, in
describing the various measures suggest that ‘there is much to
recommend the use of per cent DNA in tail’. Relative tail
intensity (the % tail DNA) was linearly related to DNA damage
over a wide range of damage and is related to DNA break
frequency. Collins (3) viewed % tail DNA as the most useful
measure because it covered a wide range of damage (from 0 to
100%), was independent of the threshold settings of the image
analysis program used and gave some ‘feel’ for what the comet
looked like. In contrast, tail moment was not linearly related to
dose and did not provide an indication of what the comet looked
like. One complication with % tail DNA is that the presence of
zero values would complicate statistical analysis. Collins (3),
however, suggests that a check of whether cells are in
satisfactory condition for the assay is that untreated control
cells should have a background level of breaks (i.e. �10% DNA
in tail) and there are suggestions that negative control cells
should have between 10 and 20% DNA in tail which would
obviate statistical problems.

Other variations on the measures made include ‘comet
moments’ (13) and ‘tail inertia’(14). Bowden et al. (15) devel-
oped a ‘tail profile’ which identifies more DNA damage than
measured by the tail moment. They derived a ‘profile plot’,
a visual representation of a series of comets on a slide, which could
identify features in the data that were not otherwise apparent.

An alternative scoring system is to classify DNA migration
data using a five-category classification scheme (0, no damage
to 4, almost all the DNA in the tail). The system is manual and

relies on a subjective assessment based upon comparisons with
standard images. Collins (3) illustrates the five classes (0–4).
Each grade is equivalent to �20% band on the % tail DNA
score. The scores for a sample of 100 comets from a slide can
be combined to provide an overall score for the slide on an
arbitrary score from 0 to 400. This score shows close agreement
with scores based upon % tail DNA (3).

Comet cells can also be categorized as responder or non-
responder cells based upon the degree of damage and the pro-
portion of responder cells on a slide then used as the measure of
damage. Altman and Royston (16), however, point to the costs
of dichotomizing continuous variables and that dichotomizing
at the median is comparable with losing a third of the data.

Comparisons of results with different comet end points may
be useful. Lee and Steiner, in the context of environmental
studies, suggest the use of both tail moment and % tail DNA
data in the analysis (17). Other data collected in comet assay are
measures of cell toxicity, damage or viability and information
on the percentage of ‘hedgehogs’ (cells with a small or non-
existent head and large, diffuse tails). These data are not usually
included in the formal statistical analysis of the comet measures
but are important for an assessment of the quality of the study.

Experimental unit

The concept of the experimental unit is fundamental to the
statistical analysis of designed experiments. Misspecification of
the experimental unit can lead to serious misinterpretation of
the statistical analysis. The US National Institute of Standards
and Technology defines the experimental unit as ‘the entity to
which a specific treatment combination is applied’, the US
Food and Drug Administration as ‘the standard subject to
which a treatment is applied and a measurement is made’.
More precisely, it is the smallest amount of experimental
material that can be randomly assigned to a treatment.

Both the animal (6) and the culture in in vitro studies (11)
have been clearly identified as the experimental unit (Figure 1).
In some protocols, cells may be scored from a number of slides
and a summary statistic for the slide may be used in the
analysis. It is possible that there may be appreciable variability
between slides and this may need to be taken into account in
the statistical analysis.

The individual cell may be the smallest unit which can be
measured but cells from the same animal or culture are all
assigned to the same treatment and repeated measures taken
from the same experimental unit are likely to be autocorrelated
or more similar to one another than two cells each taken from
different samples. The degree of similarity is measured by the
intra-class correlation (ICC). The ICC compares the within-
group variance with the between-group variance and is
calculated as r2w=r

2
w þ r2

b from the estimates derived from
the analysis of variance (ANOVA) table.

There is a need with in vitro designs to ensure that there is
adequate replication with the culture having a similar ‘role’ as
the experimental unit to the animal in the in vivo test (Figure 2).
There may be differences between cultures, between sub-
cultures within a culture and between cells within a subculture.
Any analysis needs to take into account these different levels of
variability otherwise ‘hidden’ levels of variability can distort
the estimates of variability and lead to errors in interpretation.

An in vitro design where each of a series of subcultures
receives a different treatment and the cells within the subculture
are treated as the experimental unit in the analysis may lead to
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significant but artifactual results such as apparent non-dose-
related effects (Figure 2c). (A similar ex vivo design with single
subcultures per treatment has the same problem.) These
small but significant differences between subcultures probably
represent their underlying variability rather than a true treat-
ment effect. The more cells that are measured the more likely
a significant difference will be detected. An experiment with
replicate subcultures will provide a valid estimate of subculture
variability and a valid, if low power, test of the treatments for
that ‘specific’ culture (Figure 2b). For power calculations,
replication of cultures is needed for an estimate of the variability
across cultures.

Common to all, experimental studies should be the standard
design features of randomization, replication and blocking
together aimed at reducing biases and managing uncontrollable
variables. Examples include randomization of the position of
slides on platforms, the use of electrophoretic runs as blocks
and the blind scoring of cells.

Within sample distributions

Many distributions of comet measures (e.g. % tail DNA) within
a sample (intra-sample) from a culture or animal are not
normally distributed but rather may be asymmetric, skewed,
bi- or multi-modal, a mixture of different distributions or just
idiosyncratic especially if an administered compound has
caused some DNA damage. Some of the end points may
include many small or zero values plus some extreme values.
Finding any ‘best’ measure may be difficult if the distribution
is not simple. In the case of normally distributed data, the
‘central value’ can be described by the mean and the spread by
the ‘standard deviation’ (SD) but description of the distribution
may be difficult if a number of parameters are needed to
explain the distribution. In these cases, it is unlikely that

a single statistical distribution will be able to describe the
distribution and any single measure will capture only part of
the information in the sample data and may be unrepresentative
of any actual value.

Various ‘statistics’ have been suggested to represent the
sample. For instance, the 90th and 95th percentiles have been
suggested because they ‘capture’ the upper tail of the dis-
tribution. (However, for a precise estimate, this may require
large numbers of cells—more than the 50 cells per slide often
measured.) Values of the mean, median and 75th percentile are
usually highly correlated.

Duez et al. (18) noted that the heterogeneity of the
distribution curves of comet measures made the use of standard
parametric and non-parametric methods difficult because
assumptions underlying them were violated. They suggested
using either the median or 75% percentile of the sample in
subsequent analyses. They concluded that a trend analysis on
medians of the samples was satisfactory. They also noted that
non-parametric tests such as the Kruskal–Wallis and Mann–
Whitney tests were oversensitive in detecting small differences
between replicate samples and were not suitable for use in
detecting genotoxic effects.

Data can be transformed to try to make the distribution of the
data conform to normality. The logarithmic transformation has
the convenient property that back transformation (taking
antilogs) to biologically meaningful values is easier than with
other transformations. The problem of the logarithm of zero
values can be overcome by the addition of small positive
values (such as 0.001) to the data. It is important to appreciate,
though, that while a transformation may correct one violation,
say normality, it can result in another, such as heterogeneity
of variances. The logarithmic transformation is a special case
from the family of Box–Cox power transformations. The
optimum value for the power term in the transformation can be

Fig. 1. Hierarchical/nested designs. Schematic diagram of hierarchical/nested designs of (a) in vivo comet assay and (b) in vitro comet assay showing experimental
design with replicate animals or culture in each of four treatment groups, replicate slides from each experimental unit and 50 cells scored per slide (9). Wiklund and
Agurell (27) recommended designs with 50 cells from three slides per culture and either four or five animals per group or two or three cultures per treatment group in
in vitro studies.
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Fig. 2. In vitro comet assay designs. (a) Replicate cultures (cultures treated as blocks) providing a measure of inter-culture variability. (b) Replicate subculture
providing estimates of variability for comparisons within a specific culture. (c) Design with no replication of subcultures. This is vulnerable to inter-subculture
variability if the cells are treated as the experimental unit. The effect of any variability in subcultures is confounded with any treatment effects leading potentially to
artifactual results. The effect is magnified as the number of cells scored increases.
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derived from an analysis of the data sets using a range of values
for the power term (19).

In the case of % tail DNA which is measured on a scale from
0 to 100%, the data may be suitable for transformation by a
logistic or arcsin transformation. Collins et al. (20), for instance,
suggested the use of either an angular or arcsin transformation or
the use of generalized linear models with binomial error
distribution and a logit link function.

A number of probability distributions have been proposed
for modelling the distributions. These include the Weibull,
exponential, logistic, normal, log-normal and log-logistic distri-
butions (21). Others investigated include the Poisson, beta,
gamma, Erlang and Weibull (22). Debon et al. (23) suggest the
use of the sum of two Gaussian (normal) curves.

Ejchart and Sadlej-Sosnowska (22) found that the Weibull
distribution was the best fit to data from an in vitro dose–
response study. The Weibull is widely used in other fields, such
as to model the failure of mechanical components, and can be
characterized by two parameters relating to the shape (a) and
scale (b) of the distribution which both increased with in-
creasing dose. Ejchart and Sadlej-Sosnowska argued that
changes in the values of these parameters would, therefore,
be evidence for genotoxicity and suggested using simulations
to derive CIs for the estimates (22).

Tice et al. (6) suggested the use of the H statistic as
a measure of the migration patterns among cells within
a sample. H, the coefficient of dispersion, is calculated as the
variance/mean and is sometimes referred to as Fisher’s coef-
ficient of dispersion or the variance–mean ratio. In the case of
quantitative measures, H is equivalent to the coefficient of
variation (CV) times the SD. The larger the CV, the larger the
value of H. One problem with H is that it can be susceptible to
one or a small number of outliers. The coefficient of dis-
tribution is also used to see if data are distributed according to
a Poisson distribution where H 5 1. Values of H . 1 suggest
over-dispersion of the data.

The fit of the data to a distribution has often been tested
using a goodness of fit statistic such as the Kolmogorov–
Smirnov test. However, problems can arise in the interpretation
of a goodness of fit test as the null hypothesis that the data fit
a normal distribution is likely to be rejected when the sample
size is large simply because real data are unlikely to be
a perfectly distributed. Duez et al. (18) found that another test
for normality, the Shapiro–Wilks test, was very sensitive for
detecting non-normality of untransformed and log-transformed
tail length and tail moment when applied to samples of 100
cells. A similar issue arises with tests of the assumptions of
equal variances. Care is, therefore, needed to avoid ‘trawling’
for a best distribution. The finding that data ‘conform’ to
a particular distribution does not mean that this distribution is
the ‘correct’ one. There should be some biological basis for the
choice of a distribution.

In practice, concerns about the assumptions underlying the
ANOVA methodology are, in decreasing order of concern:
independence, equal (homogeneous) variances and normality
(24). Of these, independence is by far the most important,
while the ANOVA is robust enough to conduct when the
within-group variances differ by a factor of two (some even say
five) and where normality is a minor violation (24).

Complications arising from the complex distribution of
comet end points may be in part avoided because of the
implications of the central limit theorem. While the original
distribution of a set of data may not be normally distributed, the

distribution of the means of random samples from the distri-
bution will be approximately normal, particularly as the sample
size increases. Median values for a slide may, therefore, represent
data which are amenable to standard statistical analyses.

Suggested approaches for statistical analysis

Currently, there is no consensus on standard statistical methods
for the analysis of comet data (6). Ideally, if a series of related
studies are planned then a standard method of statistical
analysis should be used for the analysis and interpretation of
the data. Different laboratories using different statistical methods
may result in different interpretations of results particularly if the
criteria for a positive result are based upon statistical significance
using each laboratory’s favoured method.

In practice, however, comet assay data should be basically
straightforward to analyse with the exception that the measures
of damage to the cells in a sample have a complex distribution
especially if there has been an effect of the chemical. As
discussed above, there is probably no simple statistical/
mathematical distribution that would explain the observed dis-
tributions and this makes statistical analysis using the indi-
vidual cell scores difficult. On the other hand, analyses
concentrating on a single measure from each animal (the
experimental unit) may provide robust results which, with care,
can be interpreted satisfactorily. Duez et al. (18) has listed
some of the standard methods available.

Statistical analysis can be carried out by using parametric
approaches such as ANOVA techniques which reduce, in the
special case of two groups, to one of a range of t-tests based
upon the degree of variability in the two groups. ANOVA
methods, part of the wider general linear model (GLM)
approach, can be used to further explore the difference within
a group of means by specific contrasts. Some contrasts have
clearly defined hypotheses such as tests for linear and quadratic
trends in a dose–response experiment. More sophisticated
designs and analyses move from a traditional hypothesis testing
approach into a modelling methodology where estimates are
derived for various model components and attempts made to
identify the best fitting and hopefully the most predictive model.

Non-parametric methods shadow the simpler parametric
tests: the Mann–Whitney, the t-test; the Kruskal–Wallis, the
one-way ANOVA and the Jonckheere–Terpstra trend test, the
linear dose–response trend test. Non-parametric tests are
slightly less powerful than their parametric equivalents but
give potentially a more accurate Type I error rate when the
assumptions underlying parametric tests are violated. (A Type I
error is the risk of rejecting the null hypothesis in a statistical
test when, in fact, it is true.) Importantly, the non-parametric
tests may be distribution free but are not assumption free, so
are probably as vulnerable, if not more so, to differences in the
distributions between the groups. Non-parametric tests aim to
ensure that the correct Type I error rates are maintained but are
less suitable for more complex designs, estimation and model
fitting. The distribution of the comet end point can create
complications in finding an appropriate transformation of the
data and the assumptions underlying parametric analyses may
be challenged even if not violated. Small sample sizes (e.g. 4 or
5 units per group) also mean that comparisons using non-
parametric tests may have low power even when there are quite
large treatment effects.

Qualitative data (present/absent) can be analysed by chi-
square and Fisher exact tests of 2 � 2 tables and chi-square
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tests of difference between groups and trends which mirror
ANOVA approaches but with appreciably less power. The
choice of experimental unit for inclusion in the analysis is,
however, a critical concern for the appropriate analysis and
interpretation of such tests.

One-sided tests are directional and slightly increase the power
of a statistical analysis. There is an argument that the statistical
test should be two sided if results where either a decrease or an
increase in DNA migration could be envisaged.

The ANOVA, especially the one-way ANOVA is an
‘omnibus’ test of an overall difference between means. A
more ‘targeted’ hypothesis is of a linear or other specified dose
response which also has more power. A linear effect may be
found even when there is no significant difference between
means as a consequence of the increased power of the specific
hypothesis test compared with the general hypothesis. This
should be borne in mind when the ‘rule’ that no further testing
should be carried out between groups if the overall hypothesis
test of a difference between means is not significant in the
ANOVA is applied. Another argument against formalized
analyses is the complications that arise if an experiment is only
declared satisfactory if there is a significant difference between
the positive and negative control groups but which does not
take into account the complications that can arise from small
sample sizes and unequal variances as a result of variable
responses in the positive control group.

Multiple comparison approaches are sometimes used to address
concerns that when a large number of comparisons (e.g. between
pairs of treatments) are made, there is a risk of Type 1 errors
(declaring results significant when they are not.) A common
method often used in the analysis of comet assay (and other
toxicological) data is Dunnett’s test (25). This is a specialized
multiple comparison test that allows a comparison of a single
control group with all other groups. This test was specifically
designed to adjust the error rate when multiple comparisons are
made between a number of new treatments and the standard
treatment group with the objective of avoiding wrongly replacing
a satisfactory standard treatment with a new treatment which just
happened to perform better by chance in a single particular study.
Dunnett’s test aims to keep the experiment-wise (or family-wise
in contrast to the individual error rate) error rate at 0.05 which
means that on average only 1 in 20 experiments will reach a false
conclusion. The implication is that testing is done at a more
conservative a value so in effect lowering the power of the design
but without taking any account of any other structure in the design.
A multiple comparison procedure in effect ‘dampens’ down the
number of significant results reported. There are a number of
different multiple comparison methods available, each addressing
a different aspect of the comparisons across a range of treatments
and with different properties. The Bonferroni correction, for
instance, is a highly conservative approach which carries out
hypothesis testing at the a/n level where n is the number of
multiple comparisons being made. The use of multiple comparison
methods, however, remains controversial, with some statisticians
arguing against their indiscriminate use (26).

Hierarchical design, random effect models and generalized
linear modelling

The comet assay is a hierarchical or nested design with animals
(in the in vivo design) and cultures (in the in vitro design)
within doses, a number of slides from each animal or culture
and a number of cells measured per slide (Figure 1). The

statistical models underlying these designs go under various
names (hierarchical linear models, multilevel models, mixed-
effects models, random-effects models, random coefficient
regression models and covariance components models). The
models make use of information on the various levels of
variability in the design but are quite complex, need sophis-
ticated software and can be complicated to interpret and explain.
Their advantage is that they are able to provide estimates for
the variability at each level in the design and make use of
information at the cell level so increasing the power of the study
somewhat. However, if there is appreciable between animal or
culture variability, the extra power available may be small.
There is also the added difficulty that the variability between
cells within the same animal may have a complex distribution
which may be difficult to include in the model.

Wiklund and Agurell (27) and Verde et al. (21) provide
examples of more sophisticated statistical analyses where
attempts have been made to model both the variability between
samples and between cells within a sample based upon GLM
approaches. The GLM is a generalization of the ordinary least
squares approach (used in the ANOVA, analysis of covariance
and multivariate ANOVA) and is a special case of the
generalized linear model (GLZ). The generalized linear
model is a unified method used to extend the GLM approach
to incorporate responses other than those based upon the
normal distribution. Nelder and Wedderburn (28) developed
the concept of the GLZ which placed all the commonly
used models, binomial, logit, probit and normal in a unified
framework. Generalized linear modelling uses a link function
which can be considered equivalent to the transformations
applied in traditional analyses and provides the ‘link’
between the linear part of the model and the random part
of the model.

The GLZ can be further generalized. Generalized linear
mixed models (GLMM) are an extension of the GLZ with
random effects and is also called a generalized linear mixed-
effects model. Verde et al. (21) used it in their modelling
approach to the analysis of comet data. Generalized estimating
equations (GEE) are another extension of GLZ involving
algorithmic adjustments used to model longitudinal or clustered
data and to estimate regression coefficients. GEE use a ‘work-
ing’ correlation matrix as an approximation of the true within
subject/unit correlation for each unit (29).

Wiklund and Agurell (27) provide concise recommendations
regarding the design and statistical analysis of comet assay
studies. They used simulations to identify the optimum number
of cultures or animals, slides per culture or animal and cells per
slide based upon data derived from studies performed in house.
They investigated the performance of a number of standard
statistical methods on a range of scenarios of in vitro and in
vivo study results. The non-parametric tests investigated (the
Kruskal–Wallis and Jonckheere–Terpstra trend test) were
generally less efficient than the corresponding parametric tests.
The use of parametric linear trend tests was recommended as
they generally performed better that the corresponding overall
tests for treatment differences especially when the dose–
response pattern was monotonic. They noted that the 90th
percentile is not affected by extreme outliers but focuses on the
upper part of distribution. They recommended, however, using
the mean of the log-transformed tail moment data and the 90th
percentile of the log-transformed tail length as the end point in
the analysis. They cautioned strongly against the use of the
untransformed mean tail moment. They recommended designs
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with 50 cells from three slides per culture and either four or
five animals per group or two or three cultures per treatment
group in in vitro studies. They suggested analysis based
upon a GLM/ANOVA approach which included factors for
treatment groups, experimental conditions such as electropho-
resis runs and cultures or animals. Similar simulation ap-
proaches could be applied to the use of % tail DNA as the
end point.

Verde et al. modelled tail moment data using GLMM (20).
They recommend choosing from a set of distributions that give
the best fit to the data. The approach is based upon the use of
survival models and the distributions derived from the family
of accelerated life models to develop a two-level hierarchical
model of within and between individual tail moment measures.
Treatment effects were assessed by the construction of ‘pro-
bability over damage’ graph which visualized the degree of
damage produced by the treatment by plotting the probability
of the damage to a cell being greater than a certain value.

A number of statistical software packages such as SPSS,
Genstat and SAS as well as R (a public domain open source
statistical analysis software language) have procedures for
carrying out analyses using some of these models. For instance,
the SAS procedures PROC GLM and MIXED can be used for
the analysis of comet data. PROC GLM is the SAS procedure
for analysing data using a GLM approach. PROC GLM is able
to handle repeated measures by including various postulated
correlation structures in the analysis. SAS PROC MIXED was
developed for the analysis of designs where there is a mix of
both random and fixed effects. It is based upon approaches
developed by Wolfinger (30) and is more powerful but more
complex to use than PROC GLM. The general linear mixed
model in PROC MIXED directly models the covariance
structure so dealing with problems that might arise from
inefficient analyses and incorrect conclusions being drawn
from ignoring the problems associated with the correlations
between repeated measures.

Control groups

Two comparisons using control groups are relevant: compar-
isons between the concurrent positive and negative control
groups and comparisons of the concurrent controls with
historical control information. An important ethical issue
relates to the purpose of the positive controls in in vivo studies
and how big a group size is needed. As discussed earlier,
formal statistical tests may fail to show statistical significance if
the variability of response of the positive control group is large
and sample sizes are small.

It is often an expectation, such as meeting a requirement for
entry to a validation study, that a laboratory can show evidence
of a successful record of carrying out the assay by providing
historical control data. The compilation of such data sets can be
developed as part of a formal quality control (QC) process
using the range of statistical methods available (31). Assess-
ment against these criteria could be useful both for the
laboratory and the regulator. The development of Bayesian
approaches to make the optimum use of historical control data
is one potential development.

Hauschke et al. (32) argue for an approach which relates the
classification of a result as positive or negative to the size of
the response in the positive control group. This involves
determining the maximum safe dose by incorporating a
biologically meaningful threshold value (f) which is fraction

of the difference between the positive control and vehicle
control responses

Dose–response modelling

The number of doses to include in a comet assay remains an
important consideration with the need to ensure non-linear
dose–response curves (or downturns) can be detected and posi-
tive responses at multiple dose levels reinforcing the biological
relevance of results (4). Specific contrasts based upon linear,
quadratic and more complex dose–response relationships can
be formally tested using the ANOVA approach. Experimental
designs to investigate dose–response relationships should in-
clude an adequate number of doses over the region of interest
and adequate replication and reproduction.

In the context of dose–response modelling, it is important to
note that the identification of a dose as a no-observable effect
level (NOEL) using a statistical test does not mean that
a threshold exists or that effects do not occur below this level.
The NOEL classifies a result into an effect/no-effect dicho-
tomy. This may be wrongly interpreted as implying that the
response is either non-linear or thresholded. The NOEL
detectable in an experiment is a function of the statistical test
applied to the data. The larger the experiment carried out, the
smaller the difference between a negative control and a treated
group that it is capable of detecting as statistically significant.
In contrast a small, poorly designed study with appreciable
variability is liable to fail to detect effects and thus provide
estimates of NOEL above the level where effects should be
detected. This is a well-known limitation of the NOEL
methodology (33).

Design of experiment approaches

The comet assay continues to develop and now exists in
a number of forms. Further extension of the methodology
makes the assay a good candidate for systematic development
using a design of experiment (DOE) methodology. This
approach finds multiple factors (and interactions between
them) that affect results appreciably and identifies the levels of
these factors which optimize results while minimizing the
number of experiments that need to be run and the material
used (34,35). Such an approach is ideal for areas such as of
protocol development where there are a number of factors that
may affect results. DOE methodology builds on the work of
R. A. Fisher on factorial designs in the 1920s in which Fisher
demonstrated that DOE approaches (systematic and simulta-
neous variation of experimental conditions) is both econom-
ically and scientifically more efficient than the traditional one
factor at a time approach. The DOE approach is now widely
used in industrial settings such as the manufacturing and
chemical industries to identify optimal conditions for processes
to operate under. DOE methodology could, for instance, be an
efficient approach to identifying optimum allocation or use of
resources in in vitro studies where there are a number of
different factors where conditions could be varied affecting cell
preparation, assay running and visualization. Developments of
high-throughput methods capable of investigating large
numbers of samples for applications such as REACH screening
are an area where the use of DOE methodology could be
extremely effective. The use of DOE methods to optimize new
or modify comet protocols such as the development of standard

Comet statistics

177

D
ow

nloaded from
 https://academ

ic.oup.com
/m

utage/article/23/3/171/1238391 by guest on 16 August 2022



protocols for validation studies could also be a productive
approach.

Power and sample sizes

A key concept in the design of a study is a determination of the
number of experimental units needed. A range of software
packages, web-based resources, books and formulae are
available for estimating sample sizes for a given power and
vice versa. Power is defined as the probability of detecting an
effect of a specified size if it is present and is related to the
Type II or beta error associated with hypothesis testing. Most
formulations represent very simple situations: comparison of
two groups for differences in means or proportions. More
complex hypotheses such as tests for specific dose–response
relationships are more difficult as the power depends very much
on the specific hypothesis being tested. Statistical packages such
as nQuery Advisor have options for sample sizing for more
complex designs and hypotheses. An alternative approach to the
more complex problem is simulation and modelling of the
design (36).

In the case of quantitative end points, four things are needed
to determine sample sizes: the significance level the hypothesis
will be tested at, the chosen power (conventionally 80 or 90%),
the size of effect considered biologically important and some
measure of the variability of the experimental units (e.g. the
between-unit SD). Note that the sample size is for the number
of experimental units. If the power for a specific sample size is
required, then the sample size is entered instead. Ignoring strata
in the design can lead to serious misinterpretation.

For qualitative end points, besides the alpha and beta levels,
the control and treated proportions are needed to obtain sample
sizes. The sample sizes needed are likely to be appreciably
larger with qualitative compared with quantitative end points
because of the lower information content of qualitative data.

The background level is important in determining the size of
effect that can be detected by a design. This level affects how
easy it is to detect absolute as opposed to relative changes. For
instance, with a low background level, a small absolute diff-
erence may equate to a large-fold change while with a high
background level a large absolute difference will equate to
a smaller fold change. This becomes important, for instance, if
the negative control group was to have little or no variability
for a measure like % tail DNA.

The challenge in power and sample size calculation for the
comet assay is to identify what size of effect can be considered
biologically important and to have appropriate measures of the
inter-experimental unit SD. One source of such measures is
from previous studies or data from the literature. For example
(37), an estimate of the inter-individual SD of % tail DNA of
comets from buccal cells from seven healthy, young female
non-smokers was 6.1% [taken from day 0; Figure 5 of
reference (37)]. As another example, Frenzilli et al. (38)
reported mean (SD) comet lengths in leukocytes of 16.5 (4.6)
for 39 children from Pisa, 26.3 (9.6) for 16 healthy and 16.0
(4.3) in 27 tumour-affected children from Belarus.

It is important to remember than any power/sample size
calculation is only an approximation and depends upon the
assumptions, particularly of the inter-experimental unit (SD).
The simple calculations are also based upon the assumption
that a t-test will be appropriate for the analysis. If the treated
animals are appreciably more variable, then the sample sizes
can be underestimates depending upon the nature of the

response. Alternatively, in some case where there is an ap-
preciable difference in variability between the groups, a trans-
formation may be appropriate and may result in the power being
retained. Power calculations are possible with log-transformed
data.

An alternative approach is based upon the work of Cohen (39).
He developed the concept of expressing the size of differences
based upon effect sizes in SD units calling 0.2 small, 0.5 medium
and 0.8 large effects. A simple rule of thumb is that for a two-
sided test of two group means at 80% power, that for every
halving of the effect size in SD units the sample size in each group
increases by �4 (Table I).

Although the approach is useful and widely applied in
circumstances where information of biologically important
differences and variability is difficult to obtain, it is not without
its critics (40).

Figure 3 shows the implications of reducing sample sizes
below n 5 5. Based upon standard methods, a two-sided test
with n 5 5 has 80 and 90% power to detect difference of 2.02
and 2.35 SD units, respectively, in a two-sample t-test. The
comparable values for sample sizes of n 5 4 are difference of

Table I. Table of sample sizes for various effect sizes

Effect size (SD units) Power

80% 90%

0.125 1006 1346
0.25 253 338
0.5 64 86
1.0 17 23
2.0 6 7
4.0 3 3

Calculations derived from nQuery Advisor and based upon sample sizes for
comparison between two groups with within-group SD of 1 unit. Two-sided
test with a 5 0.05.
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Fig. 3. Size of effect detectable with 80% (closed circles and continuous line)
and 90% (open circles and dashed line) for a two-sample comparison in a two-
sided test with a 5 0.05. Effect size measured in SD units. The figure shows
the implications of reducing sample sizes below n 5 5. Based upon standard
methods a two-sided test with n 5 5 has 80 and 90% power to detect
difference of 2.02 and 2.35 SD units, respectively, in a two-sample t-test. The
comparable values for sample sizes of n 5 4 are difference of 2.38 and 2.77
SD units and the graph shows the appreciable information gain from an extra
experimental unit when sample sizes are small.
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2.38 and 2.77 SD units and the graph shows the appreciable
information gain from an extra experimental unit when sample
sizes are small.

Hierarchical designs of the comet assay share features in
common with hierarchical or cluster randomized controlled
trials. These are common in studies involving interventions in
units such as general practices or schools where individuals
within the same practice or school show similarities (41). In the
case of hierarchical or cluster designs, the sample sizes depend
upon both n, the number of clusters, and m, the number of
individuals within a cluster. Sample sizes for cluster trials make
use of the ICC coefficient. If the ICC is zero, then the
observations are basically independent but as the ICC gets
bigger the standard errors get larger. When the ICC is large,
then large numbers of individuals will be needed in the clusters
to obtain satisfactory power (42–44).

A failure to take clustering into account results in the
standard errors of the estimates being underestimated and,
potentially, leading to false conclusions. Even small ICC
values can have big effects on the size of an estimate. An ICC
of just 0.05 with cluster sizes (m) of 20 per group can lead to
a 30% underestimation of the true precision of an estimate
which leads to an increase risks of Type I error (29). The
variance of the estimate increases by (1 þ (m � 1)q) (called the
design effect) where m is the number per unit. Table II
illustrates the effective sample sizes associated with different
ICCs.

Criteria for a positive result

Guidelines explicitly refer to the identification for regulatory
purposes of a positive or negative result to categorize the result
as genotoxic or non-genotoxic and that an equivocal result may
require further testing. The criteria needed for a definitive result
are usually not explicitly defined. In some cases, there is
reference to the need for a statistically significant result.
However, statistical significance is not a measure of the size
effect alone but depends upon a number of other factors
especially the size of the experiment and the variability of the
material. Different laboratories may also use their own
statistical methods to define a positive.

The criteria for a positive result should, therefore, be defined.
Given the limitations of basing this solely on statistical
significance, the criteria should be related to the size of the
difference, for instance, in the mean % tail DNA between
a negative control and treated group. This approach has the

advantage that the study can be explicitly designed to have
sufficient power to detect differences large enough to be
considered biologically important.

It should always be remembered that dichotomization of
results into genotoxic or non-genotoxic leads to a loss of
information with the consequence that some weak mutagens
will be called negative and disagreements will occur when
different criteria are used by different laboratories.

Replication and repeat experiments

Repeating experiments with adequate replication within them is
usually considered good experimental practice. The terminol-
ogy is not always standardized but a repeat experiment can be
considered a separate experiment while replication occurs
within an experiment. It is not always clear just how
independent repeat experiments are or whether they should
be based upon the same or a different design. A further con-
sideration is whether the conditions for a repeat experiment
should be decided on before or after the first study. Replicate
samples should, in general, be prepared. Replicates can be con-
sidered as either biological and/or technical replicates. Biological
replicates are samples taken from different independent experi-
mental units such as subjects, animals or cultures. Technical
replicates are repeat samples taken from the same animal or
culture. They may be replicates from the same unit or from
replicate samples from the same experimental unit. The need
for biological replication should take precedence over the need
for technical replication.

Pooled samples may sometimes be used. However, samples
should not be pooled if information on individual experimental
units is important and information is required on within-group
variability in in vivo studies. Pooling samples may make an
experiment technically easier because there are an adequate
number of cells for analysis but this advantage is offset by the
loss of any measure of inter-sample variability, the loss of
statistical power and the potential for outliers with idiosyncratic
responses masking the effects seen in the other units.

The OECD guidelines (45) note that equivocal results should
be clarified by further testing preferably using a modification of
experimental conditions. A follow-up study may fail to confirm
initial results because of the ‘regression to the mean’ effect.
This is because a study that generated a follow-up experiment
may be at the upper end of possible results and the results of
subsequent studies are likely to approach the true but smaller
effect.

Validation studies

Validation is the process by which the reliability and accuracy
of a procedure are established for a specific purpose (46).
Reliability is specifically defined as a measure of the degree to
which a test method can be performed reproducibly within and
among laboratories over time. It is assessed by calculating
intra- and inter-laboratory reproducibility and intra-laboratory
repeatability. Accuracy is defined as the closeness of agreement
between a test method result and an accepted reference value (46).

In an inter-comparison of the comet assay, there are three
different levels of potential variability: between laboratories,
between experiments carried out in the same laboratory and
within an experiment. (This latter can be broken down further
into variability between animals/cultures within the same dose
level and between cell within the same animal/culture.) The

Table II. Effective sample sizes associated with different ICCs

No. of cells
per unit (m)

No. of
experimental
units (n)

Intra-class
correlation
coefficient (q)

Design
effect

Effective
sample
size

100 5 0.05 5.95 84.0
100 5 0.1 10.90 45.9
100 5 0.25 25.75 19.4
100 5 0.5 50.50 9.9

The effective sample size is 5 mn/DE. The design effect (DE) is 1 þ (m � 1)q
and is the ratio of the variance of the measure when the nested or clustered
nature of the data is accounted for to the variation when it is not. It is also called
the Variance Inflation Factor because it provides an estimate of how much an
estimate based upon ignoring the clustering needs to be increased to allow for
the clustering.
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criteria for acceptable levels of variability are a scientific rather
than a purely statistical issue. These criteria should be defined
before the study begins.

The International Standards Organization and the American
Society for Testing and Materials have developed guidelines
for the investigation of repeatability and reproducibility of
inter-laboratory comparisons (47,48). Repeatability is defined
as the closeness of agreement under identical conditions in the
same laboratory using the same conditions (equivalent to
a ‘best case’) (measured by R and the within-laboratory
consistency statistic k) and reproducibility the variability
between laboratories using the same methods (equivalent to
a ‘realistic case’) (measured by r and the between-laboratory
consistency statistic h). Guidelines for conducting the analysis
are provided (including issues such as inclusion or exclusion of
potential outlier laboratories).

Qualitative agreement between laboratories should be
expected for potent positive control chemicals. Determining
acceptable levels of variability in a quantitative measure is
different from whether a particular individual experiment is
significant or not. The criteria need to be defined for assessing
how much variability in results using reference chemicals is
acceptable.

An alternative definition of accuracy is the proportion of
correct outcomes of a test method (46). In validation studies,
dichotomization (genotoxic/non-genotoxic) allows the calcula-
tion of diagnostic statistics such as sensitivity and specificity.
Large sample sizes (of chemicals) are needed for precise esti-
mates or small CIs. These CIs are usually derived by standard
methods based upon the binomial distribution. The choice of
the cut-off point for dichotomization can be investigated using
receiver operator curves but any choice will be a trade-off
because some misclassifications will occur so that sensitivity
and specificity estimates will be less than one. The prevalence
of the classes and criteria for how good the agreement or
concordance needs to be to claim that the method is validated
need to be predetermined. Scientific judgement is required on
how big a sample of chemicals is needed for adequate precision
(i.e. width of CIs) of the diagnostic statistics.

Observational and biomonitoring studies

The comet assay is used in biomonitoring and molecular
epidemiological studies. Observational studies differ from experi-
mental studies, in that there is, in effect, no choice of who is
allocated to the control or exposed group. Individuals are
observed unlike experimental studies where animals or cultures
are randomly assigned to the treatments. In randomized trials,
the design explicitly tries to ensure that the observed effects are
not a consequence of some differences in the baseline charac-
teristics of the groups. However, in non-randomized human
biomonitoring studies such as case–control and cohort studies,
the groups being compared are likely to differ with respect to
a large number of potentially uncontrolled confounding factors
such as sex, age, weight, diet, cigarette smoking, alcohol
consumption, lifestyle and genetic polymorphisms. These
factors may be unequally distributed between the control or
reference group and the exposed groups. Bias in the selection
of the groups is also a major risk for such studies.

Observational studies produce methodological problems but
can, if carefully done, generate important results not easily
otherwise obtained. Considerable care is needed, however, with
such studies to ensure that the problems of confounding and

bias do not influence results. Standard statistical methods such
as ANOVA make assumptions about randomization which are
unlikely to hold for observational studies.

If confounding cannot be avoided, identifying the causal
relationships involving the factors becomes more difficult.
There are several more or less complex statistical methods for
dealing with confounding including techniques such as
matching, stratification and regression. Modelling approaches
such as multiple regression, logistic regression and Cox’ s
proportional hazard modelling are often used. It is important
that the report of the study shows if and how adjustments for
confounding have been done. However, M}ullner et al. (49)
reported that there is often inadequate reporting in papers of the
statistical methods used to adjust for confounding factors.
Recommendations for reporting such approaches are given by
Campbell (29).

Collins (3) pointed to the need in human epidemiological
studies to carry out power calculation to establish group sizes
needed and that pilot studies might be needed to estimate intra-
and inter-individual variability in the end point under in-
vestigation.

Analyses reporting correlations between variables are often
reported although it is widely appreciated that an association
identified by a significant correlation does not imply causation.
In some cases, correlations are reported when a regression
analysis would be more appropriate as there are clearly
dependent and independent variables. Large sample sizes can
result in small but statistically significant correlations but if
many end points are measured, large numbers of correlations
can be calculated with a serious risk of Type 1 errors: with 10
end points there are 45 possible correlations. Similar multiple
comparison problem can arise when subgroup analyses are
carried out particularly post hoc analyses. Consequently,
considerable care should be exercised in the interpretation of
significant correlation coefficients.

A large number of factors can affect the quality of biological
samples before their analysis. Guidelines on sample collection
and processing of samples should be followed to prevent these
factors introducing systematic biases into data derived from the
analyses of the samples (50).

Recommendations

There is nothing especially unusual about the statistical issues
associated with the comet assay. Lovell et al. (9) provided a set
of recommendations for the statistical analysis of comet data.
Experimental design is the critical factor for a successful study.
There is unlikely to be a single correct statistical analysis for all
designs but there are a number of potentially wrong analyses. If
the results of using different statistical approaches produce
qualitatively different interpretations, then it is sensible to
investigate the data set and identify the cause of the differences.

Identifying the experimental unit is crucial. The experimen-
tal unit is the unit to which treatments are randomized. In an in
vivo study, this is the animal while in in vitro studies it is the
culture. Statistical analyses which treat the cell rather than the
animal or culture as the experimental unit can produce incorrect
results with a risk of overestimating the statistical significance
of a result.

A clearly defined end point for the comet should be used.
The % tail DNA is a suitable end point for analysis and has the
advantage of a defined scale from 0 to 100% which is
comparable across studies. Statistical analysis of other end
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points e.g. tail moment and tail length is possible although they
are less directly comparable across studies. Data sets where
interpretation of the statistical analyses would differ apprecia-
bly between different end points should be investigated to
identify the cause of the divergence. Transformation such as
the use of logarithms of the end points may be appropriate and,
in the case of the % tail DNA, a logistic transformation may be
appropriate.

Graphical presentation of results is useful but should not
supersede formal statistical methods. Histograms should be
presented of the individual data with ‘bins’ representing the
number of cells falling in particular ranges. Care should be
taken in comparisons of the shifts across histograms because
the measures within the same sample will show autocorrela-
tions so that apparent visual evidence for treatment effects must
be critically examined.

Summary statistics for the distribution of cells within
a sample can be used for statistical analysis. These could be
the mean, the log mean and various percentiles such as the
median, 75th and 90th percentile. The more cells measured per
unit the more accurate the estimate of these statistics. However,
sample sizes of 50 cells per slide are probably satisfactory as
the central limit theorem begins to apply when the number of
cells is .30. If appreciable variability exists between duplicate
slides, then increasing the number of slides would be sensible.
A summary statistic like the median value for the slide may be
a suitable metric for the statistical analysis.

Statistical analysis could be carried out on the multiple end
points collected in the comet assay to see if there are alternative
combinations of the measures that could be used in the analysis
of a study. Multivariate analysis (MVA) methods could be
applied to the data collected on individual comet shape to see
whether this could provide extra information for use in the
interpretation of results. Similarly, MVA could be used to
investigate cells from a sample to see if there is an optimal
representative end point for the sample. Estimates of the ICC
coefficients could be calculated to help in designing studies with
the optimum number of observations at each level in the design.

Statistical tests to identify suitable distributions of the data
have limited use because a significant lack of fit may be more
a consequence of the sample size than the degree of departure
from a distribution.

There should be increased emphasis on the estimate of the
size of an effect and its CI rather than solely concentrating on
the statistical significance level (P-value) determined in a spe-
cific experiment using a particular statistical test. The criteria
for a positive effect should be based upon size of effect
produced that would be considered biologically important. This
should form the basis for power and sample size calculations
for study designs. A retrospective analysis of data could be
carried out to explore potential improvements to statistical
analyses and to provide estimates for sample size/power
calculations.

A suitable background incidence of % tail DNA should be
identified for the negative control group in a study. The
implications for the power of the study design of using
different expected levels of % tail DNA in negative control
samples should be explored.

Historical control data may help in the interpretation of
results but should not preclude the need for concurrent control
data to be collected in the study. The use of QC statistics
should be considered for the monitoring and assessment of
historical control data.

A range of parametric tests such as t-tests and ANOVA and
their non-parametric equivalents are appropriate for analysing
simple experiments. Tests of dose-related effects such as linear
trends can be used and will have higher statistical power. Care
should be taken using tests of proportions such as chi-square
and Fisher exact tests because these tests assume independence
of the data and can seriously overestimate significance levels if
the cell is wrongly considered the experimental unit.

Statistical analyses based upon GLMs/ANOVA methodol-
ogy provide a general approach to the analysis. The continuing
development of more sophisticated methods making use of the
hierarchical structure such as random effect modelling (e.g.
GEE) may also be suitable approaches. Methods for the
effective reporting and interpretation of these more sophisti-
cated analyses will need to be developed. DOE approaches
should be considered in the context of developing new or
modified protocols for the comet assay.

Biomonitoring studies are observational rather than exper-
imental studies. They are thus vulnerable to the problems of
bias and confounding. Especial care is needed in the analysis
and interpretation of such studies to avoid drawing incorrect
conclusions.

In validation studies, acceptable levels of intra- and inter-
laboratory variability should be defined to help assess the
reliability of an assay. An adequate number of chemicals are
needed to get precise estimates of the accuracy of the method.

Considerable care is needed in the design of in vitro studies
to ensure that there is adequate replication of cultures. A failure
to take into account hidden variability can result in the
overestimation of effects such as the identification of artifactual
non-dose-related effects as a consequence of differences being
detected between subcultures rather than treatments.
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