
Statistical Learning and Sequential

Prediction

Alexander Rakhlin and Karthik Sridharan

DRAFT

October 16, 2014

Contents

I Introduction 7

1 Introduction 8

2 An Appetizer: A Bit of Bit Prediction 12

3 What are the Learning Problems? 18

4 Example: Linear Regression 34

II Theory 43

5 Minimax Formulation of Learning Problems 44

5.1 Minimax Basics . 45

5.2 Defining Minimax Values for Learning Problems 48

5.3 No Free Lunch Theorems . 55

5.3.1 Statistical Learning and Nonparametric Regression 55

5.3.2 Sequential Prediction with Individual Sequences 56

6 Learnability, Oracle Inequalities, Model Selection, and the Bias-Variance

Trade-off 58

6.1 Statistical Learning . 58

6.2 Sequential Prediction . 64

6.3 Remarks . 65

1

7 Stochastic processes, Empirical processes, Martingales, Tree Processes 67

7.1 Motivation . 67

7.1.1 Statistical Learning . 67

7.1.2 Sequential Prediction . 68

7.2 Defining Stochastic Processes . 69

7.3 Application to Learning . 73

7.4 Symmetrization . 74

7.5 Rademacher Averages . 79

7.6 Skolemization . 81

7.7 ... Back to Learning . 81

8 Example: Learning Thresholds 82

8.1 Statistical Learning . 82

8.2 Separable (Realizable) Case . 84

8.3 Noise Conditions . 85

8.4 Prediction of Individual Sequences . 86

8.5 Discussion . 88

9 Maximal Inequalities 90

9.1 Finite Class Lemmas . 90

10 Example: Linear Classes 94

11 Statistical Learning: Classification 97

11.1 From Finite to Infinite Classes: First Attempt 97

11.2 From Finite to Infinite Classes: Second Attempt 98

11.3 The Growth Function and the VC Dimension 99

12 Statistical Learning: Real-Valued Functions 104

12.1 Covering Numbers . 104

12.2 Chaining Technique and the Dudley Entropy Integral 108

12.3 Example: Nondecreasing Functions . 110

12.4 Improved Bounds for Classification . 112

12.5 Combinatorial Parameters . 113

12.6 Contraction . 117

12.7 Discussion . 118

12.8 Supplementary Material: Back to the Rademacher 119

2

12.9 Supplementary Material: Lower Bound on the Minimax Value 121

13 Sequential Prediction: Classification 123

13.1 From Finite to Infinite Classes: First Attempt 124

13.2 From Finite to Infinite Classes: Second Attempt 126

13.3 The Zero Cover and the Littlestone’s Dimension 128

13.4 Removing the Indicator Loss, or Fun Rotations with Trees 132

13.5 The End of the Story . 134

14 Sequential Prediction: Real-Valued Functions 136

14.1 Covering Numbers . 136

14.2 Chaining with Trees . 138

14.3 Combinatorial Parameters . 140

14.4 Contraction . 145

14.5 Lower Bounds . 146

15 Examples: Complexity of Linear and Kernel Classes, Neural Networks 148

15.1 Prediction with Linear Classes . 149

15.2 Kernel Methods . 149

15.3 Neural Networks . 151

15.4 Discussion . 153

16 Large Margin Theory for Classification 155

17 Regression with Square Loss: From Regret to Nonparametric Estimation 156

III Algorithms 157

18 Algorithms for Sequential Prediction: Finite Classes 158

18.1 The Halving Algorithm . 159

18.2 The Exponential Weights Algorithm . 159

19 Algorithms for Sequential Prediction: Binary Classification with Infinite

Classes 164

19.1 Halving Algorithm with Margin . 164

19.2 The Perceptron Algorithm . 166

19.3 The Winnow Algorithm . 167

3

20 Algorithms for Online Convex Optimization 168

20.1 Online Linear Optimization . 168

20.2 Gradient Descent . 169

20.3 Follow the Regularized Leader and Mirror Descent 170

20.4 From Linear to Convex Functions . 173

21 Example: Binary Sequence Prediction and the Mind Reading Machine 174

21.1 Prediction with Expert Advice . 175

21.2 Blackwell’s method . 175

21.3 Follow the Regularized Leader . 178

21.4 Discussion . 180

21.5 Can we derive an algorithm for bit prediction? 181

21.6 The Mind Reading Machine . 184

22 Algorithmic Framework for Sequential Prediction 186

22.1 Relaxations . 188

22.1.1 Follow the Regularized Leader / Dual Averaging 191

22.1.2 Exponential Weights . 193

22.2 Supervised Learning . 195

23 Algorithms Based on Random Playout, and Follow the Perturbed Leader 197

23.1 The Magic of Randomization . 197

23.2 Linear Loss . 198

23.2.1 Example: Follow the Perturbed Leader on the Simplex 200

23.2.2 Example: Follow the Perturbed Leader on Euclidean Balls . . . 202

23.2.3 Proof of Lemma 23.2 . 203

23.3 Supervised Learning . 204

24 Algorithms for Fixed Design 205

24.1 ... And the Tree Disappears . 205

24.2 Static Experts . 207

24.3 Social Learning / Network Prediction 208

24.4 Matrix Completion / Netflix Problem 208

25 Adaptive Algorithms 209

25.1 Adaptive Relaxations . 209

25.2 Example: Bit Prediction from Lecture 1 210

4

25.3 Adaptive Gradient Descent . 211

IV Extensions 212

26 The Minimax Theorem 213

26.1 When the Minimax Theorem Does Not Hold 214

26.2 The Minimax Theorem and Regret Minimization 215

26.3 Proof of a Minimax Theorem Using Exponential Weights 217

26.4 More Examples . 219

26.5 Sufficient Conditions for Weak Compactness 220

27 Two Proofs of Blackwell’s Approachability Theorem 222

27.1 Blackwell’s vector-valued generalization and the original proof 223

27.2 A non-constructive proof . 226

27.3 Discussion . 228

27.4 Algorithm Based on Relaxations: Potential-Based Approachability . . 228

28 From Sequential to Statistical Learning: Relationship Between Values and

Online-to-Batch 229

28.1 Relating the Values . 229

28.2 Online to Batch Conversion . 231

29 Sequential Prediction: Better Bounds for Predictable Sequences 233

29.1 Full Information Methods . 235

29.2 Learning The Predictable Processes . 238

29.3 Follow the Perturbed Leader Method 240

29.4 A General Framework of Stochastic, Smoothed, and Constrained Ad-

versaries . 240

30 Sequential Prediction: Competing With Strategies 241

30.1 Bounding the Value with History Trees 242

30.2 Static Experts . 246

30.3 Covering Numbers and Combinatorial Parameters 247

30.4 Monotonic Experts . 248

30.5 Compression and Sufficient Statistics 251

31 Localized Analysis and Fast Rates. Local Rademacher Complexities 252

5

A Appendix 253

6

Part I

Introduction

7

1
Introduction

This course will focus on theoretical aspects of Statistical Learning and Sequential

Prediction. Until recently, these two subjects have been treated separately within

the learning community. The course will follow a unified approach to analyzing

learning in both scenarios. To make this happen, we shall bring together ideas

from probability and statistics, game theory, algorithms, and optimization. It is

this blend of ideas that makes the subject interesting for us, and we hope to convey

the excitement. We shall try to make the course as self-contained as possible, and

pointers to additional readings will be provided whenever necessary. Our target

audience is graduate students with a solid background in probability and linear

algebra.

“Learning” can be very loosely defined as the “ability to improve performance

after observing data”. Over the past two decades, there has been an explosion of

both applied and theoretical work on machine learning. Applications of learning

methods are ubiquitous: they include systems for face detection and face recogni-

tion, prediction of stock markets and weather patterns, speech recognition, learn-

ing user’s search preferences, placement of relevant ads, and much more. The

success of these applications has been paralleled by a well-developed theory. We

shall call this latter branch of machine learning – “learning theory”.

Why should one care about machine learning? The reality is that computers

are now an integral part of our lives. Many tasks that we would like computers to

perform cannot be hard-coded. The programs have to adapt. The goal then is to

encode, for a particular application, as much of the domain-specific knowledge

as needed, and leave enough flexibility for the system to improve upon observing

data.

8

It is well-recognized that there is no single learning algorithm that will work

universally (we will make this statement mathematically precise). It is not our

goal to make computers learn everything at once: each application requires a lot

of prior knowledge from the expert. The goal of learning theory then is to develop

general guidelines and algorithms, and prove guarantees about learning perfor-

mance under various natural assumptions.

A number of interesting learning models have been studied in the literature,

and a glance at the proceedings of a learning conference can easily overwhelm

a newcomer. Hence, we start this course by describing a few of the frameworks.

We feel that the differences and similarities between various learning scenarios

become more apparent once viewed as minimax problems. The minimax frame-

work also makes it clear where the “prior knowledge” of the practitioner should be

encoded. We will emphasize the minimax approach throughout the course.

What separates Learning from Statistics? Both look at data and have similar

goals. Indeed, nowadays it is difficult to draw a line. Let us briefly sketch a few his-

torical differences. According to [55], in the 1960’s it became apparent that clas-

sical statistical methods are poorly suited for certain prediction tasks, especially

those characterized by high dimensionality. Parametric statistics, as developed by

Fisher, worked well if the statistician could model the underlying process generat-

ing the data. However, for many interesting problems (e.g. face detection, char-

acter recognition) the associated high-dimensional modeling problem was found

to be intractable computationally, and the analysis given by classical statistics –

inadequate. In order to avoid making assumptions on the data-generating mech-

anism, a new distribution-free approach was suggested. The goal within the ma-

chine learning community has therefore shifted from being model-centric to be-

ing algorithm-centric. An interested reader is referred to the (somewhat extreme)

point of view of Breiman [13] for more discussion on the two cultures, but let us

say that in the past 10 years both communities benefited from sharing of ideas. In

the next lecture, we shall make the distinctions concrete by formulating the goals

of nonparametric estimation and statistical learning as minimax problems. Fur-

ther in the course, we will show that these goals are not as different as it might first

appear.

Over the past 30 years, the development of Statistical Learning Theory has

been intertwined with the study of uniform Laws of Large Numbers. The the-

ory provided an understanding of the inherent complexities of distribution-free

9

learning, as well as finite sample and data-dependent guarantees. Besides the

well-established theory, the algorithms developed by the learning community (e.g.

Support Vector Machines and AdaBoost) are often considered to be state-of-the art

methods for prediction problems. These methods adhere to the philosophy that,

for instance, for classification problems one should not model the distributions

but rather model the decision boundary. Arguably, this accounts for success of

many learning methods, with the downside that interpretability of the results is

often more difficult. The term “learning” itself is a legacy of the field’s strong con-

nection to computer-driven problems, and points to the fact that the goal is not

necessarily that of “estimating the true parameter”, but rather that of improving

performance with more data.

In the past decade, research in learning theory has been shifting to sequen-

tial problems, with a focus on relaxing any distributional assumptions on the ob-

served sequences. A rigorous analysis of sequential problems is a large part of this

course. Interestingly, most research on sequential prediction (or, online learning)

has been algorithmic: given a problem, one would present a method and prove

a guarantee for its performance. In this course, we present a thorough study of

inherent complexities of sequential prediction. The goal is to develop it in com-

plete parallel with the classical results of Statistical Learning Theory. As an added

(and unexpected!) bonus, the online learning problem will give us an algorithmic

toolkit for attacking problems in Statistical Learning.

We start the course by presenting a fun bit prediction problem. We then pro-

ceed to list in a rather informal way a few different learning settings, some of which

are not “learning” per se, but quite closely related. We will not cover all these in

the course, but it is good to see the breadth of problems anyway. In the follow-

ing lecture, we will go through some of these problems once again and will look at

them through the lens of minimax. As we go through the various settings, we will

point out three key aspects: (a) how data are generated; (b) how the performance

is measured; and (c) where we place prior knowledge.

Before proceeding, let us mention that we will often make over-simplified state-

ments for the sake of clarity and conciseness. In particular, our definitions of re-

search areas (such as Statistical Learning) are bound to be more narrow than they

are. Finally, these lecture notes reflect a personal outlook and may have only a thin

intersection with the reality.1

1For a memorable collection of juicy quotes, one is advised to take a course with J. Michael

10

Notation: A set {z1, . . . , zt } is variably denoted by either z1:t or z t . A t-fold product

of Z is denoted by Zt . The set {1, . . . ,n} of natural numbers is denoted by [n], and

the set of all distributions on some set A by ∆(A).

Deviating from the standard convention, we sometimes denote random vari-

ables by lower-case letters, but we do so only if no confusion can arise. This is

done for the purposes of making long equations appear more tidy.

Expectation with respect to a random variable Z with distribution p is denoted

by EZ or EZ∼p . We caution that in the literature EZ is sometimes used to denote

a conditional expectation; our notation is more convenient for the problems we

have in mind.

The inner product between two vectors is written variably as a ·b, or 〈a,b〉, or

as aTb. The set of all functions from X to Y is denoted by YX. The unit Lp ball in

R
d will be denoted by Bd

p and the unit ℓp ball by Bp .

Steele.

11

2
An Appetizer: A Bit of Bit Prediction

We start our journey by describing the simplest possible scenario – that of “learn-

ing” with binary-valued data. We put “learning” in quotes simply because various

research communities use this term for different objectives. We will now describe

several such objectives with the aim of drawing parallels between them later in the

course. Granted, the first three questions we ask are trivial, but the last one is not

– so read to the end!

What can be simpler than the Bernoulli distribution? Suppose we observe a

sample y1, . . . , yn drawn i.i.d. from such a distribution with an unknown bias p ∈
(0,1). The goal of estimation is to provide a guess of the population parameter p

based on these data. Any kindergartner (raised in a Frequentist family) will happily

tell us that a reasonable estimate of p is the empirical proportion of ones

ȳn ,
1

n

n∑
t=1

yi ,

while a child from a Bayesian upbringing will likely integrate over a prior and add

a couple of extra 0’s and 1’s to regularize the solution for small n. What can we

say about the quality of ȳn as an estimate of p? From the Central Limit Theorem

(CLT), we know that1 |p − ȳn | =OP

(
n−1/2

)
, and in particular

E|p − ȳn | =O(n−1/2) .

For the prediction scenario, suppose again that we are given y1, . . . , yn drawn

independently from the Bernoulli distribution with an unknown bias p, yet the

1For a sequence of random variables y1, . . . , yn , . . . and positive numbers a1, . . . , an , . . ., the nota-

tion yn = OP (an) means that for any δ> 0, there exists an R > 0 such that P
(
|yn | > Ran

)
< δ for all

n.

12

aim is to make a good binary forecast ŷ ∈ {0,1} rather than to estimate p. The

objective is the performance of the forecast on an independent draw y from the

same distribution as measured by the indicator of a mistake I
{

ŷ 6= y
}
. Since y is

a random variable itself, the decision ŷ incurs the expected cost of EI
{

ŷ 6= y
}
. We

may compare this cost to the cost of the best decision

EI
{

ŷ 6= y
}
− min

y ′∈{0,1}
EI

{
y ′ 6= y

}

and observe that the minimum is attained at y∗ = I
{

p ≥ 1/2
}

and equal to

min
y ′∈{0,1}

EI
{

y ′ 6= y
}
= min{p,1−p}.

Also note that the minimum can only be calculated with the knowledge of p. How-

ever, since ȳn is a good estimate of p, we can approximate the minimizer quite

well. It is rather clear that we should predict with the majority vote ŷ = I
{

ȳn ≥ 1/2
}
.

Why?

Our third problem is that of sequential prediction with i.i.d. data. Suppose

we observe the i.i.d. Bernoulli draws y1, . . . , yn , . . . in a stream. At each time instant

t , having observed y1, . . . , yt−1, we are tasked with making the t-th prediction. It

shouldn’t come as a surprise that by going with the majority vote

ŷ t = I
{

ȳt−1 ≥ 1/2
}

once again, the average prediction cost

1

n

n∑
t=1

EI
{

ŷ t 6= yt

}
−min{p,1−p}

can be shown to be O(n−1/2) once again. Another powerful statement can be de-

duced from the strong Law of Large Numbers (LLN):

limsup
n→∞

(
1

n

n∑
t=1

I
{

ŷ t 6= yt

}
−min{ȳn ,1− ȳn}

)
≤ 0 almost surely . (2.1)

That is to say, for almost all sequences (under the probabilistic model), the average

number of mistakes is (asymptotically) no more than the smallest between the

proportion of zeros and proportion of ones in the sequence.

We now leave the comfortable world of i.i.d. data where all the aforementioned

results immediately followed from CLT or LLN. The fourth setting is that of predic-

tion of individual sequences. Let us start with what should be a surprising state-

ment:

13

There exists a method for predicting the sequence that guarantees (2.1)

without any assumptions on the way the sequence is generated.

Ponder for a minute on the meaning of this statement. It says that whenever the

proportion of 1’s (or 0’s) in the sequence is, say, 70%, we should be able to correctly

predict at least roughly 70% of the bits. It is not obvious that such a strategy even

exists without any assumptions on the generative process of the data!

It should be observed that the method of predicting I
{

ȳt−1 ≥ 1/2
}

at step t no

longer works. In particular, it fails on the alternating sequence 0,1,0,1, . . . since

I
{

ȳt−1 ≥ 1/2
}
= 1− yt . Such an unfortunate sequence can be found for any deter-

ministic algorithm: simply let yt be the opposite of what the algorithm outputs

given y1, . . . , yt−1. The only remaining possibility is to search for a randomized al-

gorithm. The “almost sure” part of (2.1) will thus be with respect to algorithm’s

randomization, while the sequences are now deterministic. The roles have magi-

cally switched!

Let qt ∈ [0,1] denote the bias of the distribution from which we draw the ran-

domized prediction ŷ t . Let us present two methods that achieve the goal (2.1).

First method is defined with respect to a horizon n, which is subsequently doubled

upon reaching (the details will be provided later), and the distribution is defined

as

qt =
exp

{
−n−1/2 ∑t−1

s=1(1− ys)
}

exp
{
−n−1/2

∑t−1
s=1 ys

}
+exp

{
−n−1/2

∑t−1
s=1(1− ys)

}

We do not expect that this randomized strategy means anything to the reader at

this point. And if it does – the next one should not. Here is a method due to D.

Blackwell. Let Lt−1 be the point in [0,1]2 with coordinates (ȳt−1, c̄t−1) where c̄t−1 =
1− 1

t−1

∑t−1
s=1 I

{
ŷ s 6= ys

}
is the proportion of correct predictions of the algorithm thus

far. If Lt−1 is in the left or the right of the four triangles composing [0,1]2 (see figure

below), choose qt to be 0 or 1; otherwise draw a line from the center through Lt−1

and let qt be the value when this line intersects the x-axis. Why does this method

work? Does it come from some principled way of solving such problems? We defer

the explanation of the method to Chapter 21, but, meanwhile, we hope that these

brief algorithmic sketches piqued readers’ interest.

Foreshadowing the developments in the later part of the course, let us ask one

more question: what other statements of the form (2.1) can we expect to get in the

individual sequence framework? For instance, for which functions φn : {0,1}n →R

14

Lt−1

(0, 0)

(1, 1)

qt

can one hope to find a prediction method that achieves

∀y1, . . . , yn , E

[
1

n

n∑
t=1

I
{

ŷ t 6= yt

}]
≤φn(y1, . . . , yn) (2.2)

In other words, what types of functions of the sequence upper bound the aver-

age number of mistakes an algorithm makes on that sequence? Of course, the

smaller we can make this function, the better. But clearly φn ≡ 0 is an impossi-

bly difficult task (forcing us to make zero mistakes on any sequence) and φn ≡ 1

is a trivial requirement achieved by any method. Hence, φn should be somewhere

in-between. If we guess the bit by flipping a coin, the expected number of mis-

takes is 1/2, and thus φn ≡ 1/2 is feasible too. What about the more interesting

(non-constant) functions?

Let’s only focus only on those functions which are “stable” with respect to a

coordinate flip:

|φn(a)−φn(a′)| ≤ 1/n for all a, a′ ∈ {0,1}n with ‖a −a′‖1 = 1 (2.3)

For such functions, the answer (due to T. Cover) might come as a surprise:

Proposition 2.1. For a stable (in the sense of (2.3)) function φn , there exists an al-

gorithm achieving (2.2) for all sequences if and only if

Eφn(y1, . . . , yn) ≥ 1/2 (2.4)

where the expectation is under the uniform distribution on {0,1}n .

Let us show the easy direction. Fix an algorithm that enjoys (2.2). Suppose

now that y1, . . . , yn are taken to be unbiased coin flips. Since the decision ŷ t is

made before yt is revealed, the expected loss is clearly EI
{

ŷ t 6= yt

}
= 1/2 for any

15

algorithm. To guarantee (2.2), it better be the case that (2.4) holds, as claimed. The

other direction is rather unexpected: for anyφn with the aforementioned property,

there exists an algorithm that enjoys (2.2). We will show this in Section 25.2.

The above characterization is quite remarkable, as we only need to lower bound

the expected value under the uniform distribution to ensure existence of an al-

gorithm. Roughly speaking, the characterization says that a function φn can be

smaller than 1/2 for some sequences, but it then must be compensated by allow-

ing for more errors on other sequences. This opens up the possibility of targeting

those sequences we expect to observe in the particular application. If we can en-

gineer a function φn that is small on those instances, the prediction algorithm will

do well in practice. Of course, if we do have the knowledge that the sequence is

i.i.d., we may simply choose min{ȳn ,1− ȳn} as the benchmark. The ability to get

good performance for non-i.i.d. sequences appears to be a powerful statement,

and it foreshadows the development in these notes. We refer the reader to the

exercises below to gain more intuition about the possible choices of φn .

So far, we have considered prediction of binary sequences in a “vacuum”: the

problem has little to do with any phenomenon that we might want to study in the

real world. While it served as a playground for the introduction of several con-

cepts, such a prediction problem is not completely satisfying. One typically has

some side information and prior knowledge about the situation, and these consid-

erations will indeed give rise to the complexity and applicability of the methods

discussed in the course.

At this point, we hope that the reader has more questions than answers. Where

do these prediction algorithms come from? How does one develop them in a more

complicated situation? Why doesn’t the simple algorithm from the i.i.d. world

work? Is there a real difference in terms of learning rates between the individual

sequence prediction and prediction with i.i.d. data? How far can the individual

sequence setting be pushed in terms of applicability? These and many more ques-

tions will be addressed in the course.

We strongly encourage you to attempt these problems. If you solved all three,

you are in a good shape for the course!

PExercise 2.1 (⋆). From the above characterization of φn , conclude existence

16

of an algorithm that guarantees

E

[
1

n

n∑
t=1

I
{

ŷ t 6= yt

}]
≤ min{ȳn ,1− ȳn}+C n−1/2

for any sequence. Can we take any C > 0? Find a good (or nearly best) con-

stant C . (Hint: consult known bounds on lengths of random walks). Observe that

Emin{ȳn ,1− ȳn} by itself is less than 1/2 and thus the necessary additional term is

a compensation for “fluctuations”.

PExercise 2.2 (⋆⋆). Suppose that for each i = 1, . . . ,k, φi
n : {0,1}n → R satisfies

(2.4) as well as the stability condition (2.3). What penalty should we add to

min
i∈{1,...,k}

φi
n

to make sure the new “best of k” complexity satisfies (2.4)? Verify (2.3) for the new

function and conclude that there must exist an algorithm that behaves not much

worse than the given k prediction algorithms. (Hint: Use the stability property

(2.3) together with McDiarmid inequality (see Appendix, Lemma A.1) to conclude

subgaussian tails for |Eφi
n −φi

n |. Use union bound and integrate the tails to arrive

at the answer.)

PExercise 2.3 (⋆⋆⋆). Suppose you have a hunch that the sequence y1, . . . , yn

you will encounter can be partitioned into k parts with an imbalance of 0’s and 1’s

within each part, but the endpoints of the segments are not known a priori. How

can we leverage this information to get a better prediction method (if your hunch

is correct)? Design a function φn that captures this prior knowledge for the best

possible k-partition. Using the characterization above, prove that there exists an

algorithm with overall prediction accuracy bounded by this function. (Hint: first,

assume the partition is known and find the appropriate function that compensates

for fluctuations within each interval.)

17

3
What are the Learning Problems?

Statistical Learning

Let us start with the so-called supervised learning. Within this setting, data are

represented by pairs of input and output (also called predictor and response) vari-

ables, belonging to some sets X and Y, respectively. A training set, or a batch of

data, will be denoted by

{(Xt , Yt)}n
t=1 = (X

n , Y
n) ∈Xn ×Yn .

It is after observing this set that we hope to learn something about the relationship

between elements of X and Y.

For instance, Xt can be a high-dimensional vector of gene expression for the t-

th patient and Yt can stand for the presence or absence of diabetes. Such classifica-

tion problems focus on binary “labels” Y= {0,1}. Regression, on the other hand, fo-

cuses on real-valued outputs, while structured prediction is concerned with more

complex spaces of outcomes. The main (though not exclusive) goal of Statistical

Learning is in prediction; that is, “learning” is equated with the ability to better

predict the y-variable from the x-variable after observing the training data.

More specifically, Statistical Learning will refer to the following set of assump-

tions. We posit that the relationship between x and y is encoded by a fixed un-

known distribution PX×Y . The observed data {(Xt , Yt)}n
t=1 are assumed to be drawn

i.i.d. from this distribution. Furthermore, when time comes to evaluate our learn-

ing “progress”, it is assumed that the world “will not be different”. That is, our

predictions are compared against the same fixed distribution from which the ini-

tial data were sampled (or observed). Both the i.i.d. and the “stationary world”

18

assumptions are rather strong, and we will spend the second part of this course on

relaxing them.

So, how is our learning performance evaluated? Suppose, after observing the

data, we can summarize the “learned” relationship between X and Y via a hypoth-

esis ŷ : X→ Y. We may think of ŷ as a “decision” from the set D of all functions

mapping inputs to outputs. We then consider the average error in predicting Y

from X based on this decision:

E
[
ℓ(ŷ , (X, Y))

∣∣ X
n , Y

n
]

(3.1)

where the expectation is over the random draw of (X, Y) according to PX×Y and

independently of (X
n , Y

n), and ℓ :D×(X×Y) →R is some loss function which mea-

sures the gravity of the mistake. As an example, if we are learning to classify spam

emails, the measure of performance is how well we predict the spam label of an

email drawn at random from the population of all emails.

If Y= {0,1}, we typically consider the indicator loss

ℓ(ŷ , (X, Y)) = I
{

ŷ(X) 6= Y
}

or its surrogates (defined in later lectures), and for regression problems it is com-

mon to study the square loss

ℓ(ŷ , (X, Y)) = (ŷ(X)− Y)2

and the absolute loss

ℓ(ŷ , (X, Y)) = |ŷ(X)− Y|.

Since the training data {(Xt , Yt)}n
t=1 are assumed to be a random draw, these

examples might be misleading by chance. In this case, we should not penalize the

learner. Indeed, a more reasonable goal is to ask that the average

Eℓ(ŷ , (X, Y)) = E
{
E
{
ℓ(ŷ , (X, Y))

∣∣ X
n , Y

n
}}

(3.2)

of (3.1) under the draw of training data be small. Alternatively, the goal might be to

show that (3.1) is small with high probability. It is important to keep in mind that ŷ

is random, as it depends on the data. We will not write this dependence explicitly,

but the hat should remind us of the fact.

If PX×Y were known, finding ŷ that minimizes Eℓ(ŷ , (X, Y)) would be a matter

of numerical optimization. But then there is no learning to be done, as the sought

19

after relationship between X and Y is known. It is crucial that the distribution is

not available to us and the only information we receive about it is through the

training sample. What do we do then? Well, as stated, the task of producing ŷ with

a small error (3.2) is unsurmountable in general. Indeed, we mentioned that there

is no universal learning method, and we just asked for exactly that! Assumptions

or prior knowledge are needed.

Where do we encode this prior knowledge about the task? This is where Sta-

tistical Learning (historically) splits from classical Statistics. The latter would typ-

ically posit a particular form of the distribution PX×Y , called a statistical model.

The goal is then to estimate the parameters of the model. Of course, one can make

predictions based on these estimates, and we discuss this (plug-in) approach later.

However, it is not necessary to perform the estimation step if the end-goal is pre-

diction. Indeed, it can be shown quite easily (see [21]) that the goal of estimation

is at least as hard as the goal of prediction for the problem of classification. For

regression, the relationship between estimation and prediction with squared loss

amounts to the study of well-specified and misspecified models and will be dis-

cussed in the course.

In contrast to the modeling approach, the classical work of Vapnik and Chervo-

nenkis is of a distribution-free nature. That is, the prior knowledge does not enter

in the form of an assumption on PX×Y , and our learning method should be “suc-

cessful” for all distributions. Instead, practitioner’s “inductive bias” is realized by

selecting a classF of hypothesesX→Y that is believed to explain well the relation-

ship between the variables. There is not much room to circumvent the problem

of no universal learning algorithm! Requiring the method to be successful for all

distributions means that the very notion of “successful” has to include the prior

knowledge F. A natural requirement is to minimize the loss relative to F:

Eℓ(ŷ , (X, Y))− inf
f ∈F

Eℓ(f , (X, Y)) (3.3)

Such a performance metric is called regret, and the loss function downshifted by

the best in class F is called excess loss. Hence, “learning” is defined as the ability

to provide a summary ŷ : X → Y of the relationship between X and Y such that

the expected loss is competitive with the loss of the best “explanation” within the

class F. Generally, we do not require ŷ itself to lie in F, yet the learning algorithm

that produces ŷ will certainly depend on the benchmark set. We shall sometimes

call the class F the “comparator class” and the term we subtract off in (3.3) – the

20

“comparator term”. Such competitive framework is popular in a variety of fields

and presents an alternative to the modeling assumption.

It can be argued that the distribution-free formulation in (3.3) should be used

with a “growing” set F, and idea formalized by Structural Risk Minimization and

the method of sieves. A related idea is to estimate from data the parameters of F

itself. Such methods will be discussed in the lecture on model selection towards

the end of the course. In the next lecture, we will discuss at length the merits and

drawbacks of the distribution-free formulation. For further reading on Statistical

Learning Theory, we refer the reader to [12, 3, 38].

Let us also mention that independently of the developments by Vapnik and

Chervonenkis, a learning framework was introduced in 1984 by Valiant within the

computer science community. Importantly, the emphasis was made on polynomi-

ally computable learning methods, in the spirit of Theoretical Computer Science.

This field of Computational Learning Theory started as a distribution-dependent

(that is, non-distribution-free) study of classification. Fix a collection F of map-

pings X→ {0,1}. Suppose we can make a very strong prior knowledge assumption

that one of the functions in F in fact exactly realizes the dependence between X

and the label Y. Since (X, Y) is a draw from PX×Y , the assumption of

Y = f (X) for some f ∈F (3.4)

translates into the assumption that the conditional distribution PY|X=a = δ f (a). It

is then possible to characterize classes F for which the probability of error

P (ŷ(X) 6= f (X)) = E|ŷ(X)− f (X)| (3.5)

can be made small for some learning mechanism ŷ . This setting is termed real-

izable and forms the core of the original PAC (Probably Approximately Correct)

framework of Valiant [53]. Of course, this is not a distribution-free setting. It was

the papers of Haussler [25] and then Kearns et al [32] that extended the PAC frame-

work to be distribution-free (termed agnostic).

In an intermediate setting between realizable and agnostic, one assumes label

noise; that is, given X, the binary label Y is “often” equal to f (X), except for some

cross-over probability:

∃ f ∈F such that for any x ∈X, PY|X(Y 6= f (a)|X = a) < η< 1/2 (3.6)

This setting is very close to a modeling assumption made in Statistics, as discussed

below. Under the condition (3.6), the probability of error (3.5) is a reasonable

quantity to consider.

21

General Setting of Learning

Let us briefly mention a more general framework. Let us remove the assumption

that data are of the form X×Y and instead write it as some abstract set Z. This

setting includes the so-called unsupervised learning tasks such as clustering and

density estimation. Given the data {Zt }n
t=1, the learning method is asked to sum-

marize what it had learned by some element ŷ ∈D, yet we do not require D to be

a class of functions X→ Y, and instead treat it as an abstract set. The quality of

the prediction is assessed through a loss function ℓ : D×Z→ R, and we assume a

fixed unknown distribution PZ on Z. As before, the data are assumed to be an i.i.d.

sample from PZ, and the performance measure

Eℓ(ŷ , Z)

is evaluated under the random draw Z ∼ PZ.

The setting we described is almost too general. Indeed, the problem of finding

ŷ such that Eℓ(ŷ , Z) is small is considered in such areas as Statistical Decision The-

ory, Game Theory, and Stochastic Optimization. One can phrase many different

frameworks under any one of these umbrellas, and our aim is simply to make the

connections clear.

Nonparametric Regression

Nonparametric regression with fixed design assumes that the data {(Xt , Yt)}n
t=1 ∈

(X×Y)n consist of predictor-response pairs, where Xt ’s are fixed a priori (e.g. evenly

spaced on the interval) and Yt = f (Xt)+ ǫt , for independent zero-mean noise ǫt

and some function f : X → Y. For random design, we assume (as in Statistical

Learning Theory) that Xt ’s are random and i.i.d. from some marginal distribution

PX , either known or unknown to us. Then, given Xt , we assume Yt = f (Xt)+ǫt , and

this defines a joint distribution P
f

X×Y
= PX ×P

f

Y |X parametrized by f .

Given the data, let ŷ summarize what has been learned. In statistical language,

we construct an estimate ŷ of the unknown f parametrizing the distribution P
f

X×Y
.

The typical performance measure is the loss E(ŷ(X)− f (X))2 or some other p-norm.

Instead of integrating with respect to the marginal PX , the fixed-design setting

only measures (ŷ(X)− f (X))2 on the design points.

More generally, the notion of loss can be defined through the function ℓ : D×
F → R, such as some notion of a distance between functions or parameters [58].

22

The goal then is to ensure that

Eℓ(ŷ , f) = E
{
E
{
ℓ(ŷ , f)

∣∣ X
n , Y

n
}}

(3.7)

is small.

Clearly, the study of (3.7) needs to depend on properties of F, which embodies

the prior assumptions about the problem. This prior knowledge is encoded as a

distributional assumption on P
f

X×Y
in a similar way to the “label noise setting” of

PAC learning discussed above. In the next lecture, we will make the distinction

between this setting and Statistical Learning even more precise.

Of course, this simple sketch cannot capture the rich and interesting field of

nonparametric statistics. We refer to [52] and [57] for thorough and clear exposi-

tions. These books also study density estimation, which we briefly discuss next.

Density Estimation

Suppose that we observe i.i.d. data {Zt }n
t=1 ∈Z

n from a distribution P
f

Z
with a den-

sity f . The goal is to construct an estimate ŷ : Z→R of this unknown density. The

error of the estimate is measured by, for instance, the integrated mean squared

error (under the Lebesgue measure)

E

{∫
(ŷ(z)− f (z))2d z

}

or via the Kullback-Leibler divergence

Eℓ(ŷ , f) =
∫

f (z) log
f (z)

ŷ(z)
d z = E

{
log

f (Z)

ŷ(Z)

}
= E

{
(− log ŷ(Z))− (− log f (Z))

}
.

The KL divergence as a measure of quality of the estimator corresponds to a (nega-

tive) log lossℓ(f , z) =− log f (z) which is central to problems in information theory.

Once again, construction of optimal estimators depends on the particular char-

acteristics that are assumed about f , and these are often embodied via the distribution-

dependent assumption f ∈ F. The characteristics that lead to interesting state-

ments are often related to the smoothness of densities in F.

Summary: Let us discuss the main characteristics of the settings considered so

far. First, they all assume a probabilistic nature of data. Moreover, the probability

23

distribution is typically assumed to be fixed in time. An i.i.d. sample is assumed

to be available all at once as a batch, and the “performance” is assessed through ŷ

with respect to the unknown distribution.

We now move beyond these “static” scenarios. In sequential problems we typi-

cally “learn” continuously as we observe more and more data, and there is a greater

array of problems to consider. One important issue to look out for is whether the

performance is measured throughout the sequence or only at the end. Problems

also differ according to the impact the learner has through his actions. Yet another

aspect is the amount of information or feedback the learner receives. Indeed, se-

quential problems offers quite a number of new challenges and potential research

directions.

Universal Data Compression and Conditional Probabil-

ity Assignment

In this scenario, suppose that a stream of z1, z2, . . . is observed. For simplicity, sup-

pose that all zt take on values in a discrete set Z. There are two questions we can

ask: (1) how can we sequentially predict each zt having observed the prefix {zs}t−1
s=1?

and (2) how can we compress this sequence? It turns out that these two questions

are very closely related.

As in the setting of density estimation, suppose that the sequence is gener-

ated according to some distribution f on finite (or infinite) sequences in Zn (or

Z∞), with f in some given set of distributions F.1 Once again, F embodies our

assumption about the data-generating process, and the problem presented here

is distribution-dependent. Later, we will introduce the analogue of universal pre-

diction for individual sequences, where the prior knowledgeF will be moved to the

“comparator” in a way similar to distribution-free Statistical Learning.

So, how should we measure the quality of the “learner” in this sequential prob-

lem? Since Zt ’s are themselves random draws, we might observe unusual sequences,

and should not be penalized for not being able to predict them. Hence, the mea-

sure of performance should be an expectation over the possible sequences. On

1Note the slight abuse of the notation: previously, we have used P f do denote the distribution

on (X, Y) with the mean function f , then we used f to denote the unknown density of Z, and now

we use f to stand for the distribution itself. Hopefully, this should not cause much confusion.

24

each round, we can summarize what we learned so far from observing Z
t−1 via a

conditional distribution ŷ t ∈D=∆(Z) — hence the name “conditional probability

assignment”. A natural measure of error at time t is then the expected log-ratio

E

{
log

f (Z|Zt−1)

ŷ t (Z)

∣∣∣∣ Z
t−1

}

or some other notion of distance between the actual and the predicted distribu-

tion. When the mistakes are averaged over a finite-horizon time n, the measure of

performance becomes

1

n

n∑
t=1

E

{
log

f (Z|Zt−1)

ŷ t (Z)

∣∣∣∣ Z
t−1

}
=

1

n
E

{
log

f (Z
n)

ŷ(Zn)

}
, (3.8)

where ŷ can be thought of either as a joint distribution over sequences, or as a

collection of n conditional distributions for all possible prefixes. If data are i.i.d.,

the measure of performance becomes an averaged version of the one introduced

for density estimation with KL divergence.

There are two main approaches to ensuring that the expected loss in (3.8) is

small: (1) the plug-in approach involves estimating at each step the unknown dis-

tribution f ∈ F and using it to predict the next element of the sequence; (2) the

mixture approach involves a Bayesian-type averaging of all distributions in F. It

turns out that the second approach is superior, a fact that is known in statistics as

suboptimality of selectors, or suboptimality of plug-in rules. We refer the inter-

ested reader to the wonderful survey of Merhav and Feder [40]. In fact, the reader

will find that many of the questions asked in that paper are echoed (and some-

times answered) throughout the present manuscript.

Prediction of Individual Sequences

Let us discuss a general setting of sequential prediction, and then particularize it

to an array of problems considered within the fields of Statistics, Game Theory,

Information Theory, and Computer Science.

At an abstract level, suppose we observe a sequence z1, z2, . . . ∈ Z of data and

need to make decisions ŷ 1, ŷ 2, . . . ∈D on the fly. Suppose we would like to lift the

assumption that the sequence being observed is generated from some distribu-

tion from a given family, an assumption we made in the setting of universal loss-

less data compression. When we go to such a distribution-free setting for individ-

ual sequences, it actually no longer makes much sense to define per-round loss

25

as Eℓ(ŷ t , Z) with the expectation over Z according to some conditional distribu-

tion. In fact, let us assume that there is no distribution governing the evolution of

z1, z2, The sequence is then called individual2. This surprising twist of events

might be difficult for statisticians to digest, and we refer to the papers of Phil Dawid

on prequential statistics for more motivation. The (weak) prequential principle

states that “any criterion for assessing the agreement between Forecaster and Na-

ture should depend only on the actual observed sequences and not further on the

strategies which might have produced these” [20].

If there is only one sequence, then how do we evaluate learner’s performance?

A sensible way is to score learner’s instantaneous loss on round t by ℓ(ŷ t , zt),

where the decision ŷ t must be chosen on the basis of z t−1, but not zt . Averaging

over n, the overall measure of performance on the given sequence is

1

n

n∑
t=1

ℓ(ŷ t , zt). (3.9)

Just as in our earlier exposition on statistical learning, it is easy to show that mak-

ing the above expression small is an impossible goal even in simple situations.

Some prior knowledge is necessary, and two approaches can be taken to make the

problem reasonable. As we describe them below, notice that they echo the as-

sumptions of “correctness of the model” and the alternative competitive analysis

of statistical learning.

Assumption of Realizability Let us consider the supervised setting: Z = X×Y.

We make an assumption that the sequence z1, . . . , zn is only “in part” individual.

That is, the sequence x1, . . . , xn is indeed arbitrary, yet yt is given by yt = f (xt)

for some f ∈ F. Additional “label noise” assumption has also been considered in

the literature. Under the “realizability” assumption, the goal of minimizing (3.9) is

feasible, as will be discussed later in the course. However, a much richer setting is

the following.

Competitive Analysis This is the most studied setting, and the philosophy is in

a sense similar to that of going from distribution-dependent to distribution-free

2Strictly speaking, the term individual sequence, coming from information theory, refers to bi-

nary or finite-valued sequences. We use it more liberally for any sequences taking values in some

abstract set Z.

26

learning. Instead of assuming that some f ∈ F governs the evolution of the se-

quence, we push the assumption into the comparator term (the term we subtract

off):

Regret =
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt) (3.10)

That is, the average loss of the learner is judged by the yardstick, which is the best

fixed decision from the set F that we could have “played” for the n rounds. The

reader probably noticed that we started to use a game-theoretic lingo. Indeed, the

scenario has a very close relation to game theory.

More generally, we can define regret with respect to a set Π of strategies, where

each strategy π ∈Π is a sequence of mappings πt from the past to the set of deci-

sions F:

Regret =
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
π∈Π

1

n

n∑
t=1

ℓ(πt (z t−1), zt) (3.11)

From this point of view, (3.10) is regret with respect to a set of constant strategies.

The reader should take a minute to ponder upon the meaning of regret. If we

care about our average loss (3.9) being small and we are able to show that regret

as defined in (3.11) is small, we would be happy if we knew that the comparator

loss is in fact small. But when is it small? When the sequences are well predicted

by some strategy from the set Π. Crucially, we are not assuming that the data are

generated according to a process related in any way to Π! All we are saying is that,

if we can guarantee smallness of regret for all sequences and if the comparator

term captures the nature of sequences we observe, our average loss is small. Nev-

ertheless, it is important that the bound on regret that is proved for all individual

sequences will hold... well... for all sequences. Just the interpretation might be

unsatisfactory.

Let’s see why the above discussion is similar to passing from distribution-dependent

statistical learning to distribution-independent learning (with the redefined goal

as in (3.3)). If we start a paper with the line “Assume that data are Yt = f (Xt)+ ǫ

for some f ∈ F”, then whatever we prove is invalidated if the model is not cor-

rect (in the statistical language: misspecified). It is then unclear how badly the

performance degrades as the assumption starts to become violated. On the other

hand, putting the prior knowledge into the comparator term and asking for the

method to hold for all distributions does not suffer from the problem of starting

27

with a wrong assumption. There is sometimes a price to pay, however, for moving

the prior knowledge into the comparator term. The upper bounds one gets can

be more conservative in general. How much more conservative will be a subject

of interest in this course. Furthermore, the duality between assuming a form of

a data-generating process versus competing with the related class of predictors is

very intriguing and has not been studied much. We will phrase this duality pre-

cisely and show a number of positive results.

Summarizing, it should now be clear what the advantages and disadvantages

of the regret formulation are: we have a setup of sequential decision-making with

basically no assumptions that would invalidate our result, yet smallness of regret

is “useful” whenever the comparator term is small. On the downside, protection

against all models leads to more conservative results than one would obtain mak-

ing a distributional assumption.

For a large part of the course we will study the regret notion (3.10) defined with

respect to a single fixed decision. Hence, the upper bounds we prove for regret

will hold for all sequences, but will be more useful for those sequences on which a

single decision is good on all the rounds. What are such sequences? There is def-

initely a flavor of stationarity in this assumption, and surely the answer depends

on the particular form of the loss ℓ. We will also consider regret of the form

Regret =
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
(g1,...,gn)

1

n

n∑
t=1

ℓ(g t , zt) (3.12)

where the infimum is taken over “slowly-changing” sequences. This can be used

to model an assumption of a non-stationary but slowly changing environment,

without ever assuming that sequences come from some distribution. It should be

noted that it is impossible in general to have an average loss comparable to that

of the best unrestricted sequence (g1, . . . , gn) of optimal decisions that changes on

every round.3

The comprehensive book of Cesa-Bianchi and Lugosi [16] brings together many

of the settings of prediction of individual sequences, and should be consulted as

a supplementary reading. It is, in fact, after picking up this book in 2007 that our

own interests in the field sparked. The following question was especially bother-

some: why do upper bounds on regret defined in (3.10) look similar to those for

3Some algorithms studied in computer science do enjoy competitive-ratio type bounds that in-

volve comparison with the best offline method — more on this later.

28

statistical learning with i.i.d. data? After all, there are no probabilistic assump-

tions placed on the individual sequences! This course will, in particular, address

this question. We will show the connections between the two scenarios, as well as

the important differences.

Let us mention that we will study an even more difficult situation than de-

scribed so far: the sequence will be allowed to be picked not before the learning

process, but during the process. In other words, the sequence will be allowed to

change depending on the intermediate “moves” (or decisions) of the learner. This

is a good model for learning in the environment on which learner’s actions have

an effect. We need to carefully define the rules for this, as to circumvent the so-

called Cover’s impossibility result. Since the sequence will be allowed to evolve in

the worst-case manner, we will model the process as a game against an adaptive

adversary. A good way to summarize the interaction between the learner and the

adversary (environment, Nature) is by specifying the protocol:

Sequential prediction with adaptive environment

At each time step t = 1 to n,

• Learner chooses ŷ t ∈D and Nature simultaneously chooses zt ∈Z
• Player suffers loss ℓ(ŷ t , zt) and both players observe (ŷ t , zt)

In the case of a non-adaptive adversary, the sequence (z1, . . . , zn) is fixed before the

game and is revealed one-by-one to the player.

We remark that the name individual sequence typically refers to non-adaptive

adversaries, yet we will use the name for the both adaptive and non-adaptive sce-

narios. There is yet another word we will abuse throughout the course: “predic-

tion”. Typically, prediction refers to the supervised setting when we are trying to

predict some target response Y . We will use prediction in a rather loose sense, and

synonymously with “decision making”: abstractly, we “predict” or “play” or “make

decision” or “forecast” ŷ t on round t even if the decision spaceDhas nothing to do

with the outcome space Z. Finally, we remark that “online learning” is yet another

name often used for sequential decision-making with the notion of regret.

Online Convex Optimization

Let us focus on regret against the best fixed comparator, as defined in (3.10), and

make only one additional assumption: ℓ(ŷ , z) is convex in the first argument.

29

Since no particular dependence on the second argument is assumed, we might

as well slightly abuse the notation and equivalently rewrite ℓ(ŷ , z) as ℓz(ŷ) or even

z(ŷ), where z :D→R is a convex function and D=F is a convex set. The latter no-

tation makes it a bit more apparent that we are stepping into the world of convex

optimization.

Regret can now be written as

Regret =
1

n

n∑
t=1

zt (ŷ t)− inf
f ∈F

1

n

n∑
t=1

zt (f) (3.13)

where the sequence z1, . . . , zn is individual (also called worst-case), and each zt (f)

is a convex function.

At the first sight, the setting seems restricted, yet it turns out that the majority

of known regret-minimization scenarios can be phrased this way. We briefly men-

tion that methods from the theory of optimization, such as gradient descent and

mirror descent, can be employed to achieve small regret, and these methods are

often very computationally efficient. These algorithms are becoming the meth-

ods of choice for large scale problems, and are used by companies such as Google.

When data are abundant, it is beneficial to process them in a stream rather than

as a batch, which means we are in the land of sequential prediction. Being able to

relax distributional assumptions is also of great importance for present-day learn-

ing problems. It is not surprising that online convex optimization has been a “hot”

topic over the past 10 years.

The second part of this course will focus on methods for studying regret in con-

vex and non-convex situations. Some of our proofs will be algorithmic in nature,

some – nonconstructive. The latter approach is particularly interesting because

the majority of the results in the literature so far have been of the first type.

Multiarmed Bandits and Partial Information Games

The exploration-exploitation dilemma is a phenomenon usually associated with

situation where an action that brings the most “information” does not necessar-

ily yield the best performance. This dilemma does not arise when the aim is re-

gret minimization and the outcome zt is observed after predicting ŷ t . Matters be-

come more complicated when only partial information about zt is observed, and

a proper exploration-exploitation tradeoff is often key. The setting is often called

“bandit” or “partial feedback”.

30

In the original formulation of Robbins [47], the learner is faced with k decisions

(arms of a multi-armed bandit), each producing a stochastic reward if chosen. A

choice of arm i at time step t results in a random reward rt drawn independently

from the distribution pi with support on [0,1] and mean µi . The goal is to mini-

mize regret of not knowing the best arm in advance: maxi∈{1...k}µi n −
∑n

t=1 rt . An

optimal algorithm for this problem has been exhibited by Lai and Robbins [34].

Switching to losses instead of rewards, the goal can be equivalently written as min-

imization of expected regret

E

{
1

n

n∑
t=1

ℓ(ŷ t , zt)

}
− inf

f ∈F
E

{
1

n

n∑
t=1

ℓ(f , zt)

}

where ℓ(ŷ , z) =
〈

ŷ , z
〉

, D = F = {e1, . . . ,ek } the set of standard basis vectors, and

expectation is over i.i.d. draws of zt ∈ [0,1]k according to the product of one-

dimensional reward distributions p1 × . . .×pk . Crucially, the decision-maker only

observes the loss ℓ(ŷ , z) (that is, one coordinate of z) upon choosing an arm. The

setting is the most basic regret-minimization scenario for i.i.d. data where the

exploration-exploitation dilemma arises. The dilemma would not be present had

we defined the goal as that of providing the best hypothesis at the end, or had we

observed the full reward vector zt at each step.

Interestingly, one can consider the individual sequence version of the multi-

armed bandit problem. It is not difficult to formulate the analogous goal: mini-

mize regret

E

{
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}

where ℓ(ŷ , z) =
〈

ŷ , z
〉

, the learner only observes the value of the loss, and the se-

quence z1, . . . , zn is arbitrary. Surprisingly, it is possible to develop a strategy for

minimizing this regret. Generalizations of this scenario have been studied re-

cently, and we may formulate the following protocol:

Bandit online linear optimization

At each time step t = 1 to n,

• Learner chooses ŷ t ∈D and Nature simultaneously chooses zt ∈Z
• Player suffers loss ℓ(ŷ t , zt) =

〈
ŷ t , zt

〉
and the learner only observes

this value.

31

One can also move from online linear to online convex optimization for even more

generality, yet the question of optimal rates here is still open. In the stochastic

setting with a fixed i.i.d. distribution for rewards, however, we may formulate the

problem as minimizing regret

E

{
1

n

n∑
t=1

z(ŷ t)− inf
f ∈F

z(f)

}
(3.14)

where z is an unknown convex function and the learner receives a random draw

from a fixed distribution with mean z(ŷ t) upon playing ŷ t . An optimal (in terms

of the dependence on n) algorithm for this problem has been recently developed.

Note that (3.14) basically averages the values of the unknown convex function

z at the trajectory ŷ 1, . . . , ŷ n and compares it to the minimum value of the func-

tion over the set F. The reader will recognize this as a problem of optimization,

but with the twist of measuring average error instead of the final error. This twist

leads to the exploration-exploitation tradeoff which is absent if we can spend n it-

erations gathering information about the unknown function and then output the

final answer based on all the information.

Convex Optimization with Stochastic and Determinis-

tic Oracles

Convex optimization is concerned with finding the minimum of an unknown con-

vex function z(ŷ) over a set F, which we assume to be a convex set. The optimiza-

tion process consists of repeatedly querying ŷ 1, . . . , ŷ n ∈D=F and receiving some

information (from the Oracle) about the function at each query point. For deter-

ministic optimization, this information is noiseless, while for stochastic optimiza-

tion it is noisy. For the zero-th order optimization, the noiseless feedback to the

learner (optimizer) consists of the value z(ŷ t), while for stochastic optimization

the feedback is typically a random draw from a distribution with mean z(ŷ t). Sim-

ilarly, first order noiseless information consists of a (sub)gradient of z at ŷ t , while

the stochastic feedback provides this value only on average. The deterministic op-

timization goal is to minimize z(ŷ n)− inf f ∈F z(f). In the stochastic case the goal

is, for instance, in expectation:

E

{
z(ŷ n)− inf

f ∈F
z(f)

}
.

32

Once again, the difference between stochastic bandit formulation in (3.14) and

stochastic optimization is in the way the goal is defined.

A particularly interesting stochastic optimization problem is to minimize the

convex function

z̃(ŷ) = Eℓ(ŷ , Z) (3.15)

Even if distribution is known, the integration becomes computationally difficult

whenever Z ⊂ R
d with even modest-size d [41]. The idea then is to generate an

i.i.d. sequence Z1, . . . , Zn and use it in place of the difficult-to-compute integral.

Since given the random draws we still need to perform optimization, we suppose

there is an oracle that returns random (sub)gradients G(ŷ , Z) given the query (ŷ , Z)

such that

EG(ŷ , Z) ∈ ∂z̃(ŷ) = E∂ŷℓ(ŷ , Z).

Given access to such information about the function, two approaches can be con-

sidered: stochastic approximation (SA) and sample average approximation (SAA).

The SAA approach involves directly minimizing

1

n

n∑
t=1

ℓ(ŷ , Zt)

as a surrogate for the original problem in (3.15). The SA approach consists of tak-

ing gradient descent steps of the type ŷ t+1 = ŷ t −ηG(ŷ t , Zt) with averaging of the

final trajectory. We refer to [41] for more details.

Note that we have come a full circle! Indeed, (3.15) is the problem of Statis-

tical Learning that we started with, except we did not assume convexity of ℓ or

F. But the connections go even further: we will see in a few lectures that the SAA

approach is a natural method called “Empirical Risk Minimization”, while the SA

method will make its appearance when we talk about sequential prediction prob-

lems.

33

4
Example: Linear Regression

Linear regression is, arguably, the most basic problem that can be considered within

the scope of statistical learning, classical regression, and sequential prediction.

Yet, even in this setting, obtaining sharp results without stringent assumptions

proves to be a challenge. Below, we will sketch similar guarantees for methods in

these three different scenarios, and then make some unexpected connections. Us-

ing the terminology introduced earlier, we consider the supervised setting, that is

Z =X×Y, where Y = R. Let F = B
d
2 be the unit ℓ2 ball in R

d . Each f ∈ R
d can be

thought of as a vector, or as a function f (x) = f · x, and we will move between the

two representations without warning. Consider the square loss

ℓ(f , (x, y)) = (f (x)− y)2 = (f · x − y)2

as a measure of prediction quality. In order to show how various settings differ in

their treatment of linear regression, we will make many simplifying assumptions

along the way in order to present an uncluttered view. In particular, we assume

that n is larger than d .

Classical Regression Analysis

We start with the so-called fixed design setting, where x1, . . . , xn are assumed to be

fixed and only Yt ’s are randomly distributed. Assume a linear model: there exists a

g∗ ∈R
d such that

Yt = g∗ ·xt +ǫt , (4.1)

34

for some independent zero-mean noise ǫt with, say, bounded variance σ2. The

model is frequently written in the matrix form as

Y = Xg∗+ǫ

where X ∈ R
n×d the matrix with rows xt , Y and ǫ the vectors with coordinates Yt

and ǫt , respectively. Let

Σ̂,
1

n

n∑
t=1

xt xT

t

be the covariance matrix of the design. Denoting by D the set of all functions

X→Y, the goal is to come up with an estimate ŷ ∈D such that

E

{
1

n

n∑
t=1

(ŷ(xt)− g∗(xt))2

}
(4.2)

is small. With a slight abuse of notation, whenever ŷ ∈ R
d , we will write the above

measure as

E‖ŷ − g∗‖2

Σ̂
.

In particular, let

ŷ = argmin
g∈Rd

1

n

n∑
t=1

(Yt − g · xt)2 = argmin
g∈Rd

1

n

∥∥Y −Xg
∥∥2

(4.3)

be the ordinary least squares estimator, or the empirical risk minimizer, over Rd .

Then

ŷ = Σ̂
−1

(
1

n

n∑
t=1

Yt xt

)
=

1

n
Σ̂
−1XTY

assuming the inverse exists (and use pseudo-inverse otherwise). Multiplying (4.1)

on both sides by xt and averaging over t , we find that

g∗ = Σ̂
−1

(
1

n

n∑
t=1

(Yt −ǫt)xt

)
,

and hence

E
∥∥ŷ − g∗∥∥2

Σ̂
= E

∥∥∥∥Σ̂−1

(
1

n

n∑
t=1

ǫt xt

)∥∥∥∥
2

Σ̂

=
1

n
E

[
ǫ

(
1

n
XΣ̂−1XT

)
ǫ

]

35

Observe that the projection (or the hat) matrix 1
n

XΣ̂−1XT can be written as UU T

where U has orthonormal columns (orthonormal basis of the column space of X).

Then the measure of performance (4.2) for ordinary least squares is

1

n
E
∥∥U Tǫ

∥∥2 ≤
σ2d

n

The random design analysis is similar, and the O(d/n) rate can be obtained under

additional assumptions on the distribution of X (see [28]).

CONCLUSION: In the setting of linear regression, we assume a linear relation-

ship between predictor and response variables, and obtain an O(d/n) rate for both

fixed and random design.

Statistical Learning

In this setting we assume that {(Xt , Yt)}n
t=1 are i.i.d. from some unknown distribu-

tion PX×Y . We place no prior assumption on the relationship between X and Y. In

particular, η(a) , E[Y|X = a] is not necessarily a linear function in R
d . Recall that

the goal is to come up with ŷ such that

E
(

ŷ · X− Y
)2 − inf

f ∈F
E(f · X− Y)2 (4.4)

is small.

Before addressing this problem, we would like to motivate the goal of compar-

ing prediction performance to that in F. Why not simply consider unconstrained

minimization as in the previous section? Let

g∗ = argmin
g∈Rd

E(g · X− Y)2 (4.5)

be the minimizer of the expected error over all of Rd , and ŷ be the ordinary least

squares, as in (4.3). For any g , g ′ ∈R
d , using the fact that η(X) = E[Y|X],

E(g · X− Y)2 −E(g ′ · X− Y)2 = E(g · X−η(X))2 −E(g ′ · X−η(X))2 . (4.6)

Further,

E(g · X− Y)2 −E(g∗ · X− Y)2 = E(g · X− g∗ · X+ g∗ · X− Y)2 −E(g∗ · X− Y)2

= E((g − g∗) · X)2 +2E
[
(g∗ · X− Y)X

T(g − g∗)
]

. (4.7)

36

The cross-term in (4.7) is zero since because E
[
(XX

T)g∗− YX
]
= 0 is the optimality

condition for g∗. Denoting the norm ‖ f ‖X , (E f (X)2)1/2 for any f : X→ R, equa-

tions (4.6) and (4.7) give, for any g ∈R
d , the Pythagoras relationship

‖g −η‖2
X −‖g∗−η‖2

X = ‖g − g∗‖2
X .

Attempting to control excess loss over all ofRd is equivalent to finding an estimator

ŷ that ensures convergence of ‖ŷ − g∗‖2
X (which is simply ‖ŷ − g∗‖2

Σ
) to zero, a

task that seems very similar to the one in the previous section. However, the key

difference is that y is no longer a random variable necessarily centered at g∗ · X.

This makes the goal of estimating g∗ difficult, and is only possible under some

conditions. Hence, we would not be able to get a distribution-free result. Let us

sketch the argument in [28]: we may write

Σ
1/2(ŷ − g∗) =Σ

1/2
Σ̂
−1
Σ

1/2
Ê
[
Σ
−1/2

X(η(X)− g∗ · X)
]
+Σ

1/2
Σ̂
−1/2

Ê
[
Σ̂
−1/2

X(Y−η(X))
]

A few observations can be made. First, by optimality of g∗, E(X(η(X)−g∗ ·X)) = 0. Of

course, we also have E(Y−η(X)) = 0. Further, Σ1/2
Σ̂
−1
Σ

1/2 can be shown to be tightly

concentrated around identity. We refer the reader to [28] for a set of conditions

under which the above decomposition gives rise to O(d/n) rates.

Instead of making additional distributional assumptions to make the unre-

stricted minimization problem feasible, we can instead turn to the goal of proving

upper bounds on (4.4). Interestingly, this objective requires somewhat different

techniques. Let us denote by f̂ the empirical minimizer constrained to lie within

the set F and f ∗ be the minimizer of the expected loss within F. As depicted in

Figure ??, we may view f̂ and f ∗ as projections (although with respect to differ-

ent norms) of the unconstrained optima ŷ and g∗, respectively, onto F. The pro-

jections may be closer than the unconstrained minimizers, although by itself this

argument is not enough since the inequalities are in the opposite direction:

‖ f − f ∗‖2
X ≤ ‖ f −η‖2

X −‖ f ∗−η‖2
X = E

(
f · X− Y

)2 −E(f ∗ · X− Y)2

for any f ∈ F (Exercise). With tools developed towards the end of the course, we

will be able to show that excess loss (4.4) in the distribution-free setting of Statisti-

cal Learning is indeed upper bounded by O(d/n).

We conclude this section by observing that the problem (4.4) falls under the

purview of Stochastic Optimization. By writing

E(g · X− Y)2 = g T
Σg −2gE(XY)+ Y

2

37

we notice that the condition number of Σ plays a key role. In particular, if Σ = I ,

we expect a O(1/n) convergence of the ordinary least squares, without the depen-

dence on d .

CONCLUSION: In the setting of Statistical Learning, without assuming any partic-

ular form of the relationship between X and Y, we obtain an O (d/n) rate for the

prediction error of the least squares estimator restricted to F relative to the best

linear predictor in F.

Prediction of Individual Sequences

In the individual sequence scenario, we are tasked with designing an estimator

(forecaster) ŷ t on round t in an attempt to predict well on the next observation

(xt , yt). Recall that the goal is to achieve small regret, defined as

1

n

n∑
t=1

(ŷ t (xt)− yt)2 − inf
f ∈F

1

n

n∑
t=1

(f · xt − yt)2 . (4.8)

So, how do we choose ŷ t+1 based on the data {(xs , ys)}t
s=1 observed so far? It might

be tempting to simply define it as a linear function ŷ t (x) = ŷ t · x via the least

squares solution (4.3) on the prefix of data. However, to avoid suffering huge regret

in the beginning of the sequence, we need to add a small regularization term:

ŷ t = argmin
f ∈Rd

t−1∑
s=1

(f · xs − ys)2 +‖ f ‖2 (4.9)

The influence of the extra term diminishes as t increases, thus approaching the

least squares solution. The method is readily recognized as ridge regression or reg-

ularized least squares. Unfortunately, the method suffers from a major drawback:

the norm of the output ŷ t (and, hence, the prediction ŷ t · xt can grow with t . If

an a priori bound on yt ’s is known, one may clip the predictions to that interval;

otherwise, there does not seem to be a clean way to analyze the method.

Observe that our prediction ŷ t only enters through the product ŷ t ·xt . This sug-

gests that one may define a different ŷ t for each possible xt thus making the func-

tion ŷ t non-linear. It turns out, the following simple modification of (4.9) works

beautifully:

ŷ t (x) = w x
t · x, where w x

t = argmin
f ∈Rd

t−1∑
s=1

(f · xs − ys)2 +‖ f ‖2 + (f · x)2 (4.10)

38

The method is called the Vovk-Azoury-Warmuth forecaster. Denoting wt = w
xt
t ,

observe that the closed form is simply

wt =
(

I +
t∑

s=1

xs xT

s

)−1
(

t−1∑
s=1

ys xs

)
. (4.11)

Denoting Σt =
(
I +

∑t
s=1 xs xT

s

)
, the update from wt to wt+1 can be written as

wt+1 =Σ
−1
t+1

(
Σt wt + yt xt

)

or, in an incremental form, as

wt+1 = wt −Σ
−1
t (xt xT

t wt+1 −xt yt) or wt+1 = wt −Σ
−1
t+1(xt+1xT

t+1 ft −xt yt)

(4.12)

Using the definitions of wt , wt+1, the identity

(wt · xt − yt)2 − (f · xt − yt)2 = ‖ f −wt‖2
Σt
−‖ f −wt+1‖2

Σt+1
+‖wt −wt+1‖2

Σt+1

+ (wt · xt)2 − (wt ·xt+1)2 + (f ·xt+1)2 − (f ·xt)2

can be shown to hold for any f . Further, with the help of the closed form for up-

dates in (4.12),

‖wt −wt+1‖2
Σt+1

= xT

t Σ
−1
t xt (yt)2 −xT

t+1Σ
−1
t xt+1(wt+1 · xt+1)2 + (wt · xt+1)2 − (wt+1 · xt+1)2

When we sum over n time steps, most terms telescope leaving us with

n∑
t=1

(wt · xt − yt)2 −
n∑

t=1

(f ·xt − yt)2 = ‖ f −w1‖2
Σ1

−‖ f −wn+1‖2
Σn+1

+
n∑

t=1

(y2
t)xT

t Σ
−1
t xt +R

(4.13)

where the remainder R is equal to

R =−
n∑

t=1

(wt+1 ·xt+1)2xT

t+1Σ
−1
t xt+1 + (w1 · x1)2 − (wn+1 ·xn+1)2 + (f · xn+1)2 − (f · x1)2

Since xn+1 is a phantom quantity used only for analysis, we may set it to 0. To-

gether with f̂1 = 0, we conclude that R ≤ 0. Let B 2 = maxt∈[n] y2
t . We now use the

identity

xT(Σ+xxT)−1x = 1−
det(Σ)

det(Σ+xxT)
(4.14)

39

to obtain the following bound on the third term the upper bound (4.13):

n∑
t=1

(yt)2xT

t Σ
−1
t xt ≤ B 2

n∑
t=1

(
1−

det(Σt−1)

det(Σt)

)
≤ B 2 ln

det(Σn)

det(Σ0)
= B 2

d∑

j=1

ln(1+λ j) (4.15)

where λi are the eigenvalues of
∑n

t=1 xt xT

t . The sum of eigenvalues cannot be more

than nD2, where D2 = maxt∈[n] ‖xt‖2, and thus the above upper bound is maxi-

mized when all these eigenvalues are equal to nD2/d . Hence, the third term in

(4.13) is upper bounded by dB 2 ln(1+nD2/d). Recalling that ŷ t (xt) = w
xt
t · xt it

holds that

1

n

n∑
t=1

(ŷ t (xt)− yt)2 − inf
f ∈Rd

{
1

n

n∑
t=1

(f · xt − yt)2 +
1

n
‖ f ‖2

}
≤

dB 2 ln(1+nD2/d)

n

(4.16)

In fact, we derived more than just a regret bound for (4.8) with respect to a set F:

the bound holds for all of Rd , appropriately penalizing those f with large norm.

Of course, we may pass to the usual regret bound by taking F to be a bounded set.

Typically, a bounded set will be easier to work with, and penalized versions, such

as the one above, will be obtained by “stitching together” results for increasing set

sizes.

CONCLUSION: In the setting of individual sequence prediction, with no assump-

tions on the mechanism generating the data, we obtained an O
(

d logn

n

)
bound on

regret, only a factor of logn worse than those under probabilistic assumptions!

Moreover, the proof is direct (the majority of steps are equalities), the constants are

explicit, and the argument can be easily modified to hold in infinite-dimensional

Reproducing Kernel Hilbert spaces with an appropriate decay of the kernel eigen-

values. The proof, however, seems magical and it is unclear why it works. The

ideas of using deviations of empirical and expected quantities, as successfully em-

ployed in the previous sections, give us a hint of how to approach more complex

problems with i.i.d. data. But does the individual sequence proof generalize to

other scenarios? A major part of this course is on understanding how such algo-

rithms and upper bounds arise.

From Individual Sequences to I.I.D

The bound (4.16) on regret holds for any sequence {(xt , yt)}n
t=1, which can even be

adapted on the fly by a malicious adversary. The only requirement is that (xt , yt)

40

is not known to the learner when choosing ŷ t . Now, suppose that the data are

actually i.i.d., drawn from some unknown distribution PX×Y . Let

ŷ =
1

n

n∑
t=1

ŷ t (4.17)

be the average of the trajectory of the learner. We now claim that ŷ enjoys a guar-

antee of the type studied in Statistical Learning:

Lemma 4.1. Suppose X = F = B
d
2 and Y = [−1,1]. The estimator defined in (4.17)

satisfies

E(ŷ(X)− Y)2 − inf
f ∈F

E(f · X− Y)2 ≤
1+d ln(1+n/d)

n
(4.18)

for any distribution PX×Y .

Proof. To prove this simple fact, take the expectation in (4.16) with respect to the

(i.i.d.) data {(Xt , Yt)}n
t=1:

E

{
1

n

n∑
t=1

(ŷ t (Xt)− Yt)2

}
≤ E

{
inf
f ∈F

1

n

n∑
t=1

(f · Xt − Yt)2

}
+

1+d ln(1+n/d)

n
(4.19)

Observe that by Jensen’s inequality,

E

{
E

{(
ŷ(X)− Y

)2
∣∣∣ X

n , Y
n
}}

≤ E

{
E

{
1

n

n∑
t=1

(
ŷ t (X)− Y

)2
∣∣∣∣ X

n , Y
n

}}

= E

{
1

n

n∑
t=1

E

{(
ŷ t (X)− Y

)2
∣∣∣ X

t−1, Y
t−1

}}

= E

{
1

n

n∑
t=1

(ŷ t (Xt)− Yt)2

}
(4.20)

and

E

{
inf
f ∈F

1

n

n∑
t=1

(f · Xt − Yt)2

}
≤ inf

f ∈F
E

{
1

n

n∑
t=1

E(f · Xt − Yt)2

}
= inf

f ∈F
E(f · X− Y)2 (4.21)

Putting all the pieces together, we conclude the proof.

41

DISCUSSION It is indeed remarkable that the bound for all sequences can be

easily converted into a bound for the distribution-free Statistical Learning sce-

nario. Such a bound also holds for the well-specified model assumption discussed

in the beginning of this lecture. The bounds for the estimator ŷ have an extra

logn factor and require machinery that is markedly different from the one used

for analyzing the least squares solution ŷ . The former estimator can be viewed

as arising from stochastic approximation (SA), while the latter – from sample aver-

age approximation (SAA). What is quite curious, the Central Limit Theorem, which

played a key role in the first two i.i.d. results, does not seem to appear in the proof

of Lemma 4.1! We will show in this course that the CLT is implicitly contained in a

regret guarantee. But how is this possible? After all, regret is defined on determin-

istic sequences! We hope that there is now enough motivation to proceed.

42

Part II

Theory

43

5
Minimax Formulation of Learning

Problems

Statistical Decision Theory, introduced by A. Wald [56], unified statistical problems

– such as estimation and hypothesis testing – under the same umbrella. In the

abstract formulation of statistical decision theory, we may think of Nature and the

Statistician as playing a zero-sum game. Suppose we have a statistical model, that

is a set of possible distributions P0 = {P f : f ∈ F} on W. We assume that Nature

chooses f ∈ F and the statistician observes data from the distribution P f . These

data are represented abstractly as a random variable W with distribution P f (in

case of i.i.d. data, think of W as taking values in the product space). Based on W, the

Statistician is asked to make a decision – e.g. reject the null hypothesis, compute

a particular estimate, or, in the language of the previous lecture, summarize the

relationship between X and Y. Let D bet the set of possible decisions, and let ŷ be

either a non-randomized decision function ŷ : W→D, or a randomized decision

ŷ :W→∆(D). Fix a loss function ℓ̄ :D×F→R. The expected cost (or, risk) is

Eℓ̄(ŷ(W), f) (5.1)

where the expectation is over the data from the distribution given by Nature’s choice

of parameter f ∈F. This framework is abstract enough to capture a large array of

“statistical games”.

As an example, consider the realizable or label noise setting introduced in the

previous lecture in (3.6). We may set

ℓ̄
(

ŷ(X
n , Y

n), f
)
, P

(
ŷ(X) 6= f (X) | X

n , Y
n
)

,

44

5.1 Minimax Basics

with W being the training set (X
n , Y

n). Then (5.1) becomes the expected loss in

(3.5).

The games modeled by statistical decision theory can, in fact, be sequential

in nature, whereby the statistician makes a sequence of intermediate decisions as

well as a decision to terminate the process. We refer to Blackwell and Girshick

[10] for a wonderful exposition that brings together the theory of games and sta-

tistical decision theory. For another detailed exposition see the book of Berger [7].

In this course, we will be interested in extending (5.1) to the setting of individual

sequences.

The introductory lecture was a wind-whirl trip of a dozen topics in learning,

estimation, and optimization. We will now formalize some of these problems

through the lens of minimax in a way similar to statistical decision theory. How-

ever, we will also discuss distribution-free scenarios alongside those based on sta-

tistical models. Of special interest is the minimax formulation of sequential pre-

diction with individual sequences, as the blend of ideas from Game Theory and

Statistical Learning Theory will yield some new tools.

5.1 Minimax Basics

Let us start by introducing the idea of games and minimax values. We only focus

on zero-sum games, where the loss of Player I is the reward of Player II and vice-

versa. Let A be the set of moves of Player I and B the set of available moves of

Player II. Let ℓ(a,b) be the loss of the first player when she chooses an action a ∈A
while the opponent chooses b ∈B. Here, ℓ :A×B→R is a known loss function.

As an example, take the penny-matching game, withA=B= {0,1} andℓ(a,b) =
I {a 6= b}. That is, Player I suffers a loss of 1 if her chosen bit is not equal to the one

chosen by the opponent. This game has a clear symmetry. If the players make their

moves simultaneously, nobody has an advantage, and 1/2 should be the reason-

able “expected” loss of either of the players. But how does 1/2 surface? To which

question is this an answer?

Let us consider the optimal moves that the players should choose. Since Player

I is trying to minimize the loss (and the opponent – maximize), we can write down

an expression

min
a∈A

max
b∈B

ℓ(a,b).

Unfortunately, something is wrong with this expression, and it has to do with the

45

5.1 Minimax Basics

fact that the inner maximization can be done as a function of a. In the penny-

matching game, b can always be chosen opposite of a to ensure ℓ(a,b) = 1. If we

instead write maxb mina , Player I now has the advantage and guarantees zero loss.

This does not match our intuition that the game is symmetric.

But the problem is really with the fact that “minmax” breaks simultaneity of

the two moves and instead puts them in order of their occurrence. (This order will

play an important role for sequential problems we will be discussing.) So, is there

a way to write down simultaneous moves as a minmax? The answer is yes, but

under some conditions.

Let Q be the set of distributions on A and P the set of distributions on B, and

let us write the expression

V + ,min
q∈Q

max
b∈B

Ea∼qℓ(a,b). (5.2)

That is, the first player chooses his mixed strategy q and tells the second player

“hey, you can choose b based on this q”. It seems that we have gained nothing: the

second player still has the advantage of responding to the first player move, and

simultaneity is not preserved. It turns out that, under some conditions (which

definitely hold for finite sets A and B), the above minimax expression is equal to

the maximin variant

V − ,max
p∈P

min
a∈A

Eb∼pℓ(a,b). (5.3)

Moreover, both of the expressions are equal to V = Ea∼q∗,b∼p∗ℓ(a,b) for some

(q∗, p∗). It becomes irrelevant who makes the first move, as the minimax value

is equal to the maximin value! In such a case, we say that the game has a value

V =V + =V −. We will be interested in conditions under which this happens, prov-

ing a generalization of the von Neumann Minimax Theorem. The “minimax swap”,

as we call it, will hold for infinite sets of moves A and B. To avoid the issue of at-

tainability of min and max, we shall always talk about inf and sup.

Let us mention a few facts which are easy to verify. First, the inner maximiza-

tion (minimization) is often achieved at a pure strategy if it is followed by an ex-

pectation:

min
q∈Q

max
p∈P

Ea∼q,b∼pℓ(a,b) = min
q∈Q

max
b∈B

Ea∼qℓ(a,b)

and

max
p∈P

min
q∈Q

Ea∼q,b∼pℓ(a,b) = max
p∈P

min
a∈A

Eb∼pℓ(a,b)

46

5.1 Minimax Basics

because the minimum (maximum) of a linear functional is achieved at a vertex of

the simplex (or set of distributions). The second observation is:

Lemma 5.1. If ℓ(a,b) is convex in a and A is a convex set, then the outer minimiza-

tion

min
q∈Q

max
b∈B

Ea∼qℓ(a,b) = min
a∈A

max
b∈B

ℓ(a,b)

is achieved at a pure strategy.

Proof. We have

min
a′∈A

max
b∈B

ℓ(a′,b) = min
q∈Q

max
b∈B

ℓ(Ea∼q a,b) ≤ min
q∈Q

max
b∈B

Ea∼qℓ(a,b) ≤ min
a∈A

max
b∈B

ℓ(a,b) .

As a rather trivial observation, note that upper bounds on the minimax value

in (5.2) can be obtained by taking a particular choice q for Player I, while lower

bounds arise from any choice b ∈ B. Indeed, this is the approach that we take.

Throughout the course, we will take the side of Player I, associating her with the

Statistician (player, learner), whereas Player II will be Nature (or, adversary, oppo-

nent).

Now, let us consider a two-stage game where both players make the first moves

a1 ∈ A and b1 ∈ B, learn each other’s moves, and then proceed to the second

round, choosing a2 ∈A and b2 ∈B. Suppose the payoff is a functionℓ(a1,b1, a2,b2).

We can then write down the minimax expression

min
q1∈Q

max
b1∈B

Ea1∼q1 min
q2∈Q

max
b2∈B

Ea2∼q2ℓ(a1,b1, a2,b2) (5.4)

We will study such long expressions in great detail throughout the course, so it

is good to ponder upon its form for a minute. Notice that the first-stage moves

are written first, followed by the second-stage. This is indeed correct: by writing

the terms in such an order we allow, for instance, the choice of q2 to depend on

both a1 and b1. This corresponds to the protocol that was just described: both

players observe each other’s moves. In fact, any minimum or maximum in the

sequence is calculated with respect to all the variables that have been “chosen” so

far. Informally, by looking at the above expression, we can say that when Player II

makes the second move, she “knows” the moves a1 and b1 at the first time step,

as well as the mixed strategy q1 of Player I at the second step. Based on these,

47

5.2 Defining Minimax Values for Learning Problems

the maximization over b2 can be performed. As the expressions in future lectures

involve many more than two stages, it is good to go through the sequence and

make sure each player “knows” not more and not less than he is supposed to.

Another way to think of the long minimax expression is via operators. To illus-

trate, ℓ(a1,b1, a2,b2) is a function of 4 variables. The inner expectation over a2 is

an operator (defined by q2), mapping the function ℓ to a function of 3 variables.

The maximization over b2 maps it to a function of 2 variables, and so forth. When

each stage involves the same sequence of operators (e.g. minmaxE), we collapse

the long sequence of operators and write

⟪min
qi∈Q

max
bi∈B

Eai∼qi
⟫

i=1,2

{ℓ(a1,b1, a2,b2)} .

There is yet another way to write the multiple-stage minimax value, such as

(5.4). Consider the second move of the two players. For different a1,b1, the best

moves a2,b2 might be different, and so we will write the second-stage choice as

a function of a1,b1. To avoid the issue of simultaneity, assume that both players

choose mixed strategy q2 = π2(a1,b1) and p2 = τ2(a1,b1), respectively. The first-

stage decisions are trivial constant mappings q1 = π1(), p1 = τ1(), but the later-

stage decisions depend on the past. We can write π = (π1,π2) and τ = (τ1,τ2) as

two-stage strategies of the players. We can then rewrite (5.4) as

min
π

max
τ

Ea1∼π1Eb1∼τ1
Ea2∼π2(a1,b1)Eb2∼τ2(a1,b1)ℓ(a1,b1, a2,b2) ,

or, more succinctly as

min
π

max
τ

Eℓ(a1,b1, a2,b2) . (5.5)

We say that the above expression is written in terms of strategies, while (5.4) is

in the extensive form. As we already observed, the maximization over τ will be

achieved at a non-randomized strategy, resulting in the simplified stochastic pro-

cess that evolves according to the randomized choice of Player I and the deter-

ministic choice of Player II. Finally, we remark that π can be thought of as a joint

distribution over sequences (a1, a2).

5.2 Defining Minimax Values for Learning Problems

In statistical decision theory formulation with risk defined in (5.1), the Statisti-

cian’s move consists of a decision rule ŷ , while Nature’s moves are the possible

48

5.2 Defining Minimax Values for Learning Problems

distributions P f parametrized by f ∈F. The minimax value can be written as

inf
ŷ

sup
f ∈F

Eℓ̄(ŷ(W), f) (5.6)

where the infimum is over all decision rules, and expectation is over W ∼ P f . If ℓ is

convex in ŷ , the minimization can be taken over deterministic decision rules. This

stems from a useful fact that a randomized rule can be represented as a random

draw from a distribution over deterministic rules, together with Lemma 5.1.

Statistical Learning Theory

We assume that data are an i.i.d. sample of n pairs {(Xt , Yt)}n
t=1 ∈ (X×Y)n . A learning

algorithm (or, a prediction rule) is a mapping ŷ : (X×Y)n →D, where D=YX is the

space of all measurable functions X→ Y. We either write ŷ(x; X
n , Y

n) to make the

dependence on data explicit, or simply ŷ(x) if the dependence is understood. Let

P denote the set of all distributions on X×Y. Consider the case of regression with

squared loss. For the distribution-free setting of Statistical Learning Theory, define

the minimax value is

Vi i d ,sq (F,n), inf
ŷ

sup
P∈P

{
E(ŷ(X)− Y)2 − inf

f ∈F
E(f (X)− Y)2

}
(5.7)

= inf
ŷ

sup
P∈P, f ∈F

{
E(ŷ(X)− Y)2 −E(f (X)− Y)2

}
,

where the expected value in the first term is over n + 1 i.i.d. random variables

(X1, Y1), . . . , (Xn , Yn), (X, Y). Note that the supremum ranges over all distributions on

X×Y. The minimax objective Vi i d ,sq (F,n) is defined above in terms of predictive

risk relative to the risk of a reference class F. Alternatively, it can be re-written as

follows:

Vi i d ,sq (F,n) = inf
ŷ

sup
P∈P

{
E‖ŷ − fP‖2 − inf

f ∈F
‖ f − fP‖2

}
(5.8)

= inf
ŷ

sup
P∈P, f ∈F

{
E‖ŷ − fP‖2 −‖ f − fP‖2

}

where fP (a) = E[Y|X = a] is the mean function associated with P , and the norm

‖ · ‖ = ‖ · ‖L2(PX). Recalling that ‖g‖2
L2(PX) =

∫
g 2(x)PX (d x) = Eg 2(X), we can easily

49

5.2 Defining Minimax Values for Learning Problems

verify the equivalence of (5.7) and (5.8). For absolute loss, let us define the ana-

logue of (5.7) as

Vi i d ,ab(F,n), inf
ŷ

sup
P∈P

{
E
∣∣ŷ(X)− Y

∣∣− inf
f ∈F

E
∣∣ f (X)− Y

∣∣
}

(5.9)

and for general losses as

Vi i d (F,n), inf
ŷ

sup
P∈P

{
Eℓ(ŷ , (X, Y))− inf

f ∈F
Eℓ(f , (X, Y))

}
(5.10)

Let us now consider the distribution-dependent PAC framework for classifica-

tion and write down its minimax value:

Vpac (F,n), inf
ŷ

sup
P f

P (ŷ(X) 6= f (X)) = inf
ŷ

sup
P f

E
∣∣ŷ(X)− f (X)

∣∣ (5.11)

where P f ranges over distributions given by PX ×P
f

Y |X with P
f

Y |X=a
= δ f (a) for f ∈

F, a class of {0,1}-valued functions. In the label noise scenario, the distribution

P
f

Y |X=a
puts some mass on 1− f (a).

As we go forward, it is important to think of V(F,n) as a measure of complexity

of F. If F= { f } contains only one function, the values defined above are zero since

we can simply set ŷ = f . On the opposite end of the spectrum, the complexity

V(YX,n) of the set of all possible functions is, in general, impossible to make small.

One goal of this course is to understand how this value fares for function classes

between these two extremes, and to understand what other (easier-to-grasp) mea-

sures of complexity of F are related to V(F,n).

Nonparametric Regression

We would like to compare the minimax problems studied in nonparametric re-

gression and in statistical learning theory. Let F be a class of functions X → Y.

Let PX denote a marginal distribution on X. For f ∈ F, let P f denote the distri-

bution on X×Y obtained as a product of some PX and a conditional distribution

of Y given X = a being a normal N (f (a),σ2) with mean f (a) and variance σ2. This

corresponds to the model Y = f (X)+ǫ, where ǫ∼ N (0,σ2).

Let P0 =PF = {P f : f ∈F} ⊂P be a subset of all probability distributions whose

regression function f (a) = E[Y|X = a] is a member of F and the marginal distribu-

50

5.2 Defining Minimax Values for Learning Problems

tion PX is either arbitrary or fixed (if it is part of the design). A goal in nonpara-

metric regression is to study the following minimax value

N (F,n), inf
ŷ

sup
P f ∈PF

E‖ŷ − f ‖2 (5.12)

for the norm ‖ · ‖ = ‖ · ‖L2(PX) and some σ. Once again, one can view N (F,n) as a

measure of complexity of the set of distributions parametrized by F, with the two

extremes (a single distribution and all possible distributions) having, respectively,

complexities of 0 and a positive constant.

Let us show that N (F,n) ≤Vi i d ,sq (F,n), that is, the goal of statistical learning is

more difficult than that of nonparametric regression (at least in the particular set-

ting we mentioned). To see this, replace the supremum in (5.8) by the supremum

over the smaller class PF ⊂P:

Vi i d ,sq (F,n) ≥ inf
ŷ

sup
Pg∈PF

{
E‖ŷ − fPg ‖

2 − inf
f ∈F

‖ f − fPg ‖
2

}

= inf
ŷ

sup
Pg∈PF

E‖ŷ − g‖2

= N (F,n)

where it is understood in the first equality that data is distributed according to Pg

for some g ∈F. The second term is then clearly zero.

A question of interest is to study the gap between N (F,n) andVi i d ,sq (F,n). The

advantage of studying the latter quantity is that tools from empirical process the-

ory (which we will cover in the next few lectures) can be used to get upper bounds.

One can interpolate between the values defined in statistical learning and in

nonparametric regression by placing prior knowledge both in the comparator and

in the set of possible distributions for nature:

Vi i d ,sq (F,P0,n), inf
ŷ

sup
P∈P0

{
E‖ŷ − fP‖2 − inf

f ∈F
‖ f − fP‖2

}
(5.13)

where P0 ⊆P and does not have to necessarily match F.

Universal Data Compression and Conditional Probability Assign-

ment

In the non-sequential minimax settings considered so far, the move of the Statisti-

cian is a strategy ŷ is a mapping from data (e.g. (X
n , Y

n)) to the space of functions

51

5.2 Defining Minimax Values for Learning Problems

X→ Y. Another way to write this fact is ŷ(·|Xn , Y
n) : X→ Y. For sequential prob-

lems, we talk of strategies as a sequence of mappings ŷ t which depend on the

prefix of data. A good example of this is universal data compression where each

ŷ t : Zt−1 → ∆(Z) is a conditional distribution. Specifying the sequence of ŷ t ’s is

the same as specifying a joint probability distribution ŷ on sequences (z1, . . . , zn).

Hence, we can write the minimax value (without the normalization by n) via the

n-fold KL divergence as

R+(F,n) = inf
ŷ

sup
f ∈F

E

{
log

f (Z
n)

ŷ(Zn)

}
= inf

ŷ

sup
f ∈F

D(f , ŷ)

where the infimum is over joint distributions and the expectation is over Z
n =

(Z1, . . . , Zn) distributed according to f ∈ F. This minimax value is called the mini-

max redundancy in universal coding. The maximin redundancy defined as

R−(F,n) = sup
p∈∆(F)

inf
ŷ

E f ∼p D(f , ŷ)

is related to an information-theoretic notion of a capacity of a channel.

Sequential Prediction of Individual Sequences

In this setting, the move of the learner at time t is based on the knowledge of its

own previous moves and the outcomes z1, . . . , zt−1. Let us use πt to denote the de-

terministic mapping πt : Zt−1 → D, where D denotes the space of moves of the

player. Note that we omitted the dependence on strategy’s own past moves: they

can be calculated from the moves of the opponent whenever the strategy is deter-

ministic.

We write π = {πt }n
t=1 to denote a n-stage strategy. While ŷ t = πt (z t−1) is the

move of the player at time t , we should be thinking of π ∈Π as the single move in

the n-stage game. This is the analogue of providing an estimator ŷ for i.i.d. learn-

ing. Let Π be the space of all such deterministic strategies and ∆(Π) a distribution

on this space (suppose for now that such an object exists). Then, minimax regret

against a single comparator and an oblivious adversary can be defined as

Vobl i v (F,n) = inf
p∈∆(Π)

sup
(z1,...,zn)∈Zn

Eπ∼p

{
1

n

n∑
t=1

ℓ(πt (z t−1), zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}

(5.14)

52

5.2 Defining Minimax Values for Learning Problems

If D = F, the set of our moves coincides with the set of moves against which

the loss is to be compared. In this case, the algorithm is said to be proper, and it is

called improper if D 6=F. Improper learning is often useful for computational pur-

poses, though it is not known (at least to us) whether improper learning is strictly

more powerful than proper learning in terms of regret bounds. In our notation, F

in V(F,n) denotes the comparator term. For improper learning, we will point out

the set of moves of the player.

What do we do if sequences are generated by an adaptive (non-oblivious) ad-

versary? We have to define strategies τ = {τt }n
t=1 with τt : Dt−1 → Z for the adver-

sary and interleave it with the strategy of the learner. The minimax value can then

be written as

Vseq (F,n) = inf
p∈∆(Π)

sup
τ

Eπ∼p

{
1

n

n∑
t=1

ℓ(πt ,τt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f ,τt)

}

where it is understood that πt and τt are functions defined recursively. Unfor-

tunately, the above expression hides too much interdependence which we would

like to bring out. We argue that the above value is equal to

Vseq (F,n) = inf
q1∈∆(F)

sup
z1∈Z

E

ŷ 1∼q1

. . . inf
qn∈∆(F)

sup
zn∈Z

E

ŷ n∼qn

{
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}
.

(5.15)

The fact that these expressions are equal requires a proof, already motivated for

n = 2 in the earlier section on minimax basics. As discussed previously, our home-

grown notation for the long sequence in (5.15) is

Vseq (F,n) =⟪ inf
qt∈∆(F)

sup
zt∈Z

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}
(5.16)

In particular, for proper supervised learning with absolute loss, the value can be

written as

Vseq,ab(F,n) =⟪ inf
qt∈∆(F)

sup
(xt ,yt)

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

|ŷ t (xt)− yt |− inf
f ∈F

1

n

n∑
t=1

| f (xt)− yt |
}

.

(5.17)

For improper learning,

Vseq,ab(F,n) =⟪sup
xt

inf
qt∈∆(Y)

sup
yt

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

|ŷ t − yt |− inf
f ∈F

1

n

n∑
t=1

| f (xt)− yt |
}

.

(5.18)

53

5.2 Defining Minimax Values for Learning Problems

The set F in the last expression refers to the comparator term, and the distribu-

tions qt are over the outcome space Y. To see why this setting is equivalent to

(5.17) with an improper choice of ŷ t ∈ YX, observe that we can decide on ŷ t for

each possible xt before actually observing it. This amounts to choosing a function

ŷ t ∈YX instead of F as in (5.17).

With an argument identical to that of Lemma 4.1, we see that

Vi i d (F,n) ≤Vseq (F,n)

for loss ℓ that is convex in the first argument.

Finally, let us mention what would happen to (5.16) if instead of regret we con-

sidered the sum of our losses without the comparator term:

⟪ inf
qt∈∆(F)

sup
zt∈Z

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

ℓ(ŷ t , zt)

}
=

1

n

n∑
t=1

inf
qt∈∆(F)

sup
zt∈Z

E

ŷ t∼qt

ℓ(ŷ t , zt) =V +

(5.19)

where V + is the minimax value (5.2) for the two player game with the payoffℓ(f , z).

The first equality comes from the fact that the rounds are completely decoupled.

There is no learning to do, as both players will play the optimal move. Not so in

the setting of regret minimization: the comparator term forces us to “learn” the

strategy of the opponent. It is for this reason that we refer to regret minimization

as “learning in games” and study it within the realm of Learning Theory.

Online Convex Optimization

Using the observation that the infimum is achieved at pure strategies when the

cost of the learner’s decision is a convex function, we can rewrite all the minimax

values of the previous general setting. In particular, the oblivious case can be writ-

ten as

Vobl i v = inf
π

sup
(z1,...,zn)∈Zn

{
1

n

n∑
t=1

zt (πt (z t−1))− inf
f ∈F

1

n

n∑
t=1

zt (f)

}

where we remind the convention that ℓ(f , z) is written as z(f).

The extended form with non-oblivious adversary becomes

Voco = inf
ŷ 1∈F

sup
z1∈Z

inf
ŷ 2∈F

sup
z2∈Z

. . . inf
ŷ n∈F

sup
zn∈Z

{
1

n

n∑
t=1

zt (ŷ t)− inf
f ∈F

1

n

n∑
t=1

zt (f)

}
(5.20)

=⟪ inf
ŷ t∈F

sup
zt∈Z
⟫n

t=1

{
1

n

n∑
t=1

zt (ŷ t)− inf
f ∈F

1

n

n∑
t=1

zt (f)

}
. (5.21)

54

5.3 No Free Lunch Theorems

5.3 No Free Lunch Theorems

The so-called “No Free Lunch Theorems” say that one cannot achieve uniform (in

a certain sense) rates under no assumptions on the problem. We will first demon-

strate such a statement in the context of statistical learning theory and nonpara-

metric regression.

5.3.1 Statistical Learning and Nonparametric Regression

As discussed before, the difference between the statistical learning formulation in

(5.8) and the nonparametric regression definition in (5.12) is in the way the prior

assumption F appears in the objective. Absence of an assumption corresponds to

taking F=YX, the space of all (measurable) functions from X to Y. In this case,

Vi i d ,sq
(
YX,n

)
= inf

ŷ

sup
P∈P

E‖ŷ − fP‖2 (5.22)

where the supremum is over all distributions, while

N (YX,n) = inf
ŷ

sup
P f

E‖ŷ − f ‖2 (5.23)

where P f ranges over all distributions with an arbitrary mean function f ∈YX, but

Y being distributed as a gaussian with mean f (X). Both values Vi i d ,sq
(
YX,n

)
and

N (YX,n) can be lower bounded via a simple argument. Let us focus on the former

value, and the latter will follow. We employ the following well-known lower bound,

based on binary-valued functions.

Theorem 5.2. If |X| ≥ 2n, it holds that

Vi i d ,sq
(
YX,n

)
≥

1

8
(5.24)

Proof. To lower-bound Vi i d ,sq
(
YX,n

)
, let us pass to a smaller set of distributions

PF ⊂P, where F is specified below. The distributions P f ∈PF will be defined by a

uniform marginal distribution PX supported on a subset X′ ⊂X of size |X′| = 2n,

and the conditional P
f

Y |X parametrized by f ∈F via P
f

Y |X=a
= δ f (a). Let F consists

of 22n functions taking on all possible configurations of values {0,1} on X′ and de-

55

5.3 No Free Lunch Theorems

fined as f (x) = 0 on X\X′. Then

Vi i d ,sq
(
YX,n

)
≥ inf

ŷ

sup
P f ∈PF

E(ŷ(X)− f (X))2

≥ inf
ŷ

Eq

{
E
{
(ŷ(X)− f (X))2

∣∣ f
}}

= inf
ŷ

EXn ,X

{
E f

{(
ŷ

(
X; X

n , f (X
n)

)
− f (X)

)2
∣∣∣ X, X

n
}}

where q is a uniform distribution on F and f is distributed according to q . The

equality follows by exchanging the order of integration, which is possible because

the distribution of Xt ’s is independent of f . The notation (X
n , f (X

n)) stands for

{(Xt , f (Xt))}n
t=1. Consider the inner conditional expectation and let us further con-

dition on the event {X ∉ X
n} which holds with probability at least 1/2. For any f ∈F

there is f ′ ∈F which agrees with f on all ofX′ except X. However, ŷ(X; (X
n , f (X

n))) =
ŷ(X; (X

n , f ′(X
n))), and thus the expected loss is at least 1/2, given that X ∉ X

n . The

statement follows.

Note that the simple construction of Theorem 5.2 corresponds to the setting of

nonparametric regression with a gaussian noise of zero variance. This, of course,

makes the regression only easier, and thus the lower bound of Theorem 5.2 is also

applicable.

5.3.2 Sequential Prediction with Individual Sequences

We now turn to sequential prediction of individual sequences. The No-Free-Lunch

Theorem is a simple variation on the expression (5.19) without the comparator. To

start, consider the value defined in (5.18) for the supervised setting with absolute

loss. Suppose we remove the prior knowledge of F. That is, as before, F = YX.

Suppose for simplicity that Y = [−1,1]. Assuming xt ’s are distinct, which we can

do because we are exhibiting a strategy for the adversary in order to obtain a lower

bound, we can always find a function that perfectly fits the data. The value then

56

5.3 No Free Lunch Theorems

becomes “comparator-less”, just as in (5.19):

Vseq,ab(YX,n) =⟪sup
xt

inf
qt∈∆(Y)

sup
yt

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

|ŷ t − yt |
}

=⟪ inf
qt∈∆(Y)

sup
yt

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

|ŷ t − yt |
}

≥⟪ inf
qt∈∆(Y)

E
yt

E

ŷ t∼qt

⟫n

t=1

{
1

n

n∑
t=1

|ŷ t − yt |
}

where yt ∈ {±1} are i.i.d. Rademacher random variables (fair coin flips). Writing

|ŷ t −yt | = 1− ŷ t ·yt , exchanging the order of expectations, and unwinding the min-

imax value

⟪ inf
qt∈∆(Y)

E
yt

E

ŷ t∼qt

⟫n

t=1

{
1−

1

n

n∑
t=1

ŷ t yt

}
=⟪ inf

qt∈∆(Y)

E
yt

E

ŷ t∼qt

⟫n−1

t=1

{
inf

qn∈∆(Y)

E

ŷ n∼qn

E
yn

(
1−

1

n

n∑
t=1

ŷ t yt

)}

=⟪ inf
qt∈∆(Y)

E
yt

E

ŷ t∼qt

⟫n−1

t=1

{
1−

1

n

n−1∑
t=1

ŷ t yt

}

we conclude that Vseq,ab
(
YX,n

)
≥ 1.

The i.i.d. coin flip strategy yt for the adversary is an example of an equalizer

strategy: the move of the learner becomes irrelevant. It turns out many lower

bounds in learning theory arise in this way, and we will revisit this idea several

times in the course.

57

6
Learnability, Oracle Inequalities, Model

Selection, and the Bias-Variance

Trade-off

6.1 Statistical Learning

The No-Free-Lunch Theorem 5.2 for Statistical Learning says that, for any n, the

value Vi i d ,sq
(
YX,n

)
cannot be made small. If we think of n as a fixed quantity, this

lower bound should be taken seriously: no matter what the learning algorithm ŷ is,

there will be a distribution such that the expected loss E(ŷ(X)−Y)2 of the estimator

is much greater than the best achievable over all measurable functions (which, for

the case of square loss, is achieved at the regression (or, Bayes) function fP (a) =
E[Y|X = a]).

The interpretation of Theorem 5.2 becomes quite murky when n is considered

to be variable and increasing to infinity. In this case, the construction of the lower

bound is somewhat unsatisfying because the “bad distribution” depends on n.

The lower bound says that no matter what our learning rules
{

ŷ n : (X×Y)n →YX
}

are, for any n there is a distribution on which ŷ n performs unsatisfactory. One can

argue, however, that such a lower bound is overly pessimistic. It might still be pos-

sible that for any particular distribution, with enough data the performance of our

procedure will be good. Yes, for the given n our estimator might be bad on a partic-

ular distribution, but if we eventually get better, then why worry? In other words,

the No Free Lunch Theorem does not exclude the possibility that for any particular

distribution, we can drive the difference E(ŷ n(X)−Y)2− inf f ∈YX E(f (X)−Y)2 to zero.

The subtlety between the two notions of learning is in the order of quantifiers.

58

6.1 Statistical Learning

Specifically, the distinction boils down to existence of rates that hold uniformly for

all distributions. To illustrate this, let us first define a shorthand

L(f), Eℓ(f , (X, Y)) (6.1)

We have the following two possible definitions of “learnability”:

Uniform Consistency

There exists a sequence {ŷ t }∞t=1 of estimators, such that for any ǫ> 0, there

exists nǫ such that for any distribution P ∈P and n ≥ nǫ,

EL(ŷ n)− inf
f ∈YX

L(f) ≤ ǫ

The smallest value nǫ = n(ǫ) is called sample complexity.

Universal Consistency

There exists a sequence {ŷ t }∞t=1 of estimators, such that for any distribu-

tion P ∈P and any ǫ> 0, there exists nǫ such that for n ≥ nǫ,

EL(ŷ n)− inf
f ∈YX

L(f) ≤ ǫ

For a given P , the smallest value nǫ = n(ǫ,P) is called sample complexity.

The first notion will be called uniform consistency, while the second will be

called universal consistency.1 The first can be written as

limsup
n→∞

inf
ŷ n

sup
P∈P

{
EL(ŷ n)− inf

f ∈YX
L(f)

}
= 0

while the second as

inf
{ŷ t }∞t=1

sup
P∈P

limsup
n→∞

{
EL(ŷ n)− inf

f ∈YX
EL(f)

}
= 0

The fact that uniform consistency is not possible without restricting the set P of

distributions (as shown in our lower bound of Theorem 5.2) is well known: there is

1The almost-sure (rather than in-probability) version of this statement is called universal strong

consistency [21].

59

6.1 Statistical Learning

no non-trivial uniform rate at which estimators would converge to the regression

function for all distributions simultaneously. Lower bounds in the study of univer-

sal consistency are generally harder to obtain, and they are called individual lower

rates. We refer to [24] for a detailed exposition in the regression setting.

Let us illustrate the difference with an example.

Example 1. Let X = Y = [0,1] and P0 ⊂ P the set all distributions on X×Y given

by a uniform marginal distribution PX and P
f

Y |X=a
= δ f (a) for some continuous

mean function f : [0,1] → [0,1]. Given n samples {(Xt , f (Xt))}n
t=1, an estimator ŷ

is a function [0,1] → [0,1]. No matter what this function is, there is another dis-

tribution with a very different mean function f ′ and the same marginal PX that

passes through the data, yet differs from ŷ . Hence, there is no hope for uniform

consistency. However, suppose an arbitrary P ∈P is fixed. As we obtain more and

more samples, we can approximate the mean function arbitrarily well via kernel

or other well-known methods, implying universal consistency.

Uniform and universal consistency can be defined with respect to a smaller

class F ⊆ YX, in which case the sample complexities are defined, respectively, as

n(ǫ,F) and n(ǫ,P,F).

We now show that by modifying the comparison yardstick in the definition of

Vi i d ,sq
(
YX,n

)
, we can pass from uniform to universal consistency. This observa-

tion will lead us directly to the ideas of model selection and oracle inequalities.

Since

V(YX,n) = inf
ŷ

sup
P∈P

{
EL(ŷ n)− inf

f ∈YX
L(f)

}
(6.2)

cannot be made small (at least for the square loss) without restricting the set of

models, let us redefine the comparator term by making it larger. A particularly

interesting modification (which seems rather arbitrary right now, but will be ex-

plained in a few moments) is to consider

W (F,n) = inf
ŷ n

sup
P∈P

{
EL(ŷ n)−C inf

k

[
inf

f ∈Fk

L(f)+pen(k,n)

]}
(6.3)

where F = ∪k≥1Fk is either all of YX, or a very large set of functions. The sub-

division of the large class F into “manageable” pieces {Fk } is called a sieve, and

60

6.1 Statistical Learning

inequalities of the type

EL(ŷ n) ≤C inf
k

[
inf

f ∈Fk

L(f)+pen(k,n)

]
(6.4)

are called oracle inequalities. We assume that pen(k,n) → 0 as n increases. If C = 1,

the oracle inequality is called exact. It is typically assumed that F1 ⊆ F2 ⊆ . . . and

pen(k,n) is increasing with k.

We may think of Fk as nested models. The smaller the class, the easier it is to

learn, yet the worse is the comparison to the Bayes error. The first term in

{
EL(ŷ)− inf

f ∈Fk

L(f)

}
+

{
inf

f ∈Fk

L(f)− inf
f ∈YX

L(f)

}
(6.5)

is known as the estimation error, and the second – as the approximation error,

associated with the choice of the model Fk . This is precisely a bias-variance trade-

off. The choice of a good k is known as the model selection problem. One may

think of choosing among the set ŷ 1
n , ŷ 2

n , . . . of estimators, where ŷ k
n is the prediction

rule associated with Fk .

If pen = 0 and C = 1, we get back (6.2), but for a nonzero penalty the goal (6.3)

appears more viable, as we subtract a larger value. But what is the meaning of this

expression? The idea is that we cannot compete with all functions in the large class

∪kFk with the same uniform rate: some functions are more complex and require

more data. This “complexity” is captured in the penalty function pen(k,n).

We now show that a control on W (F,n) guarantees universal consistency. Such

a result is reassuring because we can focus on obtaining oracle inequalities.

Lemma 6.1. If it holds that

limsup
n→∞

W (F,n) = 0

for W (F,n) defined as an exact oracle (C = 1), then there exists a universally consis-

tent estimator {ŷ t }∞t=1.

Proof. Indeed,

0 = limsup
n→∞

W (F,n) ≥ inf
{ŷ t }∞t=1

sup
P∈P

limsup
n→∞

{
EL(ŷ n)− inf

k

[
inf

f ∈Fk

L(f)+pen(k,n)

]}

61

6.1 Statistical Learning

The inequality holds by exchanging the order of supP and the limsup. We can now

reason conditionally on P . Assume that the minimizer f ∗ = f ∗(P) = argmin f ∈F Eℓ(f , (X, Y))

belongs to some Fk∗ , where the expected loss is with respect to (X, Y) ∼ P . Since

limn→∞ pen(k,n) = 0, for any ǫ > 0 there exists nǫ such that pen(k∗,n) ≤ ǫ for

n ≥ nǫ. For any such n ≥ nǫ,

EL(ŷ n)−inf
k

[
inf

f ∈Fk

L(f)+pen(k,n)

]
≥ EL(ŷ n)−

[
inf

f ∈Fk∗
L(f)+pen(k∗,n)

]
≥ EL(ŷ n)−L(f ∗)−ǫ,

and the statement follows.

Oracle inequalities of the form (6.4) are interesting in their own right, without

the implication of universal consistency. An oracle inequality ensures that we are

able to do almost as well as if an Oracle told us the model class Fk to which f ∗

belongs.

Of course, it remains to be seen whether W (F,n) defined in (6.3) can be made

small, and what kinds of penalties one should use. These penalties can be distribution-

independent, i.e. of the form pen(k,n), or distribution-dependent, i.e. of the form

pen(k,n,P). What is interesting, a distribution-independent penalty pen(k,n) should

roughly be on the order of the value V(Fk ,n). While not immediately apparent, it

is indeed a good rule of thumb: the penalty should roughly correspond to a mea-

sure of “complexity” of Fk . Of course, the penalty can be larger than that since

it only makes it easier to show decay of W (F,n). But a penalty too large leads to

less meaningful statements. A penalty too small will make it impossible to ensure

smallness of W (F,n).

Let us sketch an argument showing that the penalty should be at least on the

order of the value V(Fk ,n). Suppose that limsupn→∞W (F,n) = 0, where C = 1

and pen(k,n) =V(Fk ,n)−ψ(k,n) for some nonnegative ψ. In other words, we are

assuming that the penalty is smaller by some amount ψ(k,n) than the difficulty

of learning Fk in a distribution-free manner. We would like to argue that ψ(k,n)

cannot be an “interesting” function of k that captures any dependence beyond

what is already captured by V(Fk ,n).

Lemma 6.2. If it holds that

limsup
n→∞

W (F,n) = 0

62

6.1 Statistical Learning

for C = 1, and pen(k,n) =V(Fk ,n)−ψ(k,n) for some nonnegativeψ is a distribution-

independent penalty function, then

limsup
n→∞

sup
k

ψ(k,n) ≤ 0

Proof. Denoting f ∗
k
, argmin f ∈Fk

L(f), we have

W (F,n) = inf
ŷ n

sup
P∈P

{
EL(ŷ n)− inf

k

[
L(f ∗

k)+V(Fk ,n)−ψ(k,n)
]}

= inf
ŷ n

sup
k

sup
P∈P



EL(ŷ n)−L(f ∗

k)− inf
ŷ k

n

sup
P ′∈P

[
EL(ŷ k

n)−L(f ∗
k)

]
+ψ(k,n)





= inf
ŷ n

sup
ŷ k

n

sup
k

[
sup
P∈P

{
EL(ŷ n)−L(f ∗

k)
}
− sup

P ′∈P

{
EL(ŷ k

n)−L(f ∗
k)

}
+ψ(k,n)

]

where ŷ k
n in the definition of V(Fk ,n) is given the knowledge of k. Clearly, this

knowledge should not hurt, so the difference of the two suprema is non-negative.

Since the limsup of W (F,n) is zero, the statement follows. Thus, ψ(k,n) has to

have a uniform rate of decay (for each k) in terms of n. Thus, in the asymptotic

sense, ψ(k,n) cannot capture any non-trivial dependence on k.

In this somewhat hand-waving argument, we conclude that distribution-independent

penalties used in W (F,n) should be upper bounds on V(Fk ,n). Can we show that

W (F,n) is in fact controlled if the penalty is defined as pen(k,n) = V(Fk ,n)? The

answer is yes. Suppose that F1 ⊆ F2 ⊆ The particular method we will use is

penalized empirical risk minimization:

ŷ = argmin
f

{
1

n

n∑
t=1

ℓ(f , (Xt , Yt))+ p̃en(f)

}
(6.6)

where

p̃en(f),
{
V(Fk ,n) : k = inf{k : f ∈Fk }

}
.

This method guarantees W (F,n) → 0 under some reasonable assumptions, but we

will postpone the discussion until later in the course.

While pen(k,n) is a distribution-independent penalty, one can obtain better

bounds with distribution-dependent penalties pen(k,n,P). These, in turn, lead to

data-dependent penalties p̂en that can be used in (6.6). There is a large body of

literature on such penalties, and a formal understanding of the types of penalties

63

6.2 Sequential Prediction

one can use is an interesting subject. We refer to [4, 37] and [33] for more insights.

What is important to note for us is that the tools required for understanding data-

dependent penalties in fact arise from the study of eachFk , a “manageable” part of

the larger set. These basic tools will be introduced in the next few lectures, and we

will return to oracle inequalities towards the end of the course. We will also prove

oracle inequalities for the sequential prediction setting with individual sequences.

PExercise 6.1 (⋆⋆⋆). Suppose F=∪i∈NFi is a countable union, and the learn-

ing problem with eachFi is Uniformly Consistent. Prove that the learning problem

with respect to F is Universally Consistent.

6.2 Sequential Prediction

The definitions of Universal and Uniform Consistency in the setting of Statistical

Learning have their analogues in the study of Sequential Prediction.

Let regret with respect to f ∈F be defined as

Regn(f) =
1

n

n∑
t=1

ℓ(ŷ t , zt)−
1

n

n∑
t=1

ℓ(f , zt)

Uniform Sequential Consistency

There exists a strategy for the learner such that for any ǫ > 0, there ex-

ists nǫ such that for any n ≥ nǫ, irrespective of Nature’s strategy, the regret

Regn(f) with respect to any f ∈F is at most ǫ in expectation, that is

Esup
f ∈F

Regn(f) ≤ ǫ

Universal Sequential Consistency

There exists a strategy for the learner such that for any f ∈F and any ǫ> 0,

there exists nǫ such that for n ≥ nǫ, irrespective of Nature’s strategy, the

regret Regn(f) is at most ǫ in expectation, that is

ERegn(f) ≤ ǫ

64

6.3 Remarks

We remark that the notion of Hannan consistency (as defined, for instance, in

[16]), is equivalent to Uniform Sequential Consistency that holds almost surely in-

stead of in expectation. For the sake of conciseness, we do not expand on the

“almost sure” or “in probability” definitions.

Many of the results of the previous section on model selection and oracle in-

equalities can be extended in the straightforward way to the case of sequential

prediction, and we will touch upon these at the end of the course, time permit-

ting. An exercise on page 163 asks to prove an analogue of the last exercise in the

previous section, now in the setting of sequential prediction.

6.3 Remarks

The minimax formulation is a succinct way to represent the problem. Once writ-

ten down, it is clear what are the sets of moves of the Statistician and Nature, who

makes the first move, and whether the distribution is allowed to be changed for

each n. Furthermore, it is possible to compare different minimax values with dif-

ferent sets of moves of Nature and Statistician.

Let us mention that the minimax viewpoint is not always the most interesting

object of study. In particular, much interest in statistical learning theory is in ob-

taining data-dependent bounds, a key step towards oracle inequalities and model

selection discussed above. These would not be possible if we pass to the worst

distribution. However, one can argue that the data-dependent bound can be in-

corporated into the minimax framework. To illustrate this point, let us consider

the value defined in (5.9) for i.i.d. supervised learning. Instead of

inf
ŷ

sup
P∈P

{
Eℓ(ŷ , (X, Y))− inf

f ∈F
Eℓ(f , (X, Y))

}
(6.7)

it is quite desirable to get data-dependent bounds of the form

E
{
ℓ(ŷ , (X, Y))

∣∣ X
n , Y

n
}
− inf

f ∈F
Eℓ(f , (X, Y)) ≤Ψ(F, X

n , Y
n)

for some function Ψ. While it is often possible to include such a data-dependent

bound in a minimax formulation through, for instance, a uniform bound on a ratio

of the deviation to Ψ, we will avoid such complications. It is important to note

that data-dependent upper bounds can often be isolated as intermediate steps in

65

6.3 Remarks

proving minimax bounds. This will be the case when we study statistical learning

in depth.

66

7
Stochastic processes, Empirical

processes, Martingales, Tree Processes

Learning theory is intimately related to the study of stochastic processes. Statis-

tical learning is concerned with empirical and Rademacher processes, while the

study of sequential prediction, as we will see soon, involves a martingale-type pro-

cesses. Think of this part of the course as a bag of tools we need to study the values

of various learning problems introduced earlier.

7.1 Motivation

Let us first motivate the need to study stochastic processes in the settings of sta-

tistical learning and sequential prediction.

7.1.1 Statistical Learning

For the setting of statistical learning, the motivation is quite simple. Consider the

value Vi i d (F,n) defined in (5.10). Let us take a particular estimator ŷ , namely the

empirical risk minimizer (ERM)

ŷ = argmin
f ∈F

L̂(f), where L̂(f),
1

n

n∑
t=1

ℓ(f , (X t ,Yt)).

Denoting

f ∗ = argmin
f ∈F

L(f)

67

7.1 Motivation

we have for any (X n ,Y n),

L(ŷ)− inf
f ∈F

L(f) =
{

L(ŷ)− L̂(ŷ)
}
+

{
L̂(ŷ)− L̂(f ∗)

}
+

{
L̂(f ∗)−L(f ∗)

}
. (7.1)

The second term is negative by the definition of ŷ , and the third term is zero in

expectation over (X
n , Y

n). Hence

EL(ŷ)− inf
f ∈F

L(f) ≤ E
{

L(ŷ)− L̂(ŷ)
}
≤ Esup

f ∈F

{
L(f)− L̂(f)

}
(7.2)

As we will see later in the lecture, the last quantity is the expected supremum of an

empirical process.

7.1.2 Sequential Prediction

Instead of a full-blown n-round prediction problem, let us consider the two-round

game discussed in the previous section. Recall that the players make moves (a1,b1)

at the first step, and then (a2,b2) at the next step. Consider the minimax value de-

fined in (5.4), and suppose it is equal to the maximin value

sup
p1∈P

inf
a1∈A

Eb1∼p1
sup
p2∈P

inf
a2∈A

Eb2∼p2
ℓ(a1,b1, a2,b2)

Since the object of sequential prediction studied so far is regret, we set

ℓ(a1,b1, a2,b2) =ℓ(a1,b1)+ℓ(a2,b2)− inf
a∈A

{ℓ(a,b1)+ℓ(a,b2)} .

We can now write the value of the two-stage game as

sup
p1∈P

inf
a1∈A

Eb1∼p1
sup
p2∈P

inf
a2∈A

Eb2∼p2

{
ℓ(a1,b1)+ℓ(a2,b2)− inf

a∈A
{ℓ(a,b1)+ℓ(a,b2)}

}

= sup
p1∈P

inf
a1∈A

Eb1

[
ℓ(a1,b1)+ sup

p2∈P

inf
a2∈A

{
Eb2

ℓ(a2,b2)−Eb2
inf
a∈A

{ℓ(a,b1)+ℓ(a,b2)}

}]

= sup
p1∈P

[
inf

a1∈A
Eb1

ℓ(a1,b1)+Eb1
sup
p2∈P

{
inf

a2∈A
Eb2

ℓ(a2,b2)−Eb2
inf
a∈A

{ℓ(a,b1)+ℓ(a,b2)}

}]

= sup
p1∈P

Eb1
sup
p2∈P

Eb2

[
inf

a1∈A
Eb1

ℓ(a1,b1)+ inf
a2∈A

Eb2
ℓ(a2,b2)− inf

a∈A
{ℓ(a,b1)+ℓ(a,b2)}

]

≤ sup
p1∈P

Eb1
sup
p2∈P

Eb2
sup
a∈A

[
Eb1

ℓ(a,b1)+Eb2
ℓ(a,b2)− {ℓ(a,b1)+ℓ(a,b2)}

]

68

7.2 Defining Stochastic Processes

where in the last step we replaced the infima over a1 and a2 with the particular

choice a from the third term. The operator supp1∈P Eb1
supp2∈P Eb2

can be simply

written as supp E(b1,b2)∼p where p is a joint distribution. Hence, the value of the

game is upper bounded by

sup
p

E(b1,b2) sup
a∈A

{
Eb1∼p1

ℓ(a,b1)−ℓ(a,b1)+Eb2∼p2(·|b1)ℓ(a,b2)−ℓ(a,b2)
}

, (7.3)

and p2(·|b1) is the conditional distribution on b2 given b1.

We have arrived at an expression which can be recognized as the expected

supremum of a stochastic process. Those familiar with the subject observe that

the two differences in the last expression form a (rather short) martingale differ-

ence sequence. Unlike the statistical learning scenario, the process appears to be

non-i.i.d. Next, we precisely define various stochastic processes, and then proceed

to study their properties. Equipped with some basic inequalities, we will turn to

the study of the suprema of the relevant processes.

Before proceeding, let us agree on some notation. Whenever talking about ab-

stract processes, we will refer to F as the function class. For learning applications,

however, the function class is really ℓ(F) , {ℓ(f , ·) : f ∈ F}. We can always switch

between the two by thinking of ℓ◦ f =ℓ(f , ·) as our functions on Z=X×Y. For the

abstract study of stochastic processes, this distinction will be immaterial.

7.2 Defining Stochastic Processes

Definition 7.1. Let (Ω,A,P) be a probability space. A real-valued random variable

U is a measurable mapping Ω 7→ R. A stochastic process is a collection {Us : s ∈ S}

of random variables on Ω indexed by a set S.

More generally, we can define B-valued random variables for B= R
d or some

abstract Banach space B. In such a case, a random variable is a measurable map

from (Ω,A,P) into B equipped with Borel σ-algebra generated by the open sets of

B [35].

A stochastic process is defined through its state space (that is, R or B), the in-

dex set S, and the joint distributions of the random variables. If S is infinite, care

should be taken to ensure measurability of events. In this course, we will omit

these complications, and assume that necessary conditions hold to ensure mea-

surability.

69

7.2 Defining Stochastic Processes

The first important stochastic process we study is the one that arises from av-

eraging over i.i.d. data:

Definition 7.2. An empirical process is a stochastic process {G f } indexed by a func-

tion class f ∈F and defined as

G f ,
1

n

n∑
t=1

(
E f (Z)− f (Zt)

)
= E(f)− Ê(f)

where Z1, . . . , Zn , Z are i.i.d. (Oftentimes in the literature, the normalization factor

is 1p
n

instead of 1
n

).

Definition 7.3. A random variable ǫ taking on values {±1} with equal probability

is called a Rademacher random variable.1

Definition 7.4. Let ǫ1, . . . ,ǫn ∈ {±1} be independent Rademacher random variables.

A Rademacher process is a stochastic process {Sa} indexed by a set F ⊂ R
n of vec-

tors a ∈ F and defined as

Sa ,
1

n

n∑
t=1

ǫt at

Given zn = {z1, . . . , zn} ∈ Zn and a class F of functions Z → R, we define the

Rademacher process on F as

S f ,
1

n

n∑
t=1

ǫt f (zt)

for f ∈ F. Since zn is fixed, we may think of a = (f (z1), . . . , f (zn)) as a vector that

corresponds to f , matching the earlier definition. From this point of view, the

behavior of the functions outside zn is irrelevant, and we may view the set

F =F|(z1,...,zn) = {(f (z1), . . . , f (zn)) : f ∈F} (7.4)

as the finite-dimensional projection of the function class F onto zn .

The processes defined so far are averages of functions of independent random

variables. We now bring in the notion of temporal dependence, which will play an

important role for the analysis of sequential prediction problems.

1Did you know that Hans Adolph Rademacher (1892-1969) was a professor here at UPenn?

70

7.2 Defining Stochastic Processes

Definition 7.5. Let S = {0,1,2, . . . , }. A stochastic process {Us} is a discrete-time

martingale if

E {Us+1 |U1, . . . ,Us} =Us

and E|Us | <∞ for all s ∈ S. More generally, a stochastic process {Us} is a martingale

with respect to another stochastic process {Vs} if

E {Us+1 | V1, . . . ,Vs} =Us

and E|Us | <∞. A stochastic process {Us} is a martingale difference sequence (MDS)

if

E {Us+1 | V1, . . . ,Vs} = 0

for some stochastic process {Vs}. Any martingale {Vs} defines a martingale differ-

ence sequence Us =Vs −Vs−1.

We now define a “dependent” version of the i.i.d. empirical process.

Definition 7.6. An empirical process with dependent data is a stochastic process

{M f } indexed by a function class f ∈F and defined as

M f ,
1

n

n∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)

where (Z1, . . . , Zn) is a discrete-time stochastic process with a joint distribution P .

Clearly, the sequence
{
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

}
is a martingale-difference

sequence for any f . Furthermore, the notion of an empirical process with depen-

dent data boils down to the classical notion if Z1, . . . , Zn are i.i.d.

When specifying martingales, we can talk more generally about filtrations, de-

fined as an increasing sequence of σ-algebras

A0 ⊂A1 ⊂ . . . ⊂A.

A martingale is then defined as a sequence of As-measurable random variables Us

such that E
{
Us+1 |As

}
=Us .

Of particular interest is the dyadic filtration {At } on Ω= {−1,1}N given by At =
σ(ǫ1, . . . ,ǫt), where ǫt ’s are independent Rademacher random variables. Fix Z-

valued functions zt : Ωt−1 →Z for all t ≥ 1. Then the random variables zt (ǫ1, . . . ,ǫt−1)

71

7.2 Defining Stochastic Processes

are At−1-measurable with respect to the dyadic filtration, and the discrete-time

stochastic process {
ǫt zt (ǫ1, . . . ,ǫt−1)

}

is a martingale difference sequence. Indeed,

E {ǫt zt (ǫ1, . . . ,ǫt−1) | ǫ1, . . . ,ǫt−1} = 0 .

A sequence z = (z1, . . . ,zn) is called a Z-valued tree.

Example 2. To give a bit of intuition about the tree and the associated martingale

difference sequence, consider a scenario where we start with a unit amount of

money and repeatedly play a fair game. At each stage, we flip a coin and either

gain or lose half of our current amount. So, at the first step, we either lose 0.5 or

gain 0.5. If we gain 0.5 (for the total of 1.5) the next differential will be ±0.75. If,

however, we lost 0.5 at the first step, the next coin flip will result in a gain or loss of

0.25. It is easy to see that this defines a complete binary tree z. Given any prefix,

such as (1,−1,1), the gain (or loss) z4(1,−1,1) at round 4 is determined. The sum∑n
t=1 ǫt zt (ǫ1, . . . ,ǫt−1) determines the total payoff.

We may view the martingale {Us} with

Us =
s∑

t=1

ǫt zt (ǫ1, . . . ,ǫt−1)

as a random walk with symmetric increments ±zs which depend on the path that

got us to this point. Such martingales are known as the Walsh-Paley martingales.

Interestingly enough, these martingales generated by the Rademacher random

variables are, in some sense, “representative” of all the possible martingales with

values in Z. We will make this statement precise and use it to our advantage, as

these tree-based martingales are much easier to deal with than general martin-

gales.

A word about the notation. For brevity, we shall often write zt (ǫ), where ǫ =
(ǫ1, . . . ,ǫn), but it is understood that zt only depends on the prefix (ǫ1, . . . ,ǫt−1).

Now, given a tree z and a function f :Z→R, we define the composition f ◦z as

a real-valued tree (f ◦z1, . . . , f ◦zn). Each f ◦zt is a function {±1}t−1 →R and

{
ǫt f (zt (ǫ1, . . . ,ǫt−1))

}

is also a martingale-difference sequence for any given f .

72

7.3 Application to Learning

Definition 7.7. Let ǫ1, . . . ,ǫn ∈ {±1} be independent Rademacher random variables.

Given a tree z, a stochastic process {T f } defined as

T f ,
1

n

n∑
t=1

ǫt f (zt (ǫ1, . . . ,ǫt−1))

will be called tree process indexed by F.

Example 2, continued Let f be a function that gives the level of excitement of

a person observing his fortune Us going up and down, as in the previous exam-

ple. If the increment zt at the next round is large, the person becomes very happy

(large + f (zt)) upon winning the round, and very unhappy − f (zt) upon losing. A

person who does not care about the game might have a constant level f (zt) =
0 throughout the game. On the other extreme, suppose someone becomes ag-

itated when the increments zt become close to zero, thus having a large ± f (zt)

ups and downs. Suppose F contains the profiles of a group of people observing

the same outcomes. An interesting object of study is the largest cumulative level

sup f ∈F
∑n

t=1 ǫt f (z(ǫ1, . . . ,ǫt−1)) after n rounds.

We may view the tree process T f as a generalization of the Rademacher pro-

cess S f . Indeed, suppose z = (z1, . . . ,zn) is a sequence of constant mappings such

that zt (ǫ1, . . . ,ǫt−1) = zt for any (ǫ1, . . . ,ǫt−1). In this case, T f and S f coincide. Gen-

erally, however, the tree process can behave differently (in a certain sense) from

the Rademacher process. Understanding the gap in behavior of the two processes

will have an implication on the understanding of learnability in the i.i.d. and ad-

versarial models.

7.3 Application to Learning

Turning to the setting of statistical learning theory, we see from (7.2) that the excess

loss of the empirical minimizer is upper bounded by

EL(ŷ)− inf
f ∈F

L(f) ≤ Esup
f ∈F

{
L(f)− L̂(f)

}
= E sup

g∈ℓ(F)

Gg , (7.5)

the expected supremum of the empirical process indexed by the loss class. Thus,

to obtain upper bounds on the excess loss EL(ŷ)−inf f ∈F L(f) of empirical risk min-

imizer it is sufficient to obtain upper bounds on the expected supremum of the

73

7.4 Symmetrization

empirical process. Furthermore, a distribution-independent upper bound on the

expected supremum leads to an upper bound on the minimax value.

Theorem 7.8. Let ŷ be the ERM algorithm. Then

EL(ŷ)− inf
f ∈F

L(f) ≤ E sup
g∈ℓ(F)

Gg , (7.6)

and hence

Vi i d (F,n) ≤ sup
P

{
EL(ŷ)− inf

f ∈F
L(f)

}
≤ sup

P

{
E sup

g∈ℓ(F)

Gg

}
(7.7)

Now, consider the setting of sequential prediction with individual sequences.

The proof given in Section 7.1.2 for n = 2 can be readily generalized for any n, and

we then arrive at the following upper bound on the value Vseq (F,n) defined in

(5.15) :

Theorem 7.9. The value of the sequential prediction problem is upper bounded as

Vseq (F,n) ≤ sup
P

{
Esup

f ∈F

1

n

n∑
t=1

(
E
{
ℓ(f , Zt)

∣∣ Z
t−1

}
−ℓ(f , Zt)

)}
= sup

P

{
E sup

g∈ℓ(F)

Mg

}

(7.8)

where the supremum is over all joint distributions P on sequences (Z1, . . . , Zn).

The next key step is to pass from the stochastic processes Gg and Mg to the

simpler processes Sg and Tg which are generated by the Rademacher random

variables. The latter two processes turn out to be much more convenient. To make

this happen, we appeal to the so-called symmetrization technique.

7.4 Symmetrization

We now employ a symmetrization device to pass from the supremum of the em-

pirical process to the supremum of the Rademacher process.

Theorem 7.10. For a class F of functions bounded by C , the expected suprema of

empirical and Rademacher processes satisfy

Esup
f ∈F

|G f | ≤ 2Esup
f ∈F

|S f |

74

7.4 Symmetrization

and the same statement holds without absolute values. Furthermore,

Esup
f ∈F

|G f | ≥
1

2
Esup

f ∈F
|S f |−

C

2
p

n

For symmetric classes, the statement without absolute values and without the neg-

ative term.

Proof. We prove the statement without the absolute values. Observe that

Esup
f ∈F

G f = Esup
f ∈F

{
E f (Z)−

1

n

n∑
t=1

f (Zt)

}

= Esup
f ∈F

{
E

[
1

n

n∑
t=1

f (Z
′
t)

]
−

1

n

n∑
t=1

f (Zt)

}

where the “ghost sample” Z
′
1, . . . , Z

′
n is i.i.d. and all Z

′
t ’s have the same distribution

as Zt ’s. By exchanging supremum and the expectation over the ghost sample, we

arrive at an upper bound

Esup
f ∈F

G f ≤ Esup
f ∈F

{
1

n

n∑
t=1

(f (Z
′
t)− f (Zt))

}

where the expectation is now over the double sample. And now for the tricky part.

Let us define a function h as

h(Z1, . . . , Zn , Z
′
1, . . . , Z

′
n) = sup

f ∈F

{
1

n

n∑
t=1

(f (Z
′
t)− f (Zt))

}
.

Then for any fixed sequence (ǫ1, . . . ,ǫn) ∈ {±1}n , the expression

sup
f ∈F

{
1

n

n∑
t=1

ǫt (f (Z
′
t)− f (Zt))

}

is simply a permutation of the coordinates of h(Z1, . . . , Zn , Z
′
1, . . . , Z

′
n). To illustrate,

consider

g (1,1, . . . ,1) = h(Z1, Z2, . . . , Zn , Z
′
1, Z

′
2, . . . , Z

′
n)

while

g (−1,1, . . . ,1) = h(Z
′
1, Z2, . . . , Zn , Z1, Z

′
2, . . . , Z

′
n) .

The sequence of signs permutes the respective pairs of coordinates of the function

h. But since all the random variables are independent and identically distributed,

75

7.4 Symmetrization

any such permutation hardly changes the expectation with respect to the data.

Hence,

Esup
f ∈F

{
1

n

n∑
t=1

(f (Z
′
t)− f (Zt))

}
= Esup

f ∈F

{
1

n

n∑
t=1

ǫt (f (Z
′
t)− f (Zt))

}

with the expectation over the double sample and over the Rademacher random

variables ǫ1, . . . ,ǫn . We now split the expression into two suprema:

Esup
f ∈F

{
1

n

n∑
t=1

ǫt (f (Z
′
t)− f (Zt))

}
≤ Esup

f ∈F

{
1

n

n∑
t=1

ǫt f (Z
′
t)

}
+Esup

f ∈F

{
1

n

n∑
t=1

−ǫt f (Zt)

}

= 2Esup
f ∈F

{
1

n

n∑
t=1

ǫt f (Z
′
t)

}

because the distributions of −ǫt and ǫt are the same. We have arrived at

Esup
f ∈F

G f ≤ E

{
E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (Zt)

∣∣∣∣∣ Z1, . . . , Zn

}}

= 2E

{
E

{
sup
f ∈F

S f

∣∣∣∣∣ Z1, . . . , Zn

}}

= 2Esup
f ∈F

S f

The other direction also holds:

Esup
f ∈F

|S f | = E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

(
ǫt (f (Zt)−E f (Z))+ǫtE f (Z)

)∣∣∣∣

}

≤ E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

ǫt (f (Zt)−E f (Z))

∣∣∣∣

}
+E

∣∣∣∣∣

(
1

n

n∑
t=1

ǫt

)
sup
f ∈F

E f (Z)

∣∣∣∣∣ ,

and the last term is upper bounded by |sup f ∈F E f |
√

1
n

. We now proceed to intro-

duce a ghost sample and then eliminate the random signs in the same way as they

were initially introduced.

E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

ǫt (f (Zt)−E f (Z))

∣∣∣∣

}
≤ E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

ǫt (f (Zt)− f (Z
′
t))

∣∣∣∣

}

= E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

(f (Zt)− f (Z
′
t))

∣∣∣∣

}

≤ 2E

{
sup
f ∈F

∣∣∣∣
1

n

n∑
t=1

(E f (Z)− f (Zt))

∣∣∣∣

}

76

7.4 Symmetrization

If the class F is symmetric, then performing the same steps without the absolute

values we see that the term E

{(
1
n

∑n
t=1 ǫt

)
sup f ∈F E f (Z)

}
= 0, and symmetry is in-

voked in the last step.

We now apply the symmetrization technique to the empirical process with de-

pendent data. Note that any such process is an average of martingale difference

sequences (MDS).

The symmetrization argument for MDS is more delicate than the one for the

i.i.d. case, as swapping Zt and Z
′
t changes every history for martingale differences

with index greater than t . The very same problem has been previously experi-

enced by the characters of “The End of Eternity” (by Isaac Asimov): by traveling

into the past and changing it, the future is changed as well. One way to go around

this conundrum is to pass to the worst-case future, a pessimistic yet instructive

approach. For this purpose, we will perform symmetrization from inside out and

pass to the worst-case martingale difference sequence.

Theorem 7.11. The following relation holds between the empirical process with de-

pendent data and the tree process:

Esup
f ∈F

M f ≤ 2sup
z

Esup
f ∈F

T f (7.9)

where the supremum is taken over all Z-valued binary trees of depth n. Further-

more,

1

2

(
sup

z
Esup

f ∈F
T f −

C
p

n

)
≤ sup

MDS

Esup
f ∈F

M f ≤ 2sup
z

Esup
f ∈F

T f (7.10)

where C = sup f ∈F | f |∞.

Proof. By definition,

Esup
f ∈F

M f = Esup
f ∈F

1

n

n∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
(7.11)

Omitting the normalization factor n, let us do the argument for the last time step

77

7.4 Symmetrization

n:

Esup
f ∈F

{
n−1∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
+

(
E
{

f (Zn)
∣∣ Z1, . . . , Zn−1

}
− f (Zn)

)}

≤ Esup
f ∈F

{
n−1∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
+

(
f (Z

′
n)− f (Zn)

)}

= Esup
f ∈F

{
n−1∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
+ǫn

(
f (Z

′
n)− f (Zn)

)}

where it is important to keep in mind that Z
′
n and Zn are (conditionally) indepen-

dent and distributed identically given Z1, . . . , Zn−1. We now make a very bold step.

We upper bound the last quantity by the supremum over Z
′
n and Zn :

E sup
zn ,z ′n∈Z

Eǫn sup
f ∈F

{
n−1∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
+ǫn

(
f (z ′

n)− f (zn)
)}

Certainly, this is allowed since the expectation can only be smaller. What have we

achieved? When we do the same trick for n −1, there will be no random variable

with a distribution that depends on Zn−1. That is, by passing to the worst-case zt ’s

we can always perform symmetrization for the previous time step. For n −2, we

obtain an upper bound of

E sup
zn−1,z ′n−1

Eǫn−1 sup
zn ,z ′n

Eǫn sup
f ∈F

{
n−2∑
t=1

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)

+ǫn−1

(
f (z ′

n−1)− f (zn−1)
)
+ǫn

(
f (z ′

n)− f (zn)
)}

Proceeding in this manner, we get an upper bound of

sup
z1,z ′1

Eǫ1 sup
z2,z ′2

Eǫ2 . . . sup
zn ,z ′n

Eǫn sup
f ∈F

{ n∑
t=1

ǫt

(
f (z ′

t)− f (zt)
)}

≤ 2sup
z1

Eǫ1 sup
z2

Eǫ2 . . . sup
zn

Eǫn sup
f ∈F

{ n∑
t=1

ǫt f (zt)

}

(7.12)

“Abandon all hope, ye who enter here”, you might say, as we seem to have lost

all the randomness of Zt ’s and replaced them with some worst-case determinis-

tic choices. Let us examine the nth operator EZn ,Z′nEǫn , which we replaced with

supzn ,z ′n
Eǫn . Had we instead used Eǫn supzn ,z ′n

, the resulting value would indeed

be too large. However, if the zt ’s are chosen before the sign ǫn is drawn, we still

have the hope that the ǫn ’s are carrying enough “randomness”. Indeed, the dyadic

78

7.5 Rademacher Averages

(Walsh-Paley) martingales are “representative” of all the martingales, as this proof

shows.

Now, we claim that the right-hand side of (7.12) is nothing but a tree process

for the worst-case tree. Indeed, the first supremum is achieved at some z∗
1 ∈ Z.

The second supremum is achieved at z∗
2 (+1) if ǫ1 = +1 and at some potentially

different value z∗
2 (−1) if ǫ1 =−1. Proceeding in this manner, it is not difficult to see

that

sup
z1

Eǫ1 sup
z2

Eǫ2 . . . sup
zn

Eǫn sup
f ∈F

{ n∑
t=1

ǫt f (zt)

}
= sup

z
Eǫ1,...,ǫn sup

f ∈F

{ n∑
t=1

ǫt f (zt (ǫ1, . . . ,ǫt−1))

}

(7.13)

= n sup
z

Esup
f ∈F

T f

Conclusion of Theorem 7.11: the expected supremum of the worst-case

empirical process with dependent data is within a factor of 2 from the ex-

pected supremum of the worst-case tree process. That is, when it comes

to studying the supremum, the dyadic martingales are representative of

all the martingales.

7.5 Rademacher Averages

The expected suprema of the Rademacher and tree processes are so important in

our developments that we will give them special names.

Definition 7.12. The expected supremum of a Rademacher process

Ri i d (F) , Esup
f ∈F

S f = E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (Zt)

}
(7.14)

is variably called Rademacher averages or Rademacher complexity of a class F. De-

fine conditional Rademacher averages as

R̂i i d (F; Z1, . . . , Zn) , E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (Zt)

∣∣∣∣∣ Z1, . . . , Zn

}
, (7.15)

where the expectation is only with respect to the i.i.d. Rademacher random vari-

ables ǫ1, . . . ,ǫn .

79

7.5 Rademacher Averages

If conditioning on data is understood, we shall omit the word “conditional”.

Definition 7.13. The expected supremum of a worst-case tree process

Rseq (F) , sup
z

Esup
f ∈F

T f = sup
z

E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (zt (ǫ1:t−1))

}
(7.16)

is called sequential Rademacher averages or sequential Rademacher complexity of

a class F. Define conditional sequential Rademacher averages on a given tree z as

R̂seq (F;z) , E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (zt (ǫ1:t−1))

}
. (7.17)

PExercise 7.1 (⋆). Show that

Ri i d (F) ≤ sup
z1,...,zn

R̂i i d (F; z1, . . . , zn) ≤Rseq (F) (7.18)

PExercise 7.2 (⋆). Let us make the size n apparent by writing the subscript on

R
seq
n (F). Show that nR

seq
n (F) is nondecreasing in n.

PExercise 7.3 (⋆). Show that R
seq
2n (F) ≤R

seq
n (F).

The following properties of Rademacher averages greatly expand the scope of

problems that can be studied with the tools introduced in this course. These and

further results can be found in Bartlett and Mendelson [5]:

Lemma 7.14. For any z1, . . . , zn , conditional Rademacher averages satisfy

1. If F⊆G, then R̂i i d (F; z1, . . . , zn) ≤ R̂i i d (G; z1, . . . , zn)

2. R̂i i d (F; z1, . . . , zn) = R̂i i d (conv (F) ; z1, . . . , zn)

3. For any c ∈R, R̂i i d (cF; z1, . . . , zn) = |c|R̂i i d (F; z1, . . . , zn)

For any Z-valued tree z of depth n, the above three properties also hold for condi-

tional sequential Rademacher complexity.

PExercise 7.4 (⋆). Prove Lemma 7.14.

80

7.6 Skolemization

7.6 Skolemization

This is probably a good point to make precise the exchange of expectations and

suprema that has taken place several times by now: a) when the interleaved ex-

pectations and suprema were collapsed to an expectation over a joint distribution

in (7.3), and b) when the sequence of suprema and expectations over random signs

became a tree in (7.13). Both of these exchanges follow the same simple (yet very

useful) logic. Consider a quantity Ea supb∈Bψ(a,b) where a is a random variable

with values in A. We now claim that

Ea sup
b∈B

ψ(a,b) = sup
γ

Eaψ(a,γ(a))

where the supremum ranges over all functions γ : A→B. A simple proof of this

statement is left as an exercise.

Whenever faced with a long sequence of expectations and suprema, the trick

described above (which we call skolemization) is very handy. In particular, the

trick gives rise to the joint distribution in Theorem 7.9 and in Eq. (7.3). It also

gives rise to the concept of a tree in Eq. (7.13), which is nothing but a sequence of

skolemized mappings.

7.7 ... Back to Learning

Putting together Theorem 7.8 and Theorem 7.10, as well as Theorem 7.9 and The-

orem 7.11, we get the following two corollaries for learning.

Corollary 7.15. Let ŷ be the ERM algorithm. Then

EL(ŷ)− inf
f ∈F

L(f) ≤ E sup
g∈ℓ(F)

Gg ≤ 2E sup
g∈ℓ(F)

Sg , (7.19)

and hence

Vi i d (F,n) ≤ 2sup
P

E sup
g∈ℓ(F)

Sg (7.20)

Corollary 7.16. The value of the sequential prediction problem is upper bounded

as

Vseq (F,n) ≤ 2sup
z

E sup
g∈ℓ(F)

Tg (7.21)

81

8
Example: Learning Thresholds

To illustrate the behavior of stochastic processes in conjunction with learning,

consider the simplest classification problem possible – thresholds on a unit in-

terval. To this end, let X= [0,1], Y= {0,1}, and

F=
{

fθ(x) = I {x ≤ θ} : θ ∈ [0,1]
}

.

The loss function is the indicator of a mistake: ℓ(f , (x, y)) = I
{

f (x) 6= y
}
= | f (x)−y |.

We now consider the problem of learning thresholds in various scenarios.

8.1 Statistical Learning

Suppose PX×Y is an arbitrary distribution on X×Y and D = YX. Given the data

{(Xt , Yt)}n
t=1, we can construct an empirical minimizer ŷ = fθ̂ via

θ̂ ∈ arg min
θ∈[0,1]

1

n

n∑
t=1

∣∣ fθ(Xt)− Yt

∣∣ ,

a threshold location that incurs the smallest number of mistakes.

0

1

θ̂

With the tools from the previous section we can almost immediately answer

the question: does the excess risk EL(ŷ)− inf f ∈F L(f) decay as n increases? Along

82

8.1 Statistical Learning

the way, we will illustrate a couple of techniques that will be useful in the next

lecture. First, observe that by Corollary 7.15,

EL(ŷ)− inf
f ∈F

L(f) ≤ E sup
g∈ℓ(F)

Gg ≤ 2E sup
g∈ℓ(F)

Sg = 2E sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt

∣∣ fθ(Xt)− Yt

∣∣
]

(8.1)

It is easy to verify that |a −b| = a(1−2b)+b for a,b ∈ {0,1}. We can then simplify

the supremum of the Rademacher process as

E sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt

∣∣ fθ(Xt)− Yt

∣∣
]
= E sup

θ∈[0,1]

[
1

n

n∑
t=1

ǫt (1−2Yt) fθ(Xt)+ǫt Yt

]
(8.2)

= E sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt fθ(Xt)

]
(8.3)

The last equality follows by noticing that ǫt Yt is zero-mean. Furthermore, condi-

tionally on Y1, . . . , Yn , the distribution of (1−2Yt)ǫt is again Rademacher and can,

therefore, be replaced by ǫt .

The last quantity is the supremum of the Rademacher process, but without the

Y component and without the loss function:

E sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt | fθ(Xt)− Yt |
]
= E sup

θ∈[0,1]

[
1

n

n∑
t=1

ǫt fθ(Xt)

]
(8.4)

This step is a precursor of a general technique called a contraction principle. Since

the class F of step functions fθ(x) = I {x ≤ θ} is somewhat easier to deal with than

the loss class ℓ(F), it is convenient to “erase” the loss function.

Now, let us pass back to the supremum of the empirical process via Theo-

rem 7.10:

E sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt fθ(Xt)

]
≤ 2E sup

θ∈[0,1]

∣∣∣∣
1

n

n∑
t=1

(
E fθ(X)− fθ(Xt)

)∣∣∣∣+
1
p

n

Combining all the steps together,

EL(ŷ)− inf
f ∈F

L(f) ≤ 4E sup
θ∈[0,1]

∣∣∣∣EI {X ≤ θ}−
1

n

n∑
t=1

I {Xt ≤ θ}

∣∣∣∣+
2
p

n
(8.5)

This quantity might be familiar. Let F (θ) = P (X ≤ θ) be the cumulative distribution

function for a random variable X with a marginal distribution PX . Let F̂n(θ) be the

83

8.2 Separable (Realizable) Case

empirical distribution function. By the Law of Large Numbers, F̂n(θ) converges to

F (θ) for any given θ. A stronger statement

sup
θ

|F̂n(θ)−F (θ)|→ 0 almost surely

was shown by Glivenko and Cantelli in 1933, and it gives us the desired result:

the upper bound in (8.5) converges to zero. Kolmogorov showed that, in fact,

supθ |F̂n(θ)− F (θ)| converges to zero at the rate n−1/2, the same rate as that for

a single θ. In some sense, we get supθ for free! This remarkable fact serves as the

motivation for the next few lectures.

We conclude that the excess loss EL(ŷ) − inf f ∈F L(f) of the empirically-best

threshold decays at the rate of n−1/2 for all distributions PX×Y . Thus, Vi i d (F,n) =
O(n−1/2).

PExercise 8.1 (⋆⋆). Prove that this rate is not improvable if one is allowed to

choose any distribution PX×Y .

8.2 Separable (Realizable) Case

Let us describe a non-distribution-free case. One (very strong) assumption we

could make is to suppose that Yt = fθ∗(Xt) for some threshold θ∗ ∈ [0,1]. Recall that

this assumption lands us right into the PAC framework discussed in the introduc-

tory lecture. Such a problem is called “separable” (or, realizable), as the examples

labeled with 0 and 1 are on the opposite sides of the threshold. It is not hard to see

that the expected loss

EL(ŷ) = EI
{

fθ̂(X) 6= fθ∗(X)
}

of the empirically best threshold θ̂ should behave as n−1 rather than the previously

shown rate of n−1/2. To gain intuition, suppose PX is uniform on [0,1]. Then

0

1

θ
∗

θ̂

Figure 8.1: Separable case: the ERM solution θ̂ quickly converges to θ∗.

84

8.3 Noise Conditions

I
{

fθ̂(X) 6= fθ(X)
}
= E|θ̂−θ|.

Since data are separable, θ̂ can be chosen as the middle of the interval between

the right-most value with label 1 and the left-most value with label 0. The distance

|θ̂−θ| is then at most half the distance between two such extreme values. With n

points, the distance should be roughly of the order n−1, up to logarithmic factors

which can be removed with a bit more work.

PExercise 8.2 (⋆). Prove the O(n−1 logn) rate.

8.3 Noise Conditions

Less restrictive assumptions that lead to rates between n−1 and n−1/2 are assump-

tions on the noise around the decision boundary. Let η(x) = fP (x) = E[Y|X = x] be

the regression function. It is well known (see e.g. [21]) that the best classifier with

respect to the indicator loss is f ∗ = I
{
η(x) ≥ 1/2

}
. Of course, the classifier cannot

be computed as P is unknown. Suppose, however, that f ∗ = fθ∗ ∈ F. That is, the

label 1 is more probable than 0 for x ≤ θ∗ and less probable for any x > θ∗. Var-

ious assumptions about the behavior of fP around θ∗ translate into intermediate

rates, as discussed above. Such conditions are the so-called Tsybakov’s noise con-

dition and Massart’s noise condition. Of course, these extend beyond the setting of

learning thresholds.

0

1

η(x)

Figure 8.2: In this example, the Bayes classifier f ∗ = I
{
η(x) ≥ 1/2

}
is a threshold

function. The behavior of η(x) around 1/2 determines the difficulty of the predic-

tion problem.

Importantly, we are not making assumptions about the behavior of the distri-

bution other than through the behavior of fP at the decision boundary. For the

purposes of prediction, it is not important to know the global properties of the

underlying distribution, in contrast to the typical assumptions made in statistics.

85

8.4 Prediction of Individual Sequences

8.4 Prediction of Individual Sequences

We now consider the same problem in the sequential prediction framework, with

no assumption on the sequence {(xt , yt)}n
t=1 ∈ (X×Y)n . According to the improper

learning protocol, at round t we observe xt , predict ŷ t ∈ {0,1} and observe the label

yt ∈ {0,1} chosen (simultaneously with ŷ t) by Nature. The question is whether

regret
1

n

∑
t=1

I
{

ŷ t 6= yt

}
− inf

θ∈[0,1]

1

n

∑
t=1

I
{

fθ(xt) 6= yt

}

can be made small. By Corollary 7.16, the value of the sequential prediction prob-

lem is upper bounded as

Vseq (F,n) ≤ 2sup
z

Eǫ1,...,ǫn sup
θ∈[0,1]

Tℓ(fθ) (8.6)

where the supremum is over all (X×Y)-valued trees z of depth n. Let us write a

(X×Y)-valued tree equivalently as (x,y) where x and y are X and Y-valued. That is,

the [0,1]-valued tree in our example has values in the space of covariates, and the

y tree gives labels {0,1} on the corresponding nodes.

We now construct a particular pair (x,y) which will make the supremum in

(8.6) large. Take y as the tree with all zeros. Define x1 = 1
2

, x2(−1) = 1
4

, x2(1) = 3
4

,

x3(−1,−1) = 1
8

, x3(−1,1) = 3
8

, x3(1,−1) = 5
8

, x3(1,1) = 7
8

and so forth. The first three

levels of the tree are illustrated in figure (8.3).

x1

x2(+)x2(−)

x3(+,+)x3(−,−)

θ
∗

0 1
1

2

1

4

3

4

Figure 8.3: Construction of a bad binary tree.

In principle, we can construct an infinite dyadic tree in this manner. Such a

tree will play an important role later.

86

8.4 Prediction of Individual Sequences

Say, n = 3 and the tree x is exactly as just described. Let y = 0 and take a path,

say (−1,+1,−1). For this path,

sup
θ∈[0,1]

Tℓ(fθ) = sup
θ∈[0,1]

1

n

n∑
t=1

ǫt fθ(xt (ǫ1:t−1))

= sup
θ∈[0,1]

1

3

(
− fθ(x1)+ fθ(x2(−1))− fθ(x3(−1,+1))

)

= sup
θ∈[0,1]

1

3

(
− I {x1 ≤ θ}+ I {x2(−1) ≤ θ}− I {x3(−1,+1) ≤ θ}

)

Observe that there is a θ∗ (shown in Figure 8.3) such that the first and third indi-

cators are zero while the second is one. In other words, there is a threshold that

annihilates all the indicators with a negative sign in front of them, and keeps the

positive ones. This θ∗ gives an average of 1/3 for the supremum, and it is clearly

the maximum for the path (−1,1,−1). Now take the “opposite” path (1,−1,1). The

threshold 1−θ∗ yields 2/3 for the value of the supremum on this path. It is easy to

see that all the paths can be paired in this manner to squeeze the value of 1/2 on

average. We thus have

Eǫ1,...,ǫn sup
θ∈[0,1]

1

n

n∑
t=1

ǫt fθ(xt (ǫ1:t−1)) =
1

2

and conclude that with the constructed tree x and y = 0, the expected supremum

of the tree process does not go to zero.

Theorem 8.1. For X = [0,1], Y = {0,1}, F the class of thresholds on [0,1] and the

indicator loss,

sup
(x,y)

E

{
sup
θ∈[0,1]

Tℓ(fθ)

}
≥

1

2

with x,y ranging, respectively, over all X and Y-valued trees.

Why do we care that an upper bound in (8.6) on Vseq (F,n) does not go to zero

with n? Maybe the tree process is an overkill, and it is still possible to play the

sequential prediction game, ensuring smallness of Vseq (F,n)? We now show that

this is not the case, and the prediction problem is itself hopeless. What is inter-

esting, Nature can use precisely the same tree x constructed above to ensure the

learner incurs n mistakes.

87

8.5 Discussion

We outline the strategy for Nature. At iteration t = 1, x1 is presented as side

information and the learner makes the prediction ŷ 1 ∈ {0,1}. In the meantime,

the Nature flips a fair coin y ′
1 ∈ {±1} and presents the outcome y1 = (y ′

1 + 1)/2 ∈
{0,1}. With probability 1/2, the prediction ŷ 1 6= y1. In the second round, x2(y ′

1) is

presented by Nature to the learner who chooses ŷ 2, and the outcome is compared

to a fair coin y2 ∈ {0,1}.

In general, the choice xt (y ′
1, . . . , y ′

t−1) specifies the strategy of nature. The fair

coin flips y ′
1, . . . , y ′

n make the move of the player irrelevant, as

E

{
1

n

n∑
t=1

I
{

ŷ t 6= yt

}}
=

1

2
.

The comparator term, however, is zero, thanks to the structure given by x. Indeed,

any time that y ′
t = −1, the next move is the left child of xt (y ′

1, . . . , y ′
t−1), while for

y ′
t = 1 it is the right child. Note that any time an element xt is followed by the left

child, no other xt ′ to the right of xt will ever be presented, simply given the struc-

ture of the tree. By doing so, we are guaranteed that there will be a “consistent”

threshold on xt . It is easy to convince yourself that this strategy ensures existence

of a threshold θ∗ such that

1

n

n∑
t=1

I
{

I
{

xt (y ′
1, . . . , y ′

t−1) ≤ θ∗
}
6= yt

}
= 0 .

Theorem 8.2. The class of thresholds on the unit interval is not learnable in the

setting of binary prediction of individual sequences: Vseq (F,n) ≥ 1
2

.

8.5 Discussion

We have considered the problem of learning thresholds in the distribution-free

setting of statistical learning, in the setting of PAC learning (the separable case), in

the setting of learning with some assumptions on the Bayes function E[Y |X = x],

and in the setting of prediction of individual sequences. In the first scenario, the

study of learnability was possible thanks to the Rademacher and Empirical pro-

cesses. In the last scenario, we showed that the expected supremum of the asso-

ciated tree process is not decaying to zero, and for a good reason: the prediction

problem is not feasible. We will show that in the supervised learning setting con-

vergence of the expected supremum of the tree process takes place if and only if

88

8.5 Discussion

the associated prediction problem is feasible. This is quite nice, as we do not even

need to “play” the prediction game to know whether there is a strategy for predict-

ing well: we can simply study the supremum of the tree process!

In the next lecture, we develop tools to study suprema of stochastic processes.

Such statements are called maximal inequalities.

89

9
Maximal Inequalities

9.1 Finite Class Lemmas

At this point, we are hopefully convinced that suprema of various stochastic pro-

cesses is an object of interest for learning theory. Let us start this endeavor by

considering stochastic processes indexed by a finite set.

Lemma 9.1. Suppose {Us}s∈S is a finite collection of random variables, and assume

that there exists a c > 0 such that for all s ∈ S, Eexp(λUs) ≤ ec2λ2/2 for all λ> 0. Then

Emax
s∈S

Us ≤ c
√

2log |S| .

Proof. By Jensen’s inequality,

exp

(
λEmax

s∈S
Us

)
≤ Eexp

(
max

s∈S
λUs

)
= Emax

s∈S
exp(λUs)

≤ E

∑

s∈S
exp(λUs) =

∑

s∈S
Eexp(λUs) ≤ |S|ec2λ2/2 .

Taking logarithms of both sides and dividing by λ,

Emax
s∈S

Us ≤
log |S|
λ

+
c2λ

2
.

The proof is concluded by choosing λ=
√

2c−2 log |S|.

The moment generating condition in Lemma 9.1 should be recognized as a

condition on the tail decay of the variables Us . Variables satisfying such a condi-

tion are called subgaussian. Examples include gaussian random variables as well

as bounded random variables.

90

9.1 Finite Class Lemmas

Lemma 9.2 (Hoeffding). For a zero-mean random variable U bounded almost surely

as a ≤U ≤ b,

Eexp(λU) ≤ exp

{
λ2(b −a)2

8

}
(9.1)

The bound of Lemma 9.1 holds for any finite collection of subgaussian ran-

dom variables. However, the stochastic processes of interest to us are not arbitrary

– they have a particular structure. Specifically, all four processes we’ve discussed

(empirical process, Rademacher process, empirical process with dependent data,

and the tree process) are all defined as averages of random quantities. We thus ex-

pect to obtain more specific statements for the processes of interest. In particular,

the typical deviations of averages given by the Central Limit Theorem are 1/
p

n, so

we expect that c in Lemma 9.1 will be a function of n as well as of magnitudes of

the random variables being averaged. Let us make this more precise.

Let us consider the empirical process with dependent data.

Lemma 9.3. Let F be a finite class of [−1,1]-valued functions on Z. Then

Emax
f ∈F

M f ≤ 2

√
2log |F|

n

Proof. We need to check the subgaussianity condition and find the appropriate

(smallest) constant c. Denote dt = 1
n

(
E
{

f (Zt)
∣∣ Z1, . . . , Zt−1

}
− f (Zt)

)
and observe

that by (9.1)

E

{
exp{λdt } |Zt−1

}
≤ exp

{
2λ2

n2

}

because each dt ∈ [−2,2]. We then have

Eexp
{
λM f

}
= Eexp

{
λ

n∑
t=1

dt

}
= E

[
n−1∏
t=1

exp{λdt }E
{

exp{λdn} |Zn−1
}]

which is upper bounded by

E

[
n−1∏
t=1

exp{λdt }

]
×exp

{
2λ2

n2

}

Repeating the process, we arrive at

Eexp
{
λM f

}
≤ exp

{
2λ2

n

}

Appealing to Lemma 9.1 with c = 2p
n

yields the statement.

91

9.1 Finite Class Lemmas

Of course, the bound of Lemma 9.3 holds for the i.i.d. empirical process G f as

well. The proofs for the Rademacher and the tree processes are basically identical.

Nevertheless, there is an important point to make regarding the boundedness as-

sumption. Since the empirical processes involve random data Zt , we were forced

to make a global assumption on the boundedness of F over Z. Alternatively, we

could follow the proof of Lemma 9.3 and replace the global bound on the magni-

tude of dt by a conditional variance bound per step. Such results are known and

have their merits. For the reasons that will become apparent in the next few lec-

tures, we prefer to deal with the Rademacher and the tree processes, as the magni-

tudes of dt are fixed. Indeed, we assume that z1, . . . , zn in the Rademacher process

(or the tree z in the tree process) are fixed. We can then give upper bounds in terms

of these fixed quantities.

Let us consider the unnormalized sum to simplify the notation.

Lemma 9.4. Let V ⊂R
n be a set of N vectors. Then

Emax
v∈V

n∑
t=1

ǫt vt ≤

√
2log N max

v∈V

n∑
t=1

v2
i

Hence, for a finite class F of functions Z→R and a fixed set zn = {z1, . . . , zn} ∈Zn , it

holds that

Emax
f ∈F

S f ≤ r

√
2log |F|

n

where r 2 = max f ∈F
1
n

∑n
t=1 f 2(zt).

Proof. For a fixed v ∈V , define dt = ǫt vt . We then have Eexp{λdt } ≤ exp{(2vt)2λ2/8}.

Following the proof of Lemma 9.3,

Eexp

{
λ

n∑
t=1

ǫt vt

}
≤ exp

{(n∑
t=1

v2
t

)
λ2/2

}

and the statement follows.

We finish this section with a more powerful lemma that holds for a tree process

over a finite index set. Of course, Lemma 9.4 follows from Lemma 9.5 if the trees

in the set V are taken to be constant functions vt (ǫ1:t−1) = vt for all ǫ1:t−1.

Lemma 9.5. Let V be a set of N real-valued trees of depth n. Then

Emax
v∈V

n∑
t=1

ǫt vt (ǫ1:t−1) ≤

√
2log N max

v∈V
max
ǫ1:n

n∑
t=1

vt (ǫ1:t−1)2

92

9.1 Finite Class Lemmas

Hence, for a finite class F of functions Z→R and a fixed Z-valued tree z of depth n,

it holds that

Emax
f ∈F

T f ≤ r

√
2log |F|

n

where

r 2 = max
f ∈F

max
ǫ1,...,ǫn

1

n

n∑
t=1

f 2(zt (ǫ1, . . . ,ǫt−1)).

The proof of this lemma is a bit more involved than the previous proofs, as

we ask for the upper bound to scale with the largest ℓ2-norm along any path in

the trees. To preserve the path structure, we need to peel off the terms in the mo-

ment generating function one by one, starting from the last term. We remark that

Lemma 9.5 is crucial for the further developments.

Proof. Fix λ > 0 and a R-valued tree v ∈ V . For t ∈ {0, . . . ,n −1} define a function

At : {±1}t →R by

At (ǫ1, . . . ,ǫt) = max
ǫt+1,...,ǫn

exp

{
λ2

2

n∑
s=t+1

vs(ǫ1:s−1)2

}

and An(ǫ1, . . . ,ǫn) = 1. We have that for any t ∈ {1, . . . ,n}

Eǫt

{
exp

(
λ

t∑
s=1

ǫsvs(ǫ1:s−1)

)
× At (ǫ1, . . . ,ǫt)

∣∣∣∣ ǫ1, . . . ,ǫt−1

}

= exp

(
λ

t−1∑
s=1

ǫsvs(ǫ1:s−1)

)
×

(
1

2
eλvt (ǫ1:t−1) At (ǫ1, . . . ,ǫt−1,+1)+

1

2
e−λvt (ǫ1:t−1) At (ǫ1, . . . ,ǫt−1,−1)

)

≤ exp

(
λ

t−1∑
s=1

ǫsvs(ǫ1:s−1)

)
× max

ǫt∈{±1}
At (ǫ1, . . . ,ǫt)

(
1

2
eλvt (ǫ1:t−1) +

1

2
e−λvt (ǫ1:t−1)

)

≤ exp

(
λ

t−1∑
s=1

ǫsvs(ǫ1:s−1)

)
× At−1(ǫ1, . . . ,ǫt−1)

where in the last step we used the inequality (ea +e−a)/2 ≤ ea2/2. Hence,

Eǫ1,...,ǫn

{
exp

(
λ

n∑
s=1

ǫsvs(ǫ1:s−1)

)}
≤ A0 = max

ǫ1,...,ǫn

exp

{
λ2

2

n∑
s=1

vs(ǫ1:s−1)2

}
.

We conclude that

exp

(
λEmax

v∈V

n∑
t=1

ǫt vt (ǫ1:t−1)

)
≤ N max

v∈V
max
ǫ1,...,ǫn

exp

{
λ2

2

n∑
s=1

vs(ǫ1:s−1)2

}

and the rest of the proof follows the proof of Lemma 9.1.

93

10
Example: Linear Classes

We say that F is a linear function class if each f (x) =
〈

f , x
〉

is linear in x. For finite-

dimensional problems we may think of f as a vector. For p ≥ 0, define

B
d
p ,

{
a ∈R

d : ‖a‖p ≤ 1
}

,

the unit ball in R
d with respect to the p-norm. It is well-known that for the conju-

gate pair 1 ≤ p, q ≤∞ with p−1 +q−1 = 1,

‖a‖p = sup
b∈Bd

q

〈a,b〉 .

That is, Lp and Lq norms are dual to each other. Hölder’s inequality then says that

〈a,b〉 ≤ ‖a‖p · ‖b‖q .

Example 3 (L2/L2 case). Let F=X=B
d
2 . For any X-valued tree x of depth n,

R̂seq (F;x) = Esup
f ∈F

{
1

n

n∑
t=1

ǫt

〈
f ,xt (ǫ)

〉}
= Esup

f ∈F

〈
f ,

1

n

n∑
t=1

ǫt xt (ǫ)

〉
= E

∥∥∥∥
1

n

n∑
t=1

ǫt xt (ǫ)

∥∥∥∥
2

(10.1)

One can view the sequential Rademacher complexity as the expected length of a

random walk of the martingale with increments {ǫt xt (ǫ1:t−1)}, normalized by n.

Recall that x is X-valued, so the increments are in the Euclidean unit ball. So,

how far can such a random walk be expected to walk away for any tree x? An easy

calculation shows that

E

∥∥∥∥
n∑

t=1

ǫt xt (ǫ)

∥∥∥∥
2

≤
(
E

∥∥∥∥
n∑

t=1

ǫt xt (ǫ)

∥∥∥∥
2

2

)1/2

=
(
E

∑
t ,s

〈ǫt xt (ǫ),ǫsxs(ǫ)〉
)1/2

=
(n∑

t=1

E‖xt (ǫ)‖2
2

)1/2

≤
p

n

94

In view of (7.18) we conclude that

Ri i d (F) ≤Rseq (F) ≤
1
p

n
(10.2)

Khinchine-Kahane inequality shows that Ri i d (F) ≥ 1p
2n

for any symmetric dis-

tribution P on the surface of X, so supP R
i i d (F) is within a constant factor from

Rseq (F).

Example 4 (L1/L∞ case). Suppose now that X=B
d
∞, while F=B

d
1 . Observe that

F= conv({±e1, . . . ,±ed }) .

That is, the ℓ1 ball is a convex hull of 2d vertices. Thus,

Ri i d (F) ≤Rseq (F) =Rseq ({±e1, . . . ,±ed }) ≤

√
2log(2d)

n
(10.3)

by Lemma 9.4.

Example 5 (∆d /L∞ case). Suppose now that X=B
d
∞ and

F=∆d =
{

f ∈R
d :

d∑

i=1

fi = 1, fi ≥ 0 ∀i

}

is the d-simplex. Similarly to the previous example, F= conv({e1, . . . ,ed }) , and

Ri i d (F) ≤Rseq (F) =Rseq ({e1, . . . ,ed }) ≤

√
2log(d)

n
(10.4)

by Lemma 9.4.

Example 6 (General case). X be a unit ball in a separable Banach space (B,‖ · ‖).

Consider the dual space—the space of continuous linear functionals on B. Let

‖ ·‖∗ be the dual norm, defined for an element f ∈B∗ of the dual space by

‖ f ‖∗ = sup
x∈X

〈
f , x

〉
. (10.5)

Let Ψ∗ be a σ-strongly convex function with respect to ‖ ·‖∗ on F. That is,

∀ f , g ∈F, Ψ
∗(f) ≥Ψ

∗(g)+
〈

f − g ,∇Ψ∗(g)
〉
+
σ

2
‖ f − g‖2

∗ (10.6)

95

Defining the convex conjugate Ψ of Ψ∗ as

Ψ(x) = sup
f ∈F

〈
f , x

〉
−Ψ

∗(f),

it is possible to verify the opposite property (smoothness) for the conjugate func-

tion:

∀x, y ∈X, Ψ(x) ≤Ψ(y)+
〈
∇Ψ(y), x − y

〉
+

1

2σ
‖x − y‖2. (10.7)

Let M 2 = sup f ∈FΨ
∗(f). Using the definition of conjugacy, for any λ> 0,

R̂seq (F;x) =
1

λ
Esup

f ∈F

〈
f ,

λ

n

n∑
t=1

ǫt xt (ǫ)

〉
≤

1

λ

(
sup
f ∈F

Ψ
∗(f)+EΨ

(
λ

n

n∑
t=1

ǫt xt (ǫ)

))
(10.8)

The first term is upper bounded by M 2, while for the second term we use (10.7):

EΨ (Zn) ≤ E

(
Ψ (Zn−1)+

〈
∇Ψ(Zn−1),

λ

n
ǫnxn(ǫ)

〉
+

1

2σ

∥∥∥∥
λ

n
xn(ǫ)

∥∥∥∥
2)

(10.9)

with Zk = λ
n

∑k
t=1 ǫt xt (ǫ). The first-order term disappears under the expectation,

and the second-order term is bounded by λ2/(2σn2) since the x tree is X-valued.

Peeling off all the terms in the sum in the similar manner, we arrive at

R̂seq (F;x) ≤
M 2

λ
+

λ

2σn
= M

√
2

σn
(10.10)

for λ= M
p

2σn. Of course, the radius of the ball X is 1 and does not appear in the

bound; otherwise, the bound would scale linearly with it.

96

11
Statistical Learning: Classification

We are now armed with a powerful tool: an upper bound on the expected supre-

mum of G f ,S f ,M f , and T f indexed by a finite set F. How about an infinite class

F? In this lecture we address this question for classification problems within the

scope of Statistical Learning.

11.1 From Finite to Infinite Classes: First Attempt

The first idea that comes to mind is to approximate the class by a finite “represen-

tative” set. The set will be called a “cover”. Intuitively, the larger the set, the better

is the approximation, but the worse is the log-size-of-finite-set bound.

As the first attempt, let us implement the idea of a cover to upper bound G f for

the simple case of thresholds in one dimension, studied in Section 8.1. Effectively,

we are aiming at an upper bound on

E sup
θ∈[0,1]

[
EI {X ≤ θ}−

1

n

n∑
t=1

I {Xt ≤ θ}

]
(11.1)

(see Eq. (8.5)) which was graciously provided to us by Kolmogorov. Recall that

there is an unknown underlying probability distribution PX×Y on which we place

no restriction. Let ΘN = {θ1, . . . ,θN } be equally-spaced on the interval [0,1] and let

c(θ) ∈ΘN be the element of the representative set closest to θ. With the notation

Gθ = EI {X ≤ θ}−
1

n

n∑
t=1

I {Xt ≤ θ}

97

11.2 From Finite to Infinite Classes: Second Attempt

we can then write

E sup
θ∈[0,1]

[Gθ] = E sup
θ∈[0,1]

[
Gc(θ) +Gθ−Gc(θ)

]
≤ E sup

θ∈[0,1]

[
Gc(θ)

]
+E sup

θ∈[0,1]

[
Gθ−Gc(θ)

]

(11.2)

The first term is the expected supremum over the finite set ΘN :

E sup
θ∈[0,1]

[
Gc(θ)

]
= E max

θi∈ΘN

[
Gθi

]

but how do we control the second term? Since θ and c(θ) are close, we are tempted

to say that it is small. However, we made no assumption on PX , so it is very well

possible that all of its mass is concentrated on some interval [θi ,θi+1], in which

case the above expression is equal to the one in (11.1). Hence, we have achieved

nothing by passing to the finite subset! Clearly, the discretization needs to depend

on the unknown distribution PX .

To rescue the situation, we may try to place the elements θ1, . . . ,θN such that

EI {θi ≤ X ≤ θi+1} is the same for all the intervals [θi ,θi+1]. This path might get us

somewhere close to the desired result for thresholds in one dimension, but it is

rather unsatisfying: we need to reason about the unknown distribution PX . For

more general situations, such an analysis will be loose and impractical. A better

way to do it is by working with the Rademacher process directly. Since the supre-

mum of this process is within a factor 2 from the supremum of the empirical pro-

cess (Theorem 7.10), we are not losing much.

11.2 From Finite to Infinite Classes: Second Attempt

For the example of thresholds, let us stay with the Rademacher averages ofF rather

than pass to the empirical process (11.1). We now reason conditionally on X1, . . . , Xn

and provide an upper bound on conditional Rademacher averages

E

{
sup
θ∈[0,1]

[
1

n

n∑
t=1

ǫt I {Xt ≤ θ}

] ∣∣∣∣∣ X1, . . . , Xn

}
(11.3)

An upper bound on the latter quantity that is independent of X1, . . . , Xn would be

quite interesting. It would effectively say that the unknown distribution PX was

edged out of the picture and replaced with random signs.

98

11.3 The Growth Function and the VC Dimension

Conditional Rademacher averages in (11.3) can be equivalently written as

Eǫ sup
a∈F|Xn

[
1

n

n∑
t=1

ǫt at

]
(11.4)

where F|Xn =
{

(fθ(X1), . . . , fθ(Xn))
}
⊆ {0,1}n , the projection of F onto X

n . How big is

this projection? Since (X1, . . . , Xn) is held fixed, by varying θ we can realize vectors

of the form (1, . . . ,1,0, . . . ,0), and there are n + 1 of them. Clearly, the Euclidean

length of the vectors a ∈F|Xn is at most
p

n, so by Lemma 9.4,

Emax
f ∈F

S f ≤

√
2log(n +1)

n

11.3 The Growth Function and the VC Dimension

The size of the projection F|Xn played an important role in obtaining an upper

bound on Rademacher averages for the case of classification with thresholds. The

same ideas carry over to a general classification setting.

Definition 11.1. For a binary valued function class F⊂ {0,1}X, the growth function

is defined as

ΠF(n) = max
{

card
(
F|x1,...,xn

)
: x1, . . . , xn ∈X

}
(11.5)

We have the following proposition that follows immediately from our previous

arguments.

Proposition 11.2. For classification with some domain X, label set Y = {0,1}, class

of function F ⊆ YX and loss function ℓ(f , (x, y)) = I
{

f (x) 6= y
}
, it holds that for any

distribution PX×Y ,

E sup
g∈ℓ(F)

Gg ≤ 2Esup
f

S f ≤ 2

√
2logΠF(n)

n

The growth function measures expressiveness of F. In particular, if F can pro-

duce all possible signs (that is, ΠF(n) = 2n), the bound becomes useless.

Definition 11.3. We say thatF shatters some set x1, . . . , xn (a term due to J. Michael

Steele) if F|xn = {0,1}n . That is,

∀(b1, . . . ,bn) ∈ {0,1}n , ∃ f ∈F s.t. f (xt) = bt ∀t ∈ {1, . . . ,n}

99

11.3 The Growth Function and the VC Dimension

It is possible to show that if a set x1, . . . , xn is shattered for some n, then not

only is the bound of Proposition 11.2 vacuous, but the learning problem itself (for

the given n) is impossible.

PExercise 11.1 (⋆⋆⋆). Prove the above statement.

We see that the growth function is quite important as a measure of complex-

ity of F when it comes to distribution-free learning. But what is the behavior of

the growth function? The situation turns out to be quite interesting. Define the

following combinatorial parameter of F:

Definition 11.4. The Vapnik-Chervonenkis (VC) dimension of the class F⊆ {0,1}X

is defined as

vc(F),max
{

t : ΠF(t) = 2t
}

or vc(F) =∞ if max does not exist. Further, for x1, . . . , xn ∈X, define

vc(F, x1, . . . , xn), vc
(
F|x1,...,xn

)
,max

{
t : ∃i1, . . . , it ∈ {1, . . . ,n} s.t. card

(
F|xi1

,...,xit

)
= 2t

}

Vapnik-Chervonenkis dimension is the largest t such that F can produce all

possible sequences of bits {0,1} on some set of examples. Clearly, the bound of

Proposition 11.2 is useless for n ≤ vc(F). What about n > vc(F)? The following

beautiful and surprising result was proved around the same time by Vapnik and

Chervonenkis, Sauer, and Shelah.1

Lemma 11.5 (Vapnik-Chervonenkis, Sauer, Shelah). It holds that

ΠF(n) ≤
d∑

i=0

(
n

i

)

whenever vc (F) = d <∞.

There are several ways to prove this lemma, and we give one that will be useful

later in the course. Importantly, the sum that upper bounds the growth function

has a O(nd) behavior. In fact,

d∑

i=0

(
n

i

)
≤

(en

d

)d
, (11.6)

1 Thanks to Léon Bottou http://leon.bottou.org/news/vapnik-chervonenkis_sauer for

figuring out the sequence of events (which, by the way, involves Paul Erdös) that led to these pub-

lications.

100

http://leon.bottou.org/news/vapnik-chervonenkis_sauer

11.3 The Growth Function and the VC Dimension

and we leave the proof as an easy exercise. It is quite remarkable that the growth

function is 2t for t ≤ d and polynomial afterwards, a non-obvious fact that makes

the Vapnik-Chervonenkis results appealing.

As an immediate corollary of Proposition 11.2 we have

Corollary 11.6. Under the setting of Proposition 11.2, if vc (F) = d,

E sup
g∈ℓ(F)

Gg ≤ 2Esup
f

S f ≤ 2

√
2d log(en/d)

n

Example 7. The class of thresholds

F= { fθ(x) = I {x ≤ θ} : θ ∈ [0,1]}

on X = [0,1] has vc(F) = 1. Indeed, one cannot find x1, x2 ∈ X, x1 < x2, such that

some threshold gives a label 0 to x1 and 1 to x2. Thus, no set of two points is

shattered by F.

Example 8. The class of step-up and step-down thresholds

F= { fθ(x) = I {x ≤ θ} : θ ∈ [0,1]}∪ {gθ(x) = I {x ≥ θ} : θ ∈ [0,1]}

on X= [0,1] has vc(F) = 2.

The following analogue holds in d dimensions:

Example 9. Define the class of linear thresholds in R
d by

F=
{

fθ(x) = I {〈θ, x〉 ≥ 0} : θ ∈R
d
}

Then vc(F) = d + 1, which justifies our use of the same letter d for both dimen-

sionality of the space and the combinatorial dimension of F.

Example 10. Let the set H of functions X → R be a subset of a d-dimensional

vector space. Then the class

F=
{

I {h(x) ≥ 0} : h ∈H
}

has VC dimension at most d .

As the next example shows, it is not correct to think of the VC dimension as the

number of parameters.

101

11.3 The Growth Function and the VC Dimension

Example 11. The VC dimension of the class

F=
{

fα(x) = I {sin(αx) ≥ 0} : α ∈R

}

is infinite despite the fact that F is parametrized by a single number.

We now turn to the proof of the Vapnik-Chervonenkis-Sauer-Shelah lemma:

Proof of Lemma 11.5. Define a function

g (d ,n) =
d∑

i=0

(
n

i

)

for d ,n ≥ 0. We would like to prove ΠF(n) ≤ g (d ,n) for d = vc(F). By the way of

induction, assume that the statement holds for (d −1,n −1) and (d −1,n). Fix any

x1, . . . , xn ∈X, and suppose vc(F, x1, . . . , xn) = d . Define

F =
{

r ∈F|x2,...,xn : (0,r), (1,r) ∈F|x1,...,xn

}

the set of projections of F on (x2, . . . , xn) such that both labels are realized on x1.

Let F ′ =F|x2,...,xn , the set of all projections of F on (x2, . . . , xn). Observe that F ⊂ F ′.

We claim that

card
(
F|x1,...,xn

)
= card(F)+card

(
F ′) . (11.7)

To see this, suppose r ∈ F . Then both (0,r) and (1,r) are counted on the left-hand

side of (11.7), and this is matched by counting r twice (in F and F ′). If r ∈ F ′ \ F ,

then only (0,r) or (1,r) appears on the left-hand side, and the same is true for the

right-hand side.

We now claim that vc(F) is at most d − 1, for otherwise vc
(
F|x1,...,xn

)
= d + 1

(indeed, both 0 and 1 can be appended to the full projection of size 2d to create a

projection of size 2d+1). Then

card
(
F|x1,...,xn

)
= card(F)+card

(
F ′)≤ g (d −1,n −1)+ g (d ,n −1) (11.8)

by the induction hypothesis. Since this holds for any x1, . . . , xn , we also have

ΠF(n) ≤ g (d −1,n −1)+ g (d ,n −1).

The induction step follows from the identity

g (d ,n −1)+ g (d −1,n −1) = g (d ,n).

The base of the induction is easy to verify.

102

11.3 The Growth Function and the VC Dimension

The proof of Lemma 11.5 might appear magical and unintuitive. Let us point

(in a very informal way) to a few important pieces that make it work. In fact, the

technique is rather general and will be used once again in a few lectures when we

prove an analogue of the combinatorial lemma for sequential prediction. The ab-

stract idea is that the behavior ofF on a sample can be separated into two pieces (F

and F ′). Let us now forget about the way that these pieces are defined, and rather

look into how their respective sizes can be used to unwind a recursion. Imagine

that a split into F and F ′ can be done so that the smaller piece F is always of size 1.

The recursion would then unfold as g (d ,n) ≤ g (d ,n−1)+1 ≤ g (d ,n−2)+2 ≤ . . . ≤ n.

Of course, such a recursion is rather trivial. Now, imagine another type of recur-

sion: both pieces are of the same size. Then we would have g (d ,n) ≤ 2g (d ,n−1) ≤
4g (d ,n−2) ≤ . . . ≤ 2n . Once again, such a recursion is rather trivial, and the bound

is not useful. In some sense, these two cases are extremes of how a recursion might

play out. But note that we did not use d in the two recursions. Imagine now that

each time we perform the split into F and F ′, a “counter” d is decreased for the

smaller piece. That is, g (d ,n) ≤ g (d − 1,n − 1)+ g (d ,n − 1). This situation is in-

between the bounds of n and 2n , and, in fact, it is of the order nd as the proof

shows.

The above observation is a rather general recipe: for a problem at hand, find a

parameter (“counter”) so that the size of the smaller set being split off has to have

a smaller value for this parameter. In this case, the recursion gives a polynomial

rather than exponential size.

103

12
Statistical Learning: Real-Valued

Functions

In the real-valued supervised learning problem with i.i.d. data, we consider a

bounded set Y = [−1,1]. Fix a set F of functions X→ Y, for some input space X.

In the distribution-free scenario, we have i.i.d. data {(Xt , Yt)}n
t=1 from an unknown

PX×Y , on which we place no assumption.

Recall that the cardinality of the set

F|x1,...,xn =
{

(f (x1), . . . , f (xn)) : f ∈F
}

played an important role in the analysis of classification problems. For real-valued

functions, however, the cardinality of this set is of little use since it is, in general,

uncountable. However, two functions f and g with almost identical values

f (xt) ≈ g (xt), t ∈ {1, . . . ,n}

on the sample are essentially the same for our purposes, and we need to find a way

to measure complexity ofF|x1,...,xn without paying attention to small discrepancies

between functions. This idea is captured by the notion of covering numbers.

12.1 Covering Numbers

Recall our shorthand xn = {x1, . . . , xn}.

Definition 12.1. A set V ⊂R
n is an α-cover on x1, . . . , xn with respect to ℓ2 norm if

∀ f ∈F, ∃v ∈V s.t.

(
1

n

n∑
t=1

(f (xt)− vt)2

)1/2

≤α. (12.1)

104

12.1 Covering Numbers

An α-covering number is defined as

N2(F,α, xn) = min
{

card(V) : V is an α-cover
}

.

x1 x2 xT

Figure 12.1: Two sets of levels provide an α-cover for the four functions. Only the

values of functions on x1, . . . , xn are relevant.

As far as the cover is concerned, the values of functions outside x1, . . . , xn are

immaterial. Hence, we may equivalently talk of a cover for the set F|xn ⊆ [−1,1]n .

We may then write N2(F|xn ,α) for the α-covering number.

It is important to note that here and below we refer to ℓp norms, but the def-

initions in fact use an extra normalization factor 1/n. We may equivalently write

the α-closeness requirement (12.1) as ‖f− v‖2 ≤
p

nα where f = (f (x1), . . . , f (xt)) ∈
F|x1,...,xn .

If the set V is realized as V =
{

(g (x1), . . . , g (xn)) : g ∈G
}

for some collection G⊆
F, we say that the cover is proper. A proper cover picks a subset G of F so that any

f ∈ F is close to some g ∈ G on x1, . . . , xn in the ℓ2 sense. The distinction between

proper and improper covers is minor, and one can show that a proper covering

number at the α level is sandwiched between improper covering numbers at α

and α/2 levels.

Of course, we can define ℓp -covers as

Definition 12.2. A set V ⊂ R
n is an α-cover on x1, . . . , xn with respect to ℓp norm,

for p ∈ [1,∞), if

∀ f ∈F, ∃v ∈V s.t.

(
1

n

n∑
t=1

| f (xt)− vt |p
)1/p

≤α,

and with respect to ℓ∞ norm if

∀ f ∈F, ∃v ∈V s.t. | f (xt)− vt | ≤α ∀t ∈ {1, . . . ,n}.

105

12.1 Covering Numbers

The α-covering numbers Np (F,α, xn) and N∞(F,α, xn) are defined as before.

The above notions of a cover can be seen as instances of a more general idea

of an α-cover for a metric space (T,d). A subset T ′ ⊂ T is an α-cover of T if for

any t ∈ T there exists a s ∈ T ′ such that d(t , s) ≤α. Above definitions correspond to

endowingF with an empirical metric Lp (µn) whereµn is the empirical distribution

on the data x1, . . . , xn , thus explaining the extra 1/n normalization factor.

α

Figure 12.2: An α-cover for a metric space (n,d).

PExercise 12.1 (⋆). Prove that for any 1 ≤ p ≤ q ≤∞, Np (F,α, xn) ≤Nq (F,α, xn).

Covering of F allows us to squint our eyes and view the set F|xn as a finite set

at a granularity α. We can then apply the maximal inequalities for stochastic pro-

cesses indexed by finite sets. Of course, by doing so we lose α of precision. Clearly,

smaller α means larger α-cover, so there is tension between fine granularity and

small cover. This is quantified in the following proposition.

Proposition 12.3. For any xn = {x1, . . . , xn}, conditional Rademacher averages of a

function class F⊆ [−1,1]X satisfy

R̂i i d (F) ≤ inf
α≥0



α+

√
2logN1(F,α, xn)

n





Proof. Fix x1, . . . , xn and α> 0. Let V be a minimal α-cover of F on xn with respect

to ℓ1-norm. For f ∈ F, denote by v[f] ∈ V any element that “α-covers” f in the

sense given by the definition. Denote by v[f]t the t th coordinate of the vector.

106

12.1 Covering Numbers

Write the conditional Rademacher averages as

R̂i i d (F) = E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (xt)

}

= E

{
sup
f ∈F

1

n

n∑
t=1

ǫt

(
f (xt)− v[f]t

)
+ǫt v[f]t

}

≤ E

{
sup
f ∈F

1

n

n∑
t=1

ǫt

(
f (xt)− v[f]t

)
}
+E

{
sup
f ∈F

1

n

n∑
t=1

ǫt v[f]t

}

≤ sup
f ∈F

1

n

n∑
t=1

| f (xt)− v[f]t |+E

{
max
v∈V

1

n

n∑
t=1

ǫt vt

}

By definition of α-cover, the first term is upper bounded by α. The second term

is precisely controlled by the maximal inequality of Lemma 9.4, which gives an

upper bound of √
2log |V |

n
,

due to the fact that ‖v‖2 ≤
p

n for any v ∈ V . Note that if any coordinate of v is

outside the interval [−1,1], it can be truncated.

Since α> 0 is arbitrary, the statement follows.

Example 12. For certain classesF, one can show thatFx1,...,xn is a subset of [−1,1]n

of dimension lower than n. This happens, for instance, if

F=
{

f (x) =
〈

f , x
〉

: f ∈Bd
p

}
and X=B

d
q ,

where B
d
p and B

d
q are unit balls in R

d , with 1/p +1/q = 1. For instance, for p =∞,

the function class is identified with [−1,1]d and it is easy to check that

N∞(F,α, xn) ≤
(

2

α

)d

by a discretization argument. The bound of Proposition 12.3 then yields

R̂i i d (F) ≤ inf
α≥0



α+

√
2d log(2/α)

n



 (12.2)

Up to constant factors, the best choice for α is n−1/2, which yields an upper bound

of the order O

(√
d logn

n

)
.

107

12.2 Chaining Technique and the Dudley Entropy Integral

Since B
d
p ⊆B

d
∞ for any p > 0, the above bound also holds for other F, though it

might be loose. We also remark that an ℓ∞ cover is quite a stringent requirement,

as Proposition 12.3 only requires the ℓ1 cover. Finally, we note that the discretiza-

tion argument yields more than an ℓ∞ cover on xn : it yields a pointwise cover for

all x ∈X. In general such pointwise bounds are not possible as soon as we consider

infinite-dimensional F.

12.2 Chaining Technique and the Dudley Entropy In-

tegral

An application of Proposition 12.3 in Example 12 yields an O

(√
d logn

n

)
upper bound,

containing an extraneous logn factor. How do we know that it is extraneous? Well,

because we can get a bound without this factor. While we might not care about a

logarithmic factor, the situation is actually more serious: we can provide an exam-

ple where Proposition 12.3 gives the wrong rate. Somehow, squinting our eyes and

looking at F at a single level of granularity does not give the right picture. What if

we looked at F at different coarseness levels and integrated them to build a full-

resolution panorama? The next theorem does exactly that.

Theorem 12.4. For any xn = {x1, . . . , xn}, conditional Rademacher averages of a

function class F⊆ [−1,1]X satisfy

R̂i i d (F) ≤ D̂i i d (F)

where

D̂i i d (F), inf
α≥0

{
4α+

12
p

n

∫1

α

√
logN2(F,δ, xn)dδ

}
(12.3)

Proof. Fix x1, . . . , xn and let F = F|xn . Let α j = 2− j for j = 1,2, Let V j be a min-

imal α j -cover of size N2(F,α j , xn). For any f ∈ F , let v[f] j ∈ V j be an element α j -

close to f, as promised by the definition of an α j -cover. Each f is therefore asso-

ciated with a chain of approximations v[f]1, v[f]2, . . . at increasingly fine levels of

granularity. Let ǫ= (ǫ1, . . . ,ǫn) denote the vector of Rademacher random variables.

Then we may succinctly write conditional Rademacher averages as

R̂i i d (F) = E

{
sup
f ∈F

1

n

n∑
t=1

ǫi f (xi)

}
=

1

n
Esup

f∈F

〈ǫ, f〉

108

12.2 Chaining Technique and the Dudley Entropy Integral

where 〈a,b〉 is the inner product. We now rewrite the (unnormalized) averages as

in Proposition 12.3, but with a chain of N telescoping differences (N to be deter-

mined later):

Esup
f∈F

〈ǫ, f〉 = Esup
f∈F

{
〈
ǫ, f− v[f]N

〉
+

N∑

j=1

〈
ǫ, v[f] j − v[f] j−1

〉}

≤ Esup
f∈F

〈
ǫ, f− v[f]N

〉
+

N∑

j=1

Esup
f∈F

〈
ǫ, v[f] j − v[f] j−1

〉

with v[f]0 = 0. The first term is upper bounded above by Cauchy-Shwartz inequal-

ity as

Esup
f∈F

〈
ǫ, f− v[f]N

〉
≤ Esup

f∈F

‖ǫ‖ ·
∥∥f− v[f]N

∥∥=
p

n sup
f∈F

(n∑
t=1

(
ft − v[f]N

t

)2
)1/2

= nαN

(12.4)

by definition. Turning to the second term, observe that, for a given j , the differ-

ence v[f] j − v[f] j−1 takes on at most card
(
V j

)
× card

(
V j−1

)
possible values. This

allows us to invoke the maximal inequality of Lemma 9.4:

Esup
f∈F

〈
ǫ, v[f] j − v[f] j−1

〉
= r

√
2log(card

(
V j

)
×card

(
V j−1

)
)

where r = supf∈F

∥∥v[f] j − v[f] j−1
∥∥. For any f ∈F,

∥∥∥v[f] j − v[f] j−1
∥∥∥≤

∥∥∥v[f] j − f
∥∥∥+

∥∥∥v[f] j−1 − f
∥∥∥≤

p
nα j +

p
nα j−1 = 3

p
nα j .

Since size of the minimal cover does not decrease for finer resolution, it holds that

card
(
V j

)
×card

(
V j−1

)
≤ card

(
V j

)2
.

We conclude that conditional Rademacher averages are upper bounded as

1

n
Esup

f∈F

〈ǫ, f〉 ≤αN +
6
p

n

N∑

j=1

α j

√
logcard

(
V j

)

Using the simple identity 2(α j −α j+1) = α j , as well as the fact that each V j is a

minimal cover, we may rewrite the upper bound as

αN +
12
p

n

N∑

j=1

(α j −α j+1)
√

logN2(F,α j , xn) ≤αN +
12
p

n

∫1

αN+1

√
logN2(F,δ, xn)dδ.

109

12.3 Example: Nondecreasing Functions

Now, fix any α> 0 and let N = sup{ j : α j ≥ 2α}. Then αN+1 < 2α and 4α>αN ≥ 2α.

Hence, αN+1 =αN /2 >α and

1

n
Esup

f∈F

≤ inf
α>0

{
4α+

12
p

n

∫1

α

√
logN2(F,δ, xn)dδ

}

The result also holds for α= 0, and this completes the proof.

12.3 Example: Nondecreasing Functions

Before discussing the virtues of Theorem 12.4, let us mention that N(F,α, xn) is

always finite for a class F of bounded functions. Indeed, one can create a cover

(let’s say in ℓ∞) by discretizing the interval [−1,1] to the level of α for the values of

functions on each of x1, . . . , xn . Then, let V be a set of vectors obtained by taking

any of the 2/α possible values on x1, any of the 2/α possible values on x2, and

so on. Clearly, the size of such a cover is
(

2
α

)n
. This is illustrated in Figure 12.3.

We conclude that for any class F of bounded functions, the covering numbers on

x1 x2 xT

α

Figure 12.3: Without any assumptions on the function, the size of an α-cover is

Ω ((1/α)n)

x1, . . . , xn are finite, yet they yield vacuous upper bounds in both Proposition 12.3

and in Theorem 12.4. Without any assumptions on F, learning is not possible, in

which case we should not expect to obtain any meaningful upper bounds.

Consider a class of functions F on X = R. Let us place only one restriction on

the functions: they are non-decreasing. What happens to the covering numbers?

Do we still require Ω ((1/α)n) vectors to provide an α-cover for F on x1, . . . , xn? Is

the associated prediction problem (say, with absolute loss) learnable? To answer

these questions, let us construct an ℓ∞ cover V of F on xn . Without loss of gener-

ality, suppose x1, . . . , xn are ordered on the real line. Then the elements of V should

110

12.3 Example: Nondecreasing Functions

x1 x2 xT

α

Figure 12.4: The class of non-decreasing functions on R has a manageable cover-

ing number.

be n-dimensional vectors with non-decreasing coordinates. How many such vec-

tors v ∈ V are required to provide α-approximation to any non-decreasing func-

tion? For any ȳ in the set of (2/α) discretized y-values, we need to specify the

coordinate i ∈ {1, . . . ,n} such that the i -th coordinate of v is below ȳ but i +1th is

greater than ȳ . This gives all the possibilities. A simple counting argument gives

|V | ≤ n2/α, and, therefore,

N∞(F,α, xn) ≤ n2/α. (12.5)

for any x1, . . . , xn . Observe that the seemingly innocuous assumption of mono-

tonicity drastically decreased the covering number from (2/α)n to n2/α.

Let us now apply the upper bound of Proposition 12.3 to the class of non-

decreasing functions on R:

R̂i i d (F) ≤ inf
α≥0



α+

√
2(2/α) logn

n





Optimizing the bound leads to α=
(

4logn

n

)1/3
, and the final bound of

R̂i i d (F) ≤ 2

(
4logn

n

)1/3

.

Let us now compare this to the bound given by Theorem 12.4 and see if our efforts

paid off. We have

R̂i i d (F) ≤ D̂i i d (F) ≤ inf
α≥0

{
4α+

12
p

n

∫1

α

√
(2/δ) logndδ

}

111

12.4 Improved Bounds for Classification

Simplifying the integral

∫1

α

p
2/δdδ= 2

p
2
[p

δ
]1

α
≤ 2

p
2

and taking α= 0, we obtain

R̂i i d (F) ≤ 24

√
2logn

n
, (12.6)

a qualitatively different rate from that given by Proposition 12.3.

As a final remark, we mention that the domain X = R of the functions in the

above example is unbounded and there is no hope to have a finite pointwise cover

of F over X. Early results in statistical learning theory relied on the availability of

such covering numbers, which greatly limited the applicability of the results. The

symmetrization technique allows us to treat data as fixed and to only consider

covering numbers of F on the data xn .

PExercise 12.2 (⋆⋆). Show that the bound of Theorem 12.4 removes the extra-

neous logarithmic factor in the upper bound (12.2) of Example 12.

12.4 Improved Bounds for Classification

Classification scenario (that is, F ⊆ {0,1}X) can also benefit from the upper bound

of Theorem 12.4. First, notice that a projection F|x1,...,xn is nothing but a cover of

F at scale α = 0. Indeed, for any function f ∈ F, trivially, there exists an element

v ∈ V =F|x1,...,xn such that f (xt) = vt for all t . Henceforth, we shall refer to such a

cover as a zero-cover or exact cover, and the covering number by N0(F, x1, . . . , xn).

For such a cover at scale α= 0, we need not specify the ℓp norm. Alternatively, we

can denote the zero cover by N∞(F, xn ,α) for any 0 ≤α< 1/2.

The Vapnik-Chervonenkis-Sauer-Shelah lemma (Lemma 11.5) states that for

any x1, . . . , xn ,

N0(F, x1, . . . , xn) ≤
(en

d

)d
(12.7)

for d = vc(F).

Recall that Proposition 11.2 yielded an upper bound with an extra logn factor.

In fact, it is not possible to avoid this factor if we are dealing with the exact cover.

112

12.5 Combinatorial Parameters

However, what if we obtain ℓ2 covering numbers for F and apply Theorem 12.4?

Recall from the last section (see the last exercise) that this indeed removes the ex-

traneous factor.

Refining the proof of Dudley [22], Mendelson [38] gives a nice probabilistic

argument that for any x1, . . . , xn , the ℓp -covering numbers of the class F of {0,1}-

valued functions satisfy

Np (F,α, xn) ≤
(
(2pe2) log

2e2

α

)d (
1

α

)pd

. (12.8)

Taking p = 2, for classification problems with vc(F) = d , Theorem 12.4 yields an

O
(√

d
n

)
upper bound without the superfluous logarithmic factors.

12.5 Combinatorial Parameters

Back to the setting of real-valued prediction, a natural question to ask is whether

there is a combinatorial parameter of F ⊆ [−1,1]X that controls the behavior of

covering numbers. Historically, the first such parameter was pseudo-dimension,

due to D. Pollard:

Definition 12.5. The pseudo-dimension ofF⊆R
X is defined as the Vapnik-Chervonenkis

dimension of the class

G=
{

g (x, y) = I
{

f (x)− y ≥ 0
}

: f ∈F
}

.

Equivalently, pseudo-dimension is the largest d such that there exist (x1, . . . , xn) ∈
Xn and (y1, . . . , yn) ∈R

n with the following property:

∀(b1, . . . ,bn) ∈ {0,1}n , ∃ f ∈F s.t. f (xt) ≥ yt ⇔ bt = 1

Pseudo-dimension of F is a measure of its expressiveness. To show that F has

pseudo-dimension at least d one needs to provide d input variables x1, . . . , xn and

d real-valued “levels” yt such that for any bit sequence b1, . . . ,bn , there is a func-

tion that passes above and below these levels at x1, . . . , xn as dictated by the bit

sequence.

It turns out that finiteness of pseudo-dimension is sufficient to guarantee an

upper bound on the covering numbers, but not necessary. For instance, consider

the class of non-decreasing functions on the real line, as discussed earlier. Let us

113

12.5 Combinatorial Parameters

prove that the pseudo-dimension is infinite. Indeed, for d as large as we want, let

xt = t and yt = t/d , for each t ∈ {1, . . . ,d}. Then, for any bit sequence (b1, . . . ,bd) ∈
{0,1}, there is a non-decreasing function that passes above the level yt if bt = 1 and

under if bt = 0. This is clearly due to the fact that there is enough wiggle room

between yt = t/d and yt+1 = (t +1)/d for a non-decreasing function to pass either

above or below the threshold.

While the pseudo-dimension is infinite for the class of non-decreasing func-

tions, we saw earlier that the covering numbers grow at most as n2/α, yielding a

rate of
√

(logn)/n. Thus, the pseudo-dimension is not a satisfactory parameter

for capturing the problem complexity. Intuitively, at least in the above example,

the problem stems from the fact that there is no notion of scale in the definition of

pseudo-dimension. For instance, if the requirement was to pass α-above and α-

below the levels yt , the above construction of a shattered set with yt = t/d would

break as soon as α= 1/d . This intuition indeed leads to the “right” combinatorial

notion, introduced by Kearns and Schapire [31]:

Definition 12.6. We say thatF⊆R
X α-shatters a set (x1, . . . , xn) if there exist (y1, . . . , yn) ∈

R
n (called a witness to shattering) with the following property:

∀(b1, . . . ,bn) ∈ {0,1}n , ∃ f ∈F s.t. f (xt) > yt +
α

2
if bt = 1 and f (xt) < yt −

α

2
if bt = 0

The fat-shattering dimension of F at scale α, denoted by fat(F,α), is the size of the

largest α-shattered set.

x1 x2 xT

α/2

x1 x2 xT

Figure 12.5: Left: Pseudo-dimension can be infinite for functions that barely wig-

gle. Right: In contrast, fat-shattering dimension requires the functions to pass

above and below levels yt by a margin α/2. Here, yt ’s are constant.

Example 13. For the class of non-decreasing functions on the real line, the fat-

shattering dimension satisfies fat(F,α) ≤ 4/α. Indeed, suppose x1 < x2 . . . < xd are

114

12.5 Combinatorial Parameters

α-shattered by F. Suppose y1 ≤ . . . ≤ yn is a witness to shattering, and take the

alternating sequence (0,1,0,1, . . .) of bits. For simplicity, suppose d is even. Then,

there must be a non-decreasing function that passes below every odd-indexed and

above every even-indexed yt by a margin α. The jump of the function is then at

least α between every odd and even index, and there can be at most 2/α such

jumps for a non-decreasing [−1,1]-valued function. Thus,

fat(F,α) ≤ 4/α (12.9)

The first part of the following theorem is due to Mendelson and Vershynin [39],

and the second to [48] (the proofs are difficult and go well beyond this course):

Theorem 12.7. For F⊆ [−1,1]X and any 0 <α< 1,

N2(F,α, xn) ≤
(

2

α

)K ·fat(F,cα)

(12.10)

where K ,c are positive absolute constants. Furthermore, for any δ ∈ (0,1),

logN∞(F,α, xn) ≤C d log
(n

dα

)
logδ(n/d), (12.11)

where d = fat(F,cδα) for some positive constant c.

The first result can be seen as a generalization of (12.8) to real-valued func-

tions, and the second – as a generalization of the Vapnik-Chervonenkis-Sauer-

Shelah lemma. To the best of our knowledge, it is an open question whether the

extra term involving logδ(n/d) can be removed, and it is believed that a more nat-

ural bound logN∞(F,α, xn) ≤C d log
(

n
dα

)
with d = fat(F,cα) should be possible.

k Prove this fact and earn an A+ in the course.

A few more remarks about Theorem 12.7. First, upper bounds on Np for 1 ≤
p < ∞ are of the same form as (12.10), with constants c,K depending only on p

(see [38, 39]). Second, note that the ℓ∞ covering numbers depend on n, a feature

already observed in the upper bound of the Vapnik-Chervonenkis-Sauer-Shelah

lemma (see Eq.(12.7)). In fact, this dependence is inevitable for N∞. On the other

hand, ℓp covering numbers (1 ≤ p < ∞) are independent of n. Thankfully, the

bound of Theorem 12.4 is in terms of an ℓ2 covering number, so we need not con-

cern ourselves with covering in the ℓ∞ norm. Finally, we remark that for sequential

115

12.5 Combinatorial Parameters

problems, the analogue of (12.11) is relatively easy to prove without the extra log-

arithmic factor, which is somewhat surprising. We will later point out the place

where the difficulty arises in the i.i.d. but not in the sequential proof.

Example 14. We turn again to the example of non-decreasing functions on the

real line. Recall that we calculated ℓ∞ covering numbers in (12.5) and used this

upper bound in conjunction with Theorem 12.4 to get an O

(√
logn

n

)
upper bound

in Eq. (12.6). We have also calculated an upper bound fat(F,α) ≤ 4/α on the fat-

shattering dimension in (12.9). Using this bound together with Theorem 12.7, we

get a direct estimate

N2(F,α, xn) ≤
(

2

α

)c/α

, for some constant c > 0

on the ℓ2 covering numbers without a detour through the inferior ℓ∞ covering

numbers. Theorem 12.4 then yields for any x1, . . . , xn

R̂i i d (F) ≤ inf
α≥0

{
4α+

12
p

n

∫1

α

√
c

δ
log

(
2

δ

)
dδ

}

Taking α= 1/
p

n, we observe that the integral above is bounded by the integral of

a polynomial of power larger than δ−1: say, δ−3/4. The latter integral over [α,1] is

bounded by a constant, yielding an upper bound

R̂i i d (F) ≤
C
p

n

for some absolute constant C . We conclude that a more careful analysis with a fat-

shattering dimension and the Dudley Entropy Integral removes the superfluous

logarithmic factor. In other situations, this approach can also lead to “correct”

rates.

Of course, putting together Theorem 12.4 and the bound (12.10) of Theorem 12.7

leads to a general upper bound

Corollary 12.8. For F⊆ [−1,1]X, for any x1, . . . , xn ∈X,

D̂i i d (F) ≤ inf
α≥0

{
4α+

12
p

n

∫1

α

√
K fat(F,cδ) log

(
2

δ

)
dδ

}

for some absolute constants c,K .

116

12.6 Contraction

12.6 Contraction

So far, we have developed many tools for upper bounding the Rademacher aver-

ages of a function class. In addition to the properties outlined in Lemma 7.14, the

following lemma about Rademacher averages is useful:

Lemma 12.9. If φ : R→ R is L-Lipschitz (that is, φ(a)−φ(b) ≤ L|a −b| for all a,b ∈
R), then

R̂i i d (φ◦F) ≤ LR̂i i d (F)

Proof. For brevity, let us prove the result for L = 1. We have

R̂i i d (φ◦F) = Eǫ1,...,ǫn sup
f ∈F

1

n

n∑
t=1

ǫtφ(f (xt))

=
1

2

{
Eǫ1,...,ǫn−1 sup

f ∈F

[
1

n

n−1∑
t=1

ǫtφ(f (xt))+φ(f (xn))

]
+Eǫ1,...,ǫn−1 sup

g∈F

[
1

n

n−1∑
t=1

ǫtφ(g (xt))−φ(g (xn))

]}

=
1

2
Eǫ1,...,ǫn−1 sup

f ,g∈F

[
1

n

n−1∑
t=1

ǫt

(
φ(f (xt))+φ(g (xt))

)
+φ(f (xn))−φ(g (xn))

]

=
1

2
Eǫ1,...,ǫn−1 sup

f ,g∈F

[
1

n

n−1∑
t=1

ǫt

(
φ(f (xt))+φ(g (xt))

)
+

∣∣ f (xn))− g (xn)
∣∣
]

In the first step, we expanded the expectation over ǫn as a sum of two terms; in the

second, we combined two suprema into one, and in the third used the Lipschitz

property. Now, fix ǫ1:n−1 and suppose the supremum is achieved at some (f ∗, g∗).

If f ∗(xn) ≥ g∗(xn), we can remove the absolute values in the last term. Otherwise,

the pair (g∗, f ∗) gives the same value as the last expression, and we can remove

the absolute values once again. Thus, the last expression is upper bounded by

1

2
Eǫ1,...,ǫn−1 sup

f ,g∈F

[
1

n

n−1∑
t=1

ǫt

(
φ(f (xt))+φ(g (xt))

)
+ (f (xn))− g (xn))

]

≤
1

2

{
Eǫ1,...,ǫn−1 sup

f ∈F

[
1

n

n−1∑
t=1

ǫtφ(f (xt))+ f (xn)

]
+Eǫ1,...,ǫn−1Eǫ1,...,ǫn−1 sup

f ∈F

[
1

n

n−1∑
t=1

ǫtφ(f (xt))− f (xn)

]}

= Eǫ1,...,ǫn sup
f ∈F

[
1

n

n−1∑
t=1

ǫtφ(f (xt))+ǫn f (xn)

]

Continuing in this fashion, we “remove” φ for every term.

117

12.7 Discussion

Lemma 12.9 will be called “Contraction Principle”. This result is indeed the

missing link that allows us to relate the supremum of the Rademacher processes

over ℓ(F) to the supremum of the Rademacher process over F itself whenever ℓ is

a Lipschitz function. In the case of the indicator loss (which is not Lipschitz), we

already observed in (8.4) that

E sup
g∈ℓ(F)

Sg = Esup
f ∈F

S f .

Now, in view of Lemma 12.9, we also conclude that

E sup
g∈ℓ(F)

Sg ≤ L ·Esup
f ∈F

S f

whenever the loss function is L-Lipschitz.

12.7 Discussion

We now have a full arsenal of tools for proving upper bound on the supremum of

the Rademacher process and, hence, on the excess risk

EL(ŷ)− inf
f ∈F

L(f)

of an empirical risk minimizer ŷ . Any distribution-independent upper bound also

yields an upper bound on the minimax value Vi i d (F), but the tools we developed

in fact also give us data-dependent upper bounds. In a few lectures, we will show

certain concentration arguments that allow us to estimate the supremum of the

Rademacher process, opening a door to fully data-driven (rather than worst-case)

results.

Since we have covered so many techniques, let us give a short recipe of how one

can proceed with a new problem. To obtain an upper bound on the performance

of empirical risk minimization, first pass to the supremum of the empirical process

and then to the supremum of the Rademacher process, as in Theorem 7.10. Then

use the properties of the Rademacher averages to simplify the class over which

the Rademacher averages are taken, using Lemma 7.14 and Lemma 12.9. This can

involve stripping away any Lipschitz compositions (e.g. loss function), and pass-

ing from convex hulls of functions to a set of vertices. Then attempt to build a

covering, preferably in the ℓ2 sense. If a fat-shattering or VC-dimension can be

calculated, use it to immediately deduce the size of the cover, e.g. with the help

118

12.8 Supplementary Material: Back to the Rademacher

of Theorem 12.7. Use it in conjunction with the Dudley entropy integral bound of

Theorem 12.4 to obtain the final bound. This development for an L-Lipschitz loss

can be summarized by the following series of upper bounds:

EL(ŷ)− inf
f ∈F

L(f) ≤ Esup
f ∈F

{
L(f)− L̂(f)

}
︸ ︷︷ ︸

Gℓ(f)

≤ 2E

{
Eǫ sup

f ∈F
Sℓ(f)

}

︸ ︷︷ ︸
R̂i i d (ℓ(F))

≤ 2LE

{
Eǫ sup

f ∈F
S f

}

︸ ︷︷ ︸
R̂i i d (F)

≤ 2LE inf
α≥0

{
4α+

12
p

n

∫1

α

√
logN2(F,δ, xn)dδ

}
≤ 2L inf

α≥0

{
4α+

12
p

n

∫1

α

√
K fat(F,cδ) log

(
2

δ

)
dδ

}

As the next section shows, the sequence of upper bounds is (in a certain sense)

tight.

12.8 Supplementary Material: Back to the Rademacher

In Theorem 7.10, we showed that the supremum of an empirical process is within

a factor of 2 from the supremum of the Rademacher process, both as an upper

and a lower bound. Hence, not much is lost by working with the latter. We then

upper bounded the supremum of the Rademacher process by the Dudley entropy

integral D̂i i d (F). We now show that this upper bound is also quite tight, as it is

within a logarithmic factor from the worst-case statistical Rademacher averages.

Definition 12.10. Worst-case statistical Rademacher averages are defined as

Ri i d (F,n), sup
x1,...,xn

R̂i i d (F, x1, . . . , xn).

Lemma 12.11. For any n and α> 2Ri i d (F,n),

fat(F,α) ≤
8nRi i d (F,n)2

α2
(12.12)

Proof. Let d = fat(F,α) and x∗
1 , . . . , x∗

d
be the set of points α-shattered by F with

the witness y∗
1 , . . . , y∗

d
. First, suppose by the way of contradiction that d ≥ n. Then,

the worst-case statistical Rademacher based on the first (x∗
1 , . . . , x∗

n) out of the shat-

tered set gives

Ri i d (F,n) ≥ R̂i i d (F, x1, . . . , xn) = Eǫ1,...,ǫn sup
f ∈F

1

n

n∑
t=1

ǫt f (x∗
t) = Esup

f ∈F

1

n

n∑
t=1

ǫt (f (x∗
t)− y∗

t) ≥α/2,

119

12.8 Supplementary Material: Back to the Rademacher

contradicting our assumption that α> 2Ri i d (F,n). Hence, necessarily d < n.

For simplicity of exposition, assume that n = kd for some integer k > 0 (other-

wise, can take n′ to be the nearest multiple of d , with n ≤ n′ ≤ 2n). We can then

take the set (x1, . . . , xn) as (x∗
1 , . . . , x∗

1 , . . . , x∗
d

, . . . , x∗
d

), where each element x∗
i

is re-

peated k times, and perform the same concatenation for the witnesses y1, . . . , yn .

We then lower bound

Ri i d (F,n) ≥ R̂i i d (F, x1, . . . , xn)

= Eǫ1,...,ǫn sup
f ∈F

1

n

n∑
t=1

ǫt (f (xt)− yt)

= Eǫ1,...,ǫn sup
f ∈F

1

n

d∑

i=1

(f (x∗
i)− y∗

i)

(
k∑

j=1

ǫ(i−1)k+ j

)

For a given sequence (ǫ1, . . . ,ǫn), letσi be the majority vote of the signs ǫ(i−1)k+1, . . . ,ǫi k

on the i th block. By the definition ofα-shattering, there exists a function f ∈F that

passes above/below y∗
i

on x∗
i

by a margin α/2 according to the sign σi , for each i .

This yields

Ri i d (F,n) ≥ Eǫ1,...,ǫn sup
f ∈F

1

n

d∑

i=1

(α/2)

∣∣∣∣∣
k∑

j=1

ǫ(i−1)k+ j

∣∣∣∣∣≥ (α/2)

√
1

2k
=

√
α2fat(F,α)

8n

With the upper bound on fat(F,α) given by Lemma 12.11, we can further upper

bound the integral in Corollary 12.8 to obtain

Corollary 12.12. For F⊆ [−1,1]X, for any x1, . . . , xn ,

R̂i i d (F) ≤ D̂i i d (F) ≤Ri i d (F,n) ·O(log3/2 n) .

Proof. Taking α= 2Ri i d (F,n)/c, for the absolute constant c given in (12.10). Then

R̂i i d (F) ≤ 4α+
12
p

n

∫1

α

√
K fat(F,cδ) log

(
2

δ

)
dδ≤ 4α+

12
p

n

∫1

α

√

K
8nRi i d (F,n)2

c2δ2
log

(
2

δ

)
dδ

Simplifying the above expression, we obtain an upper bound

Ri i d (F,n)

(
8/c +12

∫1

α

√
8K

c2δ2
log

(
2

δ

)
dδ

)
=Ri i d (F,n) ·O(log3/2 n)

120

12.9 Supplementary Material: Lower Bound on the Minimax Value

12.9 Supplementary Material: Lower Bound on the Min-

imax Value

We now show a lower bound on the value of statistical learning with absolute loss

(Eq. (5.9)) in terms of the worst-case statistical Rademacher averages Ri i d de-

fined in the previous section, with the caveat that we only consider proper learning

methods (see page 53).

Lemma 12.13 ([50]). Consider the i.i.d. setting of supervised learning with absolute

loss, and let F ⊆ [−1,1]X. Let us only consider estimators ŷ that take values in F

(that is, proper learning). Then

Vi i d ,ab(F,n) ≥Ri i d (F,2n)−
1

2
Ri i d (F,n) (12.13)

Proof. Recall that |y − f (x)| = 1− y f (x) for y ∈ {±1} and f (x) ∈ [−1,1]. Hence, we

can write

E
∣∣ŷ(X)− Y

∣∣− inf
f ∈F

E
∣∣ f (X)− Y

∣∣= E
(
1− Y ŷ(X)

)
− inf

f ∈F
E
(
1− Y f (X)

)

= sup
f ∈F

E
(

Y f (X)
)
−E

(
Y ŷ(X)

)

where the expectation in the second term is over the draw of data (of size n) as well

as another i.i.d. copy (X, Y). Take any x1, . . . , x2n ∈X and let PX be the uniform dis-

tribution on these 2n points. For any ǫ = (ǫ1, . . . ,ǫ2n) ∈ {±1}2n , let the distribution

Pǫ be such that the marginal distribution of the variable X is PX while the condi-

tional of Y|X = xi is deterministically ǫi , for all i ∈ [2n]. This defines a family of

distributions Pǫ indexed by ǫ ∈ {±1}2n . Recall that, by definition, an estimator ŷ is

a mapping n samples drawn i.i.d. from this discrete distribution into F. Then

Vi i d ,ab(F,n) = inf
ŷ

sup
P

{
E
∣∣ŷ(X)− Y

∣∣− inf
f ∈F

E
∣∣ f (X)− Y

∣∣
}

≥ inf
ŷ

sup
x1,...,x2n∈X

Eǫ

{
sup
f ∈F

E
(

Y f (X)
)
−E

(
Y ŷ(X)

)
}

≥
{

sup
x1,...,x2n∈X

Eǫ sup
f ∈F

E
(

Y f (X)
)
}
−

{
sup

ŷ

sup
x1,...,x2n∈X

EǫE
(
Y ŷ(X)

)
}

121

12.9 Supplementary Material: Lower Bound on the Minimax Value

The first term above is precisely

sup
x1,...,x2n∈X

Eǫ sup
f ∈F

E
(

Y f (X)
)
= sup

x1,...,x2n∈X
Eǫ sup

f ∈F

{
1

2n

2n∑
t=1

ǫt f (xt)

}
=Ri i d (F,2n).

For the second term, note that a uniform draw of n data points from 2n with re-

placement is equivalent to drawing indices i1, . . . , in uniformly at random from

{1, . . . ,2n}, and let J stand for the set of unique indices, |J | ≤ n. We can then write

the second term as

sup
ŷ

sup
x1,...,x2n∈X

EǫE
(
Y ŷ(X)

)
= sup

ŷ

sup
x1,...,x2n∈X

Ei1,...,inEǫ

{
1

2n

2n∑
t=1

ǫt ŷ(xt)

}

= sup
ŷ

sup
x1,...,x2n∈X

Ei1,...,inEǫ

{
1

2n

∑

t∈J

ǫt ŷ(xt)

}

where the last equality is due to the fact that

Eǫ

{
1

2n

∑

t∉J

ǫt ŷ(xt)

}
= 0 .

However, we can upper bound

sup
ŷ

sup
x1,...,x2n∈X

Ei1,...,inEǫ

{
1

2n

∑

t∈J

ǫt ŷ(xt)

}
≤ sup

ŷ

Ei1,...,in sup
x1,...,x|J |∈X

Eǫ

{
1

2n

∑

t∈J

ǫt ŷ(xt)

}

≤ sup
ŷ

sup
x1,...,xn∈X

Eǫ

{
1

2n

n∑
t=1

ǫt ŷ(xt)

}

≤ sup
x1,...,xn∈X

Eǫ sup
f ∈F

{
1

2n

n∑
t=1

ǫt f (xt)

}

which is 1
2
Ri i d (F,n). This concludes the proof.

122

13
Sequential Prediction: Classification

We now turn to the setting of sequential prediction, with the goal of mimicking

many of the results of the previous few lectures. Within sequential prediction, “n-

tuples of data” are replaced with “trees”, the empirical process with the martingale

process, and the Rademacher process – with the tree process. We already observed

certain similarities in the way that the suprema over finite classes are bounded

both in the i.i.d. and sequential cases. We also saw that the simple example of

thresholds on an interval is “easy” for i.i.d. learning, but “hard” for sequential pre-

diction, constituting an apparent divide between the two settings. How much of

the i.i.d.-style analysis can be pushed through for the sequential prediction, and

what are the key differences? This is the subject of the next few lectures.1

In particular, we first focus on the supervised scenario. Let us consider the im-

proper learning version: at each round t , the learner observes xt ∈ X, makes a

prediction ŷ t , and observes the outcome yt which is chosen by Nature simultane-

ously with the learner’s choice. The sequence of xt ’s and yt ’s is chosen by Nature,

possibly adaptively based on the moves ŷ 1, . . . , ŷ t−1 of the player. The classifica-

tion problem involves prediction of a binary label yt ∈ {0,1}, and the goal of the

learner is to have small regret

1

n

n∑
t=1

I
{

ŷ t 6= yt

}
− inf

f ∈F

1

n

n∑
t=1

I
{

f (xt) 6= yt

}

against some class F of binary-valued functions. The indicator loss can be equiv-

alently written as the absolute value of the difference. According to Theorems 7.9

1Most of the results in the next few lectures can be found in [44, 46].

123

13.1 From Finite to Infinite Classes: First Attempt

and 7.11, the value of the sequential prediction problem is upper bounded by

Vseq (F,n) ≤ 2sup
x,y

E sup
g∈ℓ(F)

Tg = 2sup
x,y

Esup
f ∈F

1

n

n∑
t=1

ǫt I
{

f (xt (ǫ1:t−1)) 6= yt (ǫ1:t−1)
}

(13.1)

Just as we did in Eq. (8.4), we pass to the tree process onF itself, rather than the loss

class. This step is a version of the contraction principle as stated in Lemma 12.9

for the i.i.d. case.

Lemma 13.1. For Y= {0,1}, F⊆YX, and ℓ(f , (x, y)) = I
{

f (x) 6= y
}
,

sup
x,y

E sup
g∈ℓ(F)

Tg = sup
x

Esup
f ∈F

T f (13.2)

With the definition of sequential Rademacher complexity, the statement can

be written more succinctly as

Rseq (ℓ(F)) =Rseq (F).

A proof of this lemma requires a few intermediate steps, and postponing it until

the end of the lecture seems like a good idea.

13.1 From Finite to Infinite Classes: First Attempt

Lemma 9.5 gives us a handle on the supremum of the tree process for a finite class

F. Mimicking the development for the i.i.d. case, we would like to now encompass

infinite classes as well. The threshold example is not interesting since the tree

process does not converge to zero, according to Theorem 8.1. Consider a different

example instead. The example is rather trivial, but will serve us for the purposes

of demonstration. Let X= [0,1] and

F= { fa : a ∈ [0,1], fa(x) = 0 ∀x 6= a, fa(a) = 1} (13.3)

the class of functions that are zero everywhere except on one designated point.

This is an infinite class and the question is whether the expected supremum of

the tree process decays to zero with increasing n for any X-valued tree x. Now,

recall our development for the i.i.d. case with the class of thresholds. We argued

that if we condition on the data, the effective number of possible values that the

124

13.1 From Finite to Infinite Classes: First Attempt

functions take is finite even if the class is infinite. This led us to the idea of the

growth function.

Following the analogy, let us define F|x as the set of all {0,1}-valued trees

F|x = { f ◦x : f ∈F}

where f ◦x is defined as a tree (f ◦x1, f ◦x2, . . . , f ◦xn). Since xt is a function from

{±1}t−1 to X, the t-th level f ◦xt of the f ◦x tree is a function from {±1}t−1 to {0,1}.

Thinking of F|x as the projection (or, an “imprint”) of F on x, we can write

Esup
f ∈F

1

n

n∑
t=1

ǫt f (xt (ǫ1:t−1)) = Emax
v∈F|x

1

n

n∑
t=1

ǫt vt (ǫ1:t−1) (13.4)

because the set F|x is clearly finite.

Given x, how can we describe F|x? For any fa ∈ F, fa ◦ x is a tree that is zero

everywhere except for those (if any) nodes in the tree which are equal a. Observe

that for two functions fa , fb ∈F, fa ◦x = fb ◦x if and only if a,b ∈ [0,1] both do not

appear in the tree x:

fa ◦x = fb ◦x ⇔ a,b ∉ Img(x) or a = b.

Suppose x is such that xn : {±1}n−1 7→ [0,1] takes on 2n−1 distinct values for each

path. Then

card(F|x) = 2n−1 .

Since this cardinality is exponential in n, Lemma 9.5 gives a vacuous bound.

It appears that there is no hope for passing from a finite to an infinite class by

studying the size of the projection of F on x, as it will be exponential in n for any

nontrivial class and a “diverse enough” x. But maybe this is for a good reason, and

the problem is not learnable, just like in the case of thresholds? This turns out to

be not the case:

PExercise 13.1 (⋆⋆). Provide a strategy for the learner that will suffer O(
√

(logn)/n)

regret for the binary prediction problem with the class defined in (13.3). Can you

get a O(1/
p

n) algorithm? (This should be doable.)

Of course, one may hypothesize that the problem might be learnable but the

bound of Theorem 7.9 is loose. This is again not the case, and one can prove that

the expected supremum of the tree process indeed converges to zero for any x, but

F|x is a wrong quantity to consider.

125

13.2 From Finite to Infinite Classes: Second Attempt

13.2 From Finite to Infinite Classes: Second Attempt

As we have already noticed, the cardinality of the set F|x is too large. However, this

does not reflect the fact that every fa ◦x, in the case of the function class defined

in (13.3), is quite “simple”: the values are zero, except when xt = a.

First, for illustration purposes, consider the case when the tree x contains unique

elements along any path (left-most tree in Figure 13.1). That is, for any (ǫ1, . . . ,ǫn),

if xt (ǫ1:t−1) = xs(ǫ1:s−1) then s = t . In this case, f ◦x is a tree with at most a single

value 1 along any path. Consider the set V = {v(0),v(1), . . . ,v(n)} of n + 1 binary-

a

cd e

b e

b

v
(1)

v
(2)

v
(3)

Figure 13.1: Left: an X-valued tree x with unique elements within any path. Right:

first three of the n +1 covering trees. Circled nodes are defined to be 1 while the

rest are 0.

valued trees defined as follows. The tree v(0) is identically 0-valued. For j ≥ 1, the

tree v(j) has zeros everywhere except for the j -th level. That is, for any j ∈ {1, . . . ,n},

v
(j)
t (ǫ1:t−1) = 1 whenever t = j and zero otherwise. These trees are depicted in Fig-

ure 13.1. Given the uniqueness of values of x along any path, we have the following

important property:

∀ f ∈F, ∀(ǫ1, . . . ,ǫn) ∈ {±1}n , ∃v ∈V s.t. f (xt (ǫ1:t−1)) = vt (ǫ1:t−1) ∀t ∈ {1, . . . ,n}

(13.5)

That is, for any f ∈ F and any path, there exists a “covering tree” v in V such that

f on x agrees with v on the given path. For instance, consider a function fd ∈
F which takes values zero everywhere except on x = d . Consider the left-most

path ǫ = (−1,−1,−1, . . .). Then, for the x given in Figure 13.1, the function takes

on a value 1 at the third node, since x3(−1,−1) = d , and zero everywhere else. But

then the covering tree v(3) in Figure 13.1 provides exactly these values on the path

(−1,−1,−1, . . .). It is not hard to convince oneself that the property (13.5) holds

126

13.2 From Finite to Infinite Classes: Second Attempt

true. What is crucial is that for such a tree x,

Rseq (F,x) = Esup
f ∈F

1

n

n∑
t=1

ǫt f (xt (ǫ1:t−1)) = Emax
v∈V

1

n

n∑
t=1

ǫt vt (ǫ1:t−1) ≤

√
2log(n +1)

n

(13.6)

by Lemma 9.5 since card(V) = n +1. While this achieves our goal, the argument

crucially relied on the fact that x contains unique elements along any path. What

if x has several identical elements a along some path? In this case, the function

fa will take on the value 1 on multiple nodes on this path, and the set V defined

above no longer does the job. A straightforward attempt to create a set V with all

possible subsets of rows (taking on the value 1) will fail, as there is an exponential

number of such possibilities.

It is indeed remarkable that there exists a set of {0,1}-valued trees V of cardinal-

ity at most n+1 that satisfies property (13.5) without the assumption of uniqueness

of elements along the paths. Here is how such a set can be constructed inductively.

Suppose we have at our disposal two sets V ℓ and V r of covering trees of depth n−1

.

V
` V

r
a

c

d

b

a
a a

a

v
0

x

c

Figure 13.2: V is constructed inductively by pairing up trees in V ℓ and V r , plus an

additional tree v0 (bottom right) which takes on value 1 only when x (top right) at

the corresponding node takes on the value x1.

for the left and right subtrees of x at the root. Suppose that, inductively, on the two

subtrees the sets V ℓ and V r satisfy property (13.5). For a vℓ ∈ V ℓ and vr ∈ V r de-

fine a joined tree v as having 0 at the root and vℓ and vr as the two subtrees at

the root (see Figure 13.2). In this fashion, take pairs from both sets such that each

element of V ℓ and V r occurs in at least one pair. This construction gives a set V

of size max
{
card

(
V ℓ

)
,card(V r)

}
. We add to V one more tree v0 defined as zero

127

13.3 The Zero Cover and the Littlestone’s Dimension

everywhere except on those nodes where x has the same value as the root x1 (in

Figure 13.2, x1 = a and v0 is constructed accordingly). That is,

v0
t (ǫ1:t−1) = 1 if xt (ǫ1:t−1) = x1 and v0

t (ǫ1:t−1) = 0 otherwise

We claim that the set V satisfies (13.5) and its size is larger than that of V ℓ and V r

by at most 1. Indeed, for fx1 ∈ F the tree v0 matches the values along any path.

For other f ∈F, the value at the root is zero, and (13.5) holds by induction on both

subtrees.

The size of V increases by at most one when passing from depth n−1 to n. For

the base of the induction, we require 2 trees for n = 1: one with the value 0 and one

with the value 1 at the single vertex. We conclude that the size of the set satisfying

(13.5) is at most n +1. As a consequence, the bound of (13.6) holds for any x. We

conclude that for the example under the consideration with the function class F

defined in (13.3),

Vseq (F,n) ≤ 2sup
x

Esup
f ∈F

T f ≤ 2

√
2log(n +1)

n
(13.7)

13.3 The Zero Cover and the Littlestone’s Dimension

To summarize the development so far, we have seen that the size of the projec-

tion F|x is not the right quantity to consider. However, if we can find a set V of

binary-valued trees such that property (13.5) holds, the supremum over the class

F is equal to the maximum over the trees in V . Let us make this statement more

formally.

Definition 13.2. A set V of {0,1}-valued trees of depth n is called a zero-cover of F

on a given X-valued tree x if

∀ f ∈F, ∀(ǫ1, . . . ,ǫn) ∈ {±1}n , ∃v ∈V s.t. f (xt (ǫ1:t−1)) = vt (ǫ1:t−1) ∀t ∈ {1, . . . ,n}

A zero-covering number is defined as

N0(F,x) = min
{

card(V) : V is an zero-cover
}

.

Recall that in Section 12.4 we defined an i.i.d. zero cover on tuples of points

and observed that it is the same as the projection F|xn . For trees, however, the zero

128

13.3 The Zero Cover and the Littlestone’s Dimension

cover is different from the projection F|x. This is a key departure from the non-

tree definitions. Observe that the difference is really in the order of quantifiers:

the covering tree v can be chosen according to the given path (ǫ1, . . . ,ǫn). It is not

required that there exists a tree v equal to f ◦x on every path, but rather that we can

find some v for any path. It is indeed because of this correct order of quantifiers

that we are able to control the supremum of the tree process even though F|x is an

exponentially large set.

We have the following analogue of Proposition 11.2:

Proposition 13.3. Let x be an X-valued tree of depth n, and suppose F ⊆ {0,1}X.

Then

Rseq (F,x), Esup
f ∈F

1

n

n∑
t=1

ǫt f (xt (ǫ1:t−1)) ≤

√
2logN0(F,x)

n

In a somewhat surprising turn, we can define a combinatorial dimension anal-

ogous to the Vapnik-Chervonenkis dimension, which controls the size of the zero-

cover in exactly the same way that the VC dimension controls the size of the zero

cover (Lemma 11.5).

Definition 13.4. We say that F⊆ {0,1}X shatters a tree x of depth n if

∀(ǫ1, . . . ,ǫn) ∈ {±1}n , ∃ f ∈F s.t. f (xt (ǫ1:t−1)) = ǫ̃t ∀t ∈ {1, . . . ,n}

where ǫ̃t = (ǫt +1)/2 ∈ {0,1}

Definition 13.5. The Littlestone’s dimension ldim(F) of the class F ⊆ {0,1}X is de-

fined as the depth of the largest complete binary X-valued tree x that is shattered

by F, and infinity if the maximum does not exist. Further, for a given x, define

ldim(F,x) as the depth of the largest complete binary tree with values in Img(x).

It is easy to see that the Littlestone’s dimension becomes the VC dimension if

the trees x are only allowed to have constant mappings xt (ǫ1:t−1) = xt for all ǫ1:t−1.

Hence, we have the rather easy lemma:

Lemma 13.6. For any F⊆ {0,1}X,

vc (F) ≤ ldim (F)

Example 15. The Littlestone’s dimension of the class of thresholds F = { fθ(x) =
I {x ≤ θ} : θ ∈ [0,1]} is infinite. Indeed, a [0,1]-valued tree x of arbitrary depth can

be constructed as in Figure 8.3, and it is shattered by F. In contrast, vc(F) = 1.

129

13.3 The Zero Cover and the Littlestone’s Dimension

Example 16. The Littlestone’s dimension of the class defined in (13.3) is 1.

We are now ready to state an analogue of the Vapnik-Chervonenkis-Sauer-

Shelah Lemma:

Theorem 13.7. For any x,

N0(F,x) ≤
d∑

i=0

(
n

i

)

whenever ldim (F) = d <∞.

With the help of Eq. 11.6, we have the following analogue of Corollary 11.6:

Corollary 13.8. Under the setting of Proposition 13.3, if ldim (F) = d,

Rseq (F) ≤ 2

√
2d log(en/d)

n

Proof of Theorem 13.7. As in the proof of Lemma 11.5, define the function g (d ,n) =∑d
i=0

(n
i

)
. The theorem claims that the size of a minimal zero-cover is at most g (d ,n).

The proof proceeds by induction on n +d .

Base: For d = 1 and n = 1, there is only one node in the tree, i.e. the tree is

defined by the constant x1 ∈X. Functions in F can take at most two values on x1,

so N0(F,x) ≤ 2. Using the convention
(n

0

)
= 1, we indeed verify that g (1,1) = 2. The

same calculation gives the base case for n = 1 and any d ∈N. Furthermore, for any

n ∈N if d = 0, then there is no point which is 1-shattered by F. This means that all

functions in F are identical, proving that there is a zero-cover of size 1 = g (0,n).

Induction step: Suppose by the way of induction that the statement holds for

(d ,n − 1) and (d − 1,n − 1). Consider any tree x of depth n with ldim(F,x) = d .

Define the partition F = F0 ∪F1 with Fi = { f ∈ F : f (x1) = i } for i ∈ {0,1}. We first

argue that it cannot be the case that ldim(F0,x) = ldim(F1,x) = d . For, otherwise

there exist two trees z and w of depth d , shattered by F0 and F1, respectively, and

with Img(z), Img(w) ⊆ Img(x). Since functions within F0 take on the same value on

x1, we conclude that x1 ∉ Img(z) (this follows immediately from the definition of

shattering). Similarly, x1 ∉ Img(w). We now join the two shattered z and w trees

with x1 at the root and observe that F0 ∪F1 shatters this resulting tree of depth

d +1, which is a contradiction. We conclude that ldim(Fi ,x) = d for at most one

i ∈ {0,1}.

130

13.3 The Zero Cover and the Littlestone’s Dimension

.

V
` V

r

x1

x
`

x
r

v
r

v
`

1

1

Figure 13.3: The joined trees provide a zero cover for F1. For any path, the induc-

tion hypothesis provides a zero-cover on the subtree, as illustrated.

Without loss of generality, assume ldim(F0,x) ≤ d and ldim(F1,x) ≤ d −1. By

induction, there are zero-covers V ℓ and V r of F1 on the subtrees xℓ and xr , re-

spectively, both of size at most g (d − 1,n − 1). Out of these covers we can create

a zero-cover V for F1 on x by pairing the covering trees in V ℓ and V r . Formally,

consider a set of pairs (vℓ,vr) of trees, with vℓ ∈ V ℓ, vr ∈ V r and such that each

tree in V ℓ and V r appears in at least one of the pairs. Clearly, this can be done

using at most g (d − 1,n − 1) pairs, and such a pairing is not unique. We join the

subtrees in every pair (vℓ,vr) with a constant 1 as the root, thus creating a set V

of trees, card(V) ≤ g (d −1,n −1). We claim that V is a zero cover for F1 on x (see

Figure 13.3). Note that all the functions in F1 take on the same value 1 on x1 and

by construction v1 = 1 for any v ∈V . Now, consider any f ∈F1 and ǫ ∈ {±1}n . With-

out loss of generality, assume ǫ1 =−1. By assumption, there is a vℓ ∈V ℓ such that

vℓt (ǫ2:t) = f (xt+1(ǫ1:t)) for any t ∈ {1, . . . ,n −1}. By construction vℓ appears as a left

subtree of at least one tree in V , which, therefore, matches the values of f for ǫ1:n .

The same argument holds for ǫ1 =+1 by finding an appropriate subtree in V r . We

conclude that V is a zero cover of F1 on x. A similar argument yields a zero cover

for F0 on x of size at most g (d ,n −1) by induction. Thus, the size of the resulting

zero cover of F on x is at most

g (d ,n −1)+ g (d −1,n −1) = g (d ,n),

completing the induction step and yielding the statement of the theorem.

131

13.4 Removing the Indicator Loss, or Fun Rotations with Trees

13.4 Removing the Indicator Loss, or Fun Rotations

with Trees

Finiteness of the Littlestone’s dimension is necessary and sufficient for the ex-

pected supremum of the tree process for the worst-case tree to converge to zero.

However, for the study of sequential prediction in the supervised setting, it re-

mains to connect the tree process indexed by F to that indexed by ℓ(F) for the

indicator loss. This is the contents of Lemma 13.1, and we now provide the proof.

We start by proving two supporting lemmas, which can be found in [46]. To

motivate the first lemma, take a fixed vector s ∈ {±1}n , and let ǫ1, . . . ,ǫn be i.i.d.

Rademacher random variables. Then, surely, the vector (ǫ1s1, . . . ,ǫn sn) is a vector

of i.i.d. Rademacher random variables. Surprisingly, Lemma 13.9 below says that

such a statement can be pushed much further: st does not need to be fixed but

can be chosen according to (ǫ1, . . . ,ǫt−1). This exactly means that for any {±1}-

valued tree s, the sequence (ǫ1s1,ǫ2s2(ǫ1), . . . ,ǫnsn(ǫ1:n−1)) is still i.i.d. Rademacher.

The result can also be interpreted as a bijection between the set of sign sequences

(ǫ1, . . . ,ǫn) and the set of sign sequences (ǫ1s1, . . . ,ǫnsn(ǫ1:n−1)).

For vectors a,b ∈ {±1}n , let the operation a ⋆b denote element-wise multipli-

cation. Further, for a {±1}-valued tree s, let s1:n(ǫ) = (s1(ǫ), . . . ,sn(ǫ)) denote the

vector of elements on the path ǫ= (ǫ1, . . . ,ǫn). Let us recall the convention that we

write xt (ǫ) even though xt only depends on ǫ1:t−1.

Lemma 13.9. Let s be any {±1}-valued tree and let ǫ = (ǫ1, . . . ,ǫn) be a vector of

i.i.d. Rademacher variables. Then the elements of the vector ǫ⋆s1:n(ǫ) are also i.i.d.

Rademacher.

Proof. We just need to show that the set of sign patterns P (s) = {ǫ⋆ s1:n(ǫ) : ǫ ∈
{±1}n} is the same as all sign patterns, i.e. P (s) = {±1}n . This is easy to do by induc-

tion on n. Lemma is obvious for n = 1. Assume it for n = k and let us prove it for

n = k +1. Fix a tree s of depth k +1. Let sL and sR be the left and right subtrees (of

depth k), i.e.

sL
t (ǫ) = st+1(−1,ǫ), sR

t (ǫ) = st+1(+1,ǫ)

Now, by definition of P (s), we have

P (s) = {(−s1,b) : b ∈ P (sL)} ∪ {(+s1,b) : b ∈ P (sR)}

132

13.4 Removing the Indicator Loss, or Fun Rotations with Trees

where s1 is simply the root of s. Invoking induction hypothesis this is equal to

P (s) = {(−s1,b) : b ∈ {±1}k } ∪ {(+s1,b) : b ∈ {±1}k }

and thus P (s) = {±1}k+1 no matter what s1 ∈ {+1,−1} is.

Lemma 13.9 can now be used to prove the following result.

Lemma 13.10. For any X-valued tree x and {±1}-valued tree s, there exists another

instance tree x′ such that

E

[
sup
f ∈F

n∑
t=1

ǫt st (ǫ) f (xt (ǫ))

]
= E

[
sup
f ∈F

n∑
t=1

ǫt f (x′
t (ǫ))

]
.

Specifically, x′ is defined by xt (ǫ) = x′
t (ǫ⋆s1:n(ǫ)) for t = 1, . . . ,n.

Proof. First, x′ is well-defined because
{
ǫ⋆s1:n(ǫ) : ǫ ∈ {±1}n

}
= {±1}n by Lemma 13.9.

Next, for any f ,

n∑
t=1

ǫt st (ǫ) f (xt (ǫ)) =
n∑

t=1

ǫt st (ǫ) f (x′
t (ǫ⋆s1:n(ǫ))) .

Taking sup over f ’s followed by expectation over ǫ’s on both sides gives us

E

[
sup
f ∈F

n∑
t=1

ǫt st (ǫ) f (xt (ǫ)

]
= E

[
sup
f ∈F

n∑
t=1

[ǫ⋆s1:n(ǫ)]t f (x′
t (ǫ⋆s1:n(ǫ))

]

The proof is complete now by appealing to Lemma 13.9 that asserts that the dis-

tribution of ǫ⋆ s1:n(ǫ) is also i.i.d. Rademacher no matter what the signed tree s

is.

One can interpret the statement of Lemma 13.10 as an equality due to the “ro-

tation” of the tree x provided by the tree s of signs. For instance, suppose for the

illustration purposes that s is a tree of all −1’s. Hence,

ǫt st (ǫ) f (xt (ǫ)) =−ǫt f (xt (ǫ)) =−ǫt f (x′
t (−ǫ))

where x′ is the mirror reflection of x defined as x′
t (ǫ1:t−1) = xt (−ǫ1:t−1). It is then

not surprising that Lemma 13.10 holds for this particular choice of s. As another

example, take the tree s with −1 at the root and +1 everywhere else. Then the

resulting tree x′ has the left and right subtrees of x reversed. What is interesting,

the result of Lemma 13.10 holds for any {±1}-valued tree s, and this is exactly what

we need to “erase” the indicator loss.

133

13.5 The End of the Story

Proof of Lemma 13.1. Fix any X-valued tree x and any {0,1}-valued tree y, both of

depth n. Using I {a 6= b} = a(1−2b)+b for a,b ∈ {0,1},

Esup
f ∈F

{
1

n

n∑
t=1

ǫt I
{

f (xt (ǫ)) 6= yt (ǫ)
}}

= Esup
f ∈F

{
1

n

n∑
t=1

ǫt (1−2yt (ǫ)) f (xt (ǫ))

}
+E

{
1

n

n∑
t=1

ǫt yt (ǫ)

}

(13.8)

and the second term disappears under the expectation, thanks to the fact that yt (ǫ)

and ǫt are independent. Using Lemma 13.10 with the {±1}-valued tree s = 1−2y,

the expression in (13.8) is equal to

Esup
f ∈F

1

n

n∑
t=1

ǫt f (x′
t (ǫ))

for another tree x′ specified in Lemma 13.10. We conclude that

Esup
f ∈F

Tℓ(f) ≤ sup
x′

Esup
f ∈F

T f .

Since this holds for all x,y, the statement follows.

13.5 The End of the Story

We finish this section with a lower bound on the value Vseq (F,n) for prediction of

binary sequences with indicator loss. Together with Lemma 13.1, it implies that

the value is characterized by the expected supremum of the tree process for the

worst-case tree, up to a constant 2.

Theorem 13.11. Let Y = {0,1}, F ⊆ YX, and ℓ(f , (x, y)) = I
{

f (x) 6= y
}
. Then the

value of sequential prediction defined in Eq. 5.18 is

Rseq (F) ≤Vseq (F,n) ≤ 2Rseq (F)

In particular,

Vseq (F,n) → 0 if and only if ldim (F) <∞

Proof. The upper follows from Corollary 7.16 and Lemma 13.1. We now prove the

lower bound. Fix any X-valued tree x of depth n. Consider the following strat-

egy for Nature, already employed in Section 8.4. At round one, x1 is presented

to the learner, who predicts ŷ 1 while Nature flips a coin y ′
1 ∈ {−1,1} and presents

134

13.5 The End of the Story

y1 = (y ′
1 + 1)/2 ∈ {0,1} to the learner. At round t , Nature presents xt (y ′

1, . . . , y ′
t−1),

learner chooses ŷ t , and Nature flips a coin y ′
t and its {0,1} version is presented to

the learner. It is easy to see that the expected loss of the player is

E

{
1

n

n∑
t=1

I
{

ŷ t 6= yt

}}
=

1

2
.

Thus, expected regret is

E

{
1

n

n∑
t=1

I
{

ŷ t 6= yt

}
− inf

f ∈F

1

n

n∑
t=1

I
{

f (xt (y ′
1:t−1)) 6= y ′

t

}
}
=

1

2
Esup

f ∈F

{
1

n

n∑
t=1

(
1−2I

{
f (xt (y ′

1:t−1)) 6= yt

})}

=
1

2
Esup

f ∈F

{
1

n

n∑
t=1

y ′
t (2 f (xt (y ′

1:t−1))−1)

}

The proof of the lower bound is completed by observing that −1 disappears under

the expectation and x was chosen arbitrarily.

The fact that the lower bound is not converging to zero if the Littlestone’s di-

mension is infinite follows analogously to Theorem 8.2 by the definition of shat-

tering.

135

14
Sequential Prediction: Real-Valued

Functions

14.1 Covering Numbers

The development for sequential prediction with classes of real-valued functions

parallels that for statistical learning. Recall that the notion of a projection F|x1,...,xn

coincided with the notion of a zero cover for tuples x1, . . . , xn of data. In the pre-

vious lecture we also argued that for trees, the size of the projection F|x is not the

same as the appropriately defined zero cover and that the latter is a better notion

for controlling the supremum of the tree process. It is then natural to extend the

definition of the zero cover (Definition 13.2) to the case of real-valued functions

on trees. This can be done as follows.

Definition 14.1. A set V of R-valued trees is a α-cover (with respect to ℓp) of F ⊆
[−1,1]X on an X-valued tree x if

∀ f ∈F, ∀ǫ ∈ {±1}n , ∃v ∈V s.t.

(
1

n

n∑
t=1

| f (xt (ǫ))−vt (ǫ)|p
)1/p

≤α . (14.1)

A α-covering number is defined as

Np (F,x,α) = min
{

card(V) : V is an α-cover
}

.

A set V of R-valued trees is a α-cover (with respect to ℓ∞) of F ⊆ [−1,1]X on an

X-valued tree x if

∀ f ∈F, ∀ǫ ∈ {±1}n , ∃v ∈V s.t. | f (xt (ǫ))−vt (ǫ)| ≤α ∀t ∈ {1, . . . ,n}, (14.2)

and N∞(F,α,x) is the minimal size of such a α-cover.

136

14.1 Covering Numbers

Once again, the order of quantifiers is crucial. For any function, the tree v pro-

viding the cover can depend on the particular path ǫ on which we seek to approx-

imate the values of the function.

As in the i.i.d. case, we can now squint our eyes and view the class F at the

fixed granularity α, similarly to Proposition 12.3:

Proposition 14.2. For any x, sequential Rademacher averages of a function class

F⊆ [−1,1]X satisfy

Rseq (F;x) ≤ inf
α≥0



α+

√
2logN1(F,α,x)

n





Proof. Let V be a minimal α-cover of F on x with respect to ℓ1-norm. For f ∈ F

and ǫ ∈ {±1}n , denote by v[f ,ǫ] ∈ V any element that “α-covers” f in the sense

given by the definition. Observe that, in contrast to the proof of Proposition 12.3,

the element v depends not only on f but also on the path ǫ, and this is crucial.

Since v is a tree, v[f ,ǫ]t is a function {±1}t−1 → R. So, the value v[f ,ǫ]t (ǫ), while

intimidating to parse, is the value at the t-th level on the path ǫ of that tree in V

which “provides the cover” to the function f on the path ǫ.

We have

Rseq (F;x) = E

{
sup
f ∈F

1

n

n∑
t=1

ǫt f (xt (ǫ))

}

= E

{
sup
f ∈F

1

n

n∑
t=1

ǫt

(
f (xt (ǫ))−v[f ,ǫ]t (ǫ)

)
+ǫt v[f ,ǫ]t (ǫ)

}

≤ E

{
sup
f ∈F

1

n

n∑
t=1

ǫt

(
f (xt (ǫ))−v[f ,ǫ]t (ǫ)

)
}
+E

{
sup
f ∈F

1

n

n∑
t=1

ǫt v[f ,ǫ]t (ǫ)

}

≤ E

{
sup
f ∈F

1

n

n∑
t=1

∣∣ f (xt (ǫ))−v[f ,ǫ]t (ǫ)
∣∣
}
+E

{
max
v∈V

1

n

n∑
t=1

ǫt vt (ǫ)

}

By definition of α-cover, the first term is upper bounded by α. The second term

is precisely controlled by the maximal inequality of Lemma 9.5, which gives an

upper bound of √
2log |V |

n
,

due to the fact that
∑n

t=1 vt (ǫ)2 ≤ n for any v ∈ V and ǫ ∈ {±1}n . Note that if any

value of the tree v is outside the interval [−1,1], it can be truncated.

Since α> 0 is arbitrary, the statement follows.

137

14.2 Chaining with Trees

14.2 Chaining with Trees

As in the i.i.d. case, Proposition 14.2 does not always give the correct rates because

it only considers covering numbers at one resolution. Thankfully, an analogue of

Theorem 12.4 holds. The proof is more messy than for the i.i.d. case, as we need to

deal with trees and paths rather than a single n-tuple of data. We provide the proof

for completeness, but suggest skipping the proof unless one cannot overcome the

curiosity.

Theorem 14.3. For any X-valued tree x of depth n, the sequential Rademacher av-

erages of a function class F⊆ [−1,1]X over x satisfy

Rseq (F;x) ≤Dseq (F;x)

where

Dseq (F;x), inf
α

{
4α+

12
p

n

∫1

α

√
log N2(F,x,δ) dδ

}

Proof. Define α0 = 1 and α j = 2− j . For a fixed tree x of depth n, let V j be an ℓ2-

cover at scale α j . For any path ǫ ∈ {±1}n and any f ∈F , let v[f ,ǫ] j ∈V j the element

of the cover such that

(
1

n

n∑
t=1

| f (xt (ǫ))−v[f ,ǫ]
j
t (ǫ)|2

)1/2

≤α j

As before, v[f ,ǫ]
j
t denotes the t-th mapping of the tree v[f ,ǫ] j . For brevity, let us

define the n-dimensional vectors

f(ǫ) = (f (x1(ǫ)), . . . , f (xn(ǫ))) and v[f ,ǫ] j = (v[f ,ǫ]
j
1(ǫ), . . . ,v[f ,ǫ]

j
n(ǫ))

With this notation,

f(ǫ) = f(ǫ)− v[f ,ǫ]N +
N∑

j=1

(v[f ,ǫ] j − v[f ,ǫ] j−1)

where v[f ,ǫ]0 = 0. Further,

Eǫ sup
f ∈F

n∑
t=1

ǫt f (xt (ǫ)) = Esup
f ∈F

〈ǫ, f(ǫ)〉 (14.3)

138

14.2 Chaining with Trees

which can be decomposed as in the proof of Theorem 12.4:

Esup
f ∈F

{
〈
ǫ, f(ǫ)− v[f ,ǫ]N

〉
+

N∑

j=1

〈
ǫ, v[f ,ǫ] j − v[f ,ǫ] j−1

〉}

≤ Esup
f ∈F

〈
ǫ, f(ǫ)− v[f ,ǫ]N

〉
+

N∑

j=1

Esup
f ∈F

〈
ǫ, v[f ,ǫ] j − v[f ,ǫ] j−1

〉
(14.4)

Unlike Theorem 12.4, the vectors v[f ,ǫ] and f(ǫ) depend on ǫ. The first term above

can be bounded via the Cauchy-Schwarz inequality exactly as in Eq. (12.4):

Esup
f ∈F

〈
ǫ, f(ǫ)− v[f ,ǫ]N

〉
≤ nαN .

The second term in (14.4) is bounded by considering successive refinements of

the cover. The argument, however, is more delicate than in Theorem 12.4, as the

trees v[f ,ǫ] j , v[f ,ǫ] j−1 depend on the particular path. Consider all possible pairs

of vs ∈V j and vr ∈V j−1, for 1 ≤ s ≤ card
(
V j

)
, 1 ≤ r ≤ card

(
V j−1

)
, where we assumed

an arbitrary enumeration of elements. For each pair (vs ,vr), define a real-valued

tree w(s,r) by

w(s,r)
t (ǫ) =





vs
t (ǫ)−vr

t (ǫ) if there exists f ∈F s.t. vs = v[f ,ǫ] j ,vr = v[f ,ǫ] j−1

0 otherwise.

for all t ∈ [n] and ǫ ∈ {±1}n . It is crucial that w(s,r) can be non-zero only on those

paths ǫ for which vs and vr are indeed the members of the covers (at successive

resolutions) close to f (x(ǫ)) (in the ℓ2 sense) for some f ∈ F. It is easy to see that

w(s,r) is well-defined. Let the set of trees W j be defined as

W j =
{

w(s,r) : 1 ≤ s ≤ card
(
V j

)
,1 ≤ r ≤ card

(
V j−1

)}

Now, the second term in (14.4) is upper bounded as

N∑

j=1

Esup
f ∈F

n∑
t=1

ǫt (v[f ,ǫ]
j
t (ǫ)−v[f ,ǫ]

j−1
t (ǫ)) ≤

N∑

j=1

E max
w∈W j

n∑
t=1

ǫt wt (ǫ)

The last inequality holds because for any j ∈ [N], ǫ ∈ {±1}n and f ∈F there is some

w(s,r) ∈W j with v[f ,ǫ] j = vs , v[f ,ǫ] j−1 = vr and

vs
t (ǫ)−vr

t (ǫ) = w(s,r)
t (ǫ) ∀t ≤ n.

139

14.3 Combinatorial Parameters

Clearly, card
(
W j

)
≤ card

(
V j

)
·card

(
V j−1

)
. To invoke Lemma 9.5, it remains to

bound the magnitude of all w(s,r) ∈ W j along all paths. For this purpose, fix w(s,r)

and a path ǫ. If there exists f ∈ F for which vs = v[f ,ǫ] j and vr = v[f ,ǫ] j−1, then

w(s,r)
t (ǫ) = v[f ,ǫ]

j
t −v[f ,ǫ]

j−1
t for any t ∈ [n]. By triangle inequality

(n∑
t=1

w(s,r)
t (ǫ)2

)1/2

≤
(n∑

t=1

(v[f ,ǫ]
j
t (ǫ)− f (xt (ǫ)))2

)1/2

+
(n∑

t=1

(v[f ,ǫ]
j−1
t (ǫ)− f (xt (ǫ)))2

)1/2

≤
p

n(α j+α j−1),

and the latter quantity is equal to 3
p

nα j . If there exists no such f ∈F for the given

ǫ and (s,r), then w(s,r)
t (ǫ) is zero for all t ≥ to , for some 1 ≤ to < n, and thus

n∑
t=1

w(s,r)
t (ǫ)2 ≤

n∑
t=1

w(s,r)
t (ǫ′)2

for any other path ǫ′ which agrees with ǫ up to to . Hence, the bound of 3
p

nα j

holds for all ǫ ∈ {±1}n and all w(s,r) ∈W j .

Now, back to (14.4), we put everything together and apply Lemma 9.5:

1

n
Esup

f ∈F

n∑
t=1

ǫt f (xt (ǫ)) ≤αN +
1
p

n

N∑

j=1

3α j

√
2log(card

(
V j

)
·card

(
V j−1

)
)

and passing to the integral expression is exactly as in the proof of Theorem 12.4.

14.3 Combinatorial Parameters

We continue to mirror the development for statistical learning, and define scale-

sensitive dimensions relevant to sequential prediction. The following definition is

the analogue of Definition 12.6.

Definition 14.4. An X-valued tree x of depth n is α-shattered by a function class

F⊆R
X, if there exists an R-valued tree s of depth n such that

∀ǫ ∈ {±1}n , ∃ f ∈F s.t. , ǫt (f (xt (ǫ))−st (ǫ)) >α/2 ∀t ∈ {1, . . . ,n}

The tree s is called the witness to shattering. The (sequential) fat-shattering dimen-

sion fat(F,α) at scale α is the largest n such that F α-shatters an X-valued tree of

depth n. We write fat(F,α,x) for the fat-shattering dimension over Img(x)-valued

trees.

140

14.3 Combinatorial Parameters

We will also denote the fat-shattering dimension as fatα(F). The definition

can be seen as a natural scale-sensitive extension of Definition 13.4 to real-valued

functions. We now show that the covering numbers are bounded in terms of the

fat-shattering dimension. The following result is an analogue of the ℓ∞ bound of

Theorem 12.7. Somewhat surprisingly, the extra logarithmic term of that bound,

which is so difficult to remove, is not present here from the outset.

Theorem 14.5. Suppose F is a class of [−1,1]-valued functions on X. Then for any

α> 0, any n > 0, and any X-valued tree x of depth n,

N∞(α,F,x) ≤
(

2en

α

)fat(F,α)

(14.5)

The proof of this theorem relies on the following extension of Theorem 13.7 to

multi-class prediction. Once again, this bound comes about quite naturally when

dealing with trees, while the analogous bound for the i.i.d. case is not known. One

can compare the bound below to the multi-class bound obtained in [2, Theorem

3.3] and references therein.

Theorem 14.6. Let F⊆ {0, . . . ,k}X be a class of functions with fat2(F) = d. Then

N∞(1/2,F,n) ≤
d∑

i=0

(
n

i

)
k i .

Proof. For any d ≥ 0 and n ≥ 0, define the function gk (d ,n) =
∑d

i=0

(n
i

)
k i , and ob-

serve that the function used for binary classification (k = 1) in Theorem 13.7 is

exactly g1(d ,n). The function gk satisfies the recurrence

gk (d ,n) = gk (d ,n −1)+kgk (d −1,n −1)

for all d ,n ≥ 1. To visualize this recursion, consider a k×n matrix and ask for ways

to choose at most d columns followed by a choice among the k rows for each cho-

sen column. The task can be decomposed into (a) making the d column choices

out of the first n−1 columns, followed by picking rows (there are gk (d ,n−1) ways

to do it) or (b) choosing d − 1 columns (followed by row choices) out of the first

n −1 columns and choosing a row for the nth column (there are kgk (d −1,n −1)

ways to do it). This gives the recursive formula.

In what follows, we shall refer to an L∞ cover at scale 1/2 simply as a 1/2-cover.

The theorem claims that the size of a minimal 1/2-cover is at most gk (d ,n). The

proof proceeds by induction on n +d .

141

14.3 Combinatorial Parameters

Base: For d = 1 and n = 1, there is only one node in the tree, i.e. the tree is

defined by the constant x1 ∈X. Functions in F can take up to k+1 values on x1, i.e.

N(0,F,1) ≤ k +1 (and, thus, also for the 1/2-cover). Using the convention
(n

0

)
= 1,

we indeed verify that gk (1,1) = 1+k = k +1. The same calculation gives the base

case for n = 1 and any d ∈N. Furthermore, for any n ∈N if d = 0, then there is no

point which is 2-shattered by F. This means that functions in F differ by at most 1

on any point of X. Thus, there is a 1/2 cover of size 1 = gk (0,n), verifying this base

case.

Induction step: Suppose by the way of induction that the statement holds for

(d ,n−1) and (d−1,n−1). Consider any tree x of depth n with fat2(F,x) = d . Define

the partition F =F0 ∪ . . .∪Fk with Fi = { f ∈F : f (x1) = i } for i ∈ {0, . . . ,k}, where x1

is the root of x. Let n = |{i : fat2(Fi ,x) = d}|.
Suppose first, for the sake of contradiction, that fat2(Fi ,x) = fat2(F j ,x) = d for

|i − j | ≥ 2. Then there exist two trees z and w of depth d which are 2-shattered by

Fi and F j , respectively, and with Img(z), Img(w) ⊆ Img(x). Since functions within

each subset Fi take on the same values on x1, we conclude that x1 ∉ Img(z),x1 ∉
Img(w). This follows immediately from the definition of shattering. We now join

the two shattered z and w trees with x1 at the root and observe that Fi ∪F j 2-

shatters this resulting tree of depth d+1, which is a contradiction. Indeed, the wit-

ness R-valued tree s is constructed by joining the two witnesses for the 2-shattered

trees z and w and by defining the root as s1 = (i + j)/2. It is easy to see that s is a

witness to the shattering. We conclude that the number of subsets of F with fat-

shattering dimension equal to d cannot be more than two (for otherwise at least

two indices will be separated by 2 or more). We have three cases: m = 0, m = 1, or

m = 2, and in the last case it must be that the indices of the two subsets differ by 1.

First, consider any Fi with fat2(Fi ,x) ≤ d −1, i ∈ {0, . . . ,k}. By induction, there

are 1/2-covers V ℓ and V r of Fi on the subtrees xℓ and xr , respectively, both of size

at most gk (d−1,n−1). Just as in the proof of Theorem 13.7, out of these 1/2-covers

we can create a 1/2-cover V for Fi on x by pairing the 1/2-covers in V ℓ and V r

with i at the root. The resulting cover of Fi is of size at most gk (d −1,n−1). Such a

construction holds for any i ∈ {0, . . . ,k} with fat2(Fi ,x) ≤ d −1. Therefore, the total

size of a 1/2-cover for the union ∪i :fat2(Fi ,x)≤d−1Fi is at most (k+1−m)gk (d −1,n−
1).

If m = 0, the induction step is proven because gk (d −1,n−1) ≤ gk (d ,n−1) and

142

14.3 Combinatorial Parameters

so the total size of the constructed cover is at most

(k +1)gk (d −1,n −1) ≤ gk (d ,n −1)+kgk (d −1,n −1) = gk (d ,n).

Now, consider the case m = 1 and let fat2(Fi ,x) = d . An argument exactly as

above yields a 1/2-cover for Fi , and this cover is of size at most gk (d ,n − 1) by

induction. The total 1/2-cover is therefore of size at most

gk (d ,n −1)+kgk (d −1,n −1) = gk (d ,n).

Lastly, for m = 2, suppose fat2(Fi ,x) = fat2(F j ,x) = d for |i − j | = 1. Let F′ =
Fi ∪F j . Note that fat2(F′,x) = d . Just as before, the 1/2-covering for x can be

constructed by considering the 1/2-covers for the two subtrees. However, when

joining any (vℓ,vr), we take (i + j)/2 as the root. It is straightforward to check that

the resulting cover is indeed an 1/2-cover, thanks to the relation |i − j | = 1. The

size of the constructed cover is, by induction, gk (d ,n −1), and the induction step

follows. This concludes the induction proof, yielding the main statement of the

theorem.

To see that the growth of gk (d ,n) is polynomial for n ≥ d , observe that

d∑

i=1

(
n

i

)
k i ≤

(
kn

d

)d d∑

i=1

(
n

i

)(
d

n

)i

≤
(

kn

d

)d (
1+

d

n

)n

≤
(

ekn

d

)d

and it always holds that this sum is at most (ekn)d . With the help of Theorem 14.6

we can prove Theorem 14.5. The idea is that when we discretize the values of the

functions inF to the levelα, we may view the resulting function as taking on values

{0, . . . ,k}. Theorem 14.6 then tells that the size of the cover is upper bounded by

(ekn)d , and this bound translates immediately into the bound for the real-valued

class F.

Proof of Theorem 14.5. For any α > 0 define an α-discretization of the [−1,1] in-

terval as Bα = {−1+α/2,−1+3α/2, . . . ,−1+(2k+1)α/2, . . .} for 0 ≤ k and (2k+1)α≤
4. Also for any a ∈ [−1,1] define ⌊a⌋α = argminr∈Bα |r − a| with ties being broken

by choosing the smaller discretization point. For a function f : X→ [−1,1] let the

function ⌊ f ⌋α be defined pointwise as ⌊ f (x)⌋α, and let ⌊F⌋α = {⌊ f ⌋α : f ∈F}. First,

143

14.3 Combinatorial Parameters

α/2

fα

f

Figure 14.1: A [−1,1]-valued function f is discretized to the level α. The resulting

discretized function fα takes on at most ⌊2/α⌋ + 1 values. Any cover of the dis-

cretized class ⌊F⌋α at scale α/2 is also a cover of F at scale α.

we prove that N∞(α,F,x) ≤N∞(α/2,⌊F⌋α,x). Indeed, suppose the set of trees V is

a minimal α/2-cover of ⌊F⌋α on x. That is,

∀ fα ∈ ⌊F⌋α, ∀ǫ ∈ {±1}n ∃v ∈V s.t. |vt (ǫ)− fα(xt (ǫ))| ≤α/2

Pick any f ∈F and let fα = ⌊ f ⌋α. Then ‖ f − fα‖∞ ≤α/2. Then for all ǫ ∈ {±1}n and

any t ∈ [n]

∣∣ f (xt (ǫ))−vt (ǫ)
∣∣≤

∣∣ f (xt (ǫ))− fα(xt (ǫ))
∣∣+

∣∣ fα(xt (ǫ))−vt (ǫ)
∣∣≤α,

and so V also provides an L∞ cover at scale α.

We conclude that N∞(α,F,x) ≤ N∞(α/2,⌊F⌋α,x) = N∞(1/2,G,x) where G =
1
α⌊F⌋α. The functions of G take on a discrete set of at most ⌊2/α⌋+1 values. Obvi-

ously, by adding a constant to all the functions in G, we can make the set of values

to be {0, . . . ,⌊2/α⌋}. We now apply Theorem 14.6 with an upper bound
∑d

i=0

(n
i

)
k i ≤

(ekn)d which holds for any n > 0. This yields N∞(1/2,G,x) ≤ (2en/α)fat2(G).

It remains to prove fat2(G) ≤ fatα(F), or, equivalently (by scaling) fat2α(⌊F⌋α) ≤
fatα(F). To this end, suppose there exists anR-valued tree x of depth d = fat2α(⌊F⌋α)

such that there is an witness tree s with

∀ǫ ∈ {±1}d , ∃ fα ∈ ⌊F⌋α s.t. ∀t ∈ [d], ǫt (fα(xt (ǫ))−st (ǫ)) ≥α

Using the fact that for any f ∈F and fα = ⌊ f ⌋α we have ‖ f − fα‖∞ ≤α/2, it follows

that

∀ǫ ∈ {±1}d , ∃ f ∈F s.t. ∀t ∈ [d], ǫt (f (xt (ǫ))−st (ǫ)) ≥α/2

That is, s is a witness to α-shattering by F. Thus for any x,

N∞(α,F,x) ≤N∞(α/2,⌊F⌋α,x) ≤
(

2en

α

)fat2α(⌊F⌋α)

≤
(

2en

α

)fatα(F)

144

14.4 Contraction

Plugging the estimates on the ℓ∞ covering numbers into the integral of Theo-

rem 14.3, we obtain the following analogue of Corollary 12.8.

Corollary 14.7. For F⊆ [−1,1]X and any X-valued tree x of depth n,

Dseq (F;x) ≤ inf
α≥0

{
4α+

12
p

n

∫1

α

√
fat(F,δ) log

(
2en

δ

)
dδ

}

where fat(F,δ) is the sequential fat-shattering dimension.

Observe the unfortunate logn factor, which is unavoidable for ℓ∞ covering

numbers. Ideally, we would like to use ℓ2 covering numbers in conjunction with

Theorem 14.3, but for that we need to prove an analogue of (12.10), which appears

to be a rather difficult problem.

k Prove the analogue of (12.10) for the ℓ2 tree covering numbers, and get an

A+ in the course.

14.4 Contraction

Lemma 14.8. Fix any X-valued tree x of depth n. If φ : R→R is L-Lipschitz (that is,

φ(a)−φ(b) ≤ L|a −b| for all a,b ∈R), then

Rseq (φ◦F) ≤ LRseq (F)×O(log3/2 n)

Note that this upper bound falls short of the analogous result in Lemma 12.9

for two reasons: it is only for supxR
seq (F;x) rather than Rseq (F;x), and there is

an extra poly-logarithmic factor. The first shortcoming is not a big issue, but we

believe that the extra factor should not be there.

k Prove (4) without the extra poly-logarithmic factor, and get an A+ in the

course.

As the next proposition shows, we can avoid the poly-logarithmic factor for

the problem of supervised learning with a convex loss function (in place of φ)

by passing directly from the value of the prediction problem to the sequential

145

14.5 Lower Bounds

Rademacher complexity of the base classF. This means that we can indeed “erase”

the loss function for the majority of the problems of interest (recall that this works

for the indicator loss too, as shown in Lemma 13.1). However, it would be nice to

prove a general result without the extra factor.

Proposition 14.9. LetY⊂R,F⊆YX, and assumeℓ(y1, y2) is convex and L-Lipschitz

in y1 for any y2. Consider the (improper) supervised sequential prediction problem.

Then

Vseq (F,n) ≤ 2LRseq (F)

PExercise 14.1 (⋆⋆). LetX⊆R, L > 0, and define a classFL([a,b]) =
{

fθ : R→ [0,1]|θ ∈ [a,b]
}

where

fθ(x) =





1 if x ≤ θ

1−L(x −θ) if θ < x ≤ θ+1/L

0 otherwise

is a “ramp” function with slope L. Prove that FL([−∞,∞]) has infinite (sequential)

fat-shattering dimension for any scale α < 1/2. Prove, however, that sequential

fat-shattering dimension of FL([a,b]), for any a,b ∈ R, is finite. Conclude that the

value of a supervised learning problem with ramp functions and Lipschitz loss is

converging to zero in both sequential and the statistical learning frameworks.

14.5 Lower Bounds

Matching (up to a constant) lower bounds on the value of the game can be shown

in several cases of interest: supervised learning and linear loss. These two cover a

wide range of problems, including online convex optimization without additional

curvature assumptions on the functions.

For the supervised learning case, the lower bound of sequential Rademacher

complexity is already shown in Theorem 13.11 for the binary prediction case, but

exactly the same argument works for the real-valued prediction with absolute loss.

We now prove a matching lower bound for the linear loss case. Suppose F is

a convex subset of some separable Banach space, and Z is a convex subset of the

dual space. Let z be any Z-valued tree of depth n. We now exhibit a lower bound

on the value of the game, achieved by the adversary playing according to this tree.

The proof is in the same spirit as the proof of Theorem 13.11 as well as the lower

bounds in Section 8.4.

146

14.5 Lower Bounds

Lemma 14.10. Suppose F is a convex subset of a separable Banach space, and Z is

a convex subset of the dual space, symmetric about the origin. For the linear game

defined with ℓ(f , z) =
〈

f , z
〉

, we have

Rseq (F) ≤Vseq (F,n) ≤ 2Rseq (F)

Proof. Given z, the strategy for the adversary will be the following: at round 1,

draw ǫ1, observe the learner’s move ft and present ǫ1z. On round t , the adversarial

move is defined by ǫt zt (ǫ1:t−1). This gives the following lower bound on the value

of the game:

n ·Vseq (F,n) =⟪inf
qt

sup
zt

Eŷ t∼qt
⟫n

t=1

{
n∑

t=1

〈
ŷ t , zt

〉
− inf

f ∈F

n∑
t=1

〈
f , zt

〉
}

≥⟪inf
qt

Eŷ t∼qtEǫt
⟫n

t=1

{
n∑

t=1

〈
ŷ t ,ǫt zt (ǫ)

〉
− inf

f ∈F

n∑
t=1

〈
f ,ǫt zt (ǫ)

〉
}

≥ Eǫ

{
− inf

f ∈F

n∑
t=1

〈
f ,ǫt zt (ǫ)

〉
}

=Rseq (F;z)

where the player’s loss disappears because the conditional distribution of ǫt zt (ǫ)

is zero mean. Since the lower bound holds for an arbitrary tree z, the statement

follows.

147

15
Examples: Complexity of Linear and

Kernel Classes, Neural Networks

In the past five chapters, we have developed powerful theoretical tools, and it

is now time to reap the benefits. Before proceeding, let us first recall the high-

level picture. In Chapter 7, we had motivated the study of the suprema of several

stochastic processes. We argued that a handle on the empirical or Rademacher

process gives a finite sample guarantee on the performance of Empirical Risk Min-

imization, while the martingale and tree processes provide an upper bound on

the minimax value of the sequential prediction problem. After this realization,

we turned to the study of the suprema of stochastic processes. In Chapter 9 we

showed some rather straightforward upper bounds on the suprema over finite in-

dex sets. The two chapters following that were devoted to extending the finite-

class results to Rademacher processes indexed by infinite classes of functions in

binary and in real-valued cases. In the following two chapters, we studied the

suprema of the tree process indexed by infinite classes of, respectively, binary or

real-valued functions. We defined various notions of complexity of the function

class that capture the behavior of the suprema of these stochastic processes.

We now proceed to calculate the upper bounds on the expected suprema of

the Rademacher and tree processes. While we do not prove lower bounds, it can

be shown that, for the examples presented here, the behavior of the suprema of

the Rademacher and tree processes is almost identical. Hence, the guarantees for

the statistical learning framework with i.i.d. data are the same as those for regret

minimization in the setting of individual sequences.

148

15.1 Prediction with Linear Classes

15.1 Prediction with Linear Classes

In the supervised setting, we have pairs (x, y) of predictor-response variables. Con-

sider the square, absolute and logistic loss functions ℓ(f (x), y) paired with linear

functions f (x) =
〈

f , x
〉

:

(〈
f , x

〉
− y

)2
, |

〈
f , x

〉
− y |, log

(
1+exp

{
−y

〈
f , x

〉})

For X and F being unit balls in dual norms, it is natural to assume that Y= [−1,1]

since that is the range of functions f (x). Then, the square loss is evaluated on the

interval [−2,2], and on this interval it is a 2-Lipschitz function of f (x) for any y .

Clearly, the absolute loss is a 1-Lipschitz function, and so is the logistic loss.

For any such L-Lipschitz loss, Proposition 14.9 tells us that the value of the

sequential prediction problem

V(F) ≤ 2LRseq (F) .

The same result holds for the setting of statistical learning in view of Lemma 12.9:

Vi i d (F) ≤ 2LRi i d (F) .

We can now use upper bounds on Rseq (F) and Ri i d (F) for the examples of linear

function classes considered in Chapter 10.

Observe that for square loss, the rate 4/
p

n guaranteed through the argument

above seems to mismatch the rate O(d/n) obtained in Section 4. In fact, each

of these bounds works in its own regime: for d >
p

n the former kicks in, while

for small d the O(d/n) rate might be better. A more careful analysis, which goes

beyond the scope of this course, allows one to interpolate between these two rates.

15.2 Kernel Methods

Linear predictors discussed above are attractive from both algorithmic and from

the analysis perspectives. At first glance, however, linear predictors might appear

to be limited in terms of their representativeness. The kernel methods are aimed

to alleviate this very problem. The basic idea is to first map data points into a

feature space (usually of higher—or even infinite—dimension) and to use linear

predictors in that feature space. To illustrate the point, let us consider the two di-

mensional example shown in Figure 15.1. The two classes are arranged in circles,

149

15.2 Kernel Methods

and are not linearly separable. In fact, any linear predictor will misclassify a con-

stant proportion of the data points. However, if we used a circle as the decision

boundary, the data would be perfectly separable. Such a decision rule is of the

form f (x) = sign(x[1]2 + x[2]2 − r 2), and can be written as a linear form once we

define the features appropriately. In particular, consider the feature space given

by the map x 7→ φ(x) where φ(x) = (x[1]2, x[2]2, x[1] · x[2], x[1], x[2],1). The classi-

fier based on the circle x[1]2+x[2]2−r 2 can now be written as a half-space defined

by the vector f = (1,1,0,0,0,−r 2) ∈R
6. This half-space in the feature space is spec-

ified by
〈

f , x
〉
= x[1]2 + x[2]2 − r 2 and it perfectly classifies the data. We see that

by employing a mapping to a higher dimensional feature space one can use linear

classifiers in the feature space and increase the expressive power of linear predic-

tors.

r

+

−+

+
+

+

+

+

+
−

−

−

−

−

−

−

7!

+

+

+

+

−

−

−

−

x[1]2

x[2]2

Figure 15.1: The problem becomes linearly separable once an appropriate feature

mapping φ is chosen.

Specifically for kernel methods we consider some input space X and an asso-

ciated feature space mapping φ that maps input in X to a possibly infinite dimen-

sional Hilbert space. We further assume that for every x ∈X,
∥∥φ(x)

∥∥≤ R for some

finite R (the norm is the norm on the Hilbert space). The function class F we con-

sider consists of all the elements of the Hilbert space such that
∥∥ f

∥∥ ≤ B , and the

predictors we consider are of form
〈

f ,φ(x)
〉

, as motivated in the above example.

As mentioned earlier, the feature space is often taken to be infinite dimen-

sional. In this case, one may wonder how to even use such linear functions on

computers with finite memory. After all, we cannot store or process infinite se-

quences. Fortunately, there is no need to store the functions! The trick that makes

this possible is commonly called the kernel trick. In Reproducing Kernel Hilbert

Space (RKHS) H, there exists a function called the kernel function k : X×X→ R

such that k(x1, x2) =
〈
φ(x1),φ(x2)

〉
. Given such a kernel function, the Representer

150

15.3 Neural Networks

Theorem acts as a cornerstone for kernel methods. Roughly speaking, the Repre-

senter Theorem implies that any algorithm that only operates on the functions f

through the inner products can do all the computations with the kernel function.

This means the optimization objective for the algorithm can depend on terms like〈
x,φ(xt)

〉
or the norm

〈
f , f

〉
, and the solution ŷ t ∈H in the RKHS at time t chosen

by the learning algorithm can be represented as a linear combination of feature

vectors of the data points. That is ŷ t can be written as ŷ t =
∑t−1

i=1 αiφ(xi). Viewed

as a linear function in the feature space

ŷ t (x) =
〈

ŷ t ,φ(x)
〉
=

t−1∑

i=1

αi

〈
φ(xi),φ(x)

〉
=

t−1∑

i=1

αi k(xi , x)

Thanks to the Representer Theorem, the main take home message is that one

never needs to explicitly deal with feature space but only with kernel functions

over data seen so far. As for this chapter, the main thing to note is that one can

treat the Rademacher complexity of the kernel class as the Rademacher complex-

ity of the linear class in the feature space with the Hilbert norm of f bounded by

B and Hilbert norm of data bounded by R. This is basically the same as the L2/L2

example in Chapter 10, and so one gets the bound

Ri i d (F) ≤Rseq (F) ≤

√
R2B 2

n
.

The above upper bound shows that one may go well beyond the linear classes in

terms of expressiveness. The kernel methods are arguably the most useful practi-

cal methods.

15.3 Neural Networks

Neural networks can be viewed as a class of functions which are built in a hierar-

chical manner. Let F ⊂ [−1,1]X be a base function class (that is, a set of possible

functions at the input layer of the neural network). In every node of every subse-

quent layer, we take a linear combination of outputs of the nodes from the previ-

ous layer, and this linear combination is subsequently passed through a Lipschitz

transformation function σ : R 7→R, producing the output of the node. Typically the

transformation function is a sigmoid and performs a form of a soft thresholding.

The motivation for such a construction is to mimic neural activity. Each neuron

151

15.3 Neural Networks

is excited by the input connections from other neurons, and its own output is a

(modulated) function of the aggregate excitation.

We now formally describe a multilayer neural network with some arbitrary

base class F. Consider any base function class F ⊂ [−1,1]X, and assume (in or-

der to simplify the proof) that 0 ∈F. We now recursively define Fi as: F1 =F and

for each 2 ≤ i ≤ k

Fi =
{

x 7→
∑

j

w jσ
(

f j (x)
)

: f j ∈Fi−1,‖w‖1 ≤ R

}

where σ is an L-Lipschitz transformation function such that σ(0) = 0. The follow-

ing lemma upper bounds the Rademacher complexity of the neural network class

in terms of the Rademacher complexity of the base class.

Lemma 15.1. For any base function class F ⊂ [−1,1]X that contains the zero func-

tion,

Ri i d (Fk) ≤Rseq (Fk) ≤ (RL)k−1 O
(
log

3
2 (k−1)(n)

)
Rseq (F)

Proof. We shall prove that for any i ∈ {2, . . . ,k},

R
seq
n (Fi) ≤ LRO(log3/2(n))R

seq
n (Fi−1)

To see this note that

R
seq
n (Fi) = sup

x
Eǫ


 sup

w :‖w‖1≤R
f j ∈Fi−1

n∑
t=1

ǫt

(
∑

j

w jσ
(

f j (xt (ǫ))
)
)



Interchanging the sum over t and the sum over j , and then using Hölder’s inequal-

ity, we get an upper bound of

sup
x

Eǫ


 sup

w :‖w‖1≤R
f j ∈Fi−1

‖w‖1 max
j

∣∣∣∣
n∑

t=1

ǫtσ
(

f j (xt (ǫ))
)∣∣∣∣


≤ sup

x
Eǫ

[
R sup

f ∈Fi−1

∣∣∣∣
n∑

t=1

ǫtσ
(

f (xt (ǫ))
)∣∣∣∣

]

(15.1)

We now claim that we can remove the absolute value at the expense of an extra

factor of 2. Indeed,

sup
f ∈Fi−1

∣∣∣∣
n∑

t=1

ǫtσ
(

f (xt (ǫ))
)∣∣∣∣≤ max

{
sup

f ∈Fi−1

n∑
t=1

ǫtσ
(

f (xt (ǫ))
)

, sup
f ∈Fi−1

n∑
t=1

−ǫtσ
(

f (xt (ǫ))
)
}

152

15.4 Discussion

Since σ(0) = 0 and 0 ∈F, we also conclude that 0 ∈Fi for any layer i . We can thus

replace the maximum by the sum of the two terms. The supremum over x in (15.1)

can then be split into two equal terms:

sup
x

Eǫ

[
R sup

f ∈Fi−1

n∑
t=1

ǫtσ
(

f (xt (ǫ))
)
]
+ sup

x
Eǫ

[
R sup

f ∈Fi−1

n∑
t=1

−ǫtσ
(

f (xt (ǫ))
)
]

thus proving the assertion. In view of Lemma 14.8, we pass to the upper bound of

2RLO(log3/2 n) sup
x

Eǫ

[
sup

f ∈Fi−1

n∑
t=1

ǫt f (xt (ǫ))

]
= 2RLO(log3/2 n)R

seq
n (Fi−1)

The statement of the lemma follows by applying the above argument repeatedly

for all layers.

A key property to note about the above bound is that while the number of layers of

the neural network enters the bound, the number of nodes in each layer does not,

and so in each layer we could have any number of nodes without compromising

the bound.

15.4 Discussion

Both excess risk (in statistical learning) and regret (in sequential prediction) are

based on the comparison of learner’s performance to the performance within a

class F. That is, the goal is to minimize the difference

(our loss) – (loss of the best element in F)

Of course, competing with very simple F is not interesting, as the performance of

the comparator is unlikely to be good. Conversely, being able to have vanishing

excess risk or vanishing regret with respect to a large class F implies good perfor-

mance in a wide variety of situations, as we are more likely to capture the underly-

ing phenomenon that generates the data.

The course so far has focused on understanding a key question: what are the

relevant complexities of F that make it possible to have vanishing excess loss or

vanishing regret? The key point of this discussion is that these complexities are

not exactly what we might think of when we look at a particular F and its expres-

siveness. For instance, take a finite F and take its convex hull. Lemma 7.14 im-

plies that the Rademacher complexities of the convex hull is equal to that of the

153

15.4 Discussion

finite collection. However, the convex hull of F is more expressive. Consider the

example of neural networks which correspond to complicated nested composi-

tions and convex combinations. Despite the apparent complexity, as we showed

in Lemma 15.1, the inherent complexity is simply that of the base class. In the

case of kernel methods, a bound on Rademacher complexity is possible in infinite

dimensional spaces, which shows once again that the notion of “inherent com-

plexity” relevant to the problem of excess loss or regret minimization is not exactly

what we might think of. In some sense, this is great news, as we can take expressive

(“large”) classesF while still guaranteeing that the inherent complexity is manage-

able.

154

16
Large Margin Theory for Classification

155

17
Regression with Square Loss: From

Regret to Nonparametric Estimation

156

Part III

Algorithms

157

18
Algorithms for Sequential Prediction:

Finite Classes

Within the setting of Statistical Learning Theory, the upper bounds on the supre-

mum of the Rademacher process give us a mandate to use the Empirical Risk Min-

imization algorithm, thanks to the inequality (7.2). But what can be said about the

setting of Sequential Prediction? The upper bounds on the minimax value guar-

antee existence of a strategy that will successfully minimize regret, but how do we

go about finding this strategy? Recall that to upper bound the minimax value, we

jumped over quite a few hurdles: we appealed to the minimax theorem and then

performed sequential symmetrization, replacing the mixed strategies of the oppo-

nent by a binary tree and coin flips. In this process, we seem to have lost the hope

of finding a method for minimizing regret.

Of course, we can say that the algorithm for sequential prediction is obtained

by solving the long minimax problem (5.15) at each step. But this is not very sat-

isfying, as we would like something more succinct and useful in practice. George

Pólya’s famous quote comes to mind: “If you can’t solve a problem, then there is

an easier problem you can solve: find it.”

Let us consider the simplest case we can think of: the supervised setting of

binary prediction with a finite benchmark set F. More precisely, let X be some set,

Y=D= {±1}, F⊂YX, and the loss ℓ(y1, y2) = I
{

y1 6= y2

}
. Lemma 9.5 (coupled with

Lemma 13.1 to erase the indicator loss) yields a bound

Vseq (F) ≤ 2

√
2log |F|

n
, (18.1)

and the immediate question is: what is the algorithm that achieves it?

158

18.1 The Halving Algorithm

Before answering this question, consider an even simpler problem in order to

gain some intuition.

18.1 The Halving Algorithm

Imagine that among the functions in F there is one that exactly gives the true la-

bels yt , an assumption we termed realizable on page 26. That is, there is f ∈ F

such that, no matter what xt is presented by Nature, the label yt is required to sat-

isfy yt = f (xt). If we know there is a perfect predictor in F, we can prune away

elements of F as soon as they disagree with some observed yt . It is then clear that

we have a strategy that makes at most card(F)−1 mistakes.

However, we can do better. Suppose that at each round we update the set Ft of

possible perfect predictors at time t given the new information. At the first round,

F1 =F. Upon observing xt we predict ŷ t according to the majority of the functions

in Ft . If ŷ t = yt , we set Ft+1 = Ft . Otherwise, we set Ft+1 =
{

f ∈Ft : f (xt) = yt

}
.

Clearly, any time we made a mistake, card(Ft+1) ≤ card(Ft)/2. Suppose we made

m mistakes after n rounds. Then 1 ≤ card(Fn) ≤ card(F)/2m and thus

m ≤ log2(card(F)),

making regret (to the zero-loss comparator) no larger than n−1 log2(card(F)). It

is not hard to construct an example with log2(card(F)) as a lower bound on the

number of mistakes suffered by the learner.

We mention the Halving Algorithm because it has various incarnations in a

range of disciplines. For instance, the idea of choosing the point that brings the

most information (in our case, the majority vote) can be seen in Binary Search

and the Method of Centers of Gravity in Optimization. If each new point decreases

the “size” of the version space by a multiplicative factor, the rate of localizing the

solution is exponential.

18.2 The Exponential Weights Algorithm

What if there is no element of F that predicts the sequence perfectly? We can no

longer throw out parts of F. The idea is to keep an eye on all the functions in F,

yet decrease our confidence in those that make many mistakes. The algorithm we

159

18.2 The Exponential Weights Algorithm

now present is a “soft version” of the Halving Algorithm, and it is arguably the most

famous method in the framework of sequential prediction. It works not only for

binary-valued prediction, but also for the real-valued case and for non-supervised

problems.

In later lectures, we will appeal to Lemma 5.1 and argue that our sequential

strategy can be deterministic. In the present case of a finite F, however, the as-

sumptions of the lemma are not satisfied, as F is not a convex set. In fact, a mixed

strategy is necessary, and we will call it qt ∈∆(F), following Eq. (5.15). Here, ∆(F)

is a set of distributions on N = card(F) elements. Let us enumerate the functions

in F as f 1, . . . , f N .

Exponential Weights Algorithm (EWA), Supervised Learning

Initialize: q1 = (1/N , . . . ,1/N), η=
√

8ln N
n

At time t :

Observe xt , sample it ∼ qt , and predict ŷ t = f it (xt)

Observe yt and update

qt+1(i) ∝ qt (i)×exp
{
−ηℓ(f i (xt), yt)

}
for all i ∈ {1, . . . , N }

Lemma 18.1. Suppose card (F) = N . For the supervised learning problem with any

loss function ℓ with the range in [0,1], the Exponential Weights Algorithm guaran-

tees

E

{
1

n

n∑
t=1

ℓ(ŷ t , yt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f (xt), yt)

}
≤

√
ln N

2n
(18.2)

no matter how the sequence (x1, y1), . . . , (xn , yn) is chosen.

Proof of Lemma 18.1(see e.g. [16]). Denote the cumulative loss of expert i by Li
t =∑t

s=1ℓ(f i (xs), ys). Let Wt =
∑N

i=1 exp
{
−ηLi

t

}
with W0 = N . We then have

ln
Wn

W0
= ln

N∑

i=1

exp(−ηLi
n)− ln N ≥ ln

(
max

i=1,...,N
exp(−ηLi

n)

)
− ln N =−η min

i=1,...,N
Li

n − ln N .

160

18.2 The Exponential Weights Algorithm

On the other hand,

ln
Wt

Wt−1
= ln

∑N
i=1 exp

{
−ηLi

t

}
∑N

i=1 exp
{
−ηLi

t−1

}

= ln

∑N
i=1 exp(−ηℓ(f i

t , yt)) ·exp(−ηLi
t−1)

∑N
i=1 exp(−ηLi

t−1)

= lnEit∼qt exp
(
−ηℓ(f it (xt), yt)

)

We now employ a useful fact that for a random variable X ∈ [a,b],

lnEe sX ≤ sEX +
s2(b −a)2

8

for any s ∈R (see [16] for more details). This inequality implies

lnEit exp
(
−ηℓ(f it (xt), yt)

)
≤−ηEitℓ(f it (xt), yt)+

η2

8

for the loss 0 ≤ℓ(·, ·) ≤ 1. Summing the last inequality over t = 1, . . . ,n, and observ-

ing that the logarithms telescope,

ln
Wn

W0
≤−η

n∑
t=1

Eitℓ(f it (xt), yt)+
η2n

8
.

Combining the upper and lower bounds for lnWn+1/W1,

1

n

n∑
t=1

Eitℓ(f it (xt), yt)− min
i∈{1,...,N }

1

n

n∑
t=1

ℓ(f i (xt), yt) ≤
ln N

nη
+
η

8
.

Balancing the two terms with η =
√

8ln N
n

and taking the expectation gives the

bound.

Notice a strange feature of the Exponential Weights Algorithm: qt is decided

upon before seeing xt . In other words, the structure of F (agreement and dis-

agreement among the functions) is not exploited. Consequently, the Exponential

Weights Algorithm has the same regret guarantee in a more abstract setting of un-

supervised learning, where at each time step the learner picks ŷ t ∈ F, Nature si-

multaneously chooses zt ∈Z, the learner suffers loss ℓ(ŷ t , zt), and zt is observed.

Suppose the loss ℓ is again taking values in [0,1]. The algorithm then becomes

161

18.2 The Exponential Weights Algorithm

Exponential Weights Algorithm (EWA), Unsupervised Learning

Initialize: q1 = (1/N , . . . ,1/N), η=
√

8ln N
n

At time t :

Sample it ∼ qt , and predict ŷ t = f it ∈F
Observe zt and update

qt+1(i) ∝ qt (i)×exp
{
−ηℓ(f i , zt)

}
for all i ∈ {1, . . . , N }

It is easy to see that the same upper bound

E

{
1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}
≤

√
ln N

2n
(18.3)

holds in this case too.

Another variant of the problem bears the name “Prediction with Expert Ad-

vice”, as we may view the side information xt as a vector of advice of N experts.

Then, the choice of elements of F corresponds to the choice of which expert to

follow, and we may take F= {e1, . . . ,eN }, the vertices of the probability simplex ∆N .

As ∆(F) = ∆N , the mixed strategy qt is simply a distribution over the coordinates

{1, . . . , N }. Let us now mention a variant where the expert advice is actually being

combined to form a prediction. More precisely, at time t , each expert i ∈ {1, . . . , N }

offers a prediction xi
t ∈ [0,1], the learner forms a decision ŷ t ∈ [0,1], observes the

outcome yt ∈ [0,1] and incurs loss ℓ(ŷ t , yt) for some cost function ℓ, convex in the

first argument. At the end of n days, we would like to have suffered loss not much

worse than that of the best expert, without knowing who is the best until the very

end. In this case, the algorithm is

Exponential Weights Algorithm (EWA), Prediction with Expert Advice

Initialize: q1 = (1/N , . . . ,1/N), η=
√

8ln N
n

At time t :

Observe xt ∈ [0,1]N

Predict ŷ t = q T

t xt

Observe yt and update

qt+1(i) ∝ qt (i)×exp
{
−ηℓ(xi

t , yt)
}

for all i ∈ {1, . . . , N }

162

18.2 The Exponential Weights Algorithm

We then have a regret bound

E

{
1

n

n∑
t=1

ℓ(ŷ t , yt)− inf
i∈{1,...,N }

1

n

n∑
t=1

ℓ(xi
t , yt)

}
≤

√
ln N

2n
(18.4)

The fact that EWA treats the experts as unrelated entities that generate pre-

dictions has both positive and negative implications. On the positive side, this

fact increases the applicability of the algorithm. On the negative side, the method

does not take into account the correlations between experts. If experts give very

similar predictions, we would expect smaller regret, yet this fact is not reflected in

the upper bound. Exploiting the structure of F is a very interesting topic, and it

will be studied later in the course. We can already guess that covering of F needs

to come into the picture, as it indicates the effective number of distinct functions.

A variant of Exponential Weights is also employed for statistical aggregation of

estimators [51, 29, 19], treating them as fixed entities. Since the structure of F is

not exploited by the Exponential Weights method, the resulting estimator is able

to mimic the best one no matter how the estimators are originally constructed.

More generally, it is instructive to think of the Exponential Weights algorithm as a

“union bound” algorithm, a point that will be explained in a few lectures.

PExercise 18.1 (⋆⋆). Prove an analogue of Lemma 18.1 for a countableF. More

precisely, show that for any distribution π on F,

E

{
1

n

n∑
t=1

ℓ(ŷ t , yt)

}
≤ inf

f ∈F

{
1

n

n∑
t=1

ℓ(f (xt), yt)+
1+ ln(1/π(f))

p
8n

}
(18.5)

PExercise 18.2 (⋆⋆⋆). For the previous exercise, prove an upper bound of the

form (18.5) but with log(1/π(f)) under the square root.

PExercise 18.3 (⋆⋆). Suppose F = ∪i∈NFi is a countable union (of potentially

uncountable sets), and the sequential prediction problem with each Fi is Uni-

formly Sequentially Consistent (recall the definitions in Chapter 6). Prove that the

sequential prediction problem with respect to F is Universally Sequentially Con-

sistent. Hint: Use the previous exercise.

163

19
Algorithms for Sequential Prediction:

Binary Classification with Infinite

Classes

The binary prediction problem within the supervised learning setting is as follows:

on round t , some side information xt is revealed, the learner picks ŷ t ∈ {±1}, and

the outcome yt is revealed. Let us consider the case of prediction with hyperplanes
{

g (x) = sign(
〈

f , x
〉

) : f ∈F⊂R
d
}

in R
d . However, we immediately recognize that this class has infinite Littlestone’s

dimension, since the example of thresholds on an interval (given in Section 8.4)

can be easily embedded into this problem if d ≥ 2.

Interestingly, the problem of infinite Littlestone’s dimension can be circum-

vented if we assume a margin condition. Analogously to the previous lecture,

where we assumed that there exists an f ∈ F that perfectly classifies the data, we

now make an assumption that some f ∈ F perfectly classifies data with an extra

margin of γ> 0. Let us state this more formally.

Assumption 19.1. Given sets F and X, the γ-margin condition (for some γ > 0) is

given by

∃ f ∈F s.t. ∀t ∈ [n], yt

〈
f , xt

〉
> γ.

19.1 Halving Algorithm with Margin

Let F = B
d
2 . Because of the margin condition, we can discretize the uncountable

set F of all experts (i.e. the sphere) and pick a finite number of them for our prob-

164

19.1 Halving Algorithm with Margin

lem. It is easy to show that if we discretize to a fine enough level, there will be

an expert that perfectly classifies the data and then we can use the Halving Al-

gorithm over this discretized set. The following lemma does exactly this. Before

we begin, consider the discretization of the interval [−1,1] at scale γ/2d given by

B = {−1,−1+γ/2d ,−1+γ/d , . . . ,1}.

Lemma 19.2. Let X⊂ [−1,1]d . Under the γ-margin condition, the total number of

mistakes committed by the Halving Algorithm with the set of half spaces specified

by the discretization Fγ = B d is at most

d log

(
4d

γ
+1

)

Proof. By the margin assumption there exists an f ∗ ∈F, such that∀t ∈ [n], yt

〈
f ∗, xt

〉
>

γ. Since Fγ is a γ/2d discretization on each co-ordinate, there exists f ∗
γ ∈Fγ such

that

∀i ∈ [d], | f ∗[i]− f ∗
γ [i]| ≤ γ/2d .

Hence, for any t ∈ [n],

∣∣∣yt

〈
f ∗, xt

〉
− yt

〈
f ∗
γ , xt

〉∣∣∣=
∣∣∣
〈

f ∗− f ∗
γ , xt

〉∣∣∣≤
d∑

i=1

| f ∗[i]− f ∗
γ [i]| ≤ γ/2 .

Combining with the margin assumption this implies that for all t ∈ [n], yt

〈
f ∗
γ , xt

〉
>

γ/2. In short, the set of half-spaces specified by Fγ has an element f ∗
γ that per-

fectly separates the data. Cardinality of the set is given by |Fγ| =
(

4d
γ
+1

)d
. Using

the Halving Algorithm, we get that the number of mistakes is bounded by

log2 |Fγ| = d log

(
4d

γ
+1

)
.

The nice aspect of this reduction to a finite case is its simplicity. It is transpar-

ent how the margin assumption allows us to discretize and only consider a finite

number of experts. Another good side is the logγ−1 dependence on the margin γ.

The bad aspects: the majority algorithm over O(γ−d) experts is computationally

infeasible, and the dependence of the regret bound on d is linear.

165

19.2 The Perceptron Algorithm

19.2 The Perceptron Algorithm

Luckily, the bad computational performance of the discretization algorithm can

be avoided. The Perceptron algorithm is a simple and efficient method for the

problem of classification with a margin assumption, and it has some remarkable

history. Invented by Rosenblatt in 1957, this algorithm can be called the father of

neural networks and the starting point of machine learning. In their 1969 book,

Minsky and Papert showed that perceptrons are limited in what they can learn: in

particular, they cannot learn the XOR function. This realization is attributed to a

decline in the field for at least a decade. Meanwhile, in 1964, Aizerman, Braverman

and Rozonoer introduced a kernelized version of the perceptron and showed its

relationship to stochastic approximation methods that minimize a risk functional

(with respect to an unknown distribution). Their results gained popularity only in

the 80’s.

Perceptron Algorithm

Initialize: f1 = 0.

At each time step t = 1, . . . ,n

Receive xt ∈R
d

Predict ŷ t = sign(
〈

ft , xt

〉
)

Observe yt ∈ {−1,1}

Update ft+1 = ft + yt xt if sign(
〈

ft , xt

〉
) 6= yt , and set ft+1 = ft other-

wise.

Note that no update is performed when the correct label is predicted.

Lemma 19.3. Under the γ-margin condition, the number of mistakes committed

by the Perceptron Algorithm is at most
(

R
γ

)2
where R = maxt ‖xt‖.

Proof. Let f ∗ be the normal to the hyperplane that separates all data by the margin

γ. Let us look at how the “correlation” between f ∗ and ft is evolving. If a mistake

is made on round t ,

〈
f ∗, ft+1

〉
=

〈
f ∗, ft + yt xt

〉
=

〈
f ∗, ft

〉
+ yt

〈
f ∗, xt

〉
≥

〈
f ∗, ft

〉
+γ.

Thus, every time there is a mistake, the inner product of our hypothesis ft with

the unknown f ∗ increases by γ. If m mistakes have been made over n rounds, we

have
〈

f ∗, fn+1

〉
≥ γm since we started with a zero vector. Now, the main question

166

19.3 The Winnow Algorithm

is whether the increase in the inner product is due to the smaller angle between

the vectors (i.e. we are indeed getting close to the unknown f ∗ in terms of the

direction), or is it because of the increase in the length of ‖ ft‖?

While the “correlation” with f ∗ increases with every mistake, we can show that

the size of the hypothesis ‖ ft‖ cannot increase too fast. If there is a mistake on

round t ,

‖ ft+1‖2 = ‖ ft + yt xt‖2 = ‖ ft‖2 +2yt

〈
ft , xt

〉
+‖xt‖2 ≤ ‖ ft‖2 +‖xt‖2

Then after n rounds and m mistakes,

‖ fn+1‖2 ≤ mR2.

Combining the two arguments,

γm ≤
〈

f ∗, fn+1

〉
≤ ‖ f ∗‖ ·‖ fn+1‖ ≤

√
mR2

assuming f ∗ is a unit vector, and so

m ≤
(

R

γ

)2

.

19.3 The Winnow Algorithm

167

20
Algorithms for Online Convex

Optimization

20.1 Online Linear Optimization

Suppose F =X = B2 ⊂ R
d , ℓ(f , x) =

〈
f , x

〉
, and the decision set D = F. At every t ,

the learner predicts ŷ t ∈D, observes xt , and suffers a cost
〈

ŷ t , xt

〉
. The goal is to

minimize regret defined as

1

n

n∑
t=1

〈
ŷ t , xt

〉
− inf

f ∈F

1

n

n∑
t=1

〈
f , xt

〉
. (20.1)

Eq. (10.2) tells us that the value of the game is upper bounded by 1/
p

n (the con-

stant 2 is not necessary). So, what is the strategy that gives this regret guarantee?

The first idea is to reduce the problem to the case of a finite number of experts.

What allows us to do so is the structure of F: two nearby vectors f , g ∈F have sim-

ilar loss. Let us sketch a possible reduction. We can find a cover of the unit ball

F with centers in F′ ⊂ F, at the granularity 1/
p

n in the ℓ2 distance. It is easy to

check that regret against F is within 1/
p

n from regret with respect to the com-

parator class F. The regret bound for the Exponential Weights algorithm on the

finite set F′ is O
(√

ln |F′| / n
)
, as given in the last section. But the size of the cover

F′ is at least Ω(nd/2), and so the resulting regret bound is O
(p

d ln(n) / n
)

at best.

Unfortunately, this is off our target 1/
p

n in Eq. (10.2). Even more importantly,

the Exponential Weights algorithm on F′ is not an efficient algorithm. Evidently,

this is because Exponential Weights treats each expert as a separate entity, despite

the fact that the nearby elements of F′ incur similar loss. While the discretization

168

20.2 Gradient Descent

takes into account the linear structure of the problem, the Exponential Weights al-

gorithm does not. The proposed reduction is not satisfying, but the idea is worth

mentioning. For many problems in sequential prediction, an Exponential Weights

algorithm over the discretization often yields a near-optimal—yet (possibly) an

inefficient—method.

How can we take algorithmic advantage of the linear structure of the problem?

First thing to note is that the loss function is convex (linear) in ŷ t , and the set F is

convex. Hence, by Lemma 5.1, there is a deterministic method for choosing ŷ t ’s.

(In contrast to the Exponential Weights algorithm which works in the space of dis-

tributions, the present problem should be solvable with a deterministic method.)

The regret objective in (20.1) has a flavor of an optimization problem, so it is rea-

sonable to check if the simple deterministic method

ŷ t+1 = argmin
f ∈F

t∑
s=1

〈
f , xs

〉

works. This method, known as Follow the Leader simply chooses the best deci-

sion given the observed data. Follow the Leader is basically the Empirical Risk

Minimization method for each observed history. Unlike the i.i.d. case of statisti-

cal learning where ERM is a sound procedure, the sequential prediction problem

with linear functions is not solved by this simple method, as the next (classical)

example shows.

Example 17. Suppose F =X= [−1,1] and ℓ(f , x) = f · x. Suppose Nature presents

x1 = 0.5 and x2k = −1, x2k+1 = 1 for k = 1, . . . ,⌊n/2⌋. The choice f1 makes little

difference, so suppose f1 = 0. Clearly, the FTL algorithm generates a sequence

f2k = −1 and f2k+1 = 1, inadvertently matching the xt sequence, and thus the av-

erage loss of FTL is 1. On the other hand, taking f = 0 in the comparator term

makes it 0, and thus regret is at least a constant.

20.2 Gradient Descent

Let us now check whether a simple gradient update works. To this end, define

ŷ t+1 =ΠF(ŷ t −ηxt)

169

20.3 Follow the Regularized Leader and Mirror Descent

where ΠF(g) = inf f ∈F ‖ f −g‖ the Euclidean projection onto the set F. Fix any f ∗ ∈
F and write

‖ŷ t+1− f ∗‖2 = ‖ΠF(ŷ t−ηxt)− f ∗‖2 ≤ ‖ŷ t−ηxt− f ∗‖2 = ‖ŷ t− f ∗‖2+η2‖xt‖2−2η
〈

ŷ t − f ∗, xt

〉

The inequality in the above chain follows from the simple fact that an element

outside the set cannot be closer than its projection to an element in the set. Rear-

ranging,

2η
〈

ŷ t − f ∗, xt

〉
≤ ‖ŷ t − f ∗‖2 −‖ŷ t+1 − f ∗‖2 +η2‖xt‖2

Summing over t = 1, . . . ,n and dividing by 2η,

n∑
t=1

〈
ŷ t − f ∗, xt

〉
≤ (2η)−1

(
‖ŷ 1 − f ∗‖2 −‖ŷ n+1 − f ∗‖2

)
+
η

2

n∑
t=1

‖xt‖2 ≤
1

2η
+

nη

2
=
p

n,

for η= 1/
p

n. We used ŷ 1 = 0 and the fact that ‖xt‖ ≤ 1 for any t . Since this holds

for any f ∗ ∈F, we have proved the following:

Lemma 20.1. Let F =X=B
d
2 , and ℓ(f , x) =

〈
f , x

〉
. Then the deterministic strategy

of gradient descent

ŷ t+1 =ΠF(ŷ t −ηxt)

with projection yields the regret bound of 1/
p

n, where ŷ 1 = 0 and η= 1/
p

n.

Notably, the gradient descent method is efficient, and its regret guarantee matches

the non-constructive upper bound on the supremum of the Rademacher process,

given in Eq. (10.2). It should also be noted that d does not appear in the upper

bound, and thus the same guarantee holds for a unit ball B2 in an infinite dimen-

sional Hilbert space.

20.3 Follow the Regularized Leader and Mirror Descent

Follow the Regularized Leader (FTRL)

Input: Regularization function R, learning rate η> 0.

For t ≥ 0,

ŷ t+1 = argmin
f ∈F

t∑
s=1

〈
f , xs

〉
+η−1R(f)

170

20.3 Follow the Regularized Leader and Mirror Descent

Recall from (10.6) that a function R is σ-strongly convex over F with respect to

‖ ·‖ if

R(a) ≥R(b)+〈∇R(b), a −b〉+
σ

2
‖a −b‖2

for all a,b ∈F. If R is non-differentiable, ∇R(b) can be replaced with any subgra-

dient ∇∈ ∂R(b).

Definition 20.2. The Bregman divergence with respect to a convex function R is

defined as

DR (a,b) =R(a)−R(b)−〈∇R(b), a −b〉

Clearly, if R is σ-strongly convex with respect to ‖ ·‖, then

DR (a,b) ≥
σ

2
‖a −b‖2 (20.2)

The definition of Bregman divergence immediately leads to the following useful

equality:

〈∇R(a)−∇R(b),c −b〉 =DR (c,b)+DR (b, a)−DR (c, a) (20.3)

The convex conjugate of the function R is defined as

R∗(u) = sup
a

〈u, a〉−R(a), (20.4)

and this transformation is known as the Legendre-Fenchel transformation.

Recall the definition of the dual norm in (10.5).

Mirror Descent

Input: R σ-strongly convex w.r.t. ‖ ·‖, learning rate η> 0

ŷ t+1 = argmin
f ∈F

〈
f , xt

〉
+η−1DR

(
f , ŷ t

)
(20.5)

or, equivalently,

ỹ t+1 =∇R∗(∇R(ŷ t)−ηxt) and ŷ t+1 = argmin
f ∈F

DR

(
f , ỹ t+1

)
(20.6)

171

20.3 Follow the Regularized Leader and Mirror Descent

Lemma 20.3. LetF be a convex set in a separable Banach spaceB andX be a convex

set in the dual space B∗. Let R : B 7→ R be a σ-strongly convex function on F with

respect to some norm ‖ ·‖. For any strategy of Nature,

1

n

n∑
t=1

〈
ŷ t , xt

〉
− inf

f ∈F

1

n

n∑
t=1

〈
f , xt

〉
≤ RmaxXmax

√
2

σn
(20.7)

where R2
max = sup f ,g∈FR(f)−R(g), and Xmax = supx∈X ‖x‖∗ for the dual norm ‖·‖∗.

Proof. Fix any f ∗ ∈F and η> 0 to be chosen later. Then

η
n∑

t=1

〈
ŷ t − f ∗, xt

〉
= η

n∑
t=1

〈
ŷ t − ỹ t+1, xt

〉
+η

n∑
t=1

〈
ỹ t+1 − f ∗, xt

〉
(20.8)

Using the inequality
〈

f , x
〉
≤ ‖ f ‖ · ‖x‖∗, which follows directly from the definition

of the dual norm,

η
〈

ŷ t − ỹ t+1, xt

〉
≤ η

∥∥ŷ t − ỹ t+1

∥∥‖xt‖∗ =
(p

σ
∥∥ŷ t − ỹ t+1

∥∥)(η
p
σ
‖xt‖∗

)

The inequality ab ≤ a2/2+b2/2 now yields an upper bound

σ

2

∥∥ŷ t − ỹ t+1

∥∥2 +
η2

2σ
‖xt‖2

∗ ≤DR

(
ỹ t+1, ŷ t

)
+

η2

2σ
X 2

max

The definition of the Mirror Descent update and the equality (20.3) imply

η
〈

ỹ t+1 − f ∗, xt

〉
=

〈
ỹ t+1 − f ∗,∇R(ŷ t)−∇R(ỹ t+1)

〉

=DR

(
f ∗, ŷ t

)
−DR

(
f ∗, ỹ t+1

)
−DR

(
ỹ t+1, ŷ t

)

≤DR

(
f ∗, ŷ t

)
−DR

(
f ∗, ŷ t+1

)
−DR

(
ỹ t+1, ŷ t

)

where the last inequality is due to the fact that for the projection ŷ t+1 is closer to

any point f ∗ in the set in terms of the Bregman divergence than the unprojected

point ỹ t+1. Adding the last inequality for t = 1, . . . ,n, we obtain

η
n∑

t=1

〈
ỹ t+1 − f ∗, xt

〉
≤DR

(
f ∗, ŷ 1

)
−DR

(
f ∗, ŷ n+1

)
−

n∑
t=1

DR

(
ỹ t+1, ŷ t

)
(20.9)

Combining all the terms,

η
n∑

t=1

〈
ŷ t − f ∗, xt

〉
≤DR

(
f ∗, ŷ 1

)
−DR

(
f ∗, ŷ n+1

)
+

nη2

2σ
X 2

max

≤ R2
max +

nη2

2σ
X 2

max

172

20.4 From Linear to Convex Functions

Example 18. Consider the regularization function

R(f) =
1

2
‖ f ‖2

In this case, the mirror space coincides with the original space, as the gradient

mapping ∇R(f) = f , and the Mirror Descent algorithm becomes simply the Gra-

dient Descent method.

Example 19. If we take

R(f) =
N∑

i=1

(fi log fi − fi)

defined over R
N
+ , the mirror space is defined by the gradient mapping ∇R(f) =

log f where the logarithm is taken coordinate-wise. The inverse mapping is ∇R∗ =
(∇R)−1 is precisely the mapping a 7→ exp(a) for a ∈ R

N . The unprojected point

ỹ t+1 is then defined by

ỹ t+1(i) = exp
{
log(ŷ t (i))−ηxt (i)

}
= ŷ t (i)exp

{
−ηxt (i)

}

and the projection onto the simplex with respect to the KL divergence is equivalent

to normalization. Hence, we recover the Exponential Weights algorithm.

20.4 From Linear to Convex Functions

173

21
Example: Binary Sequence Prediction

and the Mind Reading Machine

We now continue the example discussed in Chapter 2. This chapter is based on the

paper of Blackwell [9], as well as the detailed development of Lerche and Sarkar

[36].

Recall the basic problem of predicting a {0,1} sequence z1, z2, At each stage

t , the learner chooses ŷ t ∈ D = {0,1} and Nature reveals zt ∈ Z = {0,1}. Suppose

the cost ℓ(ŷ t , zt) is the indicator of a mistake I
{

ŷ t 6= zt

}
. For any t , let the average

number of correct predictions after t rounds be denoted by

c̄t =
1

t

t∑
s=1

I
{

ŷ s = zs

}
.

Further, let z̄t = 1
t

∑t
s=1 zs be the frequency of 1’s in the sequence so far.

As discussed in Chapter 2, if the sequence z1, z2, . . . chosen by Nature is actually

generated i.i.d. from some Bernoulli distribution with bias p ∈ [0,1], the simple

Follow the Leader strategy (see Section 20.3)

ŷ t+1 = argmin
f ∈{0,1}

t∑
s=1

I
{

f 6= zs

}

works well. The i.i.d. result, however, is quite limited. For instance, for the al-

ternating sequence 0,1,0,1, . . . the FTL method yields close to zero proportion of

correct predictions, while there is a clear pattern that can be learned.

The failure of FTL on the alternating sequence 0,1,0,1, . . . is akin to Example 17

which shows that FTL does not work for linear optimization. Of course, we should

174

21.1 Prediction with Expert Advice

not even be looking at deterministic strategies for bit prediction, as the set F is not

convex. A randomized prediction strategy is necessary.

Luckily, we already have all the tools we need to prove vanishing regret for indi-

vidual sequences. While we only prove the in-expectation convergence to simplify

the presentation, the almost-sure analogues are not much more difficult.

21.1 Prediction with Expert Advice

Fix two (somewhat simple-minded) experts: one always advises 1 and the other

0. Let qt be the mixed strategy over F which we may equivalently represent as

the probability qt ∈ [0,1] of predicting 1 (or, choosing the first expert). For the

Exponential Weights Algorithm with N = 2 experts, Lemma 18.1 then guarantees

E

{
1

n

n∑
t=1

I
{

ŷ t 6= zt

}}
− inf

f ∈F

1

n

n∑
t=1

I
{

f 6= zt

}
≤

√
ln2

2n
(21.1)

or, equivalently,

max{z̄t ,1− z̄t }−E {c̄n} = sup
f ∈F

1

n

n∑
t=1

I
{

f = zt

}
−E {c̄n} ≤

√
ln2

2n
(21.2)

which is the desired result in expectation. For the almost-sure result, we may use

the high-probability bound of Proposition 22.1 and the so-called doubling trick

[16]. And that’s all!

21.2 Blackwell’s method

We now present a different approach to achieving no regret for individual sequences

of bits. This method is somewhat longer to develop than the Exponential Weights

hammer that we used, yet it provides some very interesting insights. Moreover,

the proof will be a stepping stone to Chapter 27, the Blackwell’s Approachability

Theorem, a powerful generalization of von Neumann’s minimax theorem.

The goal (2.1) of the learner can be rephrased very elegantly in the language of

geometry. Define Lt = (z̄t , c̄t) ∈ [0,1]2 and

S =
{
(z,c) ∈ [0,1]2 : u > max{c,1− c}

}
,

175

21.2 Blackwell’s method

S

Lt

x̄

c̄

(0, 0)

(1, 1)

D1 D2

D3

Figure 21.1: Partition of the unit square into four regions. The desired set is S.

as depicted in Figure 21.1. As we make predictions ŷ t and Nature reveals the bits

zt , the point Lt moves within the unit square. We would like to have a strategy that

will steer the point towards S no matter what the sequence is. The goal (2.1) can

be written in terms of the distance to the set S:

lim
t→∞

d(Lt ,S) = 0 almost surely .

The opponent producing the bit sequence, on the other hand, is trying to make

sure Lt stays away from S.

Our “steering” strategy can be broken down to three cases according to the

position of Lt within the square. For each of the cases, we show that the distance

to the set decreases. First, it is easy to check that z̄t+1−z̄t = 1
t+1

(zt+1−z̄t) and hence

we may write

Lt+1 = Lt +
1

t +1
(zt+1 − z̄t ,ct+1 − c̄t) .

Let δt+1 ,
1

t+1
(zt+1 − z̄t ,ct+1 − c̄t). The goal is now to show that, in expectation (or

almost surely) the update δt+1 moves the point closer to S.

Case 1: If Lt ∈ S, there is nothing to do. We may predict ŷ t+1 = 0 if z̄t < 1/2, and

predict ŷ t+1 = 1 otherwise.

Case 2: If Lt ∈ D1, we predict ŷ t+1 = 0 deterministically. In this case, if zt+1 = 0

then δt+1 = 1
t+1

(−z̄t ,1− c̄t). If, on the other hand, zt+1 = 1, we have δt+1 = 1
t+1

(1−
z̄t ,−c̄t). These two vectors δt+1 are shown in Figure 21.2. It is easy to check that

the distance to the set drops by a multiplicative factor of 1/(t +1) irrespective of

zt+1. To see this, drop a perpendicular from Lt and from Lt+1 onto the boundary

of S and use properties of similar triangles.

176

21.2 Blackwell’s method

S

Lt

x̄

c̄

(0, 0)

(1, 1)

Figure 21.2: When Lt is in the region D1, the prediction is ŷ t+1 = 0.

The case Lt ∈ D2 is identical to this case, except here we deterministically pre-

dict ŷ t+1 = 1.

Case 3: The most interesting situation is Lt ∈ D3. Observe that our strategy

so far has been deterministic, so it better be the case that we use a randomized

strategy in D3. This is indeed true, and the mixed strategy qt+1 is defined in a very

peculiar fashion. Draw a line from Lt to the vertex v := (1/2,1/2) of S, and let qt+1

be its intersection with the horizontal axis, as shown in Figure 21.3. In the next

S

Lt

x̄

c̄

(0, 0)

(1, 1)

qt+1

v

Figure 21.3: Construction of the mixed strategy qt when Lt ∈ D3.

lecture we will see why this construction is natural. At this point, let us see why

it brings us closer to the set. Clearly, the distance from Lt to the set S is the same

as the distance to (1/2,1/2), while the distance from Lt+1 to the set is at least the

distance to this vertex. Hence, for ℓt+1 = (zt+1,ct+1), we can write

(t +1)2d(Lt+1,S)2 ≤ (t +1)2‖Lt+1 − v‖2 = ‖t (Lt − v)+ (ℓt+1 − v)‖2 (21.3)

= t 2d(Lt ,S)2 +‖ℓt+1 − v‖2 +2t 〈Lt − v,ℓt+1 − v〉 (21.4)

177

21.3 Follow the Regularized Leader

And now, for the magic. We claim that 〈Lt − v,ℓt+1 − v〉 = 0 in expectation (condi-

tioned on the value zt+1 and the past). Indeed,

Eŷ t+1∼qt+1ℓt+1 =





(0,1−qt+1) if zt+1 = 0

(1, qt+1) if zt+1 = 1
(21.5)

which correspond to the two intersections of the line A (see Figure 21.3) with the

sides of the unit square. In both cases, Eŷ t+1
〈Lt − v,ℓt+1 − v〉 = 0 since the line A is

perpendicular to Lt − v .

Finally, ‖ℓt+1 − v‖2 ≤ 1/2, and summing Eq. (21.3) for t = 1, . . . ,n −1 and can-

celing the terms we get

n2d(Ln ,S)2 ≤ d(L1,S)2 +n/2+
n∑

t=1

t ·Mt (21.6)

with Mt a bounded martingale difference sequence. An application of Hoeffding-

Azuma gives a high-probability bound and an application of Borel-Cantelli yields

the almost sure statement.

21.3 Follow the Regularized Leader

Since the Exponential Weights Algorithm will never produce deterministic strate-

gies, it is clear that the Blackwell’s method is genuinely different. The reason for

non-deterministic strategies of the Exponential Weights method is simple: the up-

date rule never pushes the mixed strategy to the corner of the probability simplex,

always keeping a nonzero weight even on hopelessly bad experts.

What if instead of the Follow the Regularized Leader with entropic regulariza-

tion, which yields the Exponential Weights Algorithm as shown in Example 19,

we use Euclidean regularization, which yields a gradient-descent type update as

shown in Example 18?

To phrase the Follow the Regularized Leader (FTRL) method, we need to de-

fine the loss as a linear or convex function. Of course, the indicator loss I
{

ŷ t 6= zt

}

is neither of these, but the trick is to consider the linearized problem where the

choice of the learner is qt ∈ [0,1], interpreted as the probability of predicting ŷ t =
1. Since I

{
ŷ t 6= zt

}
= ŷ t + zt −2ŷ t zt for ŷ t , zt ∈ {0,1}, the expected loss can be writ-

ten as

Eŷ t∼qt I
{

ŷ t 6= zt

}
= qt · (1−2zt)+ zt =: ℓ(qt , zt)

178

21.3 Follow the Regularized Leader

for qt ∈ [0,1]. We can now define the FTRL method

qt+1 = argmin
q∈[0,1]

{ t∑
s=1

q · (1−2zs)+η−1 1

2
‖q −1/2‖2

}
(21.7)

with the Euclidean regularizer centered at q = 1/2. The unconstrained problem

over the real line has solution at q̃t+1 = 1
2
−η

∑t
s=1(1−2zs) which is subsequently

clipped (or projected to) the interval [0,1]. If this clipping happens, the strategy

becomes deterministic, either qt = 1 or qt = 0. Clipping is needed precisely when

|
∑t

s=1(1−2zs)| < 1
2η , or, equivalently,

|z̄t −1/2| ≥
1

4tη
.

As shown in Figure 21.4, the FTRL strategy gives deterministic prediction when the

empirical frequency z̄t is outside the band of width 1
2tη

, centered at 1/2. The typi-

cal guarantee of O(1/
p

n) for the regret of FTRL sets η= c/
p

n for some constant c

(or, in a time-changing manner, ηt = c/
p

t) and thus the width of the region where

the prediction is randomized is of the order 1/
p

n.

x̄

c̄

(0, 0)

(1, 1)1/2

1/(2tη)

Figure 21.4: FTRL with a fixed learning rate η gives a mixed strategy only in the

small band around 1/2.

Since FTRL enjoys small regret, we have derived yet another strategy that at-

tains the goal in (2.1). Observe, however, that the FTRL strategy with the Euclidean

regularizer is different from both the Exponential Weights Algorithm, and from

Blackwell’s method. If we are to replicate the behavior of the latter, the informa-

tion about the frequency of our correct predictions c̄t needs to be taken into ac-

count. This information (or, statistic about the past) cannot be deduced from z̄t

alone, and so FTRL or Mirror Descent methods seem to be genuinely distinct from

Blackwell’s algorithm based on (z̄t , c̄t).

179

21.4 Discussion

It turns out that the extra information about the frequency c̄t of correct predic-

tions can be used to set the learning rate η in Follow the Regularized Leader. With

the time-changing learning rate

ηt =
1

4t |c̄t −1/2|

the FTRL method

qt+1 = argmin
q∈[0,1]

{ t∑
s=1

q · (1−2zs)+η−1
t

1

2
‖q −1/2‖2

}
(21.8)

becomes exactly the Blackwell’s algorithm. Let’s see why this is so. First, let us

check the case when the optimum at (21.8) is achieved at the pure strategy qt = 1

or qt = 0. As argued earlier, this occurs when

|z̄t −1/2| ≥
1

4tηt
= |c̄t −1/2| .

This exactly corresponds to the regions D1 and D2 in Figure 21.1, thus matching

the behavior of Blackwell’s method. It remains to check the behavior in D3. Setting

the derivative in (21.8) to zero,

qt =
1

2
+ (2tηt)(z̄t −1/2) =

1

2
+

z̄t −1/2

2|c̄t −1/2|
.

We need to check that this is the same value as that obtained geometrically in Fig-

ure 21.3. It is indeed the case, as can be seen from similar triangles: the ratio of

qt −1/2 to 1/2 is equal to the ratio of z̄t −1/2 to |c̄t −1/2|.

21.4 Discussion

We have described three different methods for the problem of {0,1}-sequence pre-

diction. The Exponential Weights Algorithm puts exponentially more weight on

the bit that occurs more often, but never lets go of the other bit, and the strategy is

always randomized. The Follow the Regularized Leader method with a Euclidean

regularizer produces a randomized strategy only in the narrow band around 1/2.

A variant of FTRL which adapts the learning rate with respect to the proportion

of correct predictions yields a randomized strategy in a triangular region D3 (Fig-

ure 21.1), and deterministic prediction otherwise. Further, this behavior matches

the Blackwell’s method, based on a geometric construction.

180

21.5 Can we derive an algorithm for bit prediction?

In the worst case, the performance (or, regret) of the three methods described

above is the same, up to a multiplicative constant. However, the methods that

use the extra information about the proportion c̄t of correct predictions may have

better convergence properties for “benign” sequences. Such adaptive procedures

have been analyzed in the literature.

The beauty of Blackwell’s proof is its geometric simplicity and the rather sur-

prising construction of the mixed strategy qt . As we will see in the next lecture, the

construction appears out of a generalization of the minimax theorem.

Of course, our application of the Exponential Weights Algorithm or Follow the

Regularized Leader is a shorter proof, but remember that we spent some time

building these hammers. Is there a similar hammer based on the ideas of ap-

proaching a desired set? The answer is yes, and it is called the Blackwell’s Ap-

proachability Theorem. Using this theorem, one can actually prove a wide range

of results in repeated games that go beyond the “regret” formulation. What is

interesting, Blackwell’s Approachability itself can be proved using online convex

optimization algorithms whose performance is defined in terms of regret. This

result points to an equivalence of these big “hammers”. Finally, the sequential

symmetrization tools we had developed earlier in the course can be used to prove

Blackwell approachability in even more generality, without exhibiting an algo-

rithm.

21.5 Can we derive an algorithm for bit prediction?

Let us consider the minimax regret formulation:

V= min
q1∈[0,1]

max
z1

E

ŷ 1∼q1

. . . min
qn∈[0,1]

max
zn

E

ŷ n∼qn

{
1

n

n∑
t=1

I
{

ŷ t 6= zt

}
− min

f ∈{0,1}

1

n

n∑
t=1

I
{

f 6= zt

}}

Observe that nV can be written recursively as

V(z1, . . . , zt−1) = min
qt∈[0,1]

max
zt

E

ŷ t∼qt

{
I
{

ŷ t 6= zt

}
+V(z1, . . . , zt)

}

with

V(z1, . . . , zn) =− min
f ∈{0,1}

n∑
t=1

I
{

f 6= zt

}
.

181

21.5 Can we derive an algorithm for bit prediction?

We leave it as an exercise to check that

nV=V(;)

with these definitions. The recursion can in fact be solved exactly:

V(z1, . . . , zt−1) = min
qt∈[0,1]

max
zt∈{0,1}

E

ŷ t∼qt

{
I
{

ŷ t 6= zt

}
+V(z1, . . . , zt)

}

= min
qt∈[0,1]

max
zt∈{0,1}

{
qt · (1−2zt)+ zt +V(z1, . . . , zt)

}

= min
qt∈[0,1]

max
{
−qt +1+V(z1, . . . , zt−1,1) , qt +0+V(z1, . . . , zt−1,0)

}

The solution is obtained by equating the two terms

q∗
t =

1

2
+
V(z1, . . . , zt−1,1)−V(z1, . . . , zt−1,0)

2
(21.9)

which gives

V(z1, . . . , zt−1) =
1

2
+EV(z1, . . . , zt−1,bt) , (21.10)

bt is fair coin. Then, working backwards, the minimax value of the problem is

V=
n

2
+EV(b1, . . . ,bn)

=
n

2
+E

{
− min

f ∈{0,1}

n∑
t=1

I
{

f 6= bt

}}

= E max
f ∈{0,1}

{ n∑
t=1

EI
{

f 6= b
}
− I

{
f 6= bt

}}

= E max
f ∈{0,1}

{ n∑
t=1

ǫt f

}

where ǫt are ±1 Rademacher random variables. From Hoeffding’s inequality and a

union bound,

V≤

√
ln2

n
,

which is the bound we obtained with exponential weights algorithm.

182

21.5 Can we derive an algorithm for bit prediction?

We now turn to the question of obtaining computationally feasible algorithms.

A calculation similar to the above gives

V(z1, . . . , zt) = E max
f ∈{0,1}

{ n∑
s=t+1

ǫs f −
t∑

s=1

I
{

f 6= zs

}}

that can be plugged into the algorithm

q∗
t = argmin

qt∈[0,1]

max
zt∈{0,1}

E

ŷ t∼qt

{
I
{

ŷ t 6= zt

}
+V(z1, . . . , zt)

}

However, the expression for V(z1, . . . , zt) is still computationally expensive, as it

involves averaging over random signs. The key idea is to introduce relaxations

V(z1, . . . , zt) ≤ Reln (z1, . . . , zt)

Not any upper bound will work, but one can see that it is enough to ensure admis-

sibility:

Reln (z1, . . . , zt−1) ≥ min
qt∈[0,1]

max
zt

E

ŷ t∼qt

{
I
{

ŷ t 6= zt

}
+Reln (z1, . . . , zt)

}
(∗)

and

Reln (z1, . . . , zn) ≥− min
f ∈{0,1}

n∑
t=1

I
{

f 6= zt

}

Any algorithm that solves (∗) guarantees performance bound of Reln (;). The

main question now is: How do we come up with relaxations that lead to com-

putationally feasible algorithms?

Note that for maximum, a tight upper bound is achieved by the so-called soft-

max. For any η> 0,

V(z1, . . . , zt) = E max
f ∈{0,1}

{ n∑
s=t+1

ǫs f −
t∑

s=1

I
{

f 6= zs

}}

≤
1

η
lnE

∑

f ∈{0,1}

exp

{
η

n∑
s=t+1

ǫs f −η
t∑

s=1

I
{

f 6= zs

}}
(21.11)

Let us now fix f ∈ {0,1} and write

Eexp

{
η

n∑
s=t+1

ǫs f −η
t∑

s=1

I
{

f 6= zs

}}
= exp

{
−η

t∑
s=1

I
{

f 6= zs

}}
×Eexp

{
η

n∑
s=t+1

ǫs f

}

(21.12)

183

21.6 The Mind Reading Machine

By Lemma 9.2,

Eexp

{
η

n∑
s=t+1

ǫs f

}
≤

η2(n − t)

2

(the same analysis also holds for f ∈ {−1,1} and so the constant can be improved).

Plugging into (21.11),

V(z1, . . . , zt) ≤ inf
η>0

{
1

η
ln

∑

f ∈{0,1}

exp

{
−η

t∑
s=1

I
{

f 6= zs

}}
+
η

2
(n − t)

}
(21.13)

PExercise 21.1 (⋆). Prove that the right-hand side of (21.13) is an admissible

relaxation and it leads to a parameter-free version of the Exponential Weights al-

gorithm.

21.6 The Mind Reading Machine

The fact that the entropy of the source is related being able to predict the se-

quences has long been recognized. It is, therefore, no surprise that Shannon was

interested in the problem of prediction of binary sequences. Quoting from (Feder,

Merhav, and Gutman, 2005)1:

In the early 50’s, at Bell Laboratories, David Hagelbarger built a sim-

ple “mind reading” machine, whose purpose was to play the “penny

matching” game. In this game, a player chooses head or tail, while a

“mind reading" machine tries to predict and match his choice. Sur-

prisingly, as Robert Lucky tells in his book “Silicon Dreams”, Hagel-

barger’s simple, 8-state machine, was able to match the “pennies” of its

human opponent 5,218 times over the course of 9,795 plays. Random

guessing would lead to such a high success rate with a probability less

than one out of 10 billion! Shannon, who was interested in prediction,

information, and thinking machines, closely followed Hagelbarger’s

machine, and eventually built his own stripped-down version of the

machine, having the same states, but one that used a simpler strategy

at each state. As the legend goes, in a duel between the two machines,

Shannon’s machine won by a slight margin! No one knows if this was

due to a superior algorithm or just a chance happening associated

1 http://backup.itsoc.org/review/meir/node1.html

184

http://backup.itsoc.org/review/meir/node1.html

21.6 The Mind Reading Machine

with the specific sequence at that game. In any event, the success of

both these machines against “untrained” human opponents was ex-

plained by the fact that the human opponents cannot draw completely

random bits. Certainly, as Shannon himself noted, his machine was

beatable by the best possible player by a ratio of three-to-one. This

raises the question, can one design a better “mind reading” machine?

What is the best one can do in predicting the next outcome of the op-

ponent? How is it related to the “randomness” of the opponent se-

quence?

The techniques we developed in this course can be directly applied for building

such a machine. Of course, it needs to take advantage of the fact that the sequence

input by an (untrained) person is likely to be non-random. From our earlier proof,

we already see that we should be able to predict the sequence better than chance

if there are more 0’1 or 1’s.

185

22
Algorithmic Framework for Sequential

Prediction

So far in the course, we have seen very general non-constructive upper bounds on

the value of the prediction problem, as well as specialized algorithms that seem to

magically match some of these bounds in terms of their regret. The algorithms

have been developed over the course of several decades, yet for each new set-

ting the researcher is tasked with a rather difficult problem of coming up with a

new procedure almost from scratch. The online convex optimization framework

successfully guides in the development of algorithms for many convex problems,

but what is really behind all the methods? It turns out that, based on the non-

constructive upper bounds, we can develop an algorithmic framework that cap-

tures a very wide range of known methods. The framework also gives a general

prescription for the development of new algorithms. We refer to [43] for more de-

tails.

We first study the general prediction problem with an abstract setD of learner’s

moves and Z being the set of moves of Nature. We will devote a later section to the

more specific problem of supervised learning.

Recall that the online protocol dictates that on every round t = 1, . . . ,n the

learner and Nature simultaneously choose ŷ t ∈D, zt ∈Z, and observe each other’s

actions. Unless specified otherwise, we will assume D=F. For the sake of brevity,

let us consider the unnormalized minimax value of the prediction problem:

Vn(F) = inf
q1∈∆(D)

sup
z1∈Z

E
ŷ 1∼q1

. . . inf
qn∈∆(D)

sup
zn∈Z

E
ŷ n∼qn

[
n∑

t=1

ℓ(ŷ t , zt)− inf
f ∈F

n∑
t=1

ℓ(f , zt)

]

(22.1)

186

The minimax formulation immediately gives rise to the optimal algorithm that

solves the minimax expression at every round t . That is, after witnessing z1, . . . , zt−1,

the algorithm returns

argmin
q∈∆(D)

{
sup

zt

E
ŷ t∼q

. . . inf
qn

sup
zn

E
ŷ n

[
n∑

i=t

ℓ(ŷ i , zi)− inf
f ∈F

n∑

i=1

ℓ(f , zi)

]}
(22.2)

= argmin
q∈∆(D)

{
sup

zt

E
ŷ t∼q

[
ℓ(ŷ t , zt)+ inf

qt+1

sup
zt+1

E
ŷ t+1

. . . inf
qn

sup
zn

E
ŷ n

[
n∑

i=t+1

ℓ(ŷ i , zi)− inf
f ∈F

n∑

i=1

ℓ(f , zi)

]]}

Henceforth, if the quantification in inf and sup is omitted, it will be understood

that zt , ŷ t , pt , qt range over Z, D, ∆(Z), ∆(D), respectively. Moreover, Ezt is with

respect to pt while Eŷ t
is with respect to qt . The first sum in (22.2) starts at i =

t since the partial loss
∑t−1

i=1 ℓ(ŷ i , zi) has been fixed. We now notice a recursive

form for defining the value of the game. For any t ∈ [n − 1] and any given prefix

z1, . . . , zt ∈Z define the conditional value

Vn (z1, . . . , zt), inf
q∈∆(D)

sup
z∈Z

{
E

ŷ∼q

[
ℓ(ŷ , z)

]
+Vn(z1, . . . , zt , z)

}

where

Vn (z1, . . . , zn),− inf
f ∈F

n∑
t=1

ℓ(f , zt) and Vn(F) =Vn(;).

The minimax optimal algorithm specifying the mixed strategy of the player can be

written succinctly

qt = argmin
q∈∆(D)

sup
z∈Z

{
Eŷ∼q [ℓ(ŷ , z)]+Vn(z1, . . . , zt−1, z)

}
. (22.3)

This dynamic programming formulation has appeared in the literature, but now

we have tools to study the conditional value of the game. We will show that various

upper bounds on Vn(z1, . . . , zt−1, z) yield an array of algorithms, some with better

computational properties than others. In this way, the non-constructive approach

we developed earlier in the course to upper bound the value of the game directly

translates into algorithms.

The minimax algorithm in (22.3) can be interpreted as choosing the best deci-

sion that takes into account the present loss and the worst-case future. We then re-

alize that the conditional value of the game serves as a “regularizer”, and thus well-

known online learning algorithms such as Exponential Weights, Mirror Descent

and Follow-the-Regularized-Leader arise as relaxations rather than a “method that

just works”.

187

22.1 Relaxations

22.1 Relaxations

A relaxation Reln () is a sequence of functions Reln (z1, . . . , zt) for each t ∈ [n]. A

relaxation will be called admissible if for any z1, . . . , zn ∈Z,

Reln (z1, . . . , zt−1) ≥ inf
qt∈∆(D)

sup
zt∈Z

{
E

ŷ t∼qt

[
ℓ(ŷ t , zt)

]
+Reln (z1, . . . , zt−1, zt)

}
(22.4)

for all t ∈ [n −1], and

Reln (z1, . . . , zn) ≥− inf
f ∈F

n∑
t=1

ℓ(f , zt).

A simple inductive argument shows that Vn (z1, . . . , zt) ≤ Reln (z1, . . . , zt) for any t

and any z1, . . . , zn . Thus, Vn is the smallest admissible relaxation. This can indeed

be another definition for the value of the game.

A strategy q that minimizes the expression in (22.4) defines a minimax optimal

algorithm for the relaxation Rel. However, minimization need not be exact: any q

that satisfies the admissibility condition (22.4) is a valid method, and we will say

that such an algorithm is admissible with respect to the relaxation Rel.

Meta-Algorithm

Parameters: Admissible relaxation Rel

At each t = 1 to n, compute

qt = argmin
q∈∆(D)

sup
zt∈Z

{
Eŷ t∼q [ℓ(ŷ t , zt)]+Reln (z1, . . . , zt−1, zt)

}
(22.5)

and play ŷ t ∼ qt . Receive zt from Nature.

Let Regn stand for the unnormalized regret

Regn ,
n∑

t=1

ℓ(ŷ t , zt)− inf
f ∈F

n∑
t=1

ℓ(f , zt)

and let Reln (F),Reln (;)

Proposition 22.1. Let Rel () be an admissible relaxation. For any admissible algo-

rithm with respect to Rel (), including the Meta-Algorithm, irrespective of the strat-

egy of the adversary,

n∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)− inf
f ∈F

n∑
t=1

ℓ(f , zt) ≤ Reln (F) , (22.6)

188

22.1 Relaxations

and therefore,

E[Regn] ≤ Reln (F) .

We also have that

Vn(F) ≤ Reln (F) .

If a ≤ ℓ(f , z) ≤ b for all f ∈ F, z ∈ Z, the Hoeffding-Azuma inequality yields, with

probability at least 1−δ,

Regn ≤ Reln (F)+ (b −a)
√

n/2 · log(2/δ) .

Further, if for all t ∈ [n], the admissible strategies qt are deterministic,

Regn ≤ Reln (F) .

Proof of Proposition 22.1. By definition,

n∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)− inf
f ∈F

n∑
t=1

ℓ(f , zt) ≤
n∑

t=1

Eŷ t∼qtℓ(ŷ t , zt)+Reln (z1, . . . , zn) .

Peeling off the n-th expected loss, we have

n∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)+Reln (z1, . . . , zn) ≤
n−1∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)+
{
Eŷ t∼qtℓ(ŷ t , zt)+Reln (z1, . . . , zn)

}

≤
n−1∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)+Reln (z1, . . . , zn−1)

where we used the fact that qn is an admissible algorithm for this relaxation, and

thus the last inequality holds for any choice zn of the opponent. Repeating the

process, we obtain

n∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)− inf
f ∈F

n∑
t=1

ℓ(f , zt) ≤ Reln (F) .

We remark that the left-hand side of this inequality is random, while the right-

hand side is not. Since the inequality holds for any realization of the process, it

also holds in expectation. The inequality

Vn(F) ≤ Reln (F)

holds by unwinding the value recursively and using admissibility of the relaxation.

The high-probability bound is an immediate consequences of (22.6) and the Hoeffding-

Azuma inequality for bounded martingales. The last statement is immediate.

189

22.1 Relaxations

For many problems a tight relaxation (sometimes within a factor of 2) is achieved

through symmetrization. Define the conditional Sequential Rademacher complex-

ity

Rn(z1, . . . , zt) = sup
z

Eǫt+1:n sup
f ∈F

[
2

n∑
s=t+1

ǫsℓ(f ,zs−t (ǫt+1:s−1))−
t∑

s=1

ℓ(f , zs)

]
. (22.7)

Here the supremum is over all Z-valued binary trees of depth n − t . One may view

this complexity as a partially symmetrized version of the sequential Rademacher

complexity Rseq (F). We shall refer to the term involving the tree z as the “future”

and the term being subtracted off – as the “past”. This indeed corresponds to the

fact that the quantity is conditioned on the already observed z1, . . . , zt , while for

the future we have the worst possible binary tree.1

Proposition 22.2. Conditional Sequential Rademacher complexity is an admissible

relaxation.

Proof. Denote Lt (f) =
∑t

s=1ℓ(f , zs). The first step of the proof is an application of

the minimax theorem (we assume the necessary conditions hold):

inf
qt∈∆(D)

sup
zt∈Z

{
E

ŷ t∼qt

[
ℓ(ŷ t , zt)

]
+ sup

z
Eǫt+1:n sup

f ∈F

[
2

n∑
s=t+1

ǫsℓ(f ,zs−t (ǫt+1:s−1))−Lt (f)

]}

= sup
pt∈∆(Z)

inf
ŷ t∈F

{
E

zt∼pt

[
ℓ(ŷ t , zt)

]
+ E

zt∼pt

sup
z

Eǫt+1:n sup
f ∈F

[
2

n∑
s=t+1

ǫsℓ(f ,zs−t (ǫt+1:s−1))−Lt (f)

]}

For the sake of brevity, let us use the notation A(f) = 2
∑n

s=t+1 ǫsℓ(f ,zs−t (ǫt+1:s−1)).

Then, for any pt ∈∆(Z), the infimum over ŷ t of the above expression is equal to

E
zt∼pt

sup
z

Eǫt+1:n sup
f ∈F

[
A(f)−Lt−1(f)+ inf

ŷ t∈F
E

zt∼pt

[
ℓ(ŷ t , zt)

]
−ℓ(f , zt)

]

≤ E
zt∼pt

sup
z

Eǫt+1:n sup
f ∈F

[
A(f)−Lt−1(f)+ E

zt∼pt

[
ℓ(f , zt)

]
−ℓ(f , zt)

]

≤ E
zt ,z ′t∼pt

sup
z

Eǫt+1:n sup
f ∈F

[
A(f)−Lt−1(f)+ℓ(f , z ′

t)−ℓ(f , zt)
]

1It is somewhat cumbersome to write out the indices on zs−t (ǫt+1:s−1) in (22.7), so we will instead

use zs (ǫ) for s = 1, . . . ,n − t , whenever this does not cause confusion.

190

22.1 Relaxations

We now argue that the independent zt and z ′
t have the same distribution pt , and

thus we can introduce a random sign ǫt . The above expression then equals to

E
zt ,z ′t∼pt

E
ǫt

sup
z

Eǫt+1:n sup
f ∈F

[
A(f)−Lt−1(f)+ǫt (ℓ(f , z ′

t)−ℓ(f , zt))
]

≤ sup
zt ,z ′t∈Z

E
ǫt

sup
z

Eǫt+1:n sup
f ∈F

[
A(f)−Lt−1(f)+ǫt (ℓ(f , z ′

t)−ℓ(f , zt))
]

where we upper bounded the expectation by the supremum. Splitting the result-

ing expression into two parts, we arrive at the upper bound of

2 sup
zt∈Z

E
ǫt

sup
z

Eǫt+1:n sup
f ∈F

[
1

2
(A(f)−Lt−1(f))+ǫtℓ(f , zt)

]
=Rn(z1, . . . , zt−1) .

The last equality is easy to verify, as we are effectively adding a root zt to the two

subtrees, for ǫt =+1 and ǫt =−1, respectively.

The conditional sequential Rademacher complexity can be thought of as a

tight relaxation and a good starting point for developing a computationally-attractive

method. The recipe is then as follows:

We now show that several well-known methods arise by following the recipe.

Next few chapters are devoted to delineating certain techniques for following the

recipe and to deriving new prediction methods.

22.1.1 Follow the Regularized Leader / Dual Averaging

In the setting of online linear optimization, the loss is ℓ(f , z) =
〈

f , z
〉

. Let F =Z=
B

d
2 a unit ball in R

d . The conditional sequential Rademacher complexity can be

191

22.1 Relaxations

written as

Rn(z1, . . . , zt) = sup
z

Eǫt+1:n sup
f ∈F

〈
f , 2

n∑
s=t+1

ǫszs−t (ǫt+1:s−1)−
t∑

s=1

zs

〉
(22.8)

which can be written simply as

sup
z

E

∥∥∥∥2
n∑

s=t+1

ǫszs−t (ǫt+1:s−1)−
t∑

s=1

zs

∥∥∥∥

(see Eq. (10.1)), where the norm is Euclidean. Of course, this relaxation is not com-

putationally attractive because of the supremum over z, so we need to pass to an

upper bound that has nicer properties. We will remove the dependence on z via

probabilistic inequalities.

Observe that for any z, the expected norm in the above expression is upper

bounded via Jensen’s inequality by

(
E

∥∥∥∥2
n∑

s=t+1

ǫszs−t (ǫt+1:s−1)−
t∑

s=1

zs

∥∥∥∥
2
)1/2

=
(∥∥∥∥

t∑
s=1

zs

∥∥∥∥
2

+4
n∑

s=t+1

E‖zs−t (ǫt+1:s−1)‖2

)1/2

≤
(∥∥∥∥

t∑
s=1

zs

∥∥∥∥
2

+4(n − t)

)1/2

= Reln (z1, . . . , zt)

where the first equality follows by expanding the square and letting the expecta-

tion act on the cross-terms, and the inequality — because the tree z is Bd
2 -valued.

We now take the last expression as the relaxation. To show admissibility, we need

to prove that

inf
ŷ t∈F

sup
zt∈Z





〈
ŷ t , zt

〉
+

(∥∥∥∥
t∑

s=1

zs

∥∥∥∥
2

+4(n − t)

)1/2


≤

(∥∥∥∥∥
t−1∑
s=1

zs

∥∥∥∥∥

2

+4(n − t +1)

)1/2

(22.9)

Let v =
∑t−1

s=1 zs . For the choice

ŷ t =−
v

2
(
‖v‖2 +4(n − t +1)

)1/2
, (22.10)

the left-hand side of (22.9) is

sup
zt∈Z

{
−

〈v, zt 〉
2
(
‖v‖2 +4(n − t +1)

)1/2
+

(
‖v + zt‖2 +4(n − t)

)1/2

}
(22.11)

≤ sup
zt∈Z

{
−

〈v, zt 〉
2
(
‖v‖2 +4(n − t +1)

)1/2
+

(
‖v‖2 +〈v, zt 〉+4(n − t +1)

)1/2

}
(22.12)

192

22.1 Relaxations

Observe that zt only enters through the inner product with v . We can therefore

write zt = r v
‖v‖ and the optimization problem as

sup
r∈[−1,1]

{
−

r‖v‖
2
(
‖v‖2 +4(n − t +1)

)1/2
+

(
‖v‖2 + r‖v‖+4(n − t +1)

)1/2

}

Setting the derivative to zero, we conclude that the supremum is attained at r = 0.

With this value, the required inequality (22.9) is proved.

The algorithm in (22.10) is, in fact, an optimal method for the above relaxation.

Rather than being pulled out of a hat, it can be derived as an optimal solution with

a few more lines of algebra. Observe that the algorithm is closely related to Follow

the Regularized Leader and Dual Averaging, modulo the normalization step that

always keeps the solution in side the set. The technique readily extends beyond

unit Euclidean balls, in which case the absence of a projection is a big computa-

tional advantage over the usual first-order methods.

22.1.2 Exponential Weights

As another example of a relaxation that is easily derived as an upper bound on the

sequential Rademacher complexity, consider the case when F is a finite set and

|ℓ(f , z)| ≤ 1. This example generalizes the case of bit prediction in Section 21.5,

and the reader is referred to that section for the proof with a not-as-heavy nota-

tion.

Let Lt (f) =
∑t

s=1ℓ(f , zt) and A(f) = 2
∑n−t

i=1 ǫiℓ(f ,zi (ǫ)). For any λ > 0 and any

tree z, the sequential Rademacher complexity

Eǫ max
f ∈F

{
2

n−t∑

i=1

ǫiℓ(f ,zi (ǫ))−
t∑

s=1

ℓ(f , zt)

}
≤

1

λ
log

(
Eǫ max

f ∈F
exp

(
A(f)−λLt (f)

))

≤
1

λ
log

(
Eǫ

∑

f ∈F
exp

(
A(f)−λLt (f)

)
)

=
1

λ
log

(
∑

f ∈F
exp

(
−λLt (f)

)
Eǫ

{
n−t∏

i=1

exp
(
2λǫiℓ(f ,zi (ǫ))

)
})

We now upper bound the expectation over the “future” tree by the worst-case path,

resulting in the upper bound

1

λ
log

(
∑

f ∈F
exp

(
−λLt (f)

)
×exp

(
2λ2 max

ǫ1,...ǫn−t∈{±1}

n−t∑

i=1

ℓ(f ,zi (ǫ))2

))
≤

1

λ
log

(
∑

f ∈F
exp

(
−λLt (f)

)
)
+2λ(n − t)

193

22.1 Relaxations

by Lemma 9.2. Notice that the last step removes the z tree. Since the above calcu-

lation holds for any λ> 0, we define the relaxation

Reln (z1, . . . , zt) = inf
λ>0

{
1

λ
log

(
∑

f ∈F
exp

(
−λ

t∑

i=1

ℓ(f , zi)

))
+2λ(n − t)

}
(22.13)

that gives to a computationally tractable algorithm. Let us first prove that the re-

laxation is admissible with the Exponential Weights algorithm as an admissible

algorithm. Let λ∗ be the optimal value in the definition of Reln (z1, . . . , zt−1). Then,

by suboptimality of λ∗ for Reln (z1, . . . , zt)

inf
qt∈∆(D)

sup
zt∈Z

{
E

f ∼qt

[
ℓ(f , zt)

]
+Reln (z1, . . . , zt)

}

≤ inf
qt∈∆(D)

sup
zt∈Z

{
E

f ∼qt

[
ℓ(f , zt)

]
+

1

λ∗ log

(
∑

f ∈F
exp

(
−λ∗Lt (f)

)
)
+2λ∗(n − t)

}

Let us upper bound the infimum by a particular choice of q which is the exponen-

tial weights distribution

qt (f) = exp(−λ∗Lt−1(f))/Zt−1

where Zt−1 =
∑

f ∈F exp
(
−λ∗Lt−1(f)

)
. By [16, Lemma A.1],

1

λ∗ log

(
∑

f ∈F
exp

(
−λ∗Lt (f)

)
)
=

1

λ∗ log
(
E f ∼qt

exp
(
−λ∗

ℓ(f , zt)
))
+

1

λ∗ log Zt−1

≤−E f ∼qt
ℓ(f , zt)+

λ∗

2
+

1

λ∗ log Zt−1

Hence,

inf
qt∈∆(D)

sup
zt∈Z

{
E

f ∼qt

[
ℓ(f , zt)

]
+Reln (z1, . . . , zt)

}
≤

1

λ∗ log

(
∑

f ∈F
exp

(
−λ∗Lt−1(f)

)
)
+2λ∗(n − t +1)

= Reln (z1, . . . , zt−1)

by the optimality of λ∗. The bound can be improved by a factor of 2 for some loss

functions, since it will disappear from the definition of sequential Rademacher

complexity.

The Chernoff-Cramèr inequality tells us that (22.13) is the tightest possible re-

laxation. The proof reveals that the only inequality is the softmax which is also

194

22.2 Supervised Learning

present in the proof of the maximal inequality for a finite collection of random

variables. In this way, exponential weights is an algorithmic realization of a maxi-

mal inequality for a finite collection of random variables. The connection between

probabilistic (or concentration) inequalities and algorithms runs much deeper.

We point out that the exponential-weights algorithm arising from the relax-

ation (22.13) is a parameter-free algorithm. The learning rate λ∗ can be optimized

(via one-dimensional line search) at each iteration with almost no cost. This can

lead to improved performance as compared to the classical methods that set a

particular schedule for the learning rate.

Our aim at this point was to show that the associated relaxations arise naturally

(typically with a few steps of algebra) from the sequential Rademacher complexity.

It should now be clear that upper bounds, such as the Dudley Entropy integral, can

be turned into a relaxation, provided that admissibility is proved. Our ideas have

semblance of those in Statistics, where an information-theoretic complexity can

be used for defining penalization methods.

22.2 Supervised Learning

In the supervised setting of sequential prediction, the learner observes xt ∈ X,

makes a prediction ŷ t ∈D (or qt ∈ ∆(D)) and observes yt ∈ Y. We write the mini-

max value as

⟪sup
xt∈X

inf
qt∈∆(D)

sup
yt∈Y

E
ŷ t∼qt

⟫n

t=1

[
n∑

t=1

ℓ(ŷ t , yt)− inf
f ∈F

n∑
t=1

ℓ(f (xt), yt)

]
(22.14)

Let us briefly detail the relaxation framework for this supervised case. A relaxation

will be called admissible if for any (x1, y1), . . . , (xn , yn) ∈ (X×Y),

Reln

(
(x1, y1), . . . , (xt−1, yt−1)

)
≥ sup

xt∈X
inf

qt∈∆(D)

sup
yt∈Y

{
E

ŷ t∼qt

[
ℓ(ŷ t , yt)

]
+Reln

(
(x1, y1), . . . , (xt , yt)

)}

(22.15)

for all t ∈ [n], and

Reln

(
(x1, y1), . . . , (xn , yn)

)
≥− inf

f ∈F

n∑
t=1

ℓ(f (xt), yt).

195

22.2 Supervised Learning

Since xt is revealed at the beginning of round t , our strategy can be computed

based on xt :

qt = argmin
q∈∆(D)

sup
yt

{
E

ŷ t∼q

[
ℓ(ŷ t , yt)

]
+Reln

(
(x1, y1), . . . , (xt , yt)

)}
(22.16)

WheneverY is bounded and bothℓ(ŷ t , yt) and Reln

(
(x1, y1), . . . , (xt , yt)

)
are convex

in yt , the supremum in Eq. (22.16) becomes a maximum between the two extreme

values for yt , significantly simplifying both calculation of the strategy qt and veri-

fying admissibility. Another example where this simplification happens is in clas-

sification (binary or multi-class).

Binary Classification In the case of binary-valued labels D = Y = {0,1}, the ob-

jective takes on a simpler form. Suppose that the loss is ℓ(ŷ , y) = I
{

ŷ 6= y
}
. Then

Eŷ t∼qt I
{

ŷ t , yt

}
= |yt −qt | and the optimization problem becomes

qt = argmin
q∈∆(D)

max
{
1−q +Reln

(
(x1, y1), . . . , (xt ,1)

)
, q +Reln

(
(x1, y1), . . . , (xt ,0)

)}

(22.17)

This development is very similar to (21.9). The minimum is

qt =
1

2
+

Reln

(
(x1, y1), . . . , (xt ,1)

)
−Reln

(
(x1, y1), . . . , (xt ,0)

)

2
(22.18)

if qt ∈ [0,1], and otherwise needs to be clipped to this interval. For simplicity,

assume no clipping is required. Plugging in the value of qt into the right-hand

side of (22.15), we obtain

sup
xt∈X

inf
qt∈∆(D)

sup
yt∈Y

{
E

ŷ t∼qt

[
ℓ(ŷ t , yt)

]
+Reln

(
(x1, y1), . . . , (xt , yt)

)}

≤ sup
xt∈X

{
1

2
+

1

2

(
Reln

(
(x1, y1), . . . , (xt ,1)

)
+Reln

(
(x1, y1), . . . , (xt ,0)

))}

= sup
xt∈X

{
1

2
+Ebt

Reln

(
(x1, y1), . . . , (xt ,bt)

)}
(22.19)

for a fair coin bt ∈ {0,1}. And so checking admissibility of the relaxation and strat-

egy (22.16) reduces to verifying that

1

2
+ sup

xt∈X
Ebt

Reln

(
(x1, y1), . . . , (xt ,bt)

)
≤ Reln

(
(x1, y1), . . . , (xt−1, yt−1)

)
(22.20)

For the case ofY= {−1,+1}, the Bernoulli variable bt is replaced by the Rademacher

random variable ǫt throughout.

196

23
Algorithms Based on Random Playout,

and Follow the Perturbed Leader

23.1 The Magic of Randomization

Recall the generic form (22.5) of a Meta Algorithm for a given relaxation. Suppose

the relaxation is of the form Reln (z1, . . . , zt) = EΦ(W, z1:t), for some function Φ and

the expectation is over some random variable W. The optimal randomized strategy

for this relaxation is

q∗ = argmin
q

sup
zt

{
Eŷ∼qℓ(ŷ , zt)+EW∼pΦ(W, z1:t)

}
. (23.1)

However, computing the expectation might be computationally costly. With this

in mind, consider a deceptively simple-minded strategy q̃ : first draw W ∼ p and

then compute

q(W), argmin
q

sup
zt

{
Eŷ∼qℓ(ŷ , zt)+Φ(W, z1:t)

}
. (23.2)

or its clipped version if q(W) falls outside [0,1].

We then verify that the value of the objective in (23.1) evaluated at q̃ is

sup
zt

{
Eŷ∼q̃ℓ(ŷ , zt)+EW∼pΦ(W, z1:t)

}
= sup

zt

{
EW∼pEŷ∼q(W)ℓ(ŷ , zt)+EW∼pΦ(W, z1:t)

}

≤ EW∼p sup
zt

{
Eŷ∼q(W)ℓ(ŷ , zt)+Φ(W, z1:t)

}

= EW∼p inf
q

sup
zt

{
Eŷ∼qℓ(ŷ , zt)+Φ(W, z1:t)

}
.

(23.3)

197

23.2 Linear Loss

Recall that to show admissibility of the relaxation and the randomized strategy q̃ ,

we need to ensure that the above expression is upper bounded by the relaxation

with one less outcome. Thankfully, in view of the last expression, we may do so

conditionally on W, as if there were no random variables in the definition of the re-

laxation at all! This general approach of obtaining randomized methods for relax-

ations defined via an expectation appears to be quite powerful. The randomized

strategy can be seen as “mimicking” the randomization in the relaxation. Many

of the methods developed later in the course are based on this simple technique,

which we will term “random playout”. In game theory, random playout is a strat-

egy employed for estimating the value of a board position. Luckily, the strategy has

a solid basis in regret minimization. In particular, we will show that a well-known

Follow the Perturbed Leader algorithm is an example of such a randomized strat-

egy.

Our starting point is, once again, the conditional sequential Rademacher com-

plexity

Rn(z1, . . . , zt) = sup
z

Eǫt+1:n sup
f ∈F

[
2

n∑
s=t+1

ǫsℓ(f ,zs−t (ǫt+1:s−1))−
t∑

s=1

ℓ(f , zs)

]
(23.4)

However, we cannot employ the above arguments right away, as the relaxation

involves a supremum over a tree. In what follows, we provide several interesting

situations where the supremum can be replaced by an expectation.

23.2 Linear Loss

We now show a somewhat surprising result: it is often the case in finite-dimensional

problems with linear loss that the supremum over the trees can be replaced by an

i.i.d. distribution that is “almost as bad”. We first phrase this fact as an assumption,

and then verify it for several cases.

Following the abstraction of Section 20.3, supposeZ is a unit ball in a separable

Banach space (B,‖ ·‖) and F is a unit ball in the dual norm ‖ ·‖∗.

Assumption 23.1. There exists a distribution D ∈ ∆(Z) and constant C ≥ 2 such

that for any w ∈B

sup
z∈Z

E‖w +2ǫ1z‖ ≤ Ez∼DE‖w +Cǫ1z‖ (23.5)

where ǫ1 is a Rademacher random variable.

198

23.2 Linear Loss

The assumption says that there exists a universal (that is, independent of w)

distribution D for the problem, such that the expected length of a one-step ran-

dom walk from any point w under this distribution is almost as large as the ex-

pected length that would be achieved with the worst two-point symmetric distri-

bution that can depend on w .

PExercise 23.1 (⋆). Prove that under Assumption 23.1, the sequential Rademacher

complexity of F is within a constant factor from the classical i.i.d. Rademacher

complexity with respect to Dn .

The assumption holds in finite dimensional spaces. Not surprisingly, the algo-

rithm based on this assumption has a regret guarantee upper bounded by the i.i.d.

Rademacher complexity with respect to Dn . Let us now state a general lemma; its

proof is deferred to Section 23.2.3.

Lemma 23.2. Under the Assumption 23.1, the relaxation

Reln (z1, . . . , zt) = E
zt+1,...,zn∼D

Eǫ sup
f ∈F

[
C

n∑

i=t+1

ǫi

〈
f , zi

〉
−

t∑

i=1

〈
f , zi

〉
]

(23.6)

is admissible and a randomized strategy that ensures admissibility is given by: at

time t , draw zt+1, . . . , zn ∼ D and Rademacher random variables ǫ = (ǫt+1, . . . ,ǫn),

and then define

ŷ t = argmin
ŷ∈D

sup
z∈Z

{
〈

ŷ , z
〉
+

∥∥∥∥∥C
n∑

i=t+1

ǫi zi −
t−1∑

i=1

zi − z

∥∥∥∥∥

}
(23.7)

The expected regret for the method is bounded by the classical Rademacher com-

plexity:

ERegn ≤C Ez1:n∼DEǫ

[
sup
f ∈F

n∑
t=1

ǫt

〈
f , zt

〉
]

,

It will be shown in the examples below that the update (23.7) is of the nicer

form

ŷ t = argmin
f ∈F

〈
f ,

t−1∑

i=1

zi −C
n∑

i=t+1

ǫi zi

〉
(23.8)

This is the famous Follow the Perturbed Leader algorithm [30, 16]:

199

23.2 Linear Loss

Follow the Perturbed Leader

ŷ t = argmin
f ∈F

t−1∑

i=1

〈
f , zi

〉
+η−1

〈
f ,r

〉

where r is a random vector and η is some learning rate parameter. It is now clear

that the random vector r arises as a sum of random draws from the distribu-

tion that is “almost as bad” as the worst-case tree in the conditional sequential

Rademacher complexity.

We now look at specific examples of ℓ2/ℓ2 and ℓ1/ℓ∞ cases and provide closed

form solution of the randomized algorithms.

23.2.1 Example: Follow the Perturbed Leader on the Simplex

Here, we consider the setting similar to that in [30]. Let F = B
N
1 and Z = B

N
∞. In

[30], the set F is the probability simplex and Z= [0,1]N but these are subsumed by

the ℓ1/ℓ∞ case. We claim that:

Lemma 23.3. Assumption 23.1 is satisfied with a distribution D that is uniform on

the vertices of the cube {±1}N and C = 6.

Proof of Lemma 23.3. Let w ∈ R
N be arbitrary. Throughout this proof, let ǫ ∈ {±1}

be a single Rademacher random variable. The norm in (23.5) is the ℓ∞ norm, and

so we need to show

max
z∈{±1}N

Eǫ max
i∈[N]

|wi +2ǫzi | ≤ E
z∼D

E
ǫ

max
i∈[N]

|wi +6ǫzi | (23.9)

Let i∗ = argmax
i

|wi | and j∗ = argmax
i 6=i∗

|wi | be the coordinates with largest and

second-largest magnitude. If |wi∗ |− |w j∗ | ≥ 4, the statement follows since, for any

z ∈ {±1}N and ǫ ∈ {±1},

max
i 6=i∗

|wi +2ǫzi | ≤ max
i 6=i∗

|wi |+2 ≤ |wi∗ |−2 ≤ |wi∗ +2ǫzi∗ |,

and thus

max
z∈{±1}N

Eǫ max
i∈[N]

|wi +2ǫzi | = max
z∈{±1}N

Eǫ |wi∗ +2ǫzi∗ | = |wi∗ | ≤ Ez,ǫ|wi∗+6ǫzi∗ | ≤ Ez,ǫ max
i

|wi+6ǫzi |.

200

23.2 Linear Loss

It remains to consider the case when |wi∗ |− |w j∗ | < 4. We have that

Ez,ǫ max
i∈[N]

|wi +6ǫzi | ≥ Ez,ǫ max
i∈{i∗, j∗}

|wi +6ǫzi | ≥
1

2
(|wi∗ |+6)+

1

4
(|wi∗ |−6)+

1

4
(|w j∗ |+6) ≥ |wi∗ |+2

≥ max
z∈{±1}N

Eǫ max
i∈[N]

|wi +2ǫzi | ,

where 1/2 is the probability that ǫzi∗ = sign(wi∗), the second event of probability

1/4 is the event that ǫzi∗ 6= sign(wi∗) and ǫz j∗ 6= sign(w j∗), while the third event of

probability 1/4 is that ǫzi∗ 6= sign(wi∗) and ǫz j∗ = sign(w j∗).

In fact, one can pick any symmetric distribution D on the real line and use DN

for the perturbation. Assumption 23.1 is then satisfied, as we show in the following

lemma.

Lemma 23.4. If D̃ is any symmetric distribution over the real line, then Assump-

tion 23.1 is satisfied by using the product distribution D = D̃N . The constant C

required is any C ≥ 6/Ez∼D̃
|z|.

The above lemma is especially attractive when used with standard normal dis-

tribution because in that case as sum of normal random variables is again normal.

Hence, instead of drawing zt+1, . . . , zn ∼ N (0,1) on round t , one can simply draw

just one vector Zt ∼ N (0,
p

n − t) and use it for perturbation. In this case constant

C is bounded by 8.

While we have provided simple distributions to use for perturbation, the form

of update in Equation (23.7) is not in a convenient form. The following lemma

shows a simple Follow the Perturbed Leader type algorithm with the associated

regret bound.

Lemma 23.5. Suppose D = F = B
N
1 , Z = B

N
∞, and let D̃ be any symmetric distri-

bution. Consider the randomized algorithm that at each round t freshly draws

Rademacher random variables ǫt+1, . . . ,ǫn and freshly draws zt+1, . . . , zn ∼ D̃N (each

co-ordinate drawn independently from D̃) and picks

ŷ t = argmin
ŷ∈D

〈
ŷ ,

t−1∑

i=1

zi −C
n∑

i=t+1

ǫi zi

〉
(23.10)

where C = 6/Ez∼D̃
[|z|]. The randomized algorithm enjoys a bound on the expected

regret given by

ERegn ≤C E
z1:n∼D̃N

Eǫ

∥∥∥∥
n∑

t=1

ǫt zt

∥∥∥∥
∞
+4

n∑
t=1

Pyt+1:n∼D̃

(
C

∣∣∣∣∣
n∑

i=t+1

yi

∣∣∣∣∣≤ 4

)

201

23.2 Linear Loss

Notice that for D̃ being the {±1} coin flips or standard normal distribution, the

probability

Pyt+1,...,yn∼D̃

(
C

∣∣∣∣∣
n∑

i=t+1

yi

∣∣∣∣∣≤ 4

)

is exponentially small in n−t and so
∑n

t=1 Pyt+1,...,yn∼D̃

(
C

∣∣∑n
i=t+1 yi

∣∣≤ 4
)

is bounded

by a constant. For these cases, we have

ERegn ≤O

(
E

z1:n∼D̃N
Eǫ

∥∥∥∥
n∑

t=1

ǫt zt

∥∥∥∥
∞

)
=O

(√
n log N

)

This yields the logarithmic dependence on the dimension, matching that of the

Exponential Weights algorithm.

23.2.2 Example: Follow the Perturbed Leader on Euclidean Balls

We now consider the case when F and Z are both the unit ℓ2 ball. We can use as

perturbation the uniform distribution on the surface of unit sphere, as the follow-

ing lemma shows.

Lemma 23.6. Let F = Z = B
N
2 . Then Assumption 23.1 is satisfied with a uniform

distribution D on the surface of the unit sphere with constant C = 4
p

2.

Again as in the previous example the form of update in Equation (23.7) is not

in a convenient form and this is addressed in the following lemma.

Lemma 23.7. Let D = F = Z = B
N
2 and D be the uniform distribution on the sur-

face of the unit sphere. Consider the randomized algorithm that at each round (say

round t) freshly draws zt+1, . . . , zn ∼D and picks

ŷ t =
−

∑t−1
i=1 zi +C

∑n
i=t+1 zi√∥∥−∑t−1

i=1 zi +C
∑n

i=t+1 ǫi zi

∥∥2

2
+1

where C = 4
p

2. The randomized algorithm enjoys a bound on the expected regret

given by

ERegn ≤C Ez1,...,zn∼D

∥∥∥∥
n∑

t=1

zt

∥∥∥∥
2

≤ 4
p

2n

Importantly, the bound does not depend on the dimensionality of the space.

202

23.2 Linear Loss

23.2.3 Proof of Lemma 23.2

To show admissibility using the particular randomized strategy qt described in

Lemma 23.5, we need to show that

sup
zt

{
Eŷ∼qt

[〈
ŷ , zt

〉]
+Reln (z1, . . . , zt)

}
≤ Reln (z1, . . . , zt−1)

The strategy qt proposed by the lemma is such that we first draw zt+1, . . . , zn ∼ D

and ǫt+1, . . .ǫn Rademacher random variables, and then calculate ŷ t = ŷ t (zt+1:n ,ǫt+1:n)

as in (23.7). In view of (23.3),

sup
zt

{
Eŷ∼qt

[〈
ŷ , zt

〉]
+Reln (z1, . . . , zt)

}
≤ E

ǫt+1:n
zt+1:n

inf
g∈F

sup
zt

{
〈

g , zt

〉
+

∥∥∥∥∥C
n∑

i=t+1

ǫi zi −
t∑

i=1

zi

∥∥∥∥∥

}

(23.11)

Let w =C
∑n

i=t+1 ǫi zi −
∑t−1

i=1 zi . We now appeal to the minimax theorem:

inf
g∈F

sup
zt

{〈
g , zt

〉
+‖w − zt‖

}
= inf

g∈F
sup

pt∈∆(Z)

Ezt∼pt

{〈
g , zt

〉
+‖w − zt‖

}

= sup
p∈∆(Z)

inf
g∈F

{
Ezt∼p

〈
g , zt

〉
+Ezt∼p ‖w − zt‖

}

The minimax theorem holds because loss is convex in g andF is a compact convex

set and the term in the expectation is linear in pt , as it is an expectation. The last

expression is equal to

sup
p∈∆(Z)

Ezt∼p sup
f ∈F

[
〈

f , w
〉
+ inf

g∈F
Ezt∼p

[〈
g , zt

〉]
−

〈
f , zt

〉
]
≤ sup

p∈∆(Z)

Ezt∼p sup
f ∈F

[〈
f , w

〉
+Ezt∼p

[〈
f , zt

〉]
−

〈
f , zt

〉]

≤ sup
zt∈Z

Eǫt sup
f ∈F

[〈
f , w

〉
+2ǫ

〈
f , zt

〉]

≤ sup
zt∈Z

Eǫt
‖w +2ǫzt‖

using the familiar symmetrization technique. In view of Assumption 23.1,

sup
zt∈Z

Eǫt
‖w +2ǫzt‖ ≤ E

zt∼D
E
ǫt

‖w +Cǫt zt‖ = E
zt∼D

E
ǫt

∥∥∥∥∥C
n∑

i=t

ǫi zi −
t−1∑

i=1

zi

∥∥∥∥∥

Plugging this into Eq. (23.11) completes the proof of admissibility.

203

23.3 Supervised Learning

23.3 Supervised Learning

Recall the relaxation framework in Section 22.2. Suppose that the relaxation in

Eq. (22.16) is of the form EΦ(W, x1:t , y1:t) for some random variable W with distribu-

tion p. For simplicity, consider the classification scenario with Y= {0,1}. Consider

the following randomized strategy q̃t : draw W ∼ p, and set

q(W) =
1

2
+
Φ(W, (x1, y1), . . . , (xt ,1))−Φ(W, (x1, y1), . . . , (xt ,0))

2
, (23.12)

or its clipped version if q(W) falls outside [0,1]. The randomized strategy q̃t com-

bines the idea of randomization described in the beginning of this chapter to-

gether with the closed-form solution of (22.16).

Admissibility of the above strategy (under the appropriate conditions on Φ)

will be shown along the following general lines. An adaptation of the argument

leading to (23.3) for supervised learning gives that for any xt , the value of the ob-

jective for the randomized strategy q̃ is

sup
yt

{
Eŷ∼q̃ℓ(ŷ , yt)+EW∼pΦ(W, x1:t , y1:t)

}
≤ EW∼p inf

q
sup

yt

{
Eŷ∼qℓ(ŷ , yt)+Φ(W, x1:t , y1:t)

}
.

(23.13)

In the case of binary classification with indicator loss, we turn to the analysis

in Eq. (22.19). We then see that the value of the objective for q̃ is at most

sup
xt

EW∼p inf
q

sup
yt

{
Eŷ∼q I

{
ŷ 6= yt

}
+Φ(W, x1:t , y1:t)

}
≤ sup

xt

EW∼p

{
1

2
+Ebt

Φ(W, x1:t , y1:t−1,bt)

}

(23.14)

and thus verifying admissibility reduces to checking

1

2
+ sup

xt

Ebt
EW∼pΦ(W, x1:t , y1:t−1,bt) ≤ EΦ(W

′, x1:t−1, y1:t−1) (23.15)

for some W
′. This step can be verified under a condition akin Assumption 23.1.

Alternatively, this inequality holds in the so-called transductive (or, fixed design)

setting. This is the subject of the next chapter.

204

24
Algorithms for Fixed Design

24.1 ... And the Tree Disappears

In this chapter, we will study the supervised learning problem under the assump-

tion that X is a finite set and the side information xt at time t is chosen from this

set without replacement. Once this side information is revealed, the supervised

protocol is as before: the learner makes a prediction ŷ ∈D⊂ R (or chooses a ran-

domized strategy qt) and the outcome yt ∈ R is subsequently revealed. We will

refer to this setting as “fixed design”.

As we will see shortly, in the protocol described above, the tree x —an obstacle

in obtaining computationally efficient algorithms—disappears.

In the beginning of the course, we wrote down minimax regret for arbitrary

sequences (x1, y1), . . . , (xn , yn). How do we ensure that x’s are not repeated in this

sequence? For this, we need to introduce a notion of restrictions on sequences.

Abstractly, at each time step t , we may define a set of allowed choices for xt

by Ct ⊆X. This restriction can be viewed as a set-valued function (x1, . . . , xt−1) 7→
Ct (x1, . . . , xt−1). The notation makes explicit the fact that the set may depend on

the history (and in fact can also depend on the y sequence, yet the analysis be-

comes more involved [46]). The case of observing non-repeating x’s corresponds

to choosing

Ct (x1, . . . , xt−1) =X\ {x1, . . . , xt−1}. (24.1)

205

24.1 ... And the Tree Disappears

We may now write down the minimax value as

⟪ sup
xt∈C (x1:t−1)

inf
qt

sup
yt

E

ŷ t

⟫n

t=1

{
1

n

n∑
t=1

ℓ(ŷ t , yt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f (xt), yt)

}
(24.2)

Then, a generalization of Proposition 14.9 holds:

Proposition 24.1. For a supervised problem with constraints and with L-Lipschitz

and convex loss ℓ(·, y) for any y ∈ Y, the minimax regret in (24.2) is upper bounded

by

2L sup
x∈C

Esup
f ∈F

1

n

n∑
t=1

ǫt f (xt (ǫ)) (24.3)

where C is a set of X-valued trees x that respect the constraints on every path:

∀1 ≤ t ≤ n, xt (ǫ) ∈Ct (x1,x2(ǫ), . . . ,xt−1(ǫ))

for any ǫ ∈ {±1}n .

We now show that in the case of constraints (24.1), the supremum can be equiv-

alently taken over constant-level trees:

Lemma 24.2. For n = |X| and constraints (24.1), the supremum over x ∈C in Propo-

sition 24.1 is achieved at a constant-level tree. Hence, the upper bound of Proposi-

tion (24.1) is equal to

2LR̂i i d (F; x1, . . . , xn).

In view of Lemma 24.2, the regret behavior in fixed design setting of online su-

pervised learning is governed by i.i.d., rather than sequential, complexities. This

important observation translates into efficient algorithms, as the tree can be re-

moved from conditional sequential Rademacher relaxation:

Lemma 24.3. Consider fixed design setting of online supervised learning with con-

vex L-Lipschitz loss ℓ(·, y) for all y ∈Y⊂R. Then

Rn((x1, y1), . . . , (xt , yt)) = Eǫt+1:n sup
f ∈F

[
2L

∑

xs∈X\{x1,...,xt }

ǫs f (xs)−
t∑

s=1

ℓ(f (xs), ys)

]

(24.4)

is an admissible relaxation.

206

24.2 Static Experts

In addition to the Lipschitz-loss setting, we can consider the indicator loss

ℓ(ŷ , y) = I
{

ŷ 6= y
}
. If D=Y= {±1}, we may substitute I

{
ŷ 6= y

}
= 1

2
(1− ŷ y) which is

1/2-Lipschitz. The relaxation becomes

Rn((x1, y1), . . . , (xt , yt)) = Esup
f ∈F

[
∑

xs∈X\{x1,...,xt }

ǫs f (xs)−
t∑

s=1

1

2
(1− ys f (xs))

]
(24.5)

It is easy to verify that this relaxation is indeed admissible. In view of Eq.(23.15)

adapted to the case of Y= {+1,−1}, it is enough to check that

1

2
+ sup

xt∈C (x1:t−1)

EǫtEsup
f ∈F

[
∑

xs∈X\{x1,...,xt }

ǫs f (xs)−
t−1∑
s=1

1

2
(1− ys f (xs))−

1

2
(1−ǫt f (xt))

]

≤ Esup
f ∈F

[
∑

xs∈X\{x1,...,xt−1}

ǫs f (xs)−
t−1∑
s=1

1

2
(1− ys f (xs))

]
(24.6)

PExercise 24.1 (⋆). Prove inequality (24.6).

Several remarks are in order. First, observe that the relaxation is of the form

studied in chapter 23.1, and thus randomized methods are directly applicable.

Second, if F is a class of linear functions on X, the mixed strategy for predicting

ŷ t can be obtained by standard linear optimization methods.

24.2 Static Experts

Cesa-Bianchi and Lugosi [15] observed that minimax regret for the problem of se-

quential prediction with Static Experts is given by the classical Rademacher aver-

ages of the class of experts. This, in turn, motivated much of the work presented

in this course.

Let F ⊂ [0,1]n . Each f ∈ F is viewed as an expert that conveys a prediction

ft ∈ [0,1]. This prediction is, therefore, a function of time only. Taking Y= {0,1}, we

may view each prediction ft as a mixed strategy for predicting the next outcome.

The expected indicator loss Ey∼ ft
I
{

y 6= yt

}
can be written simply as ℓ(ft , yt) = | ft −

yt |. Taking the decision set D= [0,1], we may write regret as

1

n

n∑
t=1

|ŷ t − yt |− inf
f ∈F

1

n

n∑
t=1

| ft − yt |.

207

24.3 Social Learning / Network Prediction

The easiest way to map the problem into our general framework is to view the time

index xt = t as the side information from X = {1, . . . ,n}, and f (xt) = ft . Now, the

constraints on the presentation of xt are given trivially by

Ct (x1, . . . , xt−1) = {t }

which is even more restrictive than (24.1). By Lemma 24.2, minimax regret is upper

bounded by classical Rademacher averages of F. Furthermore, one may obtain

efficient algorithms using the relaxation in Lemma 24.3.

24.3 Social Learning / Network Prediction

Consider a weighted graph G = (V ,E ,W), where V is the set of vertices, E the set of

edges, and W : E → [−1,1] the weights on the edges. We may think of the graph as

a social network with positive and negative relationships between agents. We are

interested in the problem of online node classification on this graph.

Figure 24.1: Weighted graph G = (V ,E ,W). Edge color and thickness corresponds

to the sign and magnitude of the weight.

More precisely, at each time step, the identity of the vertex vt ∈ V is revealed.

We view this identity as the side information provided to the learner. Following the

assumption of the previous section, the nodes are not repeated: once prediction

has been made and a label has been observed, we do not come back to the same

node.

24.4 Matrix Completion / Netflix Problem

208

25
Adaptive Algorithms

25.1 Adaptive Relaxations

So far in the course, the upper bounds on regret have been uniform for all se-

quences. There is a sense, however, that certain sequences can be “easier” and

some – “harder”. In this sense, we might try to prove upper bounds of the

1

n

n∑
t=1

ℓ(ŷ t , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt) ≤ψ(z1, . . . , zn) (25.1)

for some function ψ that might not be constant. Within various contexts, such up-

per bounds have appeared in the literature for ψ being some notion of a “variance”

of the sequence, a “length” of the sequence, and so on.

The reader should correctly observe the semblance of (25.1) to the notion stud-

ied in the very first lecture (see Eq. (2.2)). We will come back to this example in just

a bit, but let us first state the straightforward extension of the relaxation framework

to the regret against a benchmark φ(z1, . . . , zn):

1

n

n∑
t=1

ℓ(ŷ t , zt) ≤φ(z1, . . . , zn) (25.2)

where (25.1) is a particular choice of the benchmarkφ(z1, . . . , zn) = inf f ∈F
1
n

∑n
t=1ℓ(f , zt)+

ψ(z1, . . . , zn).

We say Reln () is an admissible relaxation if for any z1, . . . , zn , the initial condi-

tion

Reln (z1, . . . , zn) ≥−nφ(z1, . . . , zn) (25.3)

209

25.2 Example: Bit Prediction from Lecture 1

holds, along with the recursive condition

Reln (z1, . . . , zt−1) ≥ inf
qt

sup
zt

Eŷ t∼qt

{
ℓ(ŷ t , zt)+Reln (z1, . . . , zt)

}
(25.4)

(The case of supervised learning is treated as in (22.15).) It is easy to see that a

strategy guaranteeing (25.4) ensures

∀z1, . . . , zn
1

n

n∑
t=1

Eŷ t∼qtℓ(ŷ t , zt)−φ(z1, . . . , zn) ≤ Reln (;) (25.5)

25.2 Example: Bit Prediction from Lecture 1

We are now ready to give a simple proof of Proposition 2.1 for the case of bit pre-

diction without side information. The claim is that for a stable φ (in the sense of

Eq. 2.3), there exists a prediction algorithm guaranteeing

1

n

n∑
t=1

Eŷ t∼qtℓ(ŷ t , yt) ≤φ(y1, . . . , yn) (25.6)

for any sequence of y1, . . . , yn ∈ {0,1} if and only if Eφ≥ 1
2

under the uniform distri-

bution. The necessity of the latter condition was already shown in Chapter 2. To

see the sufficiency, define a relaxation

Reln

(
y1, . . . , yt

)
=−nE

[
φ(y1, . . . , yn)|y1, . . . , yt

]
+nEφ−

t

2
(25.7)

We then check that the initial condition

Reln

(
y1, . . . , yn

)
=−nφ(y1, . . . , yn)+nEφ−

n

2
≥−nφ(y1, . . . , yn) (25.8)

is satisfied, and the final regret bound

Reln (;) =−nEφ+nEφ−
0

2
= 0 (25.9)

as desired. It remains to prove admissibility. To this end, observe that the mini-

mum of

sup
yt

Eŷ t∼qt

{
ℓ(ŷ t , yt)+Reln

(
y1, . . . , yt

)}

has the solution given by (22.18) (and no clipping is necessary because of the sta-

bility assumption on φ). Therefore, it is enough to check (22.20), which, for the

case of no side information, becomes

1

2
+Eyt Reln

(
(x1, y1), . . . , (xt , yt)

)
≤ Reln

(
(x1, y1), . . . , (xt−1, yt−1)

)
. (25.10)

This condition is true by the definition (25.7), concluding the proof.

210

25.3 Adaptive Gradient Descent

25.3 Adaptive Gradient Descent

211

Part IV

Extensions

212

26
The Minimax Theorem

At the beginning of the course, we phrased a variety of learning problems through

the language of minimaxity. Such formulation turned out to be especially fruitful

for the problem of Sequential Prediction, where we were able to upper bound the

minimax value by a supremum of a certain stochastic process. The very first step

of the proof involved exchanging the min and the max. We never fully justified

this step, and simply assumed that the necessary conditions are satisfied for us to

proceed.

In the simplest (bilinear) form, the minimax theorem is due to von Neumann:

Theorem 26.1. Let M ∈ R
p×m for some p,m ≥ 1, and let ∆p and ∆m denote the set

of distributions over the rows and columns, respectively. Then

min
a∈∆p

max
b∈∆m

aTMb = max
b∈∆m

min
a∈∆p

aTMb (26.1)

Since von Neumann, there have been numerous extensions of this theorem,

generalizing the statement to uncountable sets of rows/columns, and relaxing the

assumptions on the payoff function (which is bilinear in the above statement). To

make our discussion more precise, consider the following definition:

Definition 26.2. Consider sets A and B and a function ℓ : A×B 7→R. We say that

the minimax theorem holds for the triple (A,B,ℓ) if

inf
a∈A

sup
b∈B

ℓ(a,b) = sup
b∈B

inf
a∈A

ℓ(a,b) (26.2)

With this definition, von Neumann’s result says that the minimax theorem holds

for the triple (∆p ,∆m ,ℓ) with ℓ(a,b) = aTMb for a ∈∆p ,b ∈∆m .

213

26.1 When the Minimax Theorem Does Not Hold

In this lecture, we prove a rather general version of the minimax theorem using

the Exponential Weights algorithms (the proof is borrowed from [16]), and discuss

the important relationship between the minimax theorem and regret minimiza-

tion. As we show, this relationship is quite subtle.

26.1 When the Minimax Theorem Does Not Hold

We now give two examples for which the minimax theorem does not hold. The

first is the famous “Pick the Bigger Integer” game, attributed to Wald [56].

Example 20. The two players in the zero sum game pick positive integers, and the

one with the larger number wins. It is not hard to see that the player making the

first move has a disadvantage. As soon as her mixed strategy is revealed, the op-

ponent can simply choose a number in the 99th percentile of this distribution in

order to win most of the time. The same holds when the order is switched, now

to the advantage of the other player, and so the minimax theorem does not hold.

More precisely, let A =B = ∆(N) be the two sets, and ℓ(a,b) = Ew∼a,v∼bI {w ≤ v}.

The minimax theorem does not hold for the triple (∆(N),∆(N),ℓ), as the gap be-

tween infa supb ℓ(a,b) and supb infa ℓ(a,b) can be made as close to 1 as we want.

The above example might lead us to believe that the reason the minimax theo-

rem does not hold is because we consider distributions over an unbounded set N.

However, the above game can be embedded into the [0,1] interval as follows:

Example 21. The two players in the zero sum game pick real numbers in the in-

terval [0,1]. Any player that picks 1 loses (it is a tie if both pick 1); otherwise, the

person with the largest real number wins. The setup forces the players into the

same situation as in the “Pick the Bigger Integer” example, as the larger num-

ber wins while the limit point 1 should be avoided. Let A = B = ∆([0,1]) and

ℓ(a,b) = Ew∼a,v∼bℓ̃(w, v) with

ℓ̃(w, v) =





1 if w = 1, v 6= 1,

0 if w 6= 1, v = 1,

0.5 if w = v = 1

I {w ≤ v} otherwise

We can use the same reasoning as in Example 20 to show that the minimax theo-

rem does not hold for the triple (∆([0,1]),∆([0,1]),ℓ).

214

26.2 The Minimax Theorem and Regret Minimization

26.2 The Minimax Theorem and Regret Minimization

From the previous section, we see that there exist some rather simple cases when

the minimax theorem fails to hold. What can we say about regret minimization in

these situations? Of course, if the minimax theorem does not hold, our proof tech-

nique of upper bounding the value by exchanging the infima and suprema fails.

However, could it be that a regret minimizing strategy exists, but we must develop

it algorithmically without even considering the value of the prediction problem?

Surprisingly, this is not the case. In other words, any time the minimax theorem

fails, we have no hope of minimizing regret.

Proposition 26.3. Let F and Z be the sets of moves of the learner and Nature, re-

spectively. Let ℓ : F×Z 7→ R be a bounded loss function. If the minimax theorem

does not hold for the triple
(
∆(F),∆(Z),E f ,zℓ(f , z)

)
, the regret is lower bounded by a

constant for any n, and thus the problem is not learnable. Equivalently, if there is a

regret-minimizing strategy, i.e. the value of the game satisfies

lim
n→∞

Vseq (F,n) = 0

then it must be that the minimax theorem holds for the triple
(
∆(F),∆(Z),E f ,zℓ(f , z)

)
.

Proof of Proposition 26.3. If the one-round game does not have a value, there ex-

ists some constant c > 0 such that

inf
q∈∆(F)

sup
z∈Z

E f ∼qℓ(f , z) ≥ sup
p∈∆(Z)

inf
f ∈F

Ez∼pℓ(f , z)+ c (26.3)

Let π= {πt } denote a randomized strategy of the learner with πt :Zt−1 7→∆(F). Let

Eπ denote the randomization under the strategy π, and let τ = {τt } be the deter-

ministic strategy of Nature. By definition, the value is

Vseq (F,n) = inf
π

sup
τ

Eπ

{
1

n

n∑
t=1

ℓ(ft , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt)

}

= inf
π

sup
τ

Eπ

{
1

n

n∑
t=1

ℓ(ft , zt)− inf
f ∈F

Ez∼P̂ℓ(f , z)

}

≥ inf
π

sup
τ

Eπ

{
1

n

n∑
t=1

ℓ(ft , zt)− sup
p

inf
f ∈F

Ez∼pℓ(f , z)

}

=
{

inf
π

sup
τ

Eπ
1

n

n∑
t=1

ℓ(ft , zt)

}
−

{
sup

p
inf
f ∈F

Ez∼pℓ(f , z)

}

215

26.2 The Minimax Theorem and Regret Minimization

Now,

inf
π

sup
τ

Eπ
1

n

n∑
t=1

ℓ(ft , zt) =
1

n
⟪ inf

qt∈∆(F)

sup
zt∈Z

E ft∼qt
⟫n

t=1

{ n∑
t=1

ℓ(ft , zt)

}

≥ sup
p∈∆(Z)

inf
f ∈F

Ez∼pℓ(f , z)+ c ,

and the statement follows. The converse statement is immediate.

Proposition 26.3 effectively says that the set of problems that are learnable in

the sequential prediction framework is a subset of problems for which the one-

shot minimax theorem holds:

minimax theorem holds

regret minimizing
strategy exists

nhe inclusion suggests the following intriguing “amplification” strategy for prov-

ing regret bounds: first, find a weak learning method with a possibly suboptimal

bound that nevertheless ensures vanishing regret; this implies the minimax theo-

rem, which in turn implies that the machinery developed so far in the course can

be used to find optimal or near-optimal algorithms (more on this in the next few

lectures!)

Of course, Proposition 26.3 only tells us about the “bilinear” form of the mini-

max theorem, since it only considers mixed strategies over F and Z. The proof of

the Proposition, however, can be extended as follows:

Proposition 26.4. Let A and B be two sets, and B is convex. Let ℓ : A×B 7→R be a

bounded function such that ℓ(a, ·) is concave for any a ∈A. If the minimax theorem

does not hold for the triple (A,B,ℓ), then the regret

1

n

n∑
t=1

ℓ(at ,bt)− inf
a∈A

1

n

n∑
t=1

ℓ(a,bt) (26.4)

is lower bounded by a constant for any n, for any regret minimization strategy that

deterministically chooses at ’s. Equivalently, if there is a regret-minimizing strategy

that deterministically chooses at ’s, then it must be that the minimax theorem holds

for the triple (A,B,ℓ).

216

26.3 Proof of a Minimax Theorem Using Exponential Weights

PExercise 26.1 (⋆). Prove Proposition 26.4.

Proposition 26.3 is a consequence of Proposition 26.4, obtained by taking A=
∆(F), B = ∆(Z), and the loss function as the expectation in the two mixed strate-

gies. In an obvious manner, we are treating the deterministic choice of mixed

strategies as equivalent to randomized choices over F and Z.

Online convex optimization is a class of problems where a deterministic strat-

egy can minimize regret over A = F because the loss function ℓ(f , z) is convex in

f ∈ F. What is interesting, a regret minimization strategy for online convex opti-

mization can be used to prove more general versions of the minimax theorem than

the bilinear form. We can do so by engineering an auxiliary regret minimization

game which, with some extra work, implies the minimax theorem. This is shown

in the next section.

26.3 Proof of a Minimax Theorem Using Exponential

Weights

The following theorem and its proof are taken almost verbatim rom [16].

Theorem 26.5 (Theorem 7.1 in [16]). Suppose ℓ :A×B 7→R is a bounded function,

where A and B are convex and A is compact. Suppose that ℓ(·,b) is convex and

continuous for each fixed b ∈ B and ℓ(a, ·) is concave for each a ∈ A. Then the

minimax theorem holds for (A,B,ℓ).

Proof. The direction

inf
a∈A

sup
b∈B

ℓ(a,b) ≥ sup
b∈B

inf
a∈A

ℓ(a,b) (26.5)

is immediate, and it holds without any assumptions on the function and its do-

main.

Without loss of generality, let ℓ(a,b) ∈ [0,1] for all a ∈ A,b ∈ B. Fix an ǫ > 0

and let a(1), . . . , a(N) be centers of an ǫ-cover of A, which is finite by the assump-

tion on compactness of A. We now treat the elements ai as experts and update an

exponential weights distribution according to the following construction. The se-

quences a1, . . . , an and b0, . . . ,bn are defined recursively, with b0 chosen arbitrarily.

Let

at =
∑N

i=1 a(i) exp
{
−η

∑t−1
s=1ℓ(a(i),bs)

}
∑N

i=1 exp
{
−η

∑t−1
s=1ℓ(a(i),bs)

}

217

26.3 Proof of a Minimax Theorem Using Exponential Weights

with η =
√

8ln N
n

and bt chosen so that ℓ(at ,bt) ≥ supb∈Bℓ(at ,b)− 1/n. We now

appeal to the version of Exponential Weights for Prediction with Expert Advice,

and its regret bound given in (18.4):

1

n

n∑
t=1

ℓ(at ,bt) ≤ min
i∈{1,...,N }

1

n

n∑
t=1

ℓ(a(i),bt)+

√
ln N

2n
(26.6)

Then,

inf
a∈A

sup
b∈B

ℓ(a,b) ≤ sup
b∈B

ℓ

(
1

n

n∑
t=1

at ,b

)
≤ sup

b∈B

1

n

n∑
t=1

ℓ (at ,b) ≤
1

n

n∑
t=1

sup
b∈B

ℓ (at ,b) (26.7)

by convexity ofℓ in the first argument. Thanks to the definition of bt and the regret

bound,

1

n

n∑
t=1

sup
b∈B

ℓ (at ,b) ≤
1

n

n∑
t=1

ℓ (at ,bt)+
1

n
≤ min

i∈{1,...,N }

1

n

n∑
t=1

ℓ(a(i),bt)+

√
ln N

2n
+

1

n

(26.8)

Concavity of ℓ in the second argument implies

min
i∈{1,...,N }

1

n

n∑
t=1

ℓ(a(i),bt) ≤ min
i∈{1,...,N }

ℓ

(
a(i),

1

n

n∑
t=1

bt

)
≤ sup

b∈B
min

i∈{1,...,N }
ℓ

(
a(i),b

)
(26.9)

We conclude that

inf
a∈A

sup
b∈B

ℓ(a,b) ≤ sup
y∈Y

min
i∈{1,...,N }

ℓ(a(i),b)+

√
ln N

2n
+

1

n
,

which implies

inf
a∈A

sup
b∈B

ℓ(a,b) ≤ sup
y∈Y

min
i∈{1,...,N }

ℓ(a(i),b)

if we let n go to infinity. It remains to let ǫ→ 0 and use continuity of ℓ to conclude

inf
a∈A

sup
b∈B

ℓ(a,b) ≤ sup
b∈B

inf
a∈A

ℓ(a,b) . (26.10)

PExercise 26.2 (⋆⋆). SupposeA andB are unit balls in an infinite dimensional

Hilbert space (hence, A and B are not compact). Let ℓ : A×B 7→ R be such that

ℓ(·,b) is convex and 1-Lipschitz (in the Hilbert space norm) for each fixed b ∈B,

and ℓ(a, ·) is concave for each a ∈ A. Prove that the minimax theorem holds for

(A,B,ℓ).

218

26.4 More Examples

PExercise 26.3 (⋆⋆). As in the previous exercise, suppose A and B are unit

balls in an infinite dimensional Hilbert space. Let ℓ :A×B 7→R be such that ℓ(·,b)

is convex and |ℓ(·,b)| ≤ 1 for each fixed b ∈B, and ℓ(a, ·) is concave for each a ∈A.

Prove that the minimax theorem holds for (A,B,ℓ).

26.4 More Examples

Example 22. We now present a problem for which the minimax theorem holds,

yet the associated regret minimization problem is impossible. This supports the

strict subset in Figure 26.2.

Consider the example of sequential prediction with thresholds on the unit in-

terval. It was shown in Theorem 8.2 that the problem is not learnable. The ques-

tion now is whether the minimax theorem holds. more precisely, we let F = X =
[0,1], Y= {0,1}, and

ℓ(f , (x, y)) = I
{

I
{

x ≤ f
}
6= y

}
= I

{
(x ≤ f ∧ y = 0)∨ (x > f ∧ y = 1)

}
.

Here, we are using f to denote the threshold location instead of θ. Consider the

sets of mixed strategies ∆(F) and ∆(X×Y). Let us inspect

inf
q∈∆(F)

sup
(x,y)∈X×Y

E f ∼qℓ(f , (x, y))

Consider a q that puts half of the mass at f = 1 and half at f = 0. For any (x, y), the

expected loss is 1/2. To prove the minimax theorem, it remains to show that

sup
p∈∆(X×Y)

inf
f ∈F

E(x,y)∼pℓ(f , (x, y)) ≥
1

2

This can be achieved, for instance, by taking px as δ1/2 and py |x as a fair coin flip.

In fact, using the sufficient conditions in terms of quasi-convexity, presented

later in this section, it is possible to directly conclude that the minimax theorem

holds.

We conclude that the problem of prediction with thresholds is not learnable,

yet the minimax theorem holds.

Example 23. Now consider the example given in Section 13.1:

F= { fa : a ∈ [0,1], fa(x) = 0 ∀x 6= a, fa(a) = 1} (26.11)

219

26.5 Sufficient Conditions for Weak Compactness

over the domain X= [0,1]. Let Y= {0,1} and define the loss function ℓ as the indi-

cator of a mistake. It was shown that the problem is learnable, and (as Example 16

shows) the Littlestone’s dimension is 1. Given Proposition 26.3, it must be the case

that the minimax theorem holds.

PExercise 26.4 (⋆). Give a direct proof that the minimax theorem holds for the

triple (∆([0,1]),∆([0,1]× {0,1}),ℓ).

Discussion: The two examples presented above together with Example 21 pre-

sented earlier paint a fairly interesting picture. In Example 21, the minimax the-

orem does not hold, and it is not possible to minimize regret. In Example 22,

the minimax theorem holds, yet the prediction problem is impossible. Finally, in

Example 23, both the minimax theorem holds, and regret can be (trivially) mini-

mized. What is rather curious is that the sets of moves and the loss functions look

quite similar across these examples, as a mixture of some point discontinuity and

a threshold. While finiteness of the Littlestone’s dimension characterizes learn-

ability within the supervised learning class of problems for which the minimax

theorem holds, it is not clear under which conditions the minimax theorem itself

holds true. The next section presents some sufficient conditions.

26.5 Sufficient Conditions for Weak Compactness

Suppose that F is a subset of a complete separable metric space and BF is the σ-

field of Borel subsets ofF. Let ∆(F) denote the set of all probability measures onF.

Similarly, let ∆(X) be the set of all probability measures on X. Under consideration

is the question of conditions on F and X that guarantee that the minimax theorem

holds for the triplet (∆(F),∆(X),E f ,xℓ) for a bounded measurable function ℓ : F×
X 7→ R. In addressing this question, we appeal to the following result (in a slightly

modified form from the original):

Theorem 26.6 (Theorem 3 in [49]). Let A be a nonempty convex weakly compact

subset of a Banach space E. Let B be a nonempty convex subset of the dual space,

E ′, of E. Then

inf
a∈A

sup
b∈B

〈a,b〉 = sup
b∈B

inf
a∈A

〈a,b〉

220

26.5 Sufficient Conditions for Weak Compactness

Under a condition we outline below, we can use the above theorem for our

purposes. To this end, write

〈
gp , q

〉
= E f ∼q,x∼pℓ(f , x) and G = {gp : p ∈∆(X)}

The desired minimax identity can now be written as

inf
q∈∆(F)

sup
g∈G

〈
g , q

〉
= sup

g∈G

inf
q∈∆(F)

〈
g , q

〉
.

We can view gp as a linear functional on ∆(F), the set of all Borel probability mea-

sures on F.

Condition 26.7 (Continuity). Assume that ∆(F) is a subset of a Banach space E

(that is, all the linear functionals defined by q ∈∆(F) are continuous).

Under the above assumption, it can be verified that the dual E ′ contains the

set of all bounded Borel measurable functions on F. In this case, G ⊆ E ′. To appeal

to the above theorem it is therefore enough to delineate conditions under which

∆(F) is weakly compact (clearly, ∆(F) is convex).

Condition 26.8 (Weak Compactness). ∆(F) is weakly compact.

By a fundamental result of Prohorov, weak compactness of the set of probabil-

ity measures on a complete separable metric space is equivalent to uniform tight-

ness (see e.g. [11, Theorem 8.6.2.], [54]). Depending on the application, various

assumptions on F can be imposed to guarantee uniform tightness of ∆(F). First, if

F itself is compact, then ∆(F) is tight, and hence (under the continuity condition)

the minimax theorem holds. In infinite dimensions, however, compactness of F

is a very restrictive property. Thankfully, tightness can be established under more

general assumptions on F, as we show next.

By Example 8.6.5 (ii) in [11], a family ∆(F) of Borel probability measures on

a separable reflexive Banach space E is uniformly tight (under the weak topology)

precisely when there exists a function V : E 7→ [0,∞) continuous in the norm topol-

ogy such that

lim
‖ f ‖→∞

V (f) =∞ and sup
q∈∆(F)

E f ∼qV (f) <∞.

For instance, if F is a subset of a ball in E , it is enough to take V (f) = ‖ f ‖. We

conclude that the minimax theorem holds whenever F is a subset of a ball in a

separable reflexive Banach space, and the continuity condition holds.

221

27
Two Proofs of Blackwell’s

Approachability Theorem

The purpose of this lecture is two-fold. The first goal is to introduce a general-

ization of the minimax theorem to vector-valued payoffs, due to David Blackwell

[8]. The theorem has been an invaluable tool for the analysis of repeated games.

Its proof is simple and geometric, while the result is quite non-trivial. The sec-

ond goal of the lecture is to show that the symmetrization ideas we employed for

analyzing minimax regret can be extended to notions beyond regret. We exhibit

another (and very different) proof, which is non-constructive but also more gen-

eral than the constructive approach.

Let ℓ : F×X 7→ R be the loss (payoff) function, which need not be convex. For

the purposes of this lecture let us introduce the notation

ℓ(q, p), E f ∼q,x∼pℓ(f , x)

for q ∈∆(F) and p ∈∆(X). Since ℓ(q, p) is a bi-linear function in the mixed strate-

gies, the minimax theorem

inf
q∈∆(F)

sup
p∈∆(X)

ℓ(q, p) = sup
p∈∆(X)

inf
q∈∆(F)

ℓ(q, p) (27.1)

holds under quite general assumptions on the (not necessarily finite) F and X,

as we have seen in Chapter 26. We assume that the necessary conditions for the

minimax theorem hold.

Suppose we take the point of view of the row player (that is, we are choosing

from F). Then the right-hand-side of Eq. (27.1) can be interpreted as “what is the

smallest loss we can incur if we know what p the column player chooses”. Such

222

27.1 Blackwell’s vector-valued generalization and the original proof

a response can be a pure action. For the left-hand-side, however, we are required

to furnish an “oblivious” randomized strategy that will “work” no matter what the

opponent chooses. Let the value of the expression in (27.1) be denoted by V . The

minimax statement, from our point of view, can be written as

∃q ∈∆(F) s.t. ∀p ∈∆(X) ℓ(q, p) ≤V ⇐⇒ ∀p ∈∆(X) ∃q ∈∆(F) s.t. ℓ(q, p) ≤V

(27.2)

It is remarkable that being able to respond to the opponent is equivalent to

putting down a randomized strategy ahead of time and not worrying about oppo-

nent’s choice.

27.1 Blackwell’s vector-valued generalization and the

original proof

It is often the case that our utility cannot be measured by a single number, as our

goals are incomparable. We would like to make decisions that gives us desired

payoffs along multiple dimensions. David Blackwell came up with a wonderful

generalization of the real-valued minimax theorem.

Consider a vector-valued payoff ℓ : F×X 7→B where B is some Banach space

(in the original Blackwell’s formulation and in his original proof,B=R
d ; his results

have been subsequently extended to Hilbert spaces). It is natural to define the goal

as a set S ⊂B of payoffs with which we would be content. Von Neumann’s Minimax

Theorem can then be seen as a statement about a set S = (−∞,c]: we can ensure

that our loss is in S for any c ≤V but not for any c >V .

Now that the generalization to vector-valued payoffs is established, is it still

true that an equivalent of (27.2) holds? That is

∃q ∈∆(F) s.t. ∀p ∈∆(X) ℓ(q, p) ∈ S
?

⇐⇒ ∀p ∈∆(X) ∃q ∈∆(F) s.t. ℓ(q, p) ∈ S

This turns out to be not necessarily the case even for convex sets S. A simple ex-

ample (borrowed from [1]) is a game whereF=X= {0,1}, the payoff ℓ(f , x) = (f , x)

and S = {(z, z) : z ∈ [0,1]}. Clearly, for any p ∈ ∆(X), we can choose q = p so that

ℓ(q, p) ∈ S; however, no silver-bullet strategy q ∈ ∆(F) exists that will work for all

p.

223

27.1 Blackwell’s vector-valued generalization and the original proof

We see that being able to respond to the mixed strategy of the opponent no

longer guarantees that we can put down an oblivious mixed strategy that will work

no matter what she does. In this respect, the one-dimensional von Neumann’s

minimax theorem is a very special case.

It is, however, the case that being able to respond is equivalent to being able to

put down an oblivious strategy for any half-space H = {u : 〈u, a〉 ≤ c} containing S:

Theorem 27.1 (Blackwell, 1956 [8]).

∀p ∃q s.t. ℓ(q, p) ∈ S ⇐⇒ ∀H ⊃ S, ∃q s.t. ∀p ℓ(q, p) ∈ H

Proof. Suppose there exists a p such that ℓ(q, p) ∉ S for all q . Then there exists

a hyperplane separating S from the set {ℓ(q, p) : q ∈ ∆(F)}. Clearly, for this set

hyperplane there exists no q ensuring that ℓ(q, p) ∈ H for all p.

The other direction is proved by taking any half-space H = {u : 〈u, a〉 ≤ c} and

defining a scalar auxiliary game ℓ
′(q, p) :=

〈
a,ℓ(q, p)

〉
. Being able to respond to

any p with a q that satisfies ℓ(q, p) ∈ S means that we are able to respond in the

scalar game such that the loss is at most c. But for scalar games, von Neumann’s

minimax theorem says that being able to respond is equivalent to existence of an

oblivious strategy. This concludes the proof.

At this point, the utility of the above theorem is not clear. The multi-dimensional

nature of the payoff unfortunately means that there is no silver-bullet mixed strat-

egy that will get us what we want. The key insight of Blackwell is that we can get

what we want in the long run by having an adaptive strategy which tunes to the

behavior of the opponent. That is, we can learn opponent’s behavior and play in a

way that will make the average payoff approach the set S.

Definition 27.2. A set S is approachable by the row player if the row player has a

strategy such that no matter how the column player plays,

lim
n→∞

d

(
1

n

n∑
t=1

ℓ(ft , xt),S

)
= 0 a.s.

In the above definitions, n is the number of stages in the repeated game, ft is a

random draw from our strategy qt at time t , and xt is the opponent’s move; d is a

distance (e.g. the norm in the Banach space).

Approachability is trivial for the scalar game: we can approach the set S =
(−∞,c] if and only if c ≤ V . The same is true for half-space approachability: a

224

27.1 Blackwell’s vector-valued generalization and the original proof

half-space H = {u : 〈u, a〉 ≤ c} is approachable if and only if there exists q such that

for all p,
〈

a,ℓ(q, p)
〉
≤ c.

It is remarkable that Blackwell completely characterized situations in which

S is approachable. In fact, the situation is quite simple: a set is approachable if

and only if we can respond to the mixed strategy of the opponent. That is if and

only if ∀p ∃q, s.t. ℓ(q, p) ∈ S. By the previous Theorem, it is also equivalent to

approachability of every half-space containing S:

Theorem 27.3 (Blackwell, 1956 [8]). A closed convex set S is approachable iff every

half-space containing S is approachable.

Proof. Let Lt = 1
t

∑t
s=1ℓ(fs , xs). We would like to make this average approach S.

The idea is that we can make progress towards the set by attempting to approach

a hyperplane perpendicular to the current projection direction from Lt to the set.

This will work because points sufficiently close to Lt−1 along the segment connect-

ing Lt−1 and the new payoff (on average on the other side of the hyperplane) are

closer to the set S than Lt−1. Here is the explicit adaptive strategy we are going to

use. At stage t , play that qt which satisfies

sup
p

〈
at−1,ℓ(qt , p)

〉
≤ ct−1

where

at−1 =
Lt−1 −πS(Lt−1)

‖Lt−1 −πS(Lt−1)‖
, ct−1 = 〈at−1,πS(Lt−1)〉 .

Here πS is the Euclidean projection onto S. Note that qt exists by our assumption

that we can put down an oblivious mixed strategy for any hyperplane. The rest is

a bit of algebra:

d(Lt ,S)2 = ‖Lt −πS(Lt)‖2

≤ ‖Lt −πS(Lt−1)‖2

=
∥∥∥∥

t −1

t
(Lt−1 −πS(Lt−1))+

1

t
(ℓ(ft , xt)−πS(Lt−1))

∥∥∥∥
2

=
(

t −1

t

)2

d(Lt−1,S)2 +
1

t 2

∥∥ℓ(ft , xt)−πS(Lt−1)
∥∥2

+2
t −1

t 2

〈
Lt−1 −πS(Lt−1),ℓ(ft , xt)−πS(Lt−1)

〉

225

27.2 A non-constructive proof

We can rewrite this as

t 2d(Lt ,S)2−(t−1)2d(Lt−1,S)2 ≤ const+2(t−1)
〈

Lt−1 −πS(Lt−1),ℓ(ft , xt)−πS(Lt−1)
〉

,

where we assumed that the payoffs are bounded in ‖ ·‖.

Summing the inequalities over all stages, and using the fact that

〈
Lt−1 −πS(Lt−1),ℓ(qt , pt)−πS(Lt−1)

〉
≤ 0

we are left with an average of martingale differences

〈
Lt−1 −πS(Lt−1),ℓ(ft , xt)−ℓ(qt , pt)

〉
≤ 0

which tends to zero almost surely.

27.2 A non-constructive proof

We now give a very different proof of Blackwell’s Approachability (Theorem 27.3).

While it is non-constructive (that is, we do not exhibit a strategy for playing the

game), the resulting statement is quite a bit more general and sharp (see [45] for

more details).

The idea is to bite the bullet and write down the minimax value of the repeated

game:

Vn = inf
q1

sup
p1

E
x1∼p1
f1∼q1

. . . inf
qn

sup
pn

E
xn∼pn
fn∼qn

d

(
1

n

n∑
t=1

ℓ(ft , xt),S

)

An upper bound on this value means that there exists a sequential strategy (way of

picking qt ’s based on the past history) such that the expected distance to the set

is at most this bound. On the other hand, a lower bound gives a guarantee to the

opponent.

In view of Theorem 27.1, to prove Theorem 27.3 (in expectation) it is enough to

show that the value Vn decays to zero under the assumption that for any strategy

p of the opponent, there exists a q∗(p) such that ℓ(q∗(p), p) ∈ S.

Note that in each pair in Vn , infimum and supremum can be exchanged be-

cause what is inside of the pair is a bilinear function (expectation with respect to

qt and pt). Importantly, pt and qt only appear in the respective t th expectation,

226

27.2 A non-constructive proof

but nowhere else in the expression (for, in that case, it might not be a bilinear

form). We arrive at

Vn = sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pn

inf
qn

E
xn∼pn
fn∼qn

d

(
1

n

n∑
t=1

ℓ(ft , xt),S

)

We can now add and subtract a term involving the expected payoffs:

Vn = sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pn

inf
qn

E
xn∼pn
fn∼qn

{
d

(
1

n

n∑
t=1

ℓ(ft , xt),S

)
−d

(
1

n

n∑
t=1

ℓ(qt , pt),S

)

+d

(
1

n

n∑
t=1

ℓ(qt , pt),S

)}

It is easy to check that

d

(
1

n

n∑
t=1

ℓ(ft , xt),S

)
−d

(
1

n

n∑
t=1

ℓ(qt , pt),S

)
≤

∥∥∥∥
1

n

n∑
t=1

(ℓ(ft , xt)−ℓ(qt , pt))

∥∥∥∥

We now use the following properties: for functions C1(a) and C2(a),

E(C1(a)+C2(a)) = E(C1(a))+E(C2(a)), sup
a

(C1(a)+C2(a)) ≤ sup
a

C1(a)+ sup
a

C2(a)

while for the infimum

inf
a

(C1(a)+C2(a)) ≤ sup
a

C1(a)+ inf
a

C2(a) .

The sequence minimax expression then splits (from inside out) as

Vn ≤ sup
p1

sup
q1

E
x1∼p1
f1∼q1

. . . sup
pn

sup
qn

E
xn∼pn
fn∼qn

∥∥∥∥
1

n

n∑
t=1

(ℓ(ft , xt)−ℓ(qt , pt))

∥∥∥∥

+ sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pn

inf
qn

E
xn∼pn
fn∼qn

d

(
1

n

n∑
t=1

ℓ(qt , pt),S

)

For the second term, we use the assumption that we can respond to any strategy

pt by choosing a q∗
t (pt) such that ℓ(q∗

t (pt), pt) ∈ S. This means that the second

term

sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pn

inf
qn

E
xn∼pn
fn∼qn

d

(
1

n

n∑
t=1

ℓ(qt , pt),S

)
≤ sup

p1

. . . sup
pn

{
d

(
1

n

n∑
t=1

ℓ(q∗
t (pt), pt),S

)}
= 0

227

27.3 Discussion

where we used convexity of S in the first step.

The first term is upper bounded by the variation of the worst-case martingale

difference sequence with values in Im(ℓ) ⊂B. We conclude that

Vn ≤ 2sup
M

E

∥∥∥∥
1

n

n∑
t=1

dt

∥∥∥∥

where the supremum is over all martingale difference sequences with dt ∈ Im(ℓ).

27.3 Discussion

The second proof is non-constructive, yet yields the statement in Banach spaces

where martingale convergence holds. In fact, it is easy to show that this bound

is tight: there is a lower bound differing in only a constant. To the best of our

knowledge, all previous proofs relied on the inner product structure.

As we mentioned, the Blackwell’s approachability theorem has been used as a

tool for repeated games. Typically, one take the problem at hand (e.g. minimiza-

tion of internal regret), finds a potentially high-dimensional space and a set S, so

that, if we can approach the set, we can solve the original problem. It is shown in

[45] that one can analyze problems without appealing to Blackwell’s approachabil-

ity and without artificially embedding the problem at hand into a different space.

The fact that Blackwell’s approachability itself follows from the tools we have de-

veloped is a testament to the power of symmetrization. We refer to [45] for more

details.

27.4 Algorithm Based on Relaxations: Potential-Based

Approachability

228

28
From Sequential to Statistical

Learning: Relationship Between Values

and Online-to-Batch

28.1 Relating the Values

Now that we have a good understanding of complexities for both statistical learn-

ing and sequential prediction, it is time to draw some explicit connections be-

tween these two settings. First of all, the connection can be done at the level of

the minimax values. We can think of a minimax value as a measure of complexity

of a set F, and it is natural to ask whether the minimax complexity of F is greater

for sequential or for statistical learning. We have already seen that the sequential

Rademacher complexity is an upper bound on the i.i.d. Rademacher complexity,

so the following results should come at no surprise.

For concreteness, consider the setting of supervised learning with absolute

loss. Recall the definition of the value Vseq,ab(F,n) for the sequential problem

(see Eq. (5.17)) and Vi i d ,ab(F,n) for the statistical learning problem (defined in

Eq. (5.9)).

By Corollary 7.15 and the fact that the absolute loss is 1-Lipschitz,

Vi i d ,ab(F,n) ≤ 2sup
P

Ri i d (F) (28.1)

and by (7.18),

Ri i d (F) ≤ sup
x1,...,xn

R̂i i d (F, x1, . . . , xn) ≤Rseq (F,n), (28.2)

229

28.1 Relating the Values

where the middle term is Ri i d (F,n) by definition. On the other hand, by an argu-

ment very similar to that of Theorem 13.11,

Rseq (F,n) ≤Vseq,ab(F,n) .

We conclude that

Vi i d ,ab(F,n) ≤ 2Vseq,ab(F,n). (28.3)

As we suspected, the sequential prediction problem is harder (up to a constant

factor) than the i.i.d. learning problem. What is interesting, by Lemma 12.13, for

proper learning,

Vi i d ,ab(F,n) ≥Ri i d (F,2n)−
1

2
Ri i d (F,n) (28.4)

This has the following implication: if Ri i d (F,2n)− 1
2
Ri i d (F,n) is of the same or-

der as Rseq (F,n), then the difficulties of i.i.d. learning and sequential prediction

(with adversarially chosen data) are the same. In view of (28.2) this happens when

Rseq (F,n) is not much larger than Ri i d (F,2n). For linear problems this happens

when the expected length of a random walk with independent increments is of the

same order as the worst possible random walk with martingale differences as in-

crements. Such martingale and i.i.d. convergence is governed, respectively, by the

M-type and type of the space. While there exist spaces where the two are different,

such spaces are quite exotic and difficult to construct. Thus, for all practical pur-

poses, for linear function classes the classical and sequential Rademacher com-

plexities coincide up to a constant. Good news for linear function classes! Further,

we already saw that kernel methods can be viewed as working with a linear class

of functions in a certain Reproducing Kernel Hilbert Space. One of the methods of

choice in practice, kernel methods are certainly powerful.

Finally, recall that we formalized the above statement (that sequential and i.i.d.

Rademacher averages are close) for finite-dimensional linear classes in Assump-

tion 23.1, and indeed the resulting randomized method yielded an upper bound

of an i.i.d. (rather than sequential) Rademacher complexity.

More generally, for non-linear classes, we get a precise handle on the relative

difficulty of statistical vs adversarial learning by studying the gap between the se-

quential Rademacher averages and the classical Rademacher averages.

230

28.2 Online to Batch Conversion

28.2 Online to Batch Conversion

Given the close relationship between the values of the i.i.d. and sequential learn-

ing problems, we can ask whether algorithms developed in the sequential setting

can be used for statistical learning. Since a regret bound holds for all sequences, it

also holds for an i.i.d. sequence. What remains to be done is to construct a single

estimator out of the sequence produced by the sequential method, and to con-

vert the regret guarantee into a guarantee about excess loss. Such a process has

been dubbed an “Online-to-Batch Conversion” [14]. We already performed such

a conversion in Section 4 where a regret bound for regression with individual se-

quences was converted to a near-optimal bound on excess loss. The argument

holds in more generality, and let us state it for convex loss functions.

Lemma 28.1. Let ℓ : F×Z 7→ R be convex in the first argument and suppose F is a

convex set1. Suppose there exists a strategy for choosing f1, . . . , fn in the sequential

prediction problem against an oblivious adversary (who picks a sequence z1, . . . , zn)

that guarantees a regret bound

1

n

n∑
t=1

ℓ(ft , zt)− inf
f ∈F

1

n

n∑
t=1

ℓ(f , zt) ≤ Rn

where Rn may be a function of z1, . . . , zn . Then the estimator f̄ = 1
n

∑n
t=1 ft enjoys the

excess loss bound of ERn :

EL(f̄)− inf
f ∈F

L(f) ≤ ERn

In particular, this implies that the value of the statistical learning problem is up-

per bounded by the value of the corresponding sequential prediction problem (see

Eq. (5.14)) against an oblivious (and, hence, non-oblivious) adversary:

Vi i d (F,n) ≤Vobl i v (F,n)

Proof. Just as in the proof of Lemma 4.1, suppose the sequence of Nature’s moves

is i.i.d. and take an expectation on both sides of the regret expression:

E

{
1

n

n∑
t=1

ℓ(ft , Zt)

}
≤ E

{
inf
f ∈F

1

n

n∑
t=1

ℓ(f , Zt)

}
+ERn (28.5)

1This assumption can be relaxed by considering mixed strategies.

231

28.2 Online to Batch Conversion

Observe that by Jensen’s inequality,

EL(f̄) = E
{
E
{
ℓ(f̄ , Z)

∣∣ Z1:n

}}
≤ E

{
E

{
1

n

n∑
t=1

ℓ(ft , Z)

∣∣∣∣ Z1:n

}}

= E

{
1

n

n∑
t=1

E
{
ℓ(ft , Zt)

∣∣ Z1:t−1

}}
= E

{
1

n

n∑
t=1

ℓ(ft , Zt)

}

and

E

{
inf
f ∈F

1

n

n∑
t=1

ℓ(f , Zt)

}
≤ inf

f ∈F

{
1

n

n∑
t=1

Eℓ(f , Zt)

}
= inf

f ∈F
Eℓ(f , Z) = inf

f ∈F
L(f)

Rearranging the terms, the proof is completed.

Since in practice we often aim to minimize a convex loss, the above lemma

allows us to harness the power of sequential algorithms developed earlier in the

course: the average of the outputs of any such method can be used as a predic-

tor under the i.i.d. assumption. Much of the attractiveness of using sequential

regret minimization methods for i.i.d. learning is in the computational properties

of such algorithms. Processing one example at a time in a stream-like fashion, the

methods are often preferable for large scale problems.

We mention that the idea of computing the average f̄ (called the average of the

trajectory) is well-known in stochastic optimization.

232

29
Sequential Prediction: Better Bounds

for Predictable Sequences

Within the framework of sequential prediction, we developed methods that guar-

antee a certain level of performance irrespective of the sequence being presented.

While such “protection” against the worst case is often attractive, the bounds are

naturally pessimistic. It is, therefore, desirable to develop algorithms that yield

tighter bounds for “more regular” sequences, while still providing protection against

worst-case sequences.

There are a number of ways to model “more regular” sequences. Let us start

with the following definition. Fix a sequence of functions Mt : Xt−1 7→X, for each

t ∈ {1, . . . ,n}, [n]. These functions define a predictable process

M1, M2(x1), . . . , Mn(x1, . . . , xn−1) .

If, in fact, xt = Mt (x1, . . . , xt−1) for all t , one may view the sequence {xt } as a (noise-

less) time series, or as an oblivious strategy of Nature. If we knew that the sequence

given by Nature follows exactly this evolution, we should suffer no regret.

Suppose that we have a hunch that the actual sequence xt ≈ Mt (x1, . . . , xt−1)

will be “roughly” given by this predictable process. In other words, we suspect

that

sequence = predictable process + adversarial noise

Can we use this fact to incur smaller regret if our suspicion is correct? Ideally, we

would like to “pay” only for the unpredictable part of the sequence.

Once we know how to use the predictable process Mt to incur small regret, we

would like to choose the best one from a family of predictable processes. We will

233

address this issue of learning Mt later in the lecture. However, we’d like to make

it clear that the two problems are separate: (a) using a particular Mt as a prior

knowledge about the sequence in order to incur small regret, and (b) learning the

best Mt from a family of models.

Let us focus on the setting of online linear optimization, with ℓ(f , x) =
〈

f , x
〉

.

For notational convenience, assume for a moment thatF andX are dual unit balls.

In some sense, we would like to use {Mt } as a “center” around which the actual

sequence will be adversarially chosen. The key is the following observation, made

in [46]. Let us go back to the symmetrization step in Equation (7.12), which we

now state for the linear loss case:

sup
x1,x ′

1

Eǫ1 . . . sup
xn ,x ′

n

Eǫn

∥∥∥∥
n∑

t=1

ǫt

(
x ′

t −xt

)∥∥∥∥
∗
≤ 2sup

x1

Eǫ1 . . . sup
xn

Eǫn

∥∥∥∥
n∑

t=1

ǫt xt

∥∥∥∥
∗

If we instead only consider sequences such that at any time t ∈ [n], xt and x ′
t have

to be σt -close to the predictable process Mt (x1, . . . , xt−1), we can add and subtract

the “center” Mt on the left-hand side of the above equation and obtain tighter

bounds for free, irrespective of the form of Mt (x1, . . . , xt−1). To make this observa-

tion more precise, let

Ct =Ct (x1, . . . , xt−1) =
{

x : ‖x −Mt (x1, . . . , xt−1)‖∗ ≤σt

}

be the set of allowed deviations from the predictable “trend”. We then have a

bound

sup
x1,x ′

1∈C1

Eǫ1 . . . sup
xn ,x ′

n∈Cn

Eǫn

∥∥∥∥
n∑

t=1

ǫt

(
x ′

t −Mt (x1, . . . , xt−1)+Mt (x1, . . . , xt−1)−xt

)∥∥∥∥
∗
≤ c

√
n∑

t=1

σ2
t

on the value of the game against such “constrained” sequences, where the con-

stant c depends on the smoothness of the norm.

The development so far is a good example of how a purely theoretical obser-

vation can point to existence of better prediction methods. What is even more

surprising, for most of the methods presented below, the individual σt ’s need not

be known ahead of time except for their total sum
∑n

t=1σ
2
t . The latter sum need

not be known in advance either, thanks to the standard doubling trick, and one

can obtain upper bounds of

n∑
t=1

〈
ft , xt

〉
− inf

f ∈F

n∑
t=1

〈
f , xt

〉
≤ c

√
n∑

t=1

‖xt −Mt (x1, . . . , xt−1)‖2
∗

234

29.1 Full Information Methods

on regret, for some problem-dependent constant c.

Let us now discuss several types of statistics Mt that could be of interest.

Example 24. Regret bounds in terms of

Mt (x1, . . . , xt−1) = xt−1

are known as path length bounds [46, 18]. Such bounds can be tighter than the

pessimistic O(
p

n) bounds when the previous move of Nature is a good proxy for

the next move.

Regret bounds in terms of

Mt (x1, . . . , xt−1) =
1

t −1

t−1∑
s=1

xs

are known as variance bounds [17, 26, 27, 46]. One may also consider fading mem-

ory statistics

Mt (x1, . . . , xt−1) =
t−1∑
s=1

αs xs ,
t−1∑
s=1

αs = 1, αs ≥ 0

or even plug in an auto-regressive model.

If “phases” are expected in the data (e.g., stocks tend to go up in January), one

may consider

Mt (x1, . . . , xt−1) = xt−k

for some phase length k. Alternatively, one may consider averaging of the past

occurrences n j (t) ⊂ {1, . . . , t } of the current phase j :

Mt (x1, . . . , xt−1) =
∑

s∈nt

αs xs .

29.1 Full Information Methods

We now exhibit a Mirror Descent type method which can be seen as a generaliza-

tion of the recent algorithm of [18]. Let R be a 1-strongly convex function with

respect to a norm ‖·‖, and let DR(·, ·) denote the Bregman divergence with respect

to R. Let ∇R∗ be the inverse of the gradient mapping ∇R. Let ‖ · ‖∗ be the norm

dual to ‖ ·‖. We do not require F and X to be unit dual balls.

235

29.1 Full Information Methods

Optimistic Mirror Descent Algorithm (equivalent form)

Input: R 1-strongly convex w.r.t. ‖ ·‖, learning rate η> 0

Initialize f1 = g1 = argming R(g)

At t = 1, . . . ,n, predict ft and update

g t+1 = argmin
g∈F

η
〈

g , xt

〉
+DR(g , g t+1)

ft+1 = argmin
f ∈F

η
〈

f , Mt+1

〉
+DR(f , g t+1)

Lemma 29.1. Let F be a convex set in a Banach space B and X be a convex set in the

dual space B∗. Let R : B 7→ R be a 1-strongly convex function on F with respect to

some norm ‖·‖. For any strategy of Nature, the Optimistic Mirror Descent Algorithm

(with or without projection for g t+1) yields, for any f ∗ ∈F,

n∑
t=1

〈
ft , xt

〉
−

n∑
t=1

〈
f ∗, xt

〉
≤ η−1R2

max +
η

2

n∑
t=1

‖xt −Mt‖2
∗

where R2
max = max f ∈FR(f)−min f ∈FR(f).

Proof of Lemma 29.1. For any f ∗ ∈F,

〈
ft − f ∗, xt

〉
=

〈
ft − g t+1, xt −Mt

〉
+

〈
ft − g t+1, Mt

〉
+

〈
g t+1 − f ∗, xt

〉
(29.1)

First observe that

〈
ft − g t+1, xt −Mt

〉
≤

∥∥ ft − g t+1

∥∥‖xt −Mt‖∗ ≤
η

2
‖xt −Mt‖2

∗+
1

2η

∥∥ ft − g t+1

∥∥2
.

(29.2)

On the other hand, any update of the form a∗ = argmina∈A 〈a, x〉+DR(a,c) satis-

fies (see e.g. [6, 42])

〈
a∗−d , x

〉
≤

〈
d −a∗,∇R(a∗)−∇R(c)

〉
= DR(d ,c)−DR(d , a∗)−DR(a∗,c) . (29.3)

This yields

〈
ft − g t+1, Mt

〉
≤

1

η

(
DR(g t+1, g t)−DR(g t+1, ft)−DR(ft , g t)

)
. (29.4)

236

29.1 Full Information Methods

Next, note that by the form of update for g t+1,

〈
g t+1 − f ∗, xt

〉
=

1

η

〈
g t+1 − f ∗,∇R(g t)−∇R(g t+1)

〉

=
1

η

(
DR(f ∗, g t)−DR(f ∗, g t+1)−DR(g t+1, g t)

)
, (29.5)

and the same inequality holds by (29.3) if g t+1 is defined as in (??) with a projec-

tion. Using Equations (29.2), (29.5) and (29.4) in Equation (29.1) we conclude that

〈
ft − f ∗, xt

〉
≤

η

2
‖xt −Mt‖2

∗+
1

2η

∥∥ ft − g t+1

∥∥2

+
1

η

(
DR(g t+1, g t)−DR(g t+1, ft)−DR(ft , g t)

)

+
1

η

(
DR(f ∗, g t)−DR(f ∗, g t+1)−DR(g t+1, g t))

)

≤
η

2
‖xt −Mt‖2

∗+
1

2η

∥∥ ft − g t+1

∥∥2 +
1

η

(
DR(f ∗, g t)−DR(f ∗, g t+1)−DR(g t+1, ft)

)

By strong convexity of R, DR(g t+1, ft) ≥ 1
2

∥∥g t+1 − ft

∥∥2
and thus

〈
ft − f ∗, xt

〉
≤

η

2
‖xt −Mt‖2

∗+
1

η

(
DR(f ∗, g t)−DR(f ∗, g t+1)

)

Summing over t = 1, . . . ,n yields, for any f ∗ ∈F,

n∑
t=1

〈
ft − f ∗, xt

〉
≤

η

2

n∑
t=1

‖xt −Mt‖2
∗+

R2
max

η

where R2
max = max f ∈FR(f)−min f ∈FR(f). Choosing η =

p
2Rmax√∑n

t=1 ‖xt−Mt‖2
∗

balances

the two terms.

We remark that the sum
∑n

t=1 ‖xt−Mt‖2
∗ need not be known in advance in order

to set η, as the usual doubling trick can be employed. Moreover, the results carry

over to online convex optimization, where xt ’s are now gradients at the points cho-

sen by the learner. Last but not least, notice that if the sequence is not following

the trend Mt as we hoped it would, we still obtain the same bounds as for the Mir-

ror Descent algorithm. In some sense, we got something for nothing!

237

29.2 Learning The Predictable Processes

29.2 Learning The Predictable Processes

So far we have seen that the learner can pick any arbitrary predictable process

(Mt)t≥1 and suffer a regret of at most O
(√∑n

t=1 ‖xt −Mt‖2
∗

)
. Now if the predictable

process we chose was good then our regret will be low. This raises the question as

to how the learner can choose a good predictable process (Mt)t≥1? Is it possible to

learn it online as we go, and if so, what does it mean to learn?

To formalize the concept of learning the predictable process, let us consider

the case where we have a set Π indexing a set of predictable processes (strategies)

we are interested in. That is each π ∈Π corresponds to predictable process given

by (Mπ
t)t≥1. Now if we had an oracle which in the start of the game told us which

π∗ ∈Π predicts the sequence optimally (in hindsight) then we could use the pre-

dictable process given by (Mπ∗
t)t≥1 and enjoy a regret bound of

√
infπ∈Π

∑n
t=1 ‖xt −Mπ

t ‖2
∗.

However we cannot expect to know which π ∈Π is the optimal one at the start of

the game. In this scenario one would like to learn a predictable process that in turn

can be used with algorithms proposed thus far to get a regret bound comparable

regret bound one could have obtained knowing the optimal π∗ ∈Π.

To motivate this setting better let us consider an example. Say there are n stock

options we can choose to invest in. On each day t , associated with each stock op-

tion one has a loss/payoff that occurs upon investing in a single share of that stock.

Our goal in the long run is to have a low regret with respect to the single best stock

in hindsight. Up to this point, the problem just corresponds to the simple experts

setting where each of the n stocks is one expert and on each day we split our in-

vestment according to a probability distribution over the n options. However now

additionally we allow the learner/investor access to prediction models from the

set Π. These could be human strategists making forecasts, or outcomes of some

hedge-fund model. At each time step the learner can query prediction made by

each π ∈Π as to what the loss on the n stocks would be on that day. Now we would

like to have a regret comparable to the regret we can achieve knowing the best

model π∗ ∈ Π that in hind-sight predicted the losses of each stock optimally. We

shall now see how to achieve this.

238

29.2 Learning The Predictable Processes

Optimistic Mirror Descent Algorithm with Learning the Predictable

Process

Input: R 1-strongly convex w.r.t. ‖ ·‖, learning rate η> 0

Initialize f1 = g1 = argming R(g) and initialize q1 ∈ ∆(Π) as, ∀π ∈
Π, q1(π) = 1

|Π|
Set M1 =

∑
π∈Π q1(π)Mπ

1

At t = 1, . . . ,n, predict ft and update

∀π ∈Π, qt+1(π) ∝ qt (π)e−‖Mπ
t −xt‖2

∗ and Mt+1 =
∑

π∈Π
qt+1(π)Mπ

t+1

g t+1 =∇R∗ (
∇R(g t)−ηxt

)

ft+1 = argmin
f ∈F

η
〈

f , Mt+1

〉
+DR(f , g t+1)

Lemma 29.2. Let F be a convex subset of a unit ball in a Banach space B and X be a

convex subset of the dual unit ball. Let R :B 7→R be a 1-strongly convex function on

F with respect to some norm ‖ · ‖. For any strategy of Nature, the Optimistic Mirror

Descent Algorithm yields, for any f ∗ ∈F,

n∑
t=1

〈
ft , xt

〉
−

n∑
t=1

〈
f ∗, xt

〉
≤ η−1R2

max +3.2η

(
inf
π∈Π

n∑
t=1

‖xt −Mπ
t ‖

2
∗+ log |Π|

)

where R2
max = max f ∈FR(f)−min f ∈FR(f).

Once again, let us discuss what makes this setting different from the usual set-

ting of experts: the forecast given by the prediction models is in the form of a vec-

tor, one for each stock. If we treat each prediction model as an expert with the

loss ‖xt −Mπ
t ‖2

∗, the experts algorithm would guarantee that we achieve the best

cumulative loss of this kind. However, this is not the object of interest to us, as

we are after the best allocation of our money among the stocks, as measured by

inf f ∈F
∑n

t=1

〈
f , xt

〉
.

Proof. First note that by Lemma 29.1 we have that for the Mt chosen in the algo-

239

29.3 Follow the Perturbed Leader Method

rithm,

n∑
t=1

〈
ft , xt

〉
−

n∑
t=1

〈
f ∗, xt

〉
≤ η−1R2

max +
η

2

n∑
t=1

‖xt −Mt‖2
∗

≤ η−1R2
max +

η

2

n∑
t=1

∑

π∈Π
qt (π)‖xt −Mπ

t ‖
2
∗ (Jensen’s Inequality)

≤ η−1R2
max +

η

2

(
4e

e −1

)(
inf
π∈Π

n∑
t=1

‖xt −Mπ
t ‖

2
∗+ log |Π|

)

where the last step is due to Corollary 2.3 of [16]. Indeed, the updates for qt ’s are

exactly the experts algorithm with point-wise loss at each round t for expert π ∈Π

given by
∥∥Mπ

t −xt

∥∥2

∗. Also as each Mπ
t ∈X the unit ball of dual norm, we can con-

clude that
∥∥Mπ

t −xt

∥∥2

∗ ≤ 4 which is why we have a scaling by factor 4. Simplifying

leads to the bound in the lemma.

Notice that the general idea used above is to get Mt ’s for the algorithm by run-

ning another (secondary) regret minimizing strategy where loss per round is sim-

ply ‖Mt −xt‖2
∗ and regret is considered with respect to the best π ∈ Π. That is,

regret of the secondary regret minimizing game is given by

n∑
t=1

‖xt −Mt‖2
∗− inf

π∈Π

n∑
t=1

∥∥xt −Mπ
t

∥∥2

∗

In general, the experts algorithm for minimizing secondary regret can be replaced

by any other online learning algorithm.

29.3 Follow the Perturbed Leader Method

29.4 A General Framework of Stochastic, Smoothed,

and Constrained Adversaries

240

30
Sequential Prediction: Competing With

Strategies

One of the most frequent criticisms of the regret definition is the fact that the com-

parator term is a static decision is hindsight, not able to change its predictions as

the sequence evolves. What good is showing small regret if we only perform as well

as the best single action for the whole sequence?

We now show that one can obtain regret bounds with respect to a possibly in-

finite set of strategies which look at the actual sequence and produce a prediction.

In fact, this is not an increase in generality of our results so far, but rather the op-

posite. Observe that in the setting of supervised learning, the side information xt

is presented at the beginning of the round. This information is treated as a worst-

case move in our framework, but can instead be restricted to contain the history

so far. In this case, an element f ∈F can be viewed as a strategy which produces a

prediction f (xt) based on the history. At the end of the day, we will be competing

with the best strategy f ∈F for the given sequence of (x1, y1), . . . , (xn , yn).

So, if the setting of supervised learning subsumes competing with strategies,

can we detail the bounds for the latter case? The key is that the covering num-

bers, the combinatorial parameters, and the other relevant complexities are now

defined not for the worst-case tree x but for the worst tree with some “history”

structure. This makes the problem easier. In fact, we will easily derive bounds for

regret defined in terms of a set of bounded-lookback strategies, or strategies lim-

ited in some other way (of course, we cannot compete with absolutely all possible

strategies). Further, we will show that we can achieve the correct rate for regret

against the set of all monotonic strategies, a problem that was considered in [15].

241

30.1 Bounding the Value with History Trees

We do not know whether such a result is possible without the tools developed in

this course.

Let us fix some notation. At each round, we choose an action ft ∈ F, Nature

responds with zt , and the cost associated with the two decisions is ℓ(ft , zt). Let

Π=
{
π= (πt)n

t=1 : πt :Zt−1 →F
}

be a set of strategies π, each consisting of a sequence of mappings πt from his-

tory to the next action. We may then formulate the value of the game with regret

defined in terms of these strategies.

V(Π) = inf
q1

sup
z1

E
f1∼q1

. . . inf
qn

sup
zn

E
fn∼qn

[
1

n

n∑
t=1

ℓ(ft , zt)− inf
π∈Π

1

n

n∑
t=1

ℓ(πt (z1:t−1), zt)

]

30.1 Bounding the Value with History Trees

To proceed, we need a definition of a history tree.

Definition 30.1. Let H = ∪t≥0Z
t be the space of histories. We say a tree h is a

history tree if it is H-valued and has the following consistency properties for any t :

• hi : {±1}i−1 7→Zi−1

• for any ǫ, if ht (ǫ1, . . . ,ǫt−2,+1) = (z1, . . . , zt−1) and ht (ǫ1, . . . ,ǫt−2,−1) = (z ′
1, . . . , z ′

t−1),

then zs = z ′
s for all 1 ≤ s ≤ t −2.

As an example, a valid history tree would have

h1 =;,h2(1) = z1,h3(1,−1) = (z1, z2),h3(1,1) = (z1, z3),h2(−1) = z4,h3(−1,−1) = (z4, z5),h3(−1,1) = (z4, z6).

Theorem 30.2. The value of the prediction problem with a set Π of strategies is up-

per bounded as

V(Π) ≤ 2sup
w,z

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtℓ(πt (w1(ǫ), . . . ,wt−1(ǫ)),zt (ǫ))

]

where the supremum is over two Z-valued trees z and w of depth n. Equivalently,

we may rewrite the upper bound as

V(Π) ≤ 2sup
g

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtℓ
′(π,gt (ǫ))

]
, 2Rseq (Π)

242

30.1 Bounding the Value with History Trees

for the new loss function ℓ
′(π, (ht ,zt)(ǫ)) =ℓ(πt (ht (ǫ)),zt (ǫ)) where g ranges over all

history-outcome trees (h,z), with z being an arbitrary Z-valued tree, and h being

an arbitrary history tree (not necessarily consistent with z).

Proof. The proof of Section 7.1.2 goes through and we obtain

n ·V(Π) =⟪sup
pt

E
zt∼pt

⟫n

t=1

sup
π∈Π

[
n∑

t=1

inf
ft∈F

Ez ′t
ℓ(ft , z ′

t)−ℓ(πt (z1:t−1), zt)

]

≤⟪sup
pt

E
zt∼pt

⟫n

t=1

sup
π∈Π

[n∑
t=1

Ez ′t
ℓ(πt (z1:t−1), z ′

t)−ℓ(πt (z1:t−1), zt)

]

≤⟪sup
pt

E
zt ,z ′t

⟫n

t=1

sup
π∈Π

[n∑
t=1

ℓ(πt (z1:t−1), z ′
t)−ℓ(πt (z1:t−1), zt)

]

Define the “selector function” χ :Z×Z× {±1} 7→Z by

χ(z, z ′,ǫ) =
{

z ′ if ǫ=−1

z if ǫ= 1

When zt and z ′
t are understood from the context, we will use the shorthandχt (ǫ) :=

χ(zt , z ′
t ,ǫ). In other words, χt selects between zt and z ′

t depending on the sign of ǫ.

With the notation of the selector function, we may write

⟪sup
pt

E
zt ,z ′t

⟫n

t=1

sup
π∈Π

[n∑
t=1

ℓ(πt (z1:t−1), z ′
t)−ℓ(πt (z1:t−1), zt)

]

=⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

ǫt

(
ℓ(πt (χ1(z1, z ′

1,ǫ1), . . . ,χt−1(zt−1, z ′
t−1,ǫt−1)), z ′

t)

−ℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), zt)
)]

To be convinced of this equality, we should think of ǫt = −1 as “zt and z ′
t getting

renamed”. The process of renaming these random variables has two effects: the

sign on the t-th term gets flipped, and all the conditioning that was previously

done on zt now has z ′
t instead. This is exactly accomplished by multiplying the

t-th term by ǫt and introducing the selector throughout the history.

We now split the above terms into two, yielding an upper bound of

⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

ǫtℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), z ′
t)

]

+⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

−ǫtℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), zt)
)]

243

30.1 Bounding the Value with History Trees

Now the claim is that the second term is equal to the first. Let us replace ǫt with

−ǫt for all t :

⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

−ǫtℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), zt)
)]

=⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

ǫtℓ(πt (χ1(z ′
1, z1,ǫ1), . . . ,χt−1(z ′

t−1, zt−1,ǫt−1)), zt)
)]

Renaming z ′
t and zt concludes the claim. Therefore,

n ·V(Π) ≤ 2⟪sup
pt

E
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

ǫtℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), z ′
t)

]

≤ 2⟪sup
zt ,z ′t

E
ǫt

⟫n

t=1

sup
π∈Π

[n∑
t=1

ǫtℓ(πt (χ1(z1, z ′
1,ǫ1), . . . ,χt−1(zt−1, z ′

t−1,ǫt−1)), z ′
t)

]

= 2sup
z,z′

Eǫ sup
π∈Π

[n∑
t=1

ǫtℓ(πt (χ1(z1,z′1,ǫ1), . . . ,χt−1(zt−1(ǫ),z′t−1(ǫ),ǫt−1)),z′t (ǫ))

]

We now replace the dependence of πt on two trees and a selector between

them by a dependence on only one tree, resulting in an upper bound of

2sup
w,z′

Eǫ sup
π∈Π

[n∑
t=1

ǫtℓ(πt (w1, . . . ,wt−1(ǫ)),z′t (ǫ))

]

While this might be a loose upper bound, we do not expect this step to be too bad:

for sequences ǫ with the majority of +1’s, the arguments to πt anyway come from

the tree z, unrelated to z′.

We may now re-write the upper bound as

2sup
h,z

Eǫ sup
π∈Π

[n∑
t=1

ǫtℓ(πt (ht (ǫ)),zt (ǫ))

]

where h ranges over history trees and z ranges over Z-valued trees. For the new

loss function ℓ
′(π, (ht ,zt)(ǫ)) = ℓ(πt (ht (ǫ)),zt (ǫ)) we can rewrite the (normalized

by n) bound as

2sup
g

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtℓ
′(π,gt (ǫ))

]
, 2Rseq (Π) .

244

30.1 Bounding the Value with History Trees

We remark that in the case π ∈ Π are constant history-independent strategies

π
f
1 = . . . = π

f
n = f ∈ F, we recover the sequential Rademacher complexity. In fact,

for all the notions we present below, taking Π to be the set of all constant strategies

should recover the notions introduced earlier.

Example 25. Theorem 30.2 has the following immediate implication. Let Πk be

a set of strategies which only look back at k past outcomes to determine the next

move. The bound then becomes

V(Πk) ≤ 2sup
w,z

Eǫ sup
π∈Πk

[
1

n

n∑
t=1

ǫtℓ(πt (wt−k (ǫ), . . . ,wt−1(ǫ)),zt (ǫ))

]

Now, suppose that Z = F is a finite set, of cardinality s. Then there are effectively

ssk
strategies π. The bound on the sequential Rademacher complexity will then

scale as

√
2sk log s

n
. However, we could have used the Exponential Weights algo-

rithm here, treating each π as an expert, arriving at the same bound on regret. The

next example presents a situation where one cannot simply use the exponential

weights algorithm.

Example 26. Let Π
k be the set of strategies which only depend on the past k

moves, and let us parametrize the strategies by a set Θ⊂R
k as:

πθ
t (z1, . . . , zt−1) =πθ

t (zt−k , . . . , zt−1) =
k∑

i=1

θi zt−i θ = (θ1, . . . ,θk) ∈Θ

Note that in this example the parameters θ of a given strategy πθ are fixed through-

out time. We may view this as an auto-regressive strategy. For illustration pur-

poses, suppose Z=F ⊂ R
d are ℓ2 unit balls, the loss is ℓ(f , z) =

〈
f , z

〉
, and Θ⊂ R

k

is also a unit ℓ2 ball. Then

R(Π) = sup
w,z

Eǫ sup
θ∈Θ

[n∑
t=1

ǫt

〈
πθ(wt−k (ǫ), . . . ,wt−1(ǫ)),zt (ǫ)

〉]

= sup
w,z

Eǫ sup
θ∈Θ

[n∑
t=1

ǫt zt (ǫ)T[wt−k (ǫ), . . . ,wt−1(ǫ)] ·θ
]

= sup
w,z

Eǫ

∥∥∥∥
n∑

t=1

ǫt zt (ǫ)T [wt−k (ǫ), . . . ,wt−1(ǫ)]

∥∥∥∥

≤
p

kn

This bound against all strategies parametrized by Θ is achieved by the gradient-

descent method. However, one can see that it is possible to consider slowly-changing

245

30.2 Static Experts

strategies, and one may arrive at an upper bound on the value in a non-constructive

way.

Example 27. As another example, consider the binary prediction problem, Z =
{0,1}, and the indicator loss. Suppose for now, strategies have potentially depen-

dence on the full history. Then,

sup
w,z

Eǫ sup
π∈Πk

[n∑
t=1

ǫt I {πt (w1(ǫ), . . . ,wt−1(ǫ)) 6= zt (ǫ)}

]

= sup
w,z

Eǫ sup
π∈Πk

[n∑
t=1

ǫt

(
πt (w1(ǫ), . . . ,wt−1(ǫ))(1−2zt (ǫ)

)
+zt (ǫ))

]

= sup
w

Eǫ sup
π∈Πk

[n∑
t=1

ǫtπt (w1(ǫ), . . . ,wt−1(ǫ))

]

30.2 Static Experts

It is now easy to recover the results of [15] for static experts. These are experts that

do not depend on the history! That is, each strategy π is a predetermined sequence

of outcomes, and we may therefore associate each π with a vector in Zn . Since

there is not dependence on the history, the sequential Rademacher complexity of

Π simplifies:

V(Π) ≤ 2Rseq (Π) = 2sup
g

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtℓ
′(π,gt (ǫ))

]
= 2sup

z
Eǫ sup

π∈Π

[
1

n

n∑
t=1

ǫtℓ(πt ,zt (ǫ))

]

Suppose Z = {0,1}, the loss is the indicator of a mistake, and π ∈ Zn for each

π ∈Π. Then we may erase the tree z as in the above example:

V(Π) ≤ 2Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtπt

]
=Ri i d (Π)

which is simply the classical i.i.d. Rademacher averages. One may, of course, fur-

ther upper bound this complexity by covering numbers, as done in the earlier part

of the course. This example has been worked out in [15], and it was shown that

the minimax value has a closed form. The authors were intrigued by the fact that

empirical process theory came into play in the problem of sequential prediction.

In fact, the development of the general theory we presented was also largely influ-

enced by this surprising fact. It is now clear how the classical empirical process

246

30.3 Covering Numbers and Combinatorial Parameters

theory arises due to the static nature of experts, yet in the non-static case a more

general theory is required.

After introducing the combinatorial parameters and covering numbers which

are specific to history trees, we will turn to the case of monotonic experts and re-

solve an open issue left by [15].

30.3 Covering Numbers and Combinatorial Parame-

ters

We may now define covering numbers, combinatorial parameters, and other mea-

sures of complexity for the set Π of strategies over the history-outcome trees g. If

we assume that the loss function is Lipschitz, then we may only need to define cov-

ering numbers on history trees h. The development is a straightforward modifica-

tion of the notions we developed earlier, where we replace “any x” with a “history

tree” h.

Definition 30.3. A set V of R-valued history trees is a α-cover (with respect to ℓp)

of a set of strategies Π on an X-valued history tree h if

∀π ∈Π, ∀ǫ ∈ {±1}n , ∃v ∈V s.t.

(
1

n

n∑
t=1

|πt (ht (ǫ))−vt (ǫ)|p
)1/p

≤α . (30.1)

An α-covering number is defined as

Np (Π,h,α) = min
{

card(V) : V is an α-cover
}

.

If Π is a set of all constant strategies π f with π
f
1 = . . . = π

f
n = f ∈ F, we recover

the notion of a covering number defined in Section 14.1.

For any history tree h, sequential Rademacher averages of a class of strategies

Π, where each π ∈Π is a sequence (πt)n
t=1 with πt :Zt−1 7→R satisfy

Rseq (Π,h) ≤ inf
α≥0



α+

√
2logN1(Π,α,h)

n





and the Dudley entropy integral type bound also holds:

Rseq (Π,h) ≤ inf
α≥0

{
4α+

12
p

n

∫1

α

√
log N2(Π,h,δ) dδ

}
(30.2)

For completeness, let us define history-based fat-shattering dimension.

247

30.4 Monotonic Experts

Definition 30.4. A history tree h of depth n is α-shattered by a set of strategies Π,

if there exists an R-valued tree s of depth n such that

∀ǫ ∈ {±1}n , ∃π ∈Π s.t. , ǫt (πt (ht (ǫ))−st (ǫ)) >α/2 ∀t ∈ {1, . . . ,n}

The (sequential) fat-shattering dimension for history trees fat(F,α) at scale α is the

largest n such that F α-shatters some history tree of depth n.

In general, the combinatorial results of Section 14.3 do not immediately extend

to history trees, due to the fact that, technically, two subtrees of a history tree are

not (according to our definition) valid history trees. There might be modified def-

initions such that the combinatorial results extend more naturally. However, we

now present a case where the upper bound on the sequential covering does hold.

Together with the Dudley entropy bound for the sequential cover, this resolves a

problem of [15].

30.4 Monotonic Experts

Consider a classΠof strategies (non-static experts), each predicting a valueπt (z1, . . . , zt−1) ∈
[0,1] =F which we can treat as the probability of predicting a 1. The outcome se-

quence is {0,1}-valued, and the loss is ℓ(f , z) = | f − z|. This is the probabilistic

version of the indicator loss considered in the previous example, but one can pass

easily from one setting to the other.

The requirement we place on the experts in the collection Π is that their pre-

dictions either never decrease or never increase. That is, for every π ∈Π, either

∀t ,∀(z1, . . . , zn) : πt (z1, . . . , zt−1) ≤πt+1(z1, . . . , zt)

or

∀t ,∀(z1, . . . , zn) : πt (z1, . . . , zt−1) ≥πt+1(z1, . . . , zt)

Following [15], we will call these experts monotonic. Observe that they are non-

static, as their actual predictions may depend on the history. Also, observe that

this class of experts is huge! We will calculate an upper bound on the sequential

covering number and will see that it does not behave as a “parametric” class.

Recall that a related class of nondecreasing (or, nonincreasing) functions on

the real line played an important role in Section 12.3 for the problem of Statistical

Learning. The i.i.d. ℓ∞-covering numbers at scale α were shown to be bounded

248

30.4 Monotonic Experts

by n2/α. It was then shown that a bound of Proposition 12.3 at a single scale gives

a suboptimal rate of Õ(n−1/3) while the Dudley entropy integral bound of Theo-

rem 12.4 yields the correct (up to logarithmic factors) rate of Õ(n−1/2). Further, it

was also shown that the i.i.d. fat-shattering dimension of this class is 2/α, which

gave us a direct estimate on the ℓ∞ covering numbers via the combinatorial result.

This was all done in the setting of Statistical Learning, and one may wonder if the

same gap exists in the sequential case.

In fact, we have all the tools necessary to prove the Õ(n−1/2) bound for the

sequential case with monotonic (in time) experts, resolving the question of [15].

Consider the bound given by Theorem 30.2:

V(Π) ≤ 2sup
w,z

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫt |πt (w1(ǫ), . . . ,wt−1(ǫ))−zt (ǫ)|
]

= 2sup
w

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtπt (w1(ǫ), . . . ,wt−1(ǫ))

]

= 2sup
h

Eǫ sup
π∈Π

[
1

n

n∑
t=1

ǫtπt (ht (ǫ))

]

where we employed the same contraction technique as in Example 27 and then

passed to a history tree. We claim that the sequential fat-shattering dimension for

history trees is at most 2/α for exactly the same reason as in the i.i.d. case: by

taking the alternating sequence of signs (tracing the left-right-left-right path) the

shattered tree needs to furnish a function that passes above and below the witness

levels. Exactly as argued in Example 13, monotonicity prevents us from having a

shattered tree of depth more than 2/α.

To conclude the argument, it remains to show that the covering numbers on

any history tree are at most O((2en/α)fatα), similarly to the combinatorial result

of Theorem 14.5, and then plug this bound into (30.2), exactly as in Section 12.3.

The combinatorial proof does hold in this particular case, yet there are several

subtleties: at certain steps in the proof of Theorem 14.6, we need to guarantee

existence of a shattered tree, but it, unfortunately, the tree might not respect our

restriction of being a history tree. Still, a simple modification works: we need to

simply extend the notion of fat shattering from history trees to a larger set. Instead

of getting involved in these modifications, we now give a separate proof of the fact

that the covering numbers are polynomial for the class of nonincreasing experts

(the non-decreasing case is analogous). The proof is also a good illustration of a

combinatorial argument that underlies Theorem 14.6.

249

30.4 Monotonic Experts

Lemma 30.5. For the class Π of nonincreasing experts satisfying

∀t ,∀(z1, . . . , zn) : πt (z1, . . . , zt−1) ≥πt+1(z1, . . . , zt),

the size of the sequential ℓ∞ cover is O((2en/α)1/α).

Proof. Define gk (d ,n) =
∑d

i=0

(n
i

)
k i , as in the proof of Theorem 14.6. The key re-

cursion for gk is:

gk (d ,n) = gk (d ,n −1)+kgk (d −1,n −1) .

Throughout the proof we will refer to a subtree of a history tree simply as a history

tree. Let k = 1
α , and assume for simplicity that k is an integer. Fix a history tree h.

Let t = |h1| stand for the length of the history at the root h1 (that is, h1 ∈Zt). Since h

can be a subtree of the history tree, t may not be 1. Let Π′ be a set of nonincreasing

experts, subset of the original class Π. Define

d(Π′,h) = max
{
⌈πt (h1)/α⌉ : π ∈Π

′}

It is not difficult to see that d in fact corresponds to an upper bound on the fat-

shattering dimension of the class Π
′ on h. We now proceed by induction. Fix d

and n. We suppose by the way of induction that for any Π
′, the size of the ℓ∞ cover

of Π′ on any history tree h of size n − 1 is upper bounded by gk (d(Π′,h),n − 1)

under the assumption d(Π′,h) ≤ d −1. The basis of the induction is trivial, so let’s

proceed to the induction step. Suppose we have a history tree h of size n and a

subset Π′ of nonincreasing experts such that d(Π′,h) = d . Define 1/α subsets Πi =
{π ∈Π

′ : ⌈πt (h1)/α⌉ = i } according to their (rounded up) value at the root h1, where

t = |h1|. Consider any j 6= d(Π′,h). By definition, d(Π j ,h) < d(Π′,h). Let hℓ and hr

be the left and the right subtrees of h at the root. By the nonincreasing property of

the experts, d(Π j ,hℓ) ≤ d(Π j ,h) < d(Π,h) and similarly d(Π j ,hr) < d(Π,h). By the

induction assumption, there is anℓ∞-cover ofΠ j on hr of size at most gk (d(Π′,h)−
1,n − 1), and the same holds on the left subtree. The covering trees for the left

subtree and for the right subtree can be joined together, with the root being the

value jα. It is easy to see that this preserves the property of an α-cover in the ℓ∞
sense. In this process, the size of the cover stays the same, so the ℓ∞-cover for

Π j is of size at most gk (d(Π′,h)− 1,n − 1). Note that there are a total of at most

k = 1/α such sets Π j , resulting in the total size of the cover of k ·gk (d(Π′,h)−1,n−
1). It remains to provide a cover for the case j = d(Π′,h). We perform the same

250

30.5 Compression and Sufficient Statistics

joining operation, yet we can only guarantee the size gk (d(Π′,h),n−1) rather than

gk (d(Π′,h)−1,n−1). But this is exactly what is needed to prove the inductive step,

thanks to the recursive form of gk .

Remark 30.6. Clearly, it is impossible to compete with the set of all possible strate-

gies. It is quite interesting that the seemingly innocuous assumption of monotonic-

ity of the non-static experts yields the rate of Õ(n−1/2). Such a rate is expected from a

small class. Yet, we see that the covering numbers are of the type O((n/α)1/α), which

is larger than the VC type O((n/α)dim) size of the ℓ∞ cover. It is then imperative

to use the Dudley type bound in order to obtain the correct rate. Thanks to the ex-

tension of the empirical process theory to the sequential prediction problem, this is

now possible.

30.5 Compression and Sufficient Statistics

We now assume that the strategies in Π have a particular form: they all work with a

“sufficient statistic”, or, more loosely, compression of the past data. Suppose “suf-

ficient statistics” can take values in some set Γ. Fix a set Π̄ of mappings π̄ : Γ 7→F.

We assume that all the strategies in Π are of the form

πt (z1, . . . , zt−1) = π̄(γ(z1, . . . , zt−1)), for some π̄ ∈ Π̄

and γ : Z∗ 7→ Γ is a fixed function (we can relax this assumption). Such a bottle-

neck Γ can arise due to a finite memory or finite precision, but can also arise if the

strategies in Π are actually solutions to a statistical problem. The latter case is of

a particular interest to us. If we assume a certain stochastic source for the data,

we may estimate the parameters of the model, and there is often a natural set of

sufficient statistics associated with it. If we collect all such solutions to stochastic

models in a set Π, we may compete with all these strategies as long as the set where

the sufficient statistics take values is not too large.

In the setting described above, the sequential Rademacher complexity for strate-

gies Π can be upper bounded by the complexity of Π̄ on Γ-valued trees:

Rseq (Π) ≤ sup
g

Eǫ sup
π̄∈Π̄

[
1

n

n∑
t=1

ǫtℓ(π̄,gt (ǫ))

]

We refer to [23, 45] for more details on these types of bounds.

[TO BE EXPANDED]

251

31
Localized Analysis and Fast Rates.

Local Rademacher Complexities

252

A
Appendix

Lemma A.1 (McDiarmid’s Inequality). Let φ : {0,1}n →R satisfy

∀ j , ∀z1, . . . , zn , z ′
j , |φ(z1, . . . , z j , . . . , z j)−φ(z1, . . . , z ′

j , . . . , zn)| ≤ c j

for some c1, . . . ,cn ≥ 0. Suppose Z1, . . . , Zn are i.i.d. random variables. Then for any

γ> 0,

P
(
|φ(Z1, . . . , Zn)−Eφ| ≥ γ

)
≤ 2exp

{
−

2γ2

∑n
t=1 c2

i

}

and the factor 2 in front of exp can be removed for the one-sided statements.

Lemma A.2 (Integrating out the Tails). Suppose for a nonnegative random variable

X we can prove

P

(
X ≥ A+B

√
γ

n

)
≤ e−γ

Then E[X] ≤ A+ Cp
n

for some C that depends only on B.

Proof.

E[X] =
∫A

0
P (X > δ)dδ+

∫∞

A
P (X > δ)dδ≤ A+

∫∞

0
P (X > A+δ)dδ

Setting δ= B
√

γ
n

, we get γ= nδ2

B 2 and

E[X] ≤ A+
∫∞

0
exp

{
−

nδ2

B 2

}
dδ= A+

C
p

n
.

253

Bibliography

[1] J. Abernethy, P. L. Bartlett, and E. Hazan. Blackwell approachability and low-

regret learning are equivalent. CoRR, abs/1011.1936, 2010.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive

dimensions, uniform convergence, and learnability. Journal of the ACM,

44:615–631, 1997.

[3] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Founda-

tions. Cambridge University Press, 1999.

[4] P.L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estima-

tion. Machine Learning, 48(1):85–113, 2002.

[5] P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk

bounds and structural results. The Journal of Machine Learning Research,

3:463–482, 2003.

[6] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradi-

ent methods for convex optimization. Operations Research Letters, 31(3):167–

175, 2003.

[7] J.O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[8] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific

Journal of Mathematics, 6(1):1–8, 1956.

254

BIBLIOGRAPHY

[9] D. Blackwell. Minimax vs. bayes prediction. Probability in the Engineering

and Informational Sciences, 9:pp 53–58, 1995.

[10] D. Blackwell and Meyer A. Girshick. Theory of games and statistical decisions.

Wiley publications in statistics. Dover Publications, 1979.

[11] V.I. Bogachev. Measure Theory, volume 2. Springer, 2007.

[12] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to Statistical Learn-

ing Theory. In O. Bousquet, U.v. Luxburg, and G. RâĂřtsch, editors, Advanced

Lectures in Machine Learning, pages 169–207. springer, 2004.

[13] L. Breiman. Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical Science, 16(3):199–231, 2001.

[14] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability

of on-line learning algorithms. Information Theory, IEEE Transactions on,

50(9):2050–2057, 2004.

[15] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. The

Annals of Statistics, 27(6):1865–1895, 1999.

[16] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge

University Press, 2006.

[17] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds

for prediction with expert advice. Machine Learning, 66(2):321–352, 2007.

[18] C.K. Chiang, T. Yang, C.J. Lee, M. Mahdavi, C.J. Lu, R. Jin, and S. Zhu. Online

optimization with gradual variations. COLT, 2012.

[19] A.S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting and

sharp oracle inequalities. In Proceedings of the 20th annual conference on

Learning theory, pages 97–111. Springer-Verlag, 2007.

[20] P. A. Dawid and V.G. Vovk. Prequential probability: Principles and properties.

Bernoulli, 5(1):125–162, 1999.

[21] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recogni-

tion, volume 31. Springer Verlag, 1996.

255

BIBLIOGRAPHY

[22] R.M. Dudley. Central limit theorems for empirical measures. The Annals of

Probability, 6(6):899–929, 1978.

[23] D. Foster, A. Rakhlin, K. Sridharan, and A. Tewari. Complexity-based ap-

proach to calibration with checking rules. In COLT, 2011.

[24] L. Györfi, M. Kohler, A. Krzyżack, and H. Walk. A distribution-free theory of

nonparametric regression. Springer Verlag, 2002.

[25] D. Haussler. Decision theoretic generalizations of the pac model for neu-

ral net and other learning applications. Information and computation,

100(1):78–150, 1992.

[26] E. Hazan and S. Kale. Better algorithms for benign bandits. In Proceedings

of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

38–47. Society for Industrial and Applied Mathematics, 2009.

[27] E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded

by variation in costs. Machine learning, 80(2):165–188, 2010.

[28] D. Hsu, S.M. Kakade, and T. Zhang. An analysis of random design linear re-

gression. Arxiv preprint arXiv:1106.2363, 2011.

[29] A. Juditsky, P. Rigollet, and A.B. Tsybakov. Learning by mirror averaging. The

Annals of Statistics, 36(5):2183–2206, 2008.

[30] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J.

Comput. Syst. Sci., 71(3):291–307, 2005.

[31] M.J. Kearns and R.E. Schapire. Efficient distribution-free learning of proba-

bilistic concepts*. Journal of Computer and System Sciences, 48(3):464–497,

1994.

[32] M.J. Kearns, R.E. Schapire, and L.M. Sellie. Toward efficient agnostic learning.

Machine Learning, 17(2):115–141, 1994.

[33] V. Koltchinskii. Oracle inequalities in empirical risk minimization and sparse

recovery problems. Saint-Flour Lectures Notes, 2008.

[34] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation

rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

256

BIBLIOGRAPHY

[35] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer-Verlag,

New York, 1991.

[36] HR Lerche and J. Sarkar. The blackwell prediction algorithm for infinite 0-

1 sequences, and a generalization. Statistical Decision Theory and Related

Topies V, Ed.: SS Gupta, JO Berger, Springer Verlag, pages 503–511, 1994.

[37] P. Massart. Concentration inequalities and model selection. 2007.

[38] S. Mendelson. A few notes on statistical learning theory. In S. Mendelson

and A. J. Smola, editors, Advanced Lectures in Machine Learning, LNCS 2600,

Machine Learning Summer School 2002, Canberra, Australia, February 11-22,

pages 1–40. Springer, 2003.

[39] S. Mendelson and R. Vershynin. Entropy and the combinatorial dimension.

Inventiones mathematicae, 152(1):37–55, 2003.

[40] N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Infor-

mation Theory, 44:2124–2147, 1998.

[41] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-

mation approach to stochastic programming. SIAM Journal on Optimization,

19(4):1574–1609, 2009.

[42] A. Rakhlin. Lecture notes on online learning, 2008. Available at http:

//www-stat.wharton.upenn.edu/~rakhlin/papers/online_learning.pdf.

[43] A. Rakhlin, O. Shamir, and K. Sridharan. Relax and localize: From value to

algorithms, 2012. Available at http://arxiv.org/abs/1204.0870.

[44] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Random aver-

ages, combinatorial parameters, and learnability. In NIPS, 2010. Available

at http://arxiv.org/abs/1006.1138.

[45] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Beyond regret. In

COLT, 2011. Available at http://arxiv.org/abs/1011.3168.

[46] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Stochastic,

constrained, and smoothed adversaries. In NIPS, 2011. Available at

http://arxiv.org/abs/1104.5070.

257

http://www-stat.wharton.upenn.edu/~rakhlin/papers/online_learning.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/papers/online_learning.pdf

BIBLIOGRAPHY

[47] H. Robbins. Some aspects of the sequential design of experiments. Bull. Amer.

Math. Soc., 58(5):527–535, 1952.

[48] M. Rudelson and R. Vershynin. Combinatorics of random processes and sec-

tions of convex bodies. The Annals of Mathematics, 164(2):603–648.

[49] S. Simons. You cannot generalize the minimax theorem too much. Milan

Journal of Mathematics, 59(1):59–64, 1989.

[50] K. Sridharan. Learning From An Optimization Viewpoint. PhD thesis, 2011.

[51] A.B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The

Annals of Statistics, 32(1):135–166, 2004.

[52] A.B. Tsybakov. Introduction to nonparametric estimation. Springer Verlag,

2009.

[53] L. G. Valiant. A theory of learnable. Proc. of the 1984 STOC, pages 436–445,

1984.

[54] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Pro-

cesses with Applications to Statistics. Springer-Verlag, New York, 1996.

[55] V. N. Vapnik. Statistical learning theory. J. Wiley, 1998.

[56] A. Wald. Statistical decision functions. John Wiley and Sons, 1950.

[57] L. Wasserman. All of nonparametric statistics. Springer-Verlag New York Inc,

2006.

[58] Y. Yang and A. Barron. Information-theoretic determination of minimax rates

of convergence. Annals of Statistics, 27 (5):1564–1599, 1999.

258

	I Introduction
	Introduction
	An Appetizer: A Bit of Bit Prediction
	What are the Learning Problems?
	Example: Linear Regression

	II Theory
	Minimax Formulation of Learning Problems
	Minimax Basics
	Defining Minimax Values for Learning Problems
	No Free Lunch Theorems
	Statistical Learning and Nonparametric Regression
	Sequential Prediction with Individual Sequences

	Learnability, Oracle Inequalities, Model Selection, and the Bias-Variance Trade-off
	Statistical Learning
	Sequential Prediction
	Remarks

	Stochastic processes, Empirical processes, Martingales, Tree Processes
	Motivation
	Statistical Learning
	Sequential Prediction

	Defining Stochastic Processes
	Application to Learning
	Symmetrization
	Rademacher Averages
	Skolemization
	... Back to Learning

	Example: Learning Thresholds
	Statistical Learning
	Separable (Realizable) Case
	Noise Conditions
	Prediction of Individual Sequences
	Discussion

	Maximal Inequalities
	Finite Class Lemmas

	Example: Linear Classes
	Statistical Learning: Classification
	From Finite to Infinite Classes: First Attempt
	From Finite to Infinite Classes: Second Attempt
	The Growth Function and the VC Dimension

	Statistical Learning: Real-Valued Functions
	Covering Numbers
	Chaining Technique and the Dudley Entropy Integral
	Example: Nondecreasing Functions
	Improved Bounds for Classification
	Combinatorial Parameters
	Contraction
	Discussion
	Supplementary Material: Back to the Rademacher
	Supplementary Material: Lower Bound on the Minimax Value

	Sequential Prediction: Classification
	From Finite to Infinite Classes: First Attempt
	From Finite to Infinite Classes: Second Attempt
	The Zero Cover and the Littlestone's Dimension
	Removing the Indicator Loss, or Fun Rotations with Trees
	The End of the Story

	Sequential Prediction: Real-Valued Functions
	Covering Numbers
	Chaining with Trees
	Combinatorial Parameters
	Contraction
	Lower Bounds

	Examples: Complexity of Linear and Kernel Classes, Neural Networks
	Prediction with Linear Classes
	Kernel Methods
	Neural Networks
	Discussion

	Large Margin Theory for Classification
	Regression with Square Loss: From Regret to Nonparametric Estimation

	III Algorithms
	Algorithms for Sequential Prediction: Finite Classes
	The Halving Algorithm
	The Exponential Weights Algorithm

	Algorithms for Sequential Prediction: Binary Classification with Infinite Classes
	Halving Algorithm with Margin
	The Perceptron Algorithm
	The Winnow Algorithm

	Algorithms for Online Convex Optimization
	Online Linear Optimization
	Gradient Descent
	Follow the Regularized Leader and Mirror Descent
	From Linear to Convex Functions

	Example: Binary Sequence Prediction and the Mind Reading Machine
	Prediction with Expert Advice
	Blackwell's method
	Follow the Regularized Leader
	Discussion
	Can we derive an algorithm for bit prediction?
	The Mind Reading Machine

	Algorithmic Framework for Sequential Prediction
	Relaxations
	Follow the Regularized Leader / Dual Averaging
	Exponential Weights

	Supervised Learning

	Algorithms Based on Random Playout, and Follow the Perturbed Leader
	The Magic of Randomization
	Linear Loss
	Example: Follow the Perturbed Leader on the Simplex
	Example: Follow the Perturbed Leader on Euclidean Balls
	Proof of Lemma 23.2

	Supervised Learning

	Algorithms for Fixed Design
	... And the Tree Disappears
	Static Experts
	Social Learning / Network Prediction
	Matrix Completion / Netflix Problem

	Adaptive Algorithms
	Adaptive Relaxations
	Example: Bit Prediction from Lecture 1
	Adaptive Gradient Descent

	IV Extensions
	The Minimax Theorem
	When the Minimax Theorem Does Not Hold
	The Minimax Theorem and Regret Minimization
	Proof of a Minimax Theorem Using Exponential Weights
	More Examples
	Sufficient Conditions for Weak Compactness

	Two Proofs of Blackwell's Approachability Theorem
	Blackwell's vector-valued generalization and the original proof
	A non-constructive proof
	Discussion
	Algorithm Based on Relaxations: Potential-Based Approachability

	From Sequential to Statistical Learning: Relationship Between Values and Online-to-Batch
	Relating the Values
	Online to Batch Conversion

	Sequential Prediction: Better Bounds for Predictable Sequences
	Full Information Methods
	Learning The Predictable Processes
	Follow the Perturbed Leader Method
	A General Framework of Stochastic, Smoothed, and Constrained Adversaries

	Sequential Prediction: Competing With Strategies
	Bounding the Value with History Trees
	Static Experts
	Covering Numbers and Combinatorial Parameters
	Monotonic Experts
	Compression and Sufficient Statistics

	Localized Analysis and Fast Rates. Local Rademacher Complexities
	Appendix

