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Language acquisition is a problem of induction: the child learner is faced with a 

set of specific linguistic examples and must infer some abstract linguistic knowledge that 

allows the child to generalize beyond the observed data, i.e., to both understand and 

generate new examples.  Many different generalizations are logically possible given any 

particular set of input data, yet different children within a linguistic community end up 

with the same adult grammars.  This fact suggests that children are biased towards 

making certain kinds of generalizations rather than others.  The nature and extent of 

children's inductive bias for language is highly controversial, with some researchers 

assuming that it is detailed and domain-specific (e.g., Chomsky 1973, Baker 1978, 

Chomsky 1981, Huang 1982, Fodor 1983, Bickerton 1984, Lasnik & Saito 1984, 

Gleitman & Newport 1995) and others claiming that domain-general constraints on 

memory and processing are sufficient to explain the consistent acquisition of language 

(e.g., Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett 1996, Sampson 2005).  

In this chapter, we discuss the contribution of an emerging theoretical framework called 

Bayesian learning that can be used to investigate the inductive bias needed for language 

acquisition.
1
  

In the Bayesian view of learning, inductive bias consists of a combination of hard 

and soft constraints.  Hard constraints make certain grammars
2
 impossible for any human 

to acquire; in the language of Bayesian modeling, these impossible grammars are outside 

the learner's hypothesis space.  Grammars inside the hypothesis space are learnable given 

the right input data, but they may not all be equally easy to learn.  Soft constraints, 

implemented in the form of a probability distribution over the hypothesis space, mean 

that the learner will be biased towards certain of these grammars more than others.  A 

"difficult" (low-probability) grammar can be learned, but will require more evidence 

(input data favoring this grammar) in order to be learned.  In the absence of such 

evidence, the child will instead acquire a high-probability grammar that is also 

compatible with the input.   

Under this view of learning, the central question of language acquisition is to 

determine what the hard and soft constraints are. A key assumption is that learners have 

access to domain-general statistical learning mechanisms that closely approximate the 

rules of probability theory. Given a particular set of input data, these probabilistic 

learning mechanisms then allow learners to converge on a grammar that is both 

compatible with the data and has high probability in the hypothesis space.  In this sense, 

the grammar is the optimal choice, given the data.  This notion of optimization arises 

from the ties between Bayesian modeling and the tradition of rational analysis in 

cognitive science (Chater & Oaksford, 1999), which focuses on the adaptation of the 
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 Bayesian models themselves are not a new idea, and have long been used in mathematics and computer 

science for both statistical analysis and machine learning (Bishop 2006, Duda, Hart, & Stork 2000, 

Gelman, Carlin, Stern & Rubin 2003), but their use in cognitive modeling, particularly in the area of 

language acquisition, is much newer. 
2
 We use the term “grammar” very broadly to mean any kind of abstract linguistic knowledge used for 

generalization. 



organism to its environment, with the resulting implication that cognitive processes are in 

some sense optimized to the task.  Probability theory plays a central role in Bayesian 

modeling precisely because it is a mathematical tool for optimizing behavior under 

uncertainty.  We discuss all of these ideas and their implications further in Section 2.
 
 

Although many of these ideas may be new to the reader, some aspects of 

Bayesian modeling may be familiar from other approaches to learning.  For example, 

many nativist linguists (particularly those in the Chomskyan tradition) also have a 

fundamental research goal of explicitly defining the hypothesis space of possible 

grammars (as part of Universal Grammar).  However, unlike most models of learning 

based on Chomskyan theories, Bayesian models of learning are inherently probabilistic, 

both in defining a probability distribution over the hypothesis space and in the way the 

learner is assumed to incorporate information from linguistic data. These qualities allow 

Bayesian models to be more robust to noisy data and also to avoid some of the classic 

learnability problems faced by non-statistical learners, such as the subset problem, which 

is a specific instance of the no negative evidence problem (see Tenenbaum & Griffiths 

(2001) for a review).
3
 Unlike deterministic learners, probabilistic learners can accumulate 

indirect negative evidence against a (probabilistic) grammar if a structure that is licensed 

by the grammar occurs in the input significantly less often than expected under the 

grammar.  

Although some other recent proposals incorporate probabilistic learning (e.g., 

Yang 2002, Legate & Yang 2007, Pearl 2011), they don’t include the idea of 

optimization discussed above. In addition, many learning models in the Chomskyan 

tradition assume not only that the hypothesis space itself is defined using domain-specific 

concepts, but that the learning algorithm makes reference to these concepts, so that it too 

is domain-specific (see Sakas (this volume) for a more detailed discussion).  Bayesian 

models, in contrast, assume that the learner’s use of statistical information is entirely 

domain-general, and domain-specificity (if any) is restricted to the nature of the 

hypothesis space. 

 Of course, the Bayesian approach is not the only statistically-grounded theoretical 

framework for studying language acquisition—the connectionist approach is similarly 

committed to domain-general statistical learning mechanisms (e.g., Elman et al. 1996, 

Prince & Smolensky 2004, Rumelhart & McClelland 1986, Smolensky & Legendre 

2006).  Like Bayesian models, connectionist models incorporate a notion of optimization 

(minimizing prediction error); nevertheless, the two approaches differ in important ways.   

For example, a defining feature of connectionism is the use of distributed representations.  

Although Bayesian models could in principle be developed using distributed 

representations, these are given no special status, and in fact symbolic representations 

(e.g., rules and categories) are typically used because they make it easier to understand 

and define the space of hypotheses.  For this reason, Bayesian models may be more 

attractive to linguists who are used to symbolic representations.  Another major 

difference between the two approaches is that Bayesian models are declarative, defining 

the learner's constraints and associated hypothesis space explicitly using mathematical 

equations, whereas connectionist models are procedural, imposing constraints only 

implicitly through the choice of network architectures and learning algorithms.  We 
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 We note that the ability to solve the subset problem does not negate the poverty of the stimulus argument 

de facto, as discussed later on in the introduction. 



elaborate on this distinction below, noting here only that the use of explicitly defined 

constraints can make it easier to understand the assumptions built into the learner and 

how they relate to linguistic theory or domain-general cognitive principles (i.e., whether 

the constraints are domain-specific or not). 

As implied by the previous paragraphs, there is nothing inherent in the Bayesian 

approach that either favors or disfavors domain-specific constraints, and Bayesian 

researchers hold different views about their necessity.
4
 Moreover, although Bayesian 

learners have certain advantages over non-statistical learners, we are not claiming that 

these advantages are sufficient to overcome the problem of the poverty of the stimulus 

(PoS) on their own, nor (we think) would other Bayesians (e.g., see Regier & Gahl 

(2004), Pearl & Lidz (2009), and Pearl & Mis (submitted) who also discuss the necessity 

of additional constraints).  The PoS problem is much broader than any particular 

learnability problem such as the subset problem—it is a claim that the data children 

encounter are compatible with multiple generalizations.  Even if Bayesian learning can 

help solve the subset problem, multiple generalizations may still be possible given the 

positive and indirect negative evidence available.  The question, in our view, is not 

whether there is a PoS problem (there clearly is), but rather what kinds of constraints are 

needed in order to overcome it.  The traditional argument from the PoS claims that the 

necessary constraints come from innate, domain-specific knowledge (Chomsky 1981). 

While the use of Bayesian learning does not automatically negate the need for domain-

specific constraints, the ability to obtain information through indirect negative evidence 

and other properties of statistical learning may mean that a Bayesian learner is able to 

acquire the correct generalizations with less domain-specific prior knowledge than the 

PoS argument normally assumes.  Whether less means none or simply less detailed is an 

open question that can be evaluated empirically using Bayesian modeling.  For example, 

one way to argue in favor of a less constrained hypothesis space is to show that a 

Bayesian statistical learner operating within that hypothesis space is capable of acquiring 

the linguistic generalization of interest, i.e., that additional constraints are not needed.  

We can then consider whether the constraints being used are domain-general or domain-

specific, and whether they are necessarily innate or could be derived from previous 

linguistic experience.  Researchers have applied this approach to problems such as the 

acquisition of English anaphoric one (Regier & Gahl 2004, Foraker et al. 2009, Pearl & 

Lidz 2009, Pearl & Mis 2011), the structure-dependence of syntactic rules (Perfors, 

Tenenbaum, & Regier 2011), and the type of syntactic rules that account for recursion 

(Perfors et al. 2010).  

 Examples like those above show how Bayesian modeling can be used to argue 

that certain linguistic generalizations are learnable in principle.  However, if the Bayesian 

framework is to be taken seriously as a way of modeling actual language acquisition, it is 

also important to show that children's behavior is consistent both with the assumptions of 

the framework and the predictions of specific models.  In the remainder of this chapter, 
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 Some might think this is a difference from connectionism, which is often associated with an anti-nativist 

viewpoint (Rumelhart and McClelland 1986, Elman et al. 1996).  However, the defining characteristics of 

the connectionist approach—e.g., distributed representations, parallel processing, and statistical learning 

mechanisms (see, for example, http://cognet.mit.edu/library/erefs/mitecs/smolensky.html: Connectionist 

Approaches to Language, by Paul Smolensky)—are also agnostic regarding domain-specificity.  One well-

known connectionist proposal that incorporates strong domain-specific constraints is Harmonic Grammar 

(Legendre et al. 1990, Smolensky et al. 1992, Smolensky & Legendre 2006). 



we aim to do just that.  We begin with the most basic assumption of the framework, 

namely that learning is based on statistical properties of the input data.  We first review 

some of the wide-ranging behavioral evidence suggesting that children are indeed able to 

extract useful generalizations from statistical information, and can do so in a range of 

situations and using different types of statistics (Section 1).  We then formalize the details 

of the Bayesian approach, expanding upon the key features mentioned above, and discuss 

some additional pros and cons of this approach (Section 2).  Finally, we present several 

case studies to illustrate the ideas we have introduced and to show how Bayesian models 

can be applied to problems of interest in language acquisition (Section 3). 

 

  

1. Experimental studies of statistical learning abilities 

 Although statistical properties of language were widely studied by the structuralist 

linguists of the 1950s (e.g., Harris 1954) , research in this area declined sharply with the 

rise of generative linguistics in the following decade, and only began to reemerge in the 

1990s as an important topic in language acquisition. Domain-general processes of 

statistical learning were long recognized as part of the acquisition process even under 

generative theories (Chomsky 1955, Hayes & Clark 1970, Wolff 1977, Pinker 1984, 

Goodsitt, Morgan, & Kuhl 1993, among others), but these processes by themselves were 

believed to be incapable of accounting for the acquisition of complex linguistic 

phenomena (e.g., syntactic or phonological structure, the syntax-semantics interface) 

without an accompanying structured hypothesis space for those linguistic phenomena.  

This does not mean that researchers did not investigate the nature of the learning 

procedure by which the child uses the input data to disambiguate between different 

hypotheses and attain the correct grammar – for example, see Wexler & Culicover 

(1980), Dresher & Kaye (1990), Gibson & Wexler (1994), and Niyogi & Berwick (1996). 

However, the learning procedure was often only interesting as a tool to support the 

validity of a particular hypothesis space, such as the parameters hypothesis space of 

Chomsky (1981): a learning procedure, such as statistical learning, could demonstrate 

that it was possible for the child to converge on the correct hypothesis in the specified 

hypothesis space, given the available input data.  Under this view of acquisition, the truly 

interesting question was about defining the child’s hypothesis space appropriately – and 

so domain-general statistical learning was largely ignored as a research topic. 

 Saffran, Aslin, & Newport (1996) was an important study in this respect since it 

considered the nature of children’s statistical learning abilities to be a question worth 

pursuing. Though this study was aimed at the process of word segmentation (identifying 

words in a fluent stream of speech) rather than more abstract knowledge acquisition at the 

phonological, syntactic, or semantic level, it successfully demonstrated that very young 

children have “powerful mechanisms for the computation of statistical properties of 

language input” (Saffran et al. 1996).  In particular, it showed that 8-month-old infants 

were able to track statistical cues between syllables, and so segment novel words out 

from a stream of artificial language speech where the statistical information was the only 

cue to where word boundaries were. Saffran et al. hypothesized, and Aslin, Saffran, & 

Newport (1998) later confirmed, that the cue the infants were using is what they called 

“transitional probability”.  The transitional probability between syllables X and Y (e.g., 

“pre”, “tty”) is the probability that Y will occur following X, computed as the frequency 



of XY (“pretty”) divided by the frequency of X (“pre”).
5
  Pelucchi, Hay, & Saffran 

(2009a) later showed that infants can track transitional probability in realistic child-

directed speech, as well as the artificial language stimuli Saffran et al. and Aslin et al. 

used. 

 With respect to word segmentation in natural language, Saffran et al. believed 

transitional probability would be a reliable cue to word boundaries, since the transitional 

probability of syllables spanning a word boundary would be low while the transitional 

probability of syllables within a word would be high.  For example, in the sequence 

“pretty baby”, the transitional probabilities between (1) “pre” and “tty”  and (2) “ba” and 

“by” would be higher than the transitional probability between “tty” and “ba”.  Because 

of this property, they assumed that infants’ ability to track transitional probability would 

be very useful for word segmentation in real languages (as opposed to the artificial 

language stimuli used in their study).  Interestingly, later studies discovered that 

transitional probability is perhaps a less useful cue to segmentation in English child-

directed speech than originally assumed (Brent 1999, Yang 2004, Gambell & Yang 

2006). The precise way in which infants might use transitional probability information (if 

at all) for realistic language data therefore remains an open question. 

 Notably, however, the broader claim of Saffran et al. (1996) was not tied to 

transitional probability, but instead was that some aspects of acquisition may be “best 

characterized as resulting from innately biased statistical learning mechanisms rather than 

innate knowledge” that explicitly constrains the hypothesis space.  Tracking syllable 

transitional probability is clearly one kind of statistical learning mechanism, but it need 

not be the only one. This led to a revitalized interest in characterizing the statistical 

learning abilities of children, and what types of acquisition problems could be solved by 

these abilities. Subsequent research has investigated a number of questions raised by 

these initial studies, particularly the following: 

 

1. What kinds of statistical patterns are human language learners sensitive to? 

2. To what extent are these statistical learning abilities specific to the domain of 

language, or even to humans? 

3. What kinds of knowledge can be learned from the statistical information 

available? 

 

 The first question addresses the kinds of biases that are present in the human 

language learning mechanism, while the second question is important for understanding 

whether our linguistic abilities fall out from other cognitive abilities, or are better viewed 

as a cognitively distinct mechanism.  The third question explores what can be gained if 

humans can capitalize on the distributional information available in the data. 

 Many studies have attempted to ascertain the statistical patterns humans are 

sensitive to.  Thiessen & Saffran (2003) discovered that 7-month-olds prefer syllable 

transitional probability cues over language-specific stress cues when segmenting words, 

while 9-month-olds show the reverse preference. Graf Estes, Evans, Alibali, & Saffran 

(2007) found that word-like units that are segmented using transitional probability are 

viewed by 17-month-olds as better candidates for labels of objects, highlighting the 

potential utility of transitional probability both for word segmentation and subsequent 
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word-meaning mappings.  Moving beyond the realm of word segmentation, Gómez & 

Gerken (1999) discovered that one-year-olds could learn both specific information about 

word ordering, and more abstract information about grammatical categories in an 

artificial language, based on the statistical cues in the input.  Thompson & Newport 

(2007) discovered that adults can use transitional probability between grammatical 

categories to identify word sequences that are in the same phrase, a precursor to more 

complex syntactic knowledge.  

It is worth pointing out that although most of the experiments described above have 

focused on transitional probability as the statistic of interest, researchers have begun to 

examine a wider range of statistical cues.  These include other simple statistics involving 

relationships of adjacent units to one another, such as backward transitional probability 

(Perruchet & Desaulty 2008, Pelucchi, Hay, & Saffran 2009b) and mutual information 

(Swingley 2005). 

Another line of work focuses on non-adjacent dependencies, and when these are 

noticed and used for learning.  Newport & Aslin (2004) showed that learners were 

sensitive to non-adjacent statistical dependencies between consonants and between 

vowels, using either of these to successfully segment an artificial speech stream (though 

see Bonatti et al. (2005) and Mehler et al. (2006), who only found a preference for 

statistical dependencies between consonants rather than for both consonants and vowels).  

Additionally, learners were unsuccessful when the non-adjacent dependencies were 

between entire syllables, suggesting a bias in either perceptual or learning abilities. Work 

by Gómez (2002) has shown that learners are able to identify non-adjacent dependencies 

between words, but only when there is sufficient variation in the intervening word.  This 

idea is similar to the concept of frequent frames introduced by Mintz (2002).  A frequent 

frame is an ordered pair of words that frequently co-occur with one word position 

intervening.  For example, the___one is a frame that could occur with big, other, pretty, 

etc.). Mintz suggests that frequent frames could be used by human learners to categorize 

words because they tend to surround a particular syntactic category (e.g., the___one tends 

to frame adjectives).  Mintz (2002, 2006) demonstrated that both adults and infants are 

able to categorize novel words based on the frames in which those novel words appear.  

In addition, recent experimental studies in learning mappings between words and 

meanings (Yu & Smith 2007, Xu & Tenenbaum 2007, Smith & Yu 2008) suggest that 

humans are capable of extracting more sophisticated types of statistics from their input. 

Specifically, the experimental evidence suggests that humans can combine statistical 

information across multiple situations (though see Medina et al. (2011) for some 

evidence that learners do not prefer to combine information across situations), and that 

the statistics they use cannot always be characterized as just transitional probabilities or 

frequent frames.  

 Yu & Smith (2007) and Smith & Yu (2008) examined the human ability to track 

probabilities of word-meaning associations across multiple trials where any specific word 

within a given trial was ambiguous as to its meaning.  Importantly, only if human 

learners were able to combine information across trials could a word-meaning mapping 

could be determined.  Both adults (Yu & Smith 2007) and 12 and 14-month-old infants 

(Smith & Yu 2008) were able to combine probabilistic information across trials.  So, both 

adults and infants can learn the appropriate word-meaning mappings, given data that are 

uninformative within a trial but informative when combined across trials. 



 Xu & Tenenbaum (2007) investigated how humans learn the appropriate set of 

referents for basic (cat), subordinate (tabby), and superordinate (animal) words, a task 

that has traditionally been considered a major challenge for early word learning (e.g., 

Markman 1989, Waxman 1990) because these words overlap in the referents they apply 

to (a tabby is a cat, which is an animal)—an example of the subset problem.  Previously, 

it was assumed that children had an innate bias to prefer the “basic level” in order to 

explain children’s behavior (Markman 1989). One sophisticated statistical inference that 

can help with this problem is related to what Xu & Tenenbaum call a suspicious 

coincidence, and is tied to how well the observed data accord with a learner’s prior 

expectations about word-meaning mappings. For example, suppose we have a novel word 

blick, and we encounter three examples of blicks, each of which is a cat. The learner at 

this point might (implicitly) have two hypotheses (blick = animal, blick = cat), and 

expectations associated with these two hypotheses. Specifically, if blick = animal, other 

kinds of animals besides cats should be labeled blicks sometimes because the set of blicks 

is larger than just the set of cats. In the language of our introduction, the fact that three 

blicks were labeled and all of them were cats provides indirect negative evidence against 

the hypothesis that blick means animal.  Or, in Xu & Tenenbaum’s terminology, it is a 

suspicious coincidence to see three cats if blick really means animal.  Instead, it is more 

likely that blick is a “basic” label that is more specific, in this case cat.  Xu & Tenenbaum 

(2007) discovered that both adults and children between the ages of 3 and 5 can use 

suspicious coincidences like this to infer the appropriate meaning of a novel word like 

blick.  This suggests that humans are indeed able to perform this sophisticated statistical 

inference. 

Turning to the question of domain-specificity for human statistical learning 

abilities, Saffran et al. (1999) showed that both infants and adults can segment non-

linguistic auditory sequences (musical tones) based on the same kind of transitional 

probability cues that were used in the original syllable-based studies.  Similar results have 

been obtained in the visual domain using both temporally ordered sequences of stimuli 

(Kirkham et al., 2002) and spatially organized visual “scenes” (Fiser & Aslin, 2002).  

Conway & Christiansen (2005) adapted the grammar from Gómez & Gerken’s (1999) 

experiments to explore learning in different modalities: auditory, visual, and tactile.  

They showed that adults could learn grammatical generalizations in all three modalities, 

although there was a quantitative benefit to the auditory modality, as well as some 

qualitative differences in learning.  These results (particularly those in the tactile 

modality, which is not used in natural languages) support the idea that the kinds of 

statistical learning seen in the earlier artificial language studies are highly domain-

general, showing robustness across modalities and presentation formats.  

Another way of investigating whether particular learning abilities could in principle 

be specific to language is by comparing learning across species.  If non-human animals 

are able to learn the same kinds of generalizations as humans, then whatever cognitive 

mechanism is responsible must not be a linguistic one.  To this end, Hauser et al. (2001) 

exposed cotton-top tamarins to the same kind of artificial speech stimuli used in the 

original Saffran et al. (1996) segmentation experiments, and found that the monkeys were 

able to perform the task as well as infants. Saffran et al. (2008) later found that tamarins 

could also learn some simple grammatical structures based on statistical information, but 

were unable to learn patterns as complex as those learned by infants.  This suggests that 



infants' abilities to extract information from statistical patterns are more powerful than 

those of other animals.  Additional evidence is provided by the experiments of Toro & 

Trobalon (2005), who showed that rats were able to segment a speech stream based on 

syllable co-occurrence frequency (similar to the mutual information explored in Swingley 

(2005)), but not transition probability alone.  The rats also showed no evidence of 

learning generalizations from non-adjacent dependencies such as those in the Gómez 

(2002) experiments, or abstract rules as in Marcus et al. (1999). 

The main lesson from the experimental evidence reviewed in this section is that 

children do seem capable of using statistical information in their language input, from 

tracking simple statistical cues like transitional probability to making sophisticated 

inferences that combine ambiguous information from multiple data sources.  To learn 

more about the abilities and biases of human learners, researchers continue to investigate 

the statistical information humans are sensitive to, and what kinds of generalizations are 

learned from them.  In addition, experiments using other modalities, domains, and species 

can help to shed light on the question of whether these abilities are domain-specific or 

domain-general.  

This kind of experimental research is undoubtedly important for our 

understanding of the role of statistical learning in language acquisition.  However, the 

third question of what knowledge can be learned from the statistical information available 

can be addressed more easily, or in a complementary fashion, through other research 

methodologies such as Bayesian modeling, which we turn to in the next section. 

 

2. An introduction to the Bayesian modeling framework 

 As noted in the introduction, Bayesian modeling offers a concrete way to examine 

what knowledge is required for acquisition, without committing a priori to a particular 

view about the nature of that knowledge.  It also addresses the question of whether 

human language learners can be viewed as being optimal learners in a sense that will 

become clearer below once we formalize the approach.  We expand on both of these 

points in this section, starting with a conceptual introduction to the Bayesian approach 

that explains the kinds of questions it can answer and how these differ from the questions 

addressed by other approaches.  Next, we describe the formal implementation of a 

Bayesian model, in particular how it operates over an explicitly defined hypothesis space.  

We then highlight some attractive features of Bayesian models with respect to the kind of 

hypothesis spaces they can operate over, and conclude with a brief discussion of some of 

the algorithms commonly used in Bayesian modeling. 

 

2.1. Bayesian modeling as a computational-level approach 

Most models of language acquisition are procedural: they hypothesize specific 

procedures or algorithms that can be applied to the input and/or grammar in order to 

produce linguistically meaningful generalizations.  For example, learners might segment 

words by identifying syllable sequences with high frequency and mutual information 

(Swingley, 2005), create a grammatical category by grouping together words that share a 

frequent frame (Mintz 2003, Wang & Mintz 2008, Chemla et al. 2009), use back-

propagation to change the set of weights in a neural network (Elman 1990, Elman 1993), 

or demote the ranking of a constraint if it causes an error in parsing the input (Boersma & 

Hayes 2001, Prince & Tesar 2004, Tesar & Smolensky 2000). These kinds of models 



provide what Marr (1982) calls algorithmic-level explanations, focusing on the question 

of how learners generalize from their input.  In contrast, the Bayesian approach 

investigates the problem of language acquisition at Marr’s (1982) computational level of 

analysis, seeking answers to the questions of what computational problem is being solved 

and why the learner ends up with a particular solution.  This kind of investigation calls for 

a declarative (rather than procedural) model of the learner. That is, in designing a 

Bayesian model, the researcher considers what the nature of the learning task is (i.e., 

what does the learner need to achieve), what sources of information are available, and 

what the inductive biases of the learner are (i.e., what kinds of generalizations/grammars 

are easy, difficult, or impossible to learn).  It is then possible to ask what will be learned, 

given particular assumptions about these aspects of the problem and also assuming that 

the learner behaves optimally under those assumptions.  This kind of approach is often 

referred to as an ideal observer (or ideal learner) analysis, since it explores the solutions 

that would be found by an idealized optimal learner capable of extracting the necessary 

statistical information from the input. The idea of optimality leads naturally to the use of 

probability theory for defining Bayesian models, because probability theory is a tool for 

determining optimal behavior under uncertainty. 

Some readers may not be comfortable with the idea of humans as optimal statistical 

learners, especially since well-known early studies in other areas of cognition suggested 

just the opposite (Cascells, Schoenbeger, & Grayboys 1978). However, the rational 

analysis view of cognition (Chater & Oaksford, 1999; Anderson, 1990) has countered by 

arguing that human behavior is adapted to our natural environment and the tasks we must 

achieve there – thus, “optimal” behavior must be interpreted within that context, rather 

than within the context of a laboratory experiment.  Behavioral and modeling work has 

supported the idea of humans as optimal learners in areas such as numerical cognition 

(Tenenbaum 1996), causal induction (Griffiths & Tenenbaum 2005), and categorization 

(Kemp, Perfors, & Tenenbaum 2007). More recently, evidence has begun to accumulate 

in language acquisition as well (Feldman et al. 2009a, Xu & Tenenbaum 2007).  

Whether or not humans behave optimally in all situations, the kind of ideal learner  

analysis provided by a Bayesian model is still useful for answering two kinds of 

questions.  First, the question of learnability: what is possible to learn from the available 

input, given particular assumptions about the learner's inductive biases? Second, once we 

have identified the optimal solution to the problem as defined by the model, we can ask 

whether human behavioral data is consistent with the model's predictions.  If so, then we 

have helped to explain why humans behave in this way -- it is the optimal response to the 

data they are exposed to.  If not, then we can begin to investigate how and why humans 

might differ from the optimal behavior (Goldwater et al. 2009, Frank et al. 2010). 

Although these are worthwhile questions to investigate, some researchers still find 

the Bayesian approach unsatisfying because of its focus on computational-level 

explanations.  In particular, Bayesian models often do not address how the learner might 

perform the computations required to achieve the optimal solution to the learning 

problem, even if such a solution is achieved.  Rather, they simply state that if human 

behavior accords with the predictions of the model, then humans must be performing 

some computation (possibly a very heuristic one) that allows them to identify the same 

optimal solution that the model did.  We discuss this issue further, including some 

responses to it, in section 2.4. 



 

2.2. Formalizing the Bayesian approach 

Bayesian models assume the learner comes to the task with some space of 

hypotheses H, each of which represents a possible explanation of the process that 

generated the input data. The hypothesis space could be discrete (e.g., a finite or infinite 

set of symbolic grammars) or continuous (e.g., a set of real-valued parameters 

representing the tongue positions necessary to produce a particular set of vowels). Given 

the observed data d, the learner’s goal is to determine the probability of each possible 

hypothesis h, i.e., to estimate P(h|d), the posterior distribution over hypotheses. A correct 

estimate of the posterior distribution will allow the learner to behave optimally in the 

future, i.e., to have the best chance of interpreting and/or generating new data in 

accordance with the true hypothesis (the one that actually generated the observed data). 

Rather than estimating P(h|d) directly, we first apply Bayes’ Theorem, derived from 

the axioms of probability theory, to reformulate it as in (1): 

 

(1) Bayes’ Theorem 

  

 

 

where P(d|h), the likelihood, expresses how well the hypothesis explains the data, and 

P(h), the prior, expresses how plausible the hypothesis is regardless of any data. P(d), the 

evidence, is a constant normalizing factor that ensures that P(h|d) is a proper probability 

distribution, summing to 1 over all values of h.  Often we only care about the relative 

probabilities of different hypotheses, in which case we can ignore the denominator and 

simply write Bayes’ Theorem as a proportionality, as in (2): 

 

 (2)  

 

 Defining a Bayesian model usually involves three steps: 

 

(1) Defining the hypothesis space: Which hypotheses does the learner consider? 

(2) Defining the prior distribution over hypotheses: Which hypotheses is the learner 

biased towards or against? 

(3) Defining the likelihood function: How is the observed data generated under a 

given hypothesis? 

 

A simple example, adapted from Griffiths & Yuille (2006), should help to clarify 

these ideas.  Suppose you are given three coins, and told that two of them are fair, and 

one produces heads with probability 0.9.  You choose one of the coins at random and 

must determine whether it is fair or not, i.e., whether θ (the probability of heads) is 0.5 or 

0.9.  Thus, the hypothesis space contains two hypotheses: h0 (θ = 0.5) and h1 (θ = 0.9), 

with P(h0) = 2/3 and P(h1) = 1/3.  Data is obtained by flipping the coin, with the 

probability of a particular sequence d of flips containing s heads and t tails being 

dependent on θ, as P(d|θ) = θ
s
(1-θ)

t
.  For example, if θ = 0.9, then the probability of the 

sequence HHTTHTHHHT  is 0.0000531.  If θ = 0.5, then the same sequence has 



probability 0.000978.  To determine which hypothesis is more plausible given that 

particular sequence, we can compute the posterior odds ratio as in (3):  

 

 

(3) Posterior Odds Ratio 

 

 

 

This tells us that the odds in favor of h0 are roughly 37:1.  Note that the P(d) (evidence) 

term cancels, so we do not need to compute it. 

This very simple example illustrates how to compare the plausibility of two 

different hypotheses, but in general the same principles can be applied to much larger and 

more complex hypothesis spaces (including countably infinite spaces), such as might 

arise in language acquisition.  With minor modifications, we can also use similar methods 

to compare hypotheses in a continuous (uncountably infinite) space (see Griffiths & 

Yuille (2006) for a more explicit description of the modifications required).  Such a space 

might occur in a syntax-learning scenario if we suppose that the hypotheses under 

consideration consist of probabilistic context-free grammars (PCFGs), with different 

grammars varying both in the rules they contain, and the probabilities assigned to the 

rules.
6
   The input data in this situation could be a corpus of sentences in the language, 

with P(d|h) determined by the rules for computing string probabilities under a PCFG 

(Chater & Manning 2006).  P(h) could incorporate various assumptions about which 

grammars the learner might be biased towards -- for example, grammars with fewer rules, 

or grammars that incorporate linguistically universal principles.  See section 3 below for 

more detailed examples of how these ideas can be applied to language acquisition. 

 

2.3. Bayesian hypothesis spaces 

 As mentioned above, a Bayesian learner can operate over a variety of hypothesis 

spaces (discrete, continuous, countably infinite, uncountably infinite, etc.), without 

changing the underlying principles of a Bayesian learner. Another useful property of 

Bayesian models is that the hypothesis space can be highly structured, supporting 

multiple levels of linguistic representation simultaneously. For example, the word 

segmentation model of Goldwater et al. (2006, 2009) contains two levels of 

representation -- words and phonemes -- though only one of these (words) is unobserved 

in the input and must be learned. However, Bayesian models can in principle learn 

multiple levels of latent structure simultaneously, and doing so can even improve their 

performance. For example, Johnson (2008) showed that learning both syllable structure 

and words from unsegmented phonemic input improved word segmentation in a Bayesian 

model similar to that of Goldwater et al. Feldman, Griffiths, & Morgan (2009a) compared 

two Bayesian models of phonetic category acquisition to demonstrate that simultaneously 

                                                
6
 Since probabilities are represented using real numbers, the hypothesis space is continuous; if the learner is 

assumed to acquire a non-probabilistic grammar, then the hypothesis space consists of a discrete set of 

grammars. 



learning phonetic categories and the lexical items containing those categories led to more 

successful categorization than learning phonetic categories alone.  Dillon, Dunbar, & 

Idsardi (2011) also compared two Bayesian models of phonetic category learning: one 

that first learned phonetic categories and would later identify allophones and 

phonological rules based on those phonetic categories, and one that learned all the 

information (phonetic categories, allophones, and rules) at once.  Again, the joint learner 

was more successful. By allowing us to build such joint models and compare them to 

staged learning models, the Bayesian approach is helpful for understanding the process of 

bootstrapping -- using preliminary or uncertain information in one part of the grammar to 

help constrain learning in another part of the grammar, and vice versa. 

 In addition to including multiple levels of structure, the predefined hypothesis space 

of a Bayesian learner can be instantiated very abstractly, which should appeal to 

generative linguists who believe abstract linguistic parameters determine much of the 

constrained variation observed in the world’s languages (Chomsky 1981).  Kemp, 

Perfors, & Tenenbaum (2007) and Kemp & Tenenbaum (2008) discuss overhypotheses in 

Bayesian modeling, where overhypotheses refer to strong inductive constraints on 

possible hypotheses in the hypothesis space (Goodman 1955).  This idea is intuitively 

similar to the classic notion of a linguistic parameter as an abstract (structural) property 

that constrains the hypothesis space of the learner.  To see how, consider first a very 

simple example illustrating the idea of an overhypothesis, taken from Goodman (1955) 

and presented in Kemp, Perfors, & Tenenbaum (2007). Suppose a learner is presented 

with several bags of marbles, where marbles can be either black or white. During 

training, the learner is allowed to examine all of the marbles in each bag, and finds that 

each bag contains either all black or all white marbles. During testing, the learner draws 

only a single marble from a bag and must predict the color distribution in the bag.  

Possible hypotheses are that the bag contains all black marbles, all white marbles, 70% 

black and 30% white, or any other combination.  Possible overhypotheses are that all 

bags contain a uniform color distribution, all bags contain the same distribution, all bags 

contain a mixture of colors, etc. By observing (during training) several different bags that 

all have uniform color distributions, the learner learns to assign high probability to the 

overhypothesis of uniform color distribution. This overhypothesis in turn constrains the 

hypotheses for individual new bags observed – high probability is given to “all black” 

and “all white” before ever observing a marble from the bag, while low probability is 

given to hypotheses like “70% black and 30% white”.  This example demonstrates how 

information can be indirectly used (i.e. at a very abstract level) to make predictions, e.g., 

observing all black bags and all white bags allows the prediction that a bag with mixed 

black and white marbles has low probability of occurring.   

 Translating this to a linguistic example, suppose the marble bags are individual 

sentences.  Some sentences contain verbs and objects, and whenever there is an object, 

suppose it appears after the verb (e.g., see the penguin, rather than the penguin see).  

Other sentences contain modal verbs and nonfinite main verbs, and whenever both occur, 

the modal precedes the main verb (e.g., could see, rather than see could). A learner could 

be aware of the shared structure of these sentences – specifically that these observable 

forms can be characterized as the head of a phrase appearing before its complements 

(specifically [VP V NP] and [IP Aux VP]) –  and could encode this “head-first” knowledge 

at the level that describes sentences in general, akin to a hierarchical Bayesian learner’s 



overhypothesis.  This learner would then infer that sentences in the language generally 

have head-first structure.  If this learner then saw a sentence with a preposition 

surrounded by NPs (e.g. penguins on icebergs are cute), it would infer that the 

preposition should precede its object ([NP penguins [PP on icebergs]] and not [NP [PP 

penguins on] icebergs]), even if it had never seen a preposition used before with an 

object. In this way, the notion of a head-directionality parameter can be encoded in a 

Bayesian learner at the level of an overhypothesis.  In particular, inferences (e.g., about 

prepositional phrase internal structure) can be made on the basis of examples that bear on 

the general property being learned (e.g., head directionality), even if those examples are 

not examples of the exact inference to be made (e.g., verb phrase examples). 

 

2.4. Algorithms  

It is worth reiterating that, unlike neural networks and other algorithmic-level 

models such as those of Mintz (2003), Swingley (2005), and Wang & Mintz (2008), 

Bayesian models are intended to provide a declarative description of what is being 

learned, not necessarily how the learning is implemented.  Bayesian models predict a 

particular posterior distribution over hypotheses given a set of data, and can also be used 

to make predictions about future data based on the posterior distribution.  If human 

subjects’ performance in a task is consistent with the predictions of the model, then we 

can consider the model successful in explaining what has been learned and which sources 

of information were used in learning.  However, we do not necessarily assume that the 

particular algorithm used by the model to identify the posterior distribution is the same as 

the algorithm used by the humans.  We only assume that the human mind implements 

some type of algorithm (as mentioned previously, perhaps a very heuristic one) that is 

able to approximately identify the posterior distribution over hypotheses.  

In practice, most Bayesian models of language acquisition have used Markov chain 

Monte Carlo algorithms such as Gibbs sampling to obtain samples from the posterior 

distribution (Gilks et al., 1996; Geman & Geman, 1984; also see Resnik & Hardisty 

(2009) for an accessible tutorial).  These are batch algorithms, which operate over the 

entire data set simultaneously.  This is clearly an unrealistic assumption about human 

learners, who must process each data point as it is encountered, and presumably do not 

revisit or reanalyze the data at a later time (or at most, are able to do so only to a very 

limited degree).  If humans are indeed behaving as predicted by Bayesian models, they 

must be using a very different algorithm to identify the posterior distribution over 

hypotheses – an algorithm about which most Bayesian models have nothing to say. 

Researchers who are particularly concerned with the mental mechanisms of 

learning often find the Bayesian approach unsatisfactory precisely because in its most 

basic form, it does not address the question of mechanisms (e.g., see McClelland et al. 

(2010), and Griffiths et al. (2010) for a reply).  In response to this kind of critique, a 

recent line of work has begun to address the question of how learners might implement 

Bayesian predictions in a more cognitively plausible way.  These kinds of models are 

sometimes called rational process models, since they are models of rational learners that 

are concerned with implementing the process of approximating Bayesian inference.  For 

example, Shi, Griffiths, Feldman, & Sanborn (2010) discuss how exemplar models may 

provide a possible mechanism for implementing Bayesian inference, since these models 

allow an approximation process called importance sampling. Other examples include the 



work of Bonawitz et al. (2011), who discuss how a simple sequential algorithm can be 

used to approximate Bayesian inference in a basic causal learning task, and that of Pearl, 

Goldwater, and Steyvers (2011), who (as described in section 3) investigated various 

online algorithms for Bayesian models of word segmentation. See also McClelland 

(1998) for a discussion of how neural network architectures can be used to approximate 

optimal Bayesian inference (again emphasizing that the connectionist and Bayesian 

frameworks are not so much in opposition as they are addressing different aspects of the 

learning problem, with one focusing on the description of the task and the other focusing 

on the implementation). 

   

3. Specific example studies 

 This section surveys a few representative studies in different areas of language 

acquisition in order to illustrate how Bayesian modeling can be applied within each 

domain.  For each study, we review the problem faced by the learner, describe the 

hypothesis space assumed by the model and how Bayesian inference operates within it, 

and discuss the results with reference to relevant behavioral data.  

 

3.1. Phonetics and phonology 

Feldman, Griffiths, & Morgan (2009b), Feldman (2011), and Feldman, Griffiths, 

Goldwater, & Morgan (submitted) address the question of phonetic category acquisition, 

specifically the acquisition of vowel categories.  This is a difficult problem because of the 

variation in acoustic properties between different tokens of the same vowel, even when 

spoken by the same speaker.  Although the mean formant values of different vowel 

categories are different, the distribution of values overlaps considerably, e.g., a particular 

token of /e/ may sound exactly like a token of /ε/, even if spoken by the same individual. 

Figure 1 illustrates this variation in men’s vowels sounds.  

 

    
Figure 1. (Reproduced from Feldman et al. (2009b)). Example distribution of men’s 

vowel sounds.  Many vowel sounds have overlapping distributions, such as /e/ and / ε/. 

 

 Experimental studies suggest that infants are able to learn separate phonetic 

categories for speech sounds that occur with a clear bimodal distribution (Maye, Werker, 

& Gerken, 2002, Maye & Weiss, 2003), but the extent of overlap between phonetic 

categories in real speech suggests that some categories might be difficult to distinguish in 

this way.  Instead, Feldman et al. hypothesize that learners must make use of an 

additional source of information beyond the acoustic properties of individual sounds; 



specifically, they take into account the words those sounds occur in (an idea also 

advocated by Swingley (2009)).  Of course, young infants who are still learning the 

phonology of their language have very little lexical knowledge.  Indeed, Feldman et al. 

review experimental studies suggesting that phonetic categorization and word 

segmentation (a precursor to word-meaning mapping) occur in parallel, between the ages 

of 6-12 months.  So, rather than assuming either that phonetic categories are acquired 

first and then used to learn words, or that words are acquired first and then used to 

disambiguate phonetic categories, Feldman et al. propose a joint model in which phonetic 

categories and word forms are learned simultaneously.  They compare this model to a 

simpler baseline model in which phonetic categories alone are learned.  We describe each 

of these models briefly before reviewing the results. 

Feldman et al.’s baseline model is a distributional model of categorization: it 

assumes that phonetic categories can be identified based on the distribution of sounds in 

the data.  In particular, it assumes that the tokens in each phonetic category have a 

Gaussian (normal) distribution, and the goal of the learner is to identify how many 

categories there are, and which sounds belong to which categories.  Since the number of 

categories is unknown, Feldman et al. use a Dirichlet process prior (Ferguson, 1973), a 

distribution over categories that does not require the number of categories to be known in 

advance.  The Dirichlet process favors categorizations that contain a smaller number of 

categories, unless the distributional evidence suggests otherwise.  In other words, if there 

is good reason to assume that a set of sounds are produced from two different categories 

(e.g. because they have a strongly bimodal distribution, leading to a low likelihood if 

collapsed into a single Gaussian category), then the model will split the sounds into two 

categories; otherwise it will assign them to a single category. 

Feldman et al.’s second model is a lexical-distributional model, which assumes 

that the input consists of acoustically variable word forms rather than just sequences of 

phonetic tokens (i.e., that the child recognizes that the phonetic tokens are part of larger 

units).  The learner now has two goals: to find phonetic categories (as in the distributional 

learner) and also to recognize acoustically distinct word forms as variants of the same 

lexical item, grouping together tokens that contain the same sequence of phones.  Note 

that these two tasks are interdependent. On the one hand, the categorization of phonetic 

tokens affects which word tokens are considered to be the same lexical item.  On the 

other hand, if two word tokens are assigned to the same lexical item, then the acoustic 

tokens comprising them should belong to the same phonetic categories.  The hypothesis 

space for this model thus consists of pairs of categorizations (of acoustic tokens into 

phonetic categories, and word forms into lexical items).  Since the lexical learning task is 

also viewed as categorization, it is modeled using another Dirichlet process, which 

prefers lexicons containing fewer items when possible. 

Using a small hand-constructed data set, Feldman et al. show that the lexical-

distributional model makes a counterintuitive prediction about minimal pairs (i.e., words 

that differ by a single phoneme).  Specifically, if a pair of sounds (say, B and C) only 

occur within minimal pairs (say, lexical items AB, AC, DB, DC), then they are likely to 

be categorized as a single phoneme if they are acoustically similar, since this would 

reduce the size of the lexicon, replacing four words with two (AX, DX).  On the other 

hand, if B and C occur in different contexts (say, AB and DC only), then they are more 

likely to be categorized as separate phonemes.  This is because the lexical-distributional 



learner can use phonemes A and D to recognize that AB and DC are different words, and 

then use this information to recognize that the distribution of B and C are actually slightly 

different.  This prediction is interesting for two reasons.  First, it means that the lack of 

minimal pairs in early vocabularies (e.g., see Dietrich, Swingley, & Werker 2007) may 

actually be helpful.  Secondly, recent experiments by Thiessen (2007) seem to bear out 

the model’s prediction in a word learning task with 15-month-olds: infants are better at 

discriminating similar-sounding object labels (e.g., daw vs. taw) after being familiarized 

with non-minimal pairs containing the same sounds (dawbow, tawgoo). 

In a second simulation, Feldman et al. compared the performance of their 

distributional model, lexical-distribution model, and a second distributional model 

(Vallabha et al. 2007) on a larger corpus containing 5000 word tokens from a 

hypothetical set of lexical items containing only vowels (e.g., "aei" - vowel-only words 

were necessary because the model can only learn vowel categories).  Both of the 

distributional models identified too few phonetic categories, collapsing highly 

overlapping categories into one category.  In contrast, the lexical-distributional learner 

was much more successful in distinguishing between very similar categories.  Although 

these results are preliminary and still need to be extended to more realistic lexicons, they 

provide intriguing evidence that simultaneously learning linguistic generalizations at 

multiple levels (phonetic categories and word forms) can actually make the learning 

problem easier than learning in sequence. 

Dillon, Dunbar, & Idsardi (2011) have also recently studied the acquisition of 

phonemes and phonological rules from acoustic data, using a Bayesian model.  Like 

Feldman et al. (2009b, submitted), they recognize that word forms are comprised of 

phonetic categories.  However, they also note that a phoneme is a more abstract 

representation that may relate multiple phonetic categories across word forms (known as 

allophones of the phoneme).  For example, in Spanish, there is a single phoneme /b/ that 

is realized in distinct ways, depending on the surrounding linguistic context: between two 

vowels, it is pronounced as the fricative /β/, while in all other contexts, it is pronounced 

as the stop /b/.  These two pronunciations are distinct phonetic categories that appear in 

different lexical items.  The Lexical-Distributional Model of Feldman et al. would likely 

recognize these as separate phonetic categories precisely because they appear in different 

linguistic contexts.  However, it would not recognize them as being allophones of the 

phoneme /b/, related by a phonological rule that is conditioned on the surrounding 

phonemes; instead, learning that mapping from two phonetic categories to a single 

phoneme would occur in a subsequent stage of learning.  While this is a reasonable model 

of acquisition, it nonetheless implies a learning sequence where learning phonetic 

categories must happen before learning phonemes and phonological rules. Dillon et al. 

(2011) explore whether relaxing this assumption could lead to better learning. 

In particular, Dillon et al. (2011) investigate the vowel system of Inuktitut, which 

has three phonemes with two allophones each (for a total of six phonetic categories).  

This kind of vowel system is not uncommon in the world’s languages (e.g., it is shared by 

Quechua and many dialects of Arabic), and so represents a realistic learning problem.  

They compare a learner that attempts to first identify the phonetic categories from the 

acoustic data (and would only later hypothesize phonemes and phonological rules) to a 

learner that learns phonetic categories, phonemes, and phonological rules simultaneously.  

Their findings are similar to Feldman et al’s more general finding: Learning multiple 



levels of representation simultaneously can be a better strategy than trying to learn them 

in sequence.  In particular, Dillon et al (2011) found that the learner who only identifies 

phonetic categories will converge on phonetic categories that make it much harder to 

formulate the correct phonological rule (and so define the correct phonemes).  This 

problem occurs because the learner disregards the linguistic context when identifying its 

categories, and uses only the acoustic information.  In contrast, if the learner is trying to 

identify context-sensitive phonological rules at the same time that it is identifying 

phonetic categories, then it views the linguistic context as informative.  This learner  

identifies phonetic categories that are conducive to formulating phonological rules based 

on linguistic context; it can then find the correct phonemes (and allophones) for the 

language.   

An interesting acquisition trajectory prediction that comes from Dillon et al’s 

single-stage model is that children should have some knowledge of phonemes even while 

they’re learning the phonetic categories of their language, as opposed to passing through 

a preliminary stage where they have solid knowledge of phonetic categories but little 

knowledge of phonological rules and phonemes. To our knowledge, the infant perceptual 

experimental literature does not currently distinguish between these possibilities, which 

suggests an area of future research.  

 

3.2. Word segmentation 

There have been a number of recent papers on Bayesian modeling of word 

segmentation.  These are all based on the models presented in Goldwater (2006) and 

Goldwater, Griffiths, & Johnson (2009), which make the simplifying assumption (shared 

by most other computational models of word segmentation) that the input to the learner 

consists of a sequence of phonemes, with each word represented consistently using the 

same sequence of phonemes each time it occurs.  Between-utterance pauses are 

represented as spaces (known word boundaries) in the input data, but other word 

boundaries are not represented.  So, the input corresponding to the two utterances "see 

the kitty?  look at the kitty!", transcribed using the phonemic representation used by 

Goldwater et al., would be siD6kIti lUk&tD6kIti (or, represented 

orthographically for readability, seethekitty lookatthekitty).   

The hypothesis space considered by the learner consists of all possible 

segmentations of the data (e.g., seethekitty lookatthekitty, s e e t h e k i t t y l o o k a t t h e 

k i t t y, seet he k itty loo k att he k itty, see the kitty look at the kitty, etc.).  In this model, 

P(d|h) is 1 for all of these segmentations because they are all completely consistent with 

the unsegmented data (in the sense that concatenating the words together produces the 

input data).
7
  Consequently, the segmentation preferred by the model is the one with the 

highest prior probability.  The prior is defined, as in the Feldman et al. (2009) models, 

using a Dirichlet process, which assigns higher probability to segmentations that contain 

relatively few word types, each of which occurs frequently and contains only a few 
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nzm. However since these sequences are inconsistent with the data, P(d|h) = 0, and these hypotheses can be 

disregarded. 

 



phonemes.  In other words, the model prefers segmentations that produce smaller 

lexicons with shorter words. 

Goldwater et al.'s (2009) computational studies were purely theoretical, with the 

aim of examining what kinds of segmentations would be preferred by a learner making 

the assumptions above, as well as one of two additional assumptions: either that words 

are statistically independent units (a unigram model), or that words are units that predict 

each other (implemented in this case using a bigram model).  While it is clear that the 

second of these assumptions holds in natural language, the first assumption is simpler 

(because the learner only needs to track individual words, rather than dependencies 

between words).  So, if infants' ability to track word-to-word dependencies is limited, 

then it is worth knowing whether the simpler model might allow them to achieve 

successful word segmentation anyway.  Goldwater et al. found that the optimal 

segmentation for their unigram model (in fact for any reasonable unigram model) is one 

that severely undersegments the input data -- the word boundaries it finds tend to be very 

accurate, but it does not find as many boundaries as actually exist.  Thus, it produces 

“chunks” that contain more than one word.  The bigram model is nearly as precise when 

postulating boundaries, but identifies far more boundaries overall, leading to a more 

accurate segmentation. This study is a good example of an ideal observer analysis, 

demonstrating the behavior of optimal statistical learners given the available input and 

certain assumptions about the capabilities of the learners (i.e., whether the learner knows 

to track word-to-word dependencies or not).  Although there is some evidence that 

children do undersegment when learning words (Peters 1983), it is not clear whether they 

do so to the same degree as the unigram model, whether their segmentations are more 

similar to the bigram model, or neither.  Thus this study by itself does not tell us whether 

human behavior is actually consistent with either of the proposed ideal learners, or in 

what situations, or how more limited (non-ideal) learners might differ from the ideal.  

Follow-up work by Goldwater and colleagues has begun to address these questions 

through experimental and computational studies. 

In the work of Frank et al. (2007, 2010), the authors examine the predictions of 

Goldwater et al.'s  unigram word segmentation model, as well as that of several other 

models, and compare these predictions to human performance in several experiments.
8
 

The experiments are modeled on those of Saffran et al. (1996), and involve segmenting 

words from an artificial language based on exposure to utterances containing no pauses 

or other acoustic cues to word boundaries. Frank et al. performed three experiments, 

manipulating either the number of word tokens in each utterance (1-24 words), the total 

number of utterances (thus, word tokens) heard in the training phase (48-1200 words), or 

the number of lexical items in the vocabulary (3-9 lexical items).   

In the experiment that manipulated the length of utterances, Frank et al. found that 

humans had more difficulty with the segmentation task as the utterance length increased, 

with a steep drop-off in performance between one and four words, and a more gradual 

decrease thereafter.  Several of the models captured the general decreasing trend, but the 

Bayesian model correlated better with the human results than all other models tested.  

The Bayesian model's results can be interpreted as a competition effect: longer utterances 

have more possible segmentations, so there is a larger hypothesis space for the model to 
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consider.  Although most hypotheses have very low posterior probability, nevertheless as 

the hypothesis space increases, the total probability mass assigned to all the incorrect 

hypotheses begins to grow.  

In the experiment that manipulated the amount of exposure, subjects' performance 

improved as exposure increased, but again there was a non-linear effect, with greater 

improvement initially followed by a more gradual improvement later on.  Again, the 

Bayesian model captured this effect better than the other models.  The Bayesian model 

incorporates a notion of statistical evidence (more data leads to more certainty in 

conclusions), while many of the other models do not.  For example, Frank et al. tested a 

transitional probability model and found that its performance changes very little over 

time because it only requires a few utterances to correctly estimate the transitional 

probabilities between syllables, after which the transitional probabilities do not change 

with more data.  

Taken together, these two experiments show that the Bayesian model incorporates 

notions of competition and accumulating evidence in ways that predict human 

segmentation behavior more effectively than other models, at least with respect to the 

effects of utterance length and exposure time. This suggests that in some ways humans do 

behave like an optimal statistical learner.  However, the third experiment, which 

manipulated vocabulary size, showed that in other ways, humans are not like an ideal 

learner (or for that matter, like other proposed statistical learners). In this experiment, 

subjects found languages with larger vocabularies more difficult  to segment than those 

with smaller vocabularies.  Although this finding was not surprising - intuitively, larger 

vocabularies impose greater memory demands - all of the models predicted exactly the 

opposite result.  The models have perfect memory, so storing a larger vocabulary poses 

no difficulty.  At the same time, a larger vocabulary makes the sequences of syllables that 

are true words more statistically distinct from the sequences that are not words.  For 

example, with a three-word vocabulary (words A, B, C), an incorrect segmentation where 

the hypothesized words are all the possible two-word combinations (AB, AC, BA, BC, 

CA, CB) scores not much differently from the correct segmentation under the Bayesian 

model -- one hypothesis has three words in the vocabulary, whereas the other has six.  In 

contrast, if there are nine words in the vocabulary, then the analogous incorrect 

segmentation would require 72 vocabulary items, a much bigger difference from nine.  

Similarly, in a transitional probability model, transitions across words in a three-word 

language have relatively high probability, whereas transitions across words in a nine-

word language have much lower probability, making them more distinct from within-

word transitions.    Thus, although humans performed most similarly to the Bayesian 

ideal learner model in the first two experiments, the third experiment provides an 

example where human performance differs from the statistically optimal solution 

assuming perfect memory. 

  The above discussion suggests that in order to successfully model human 

behavior in some language acquisition tasks, it is necessary to account for human 

memory limitations.  Frank et al. present several possible modifications to Goldwater et 

al.'s (2009) Bayesian model that incorporate such limitations through algorithmic means, 

and find that these are able to correctly model the data from all three experiments.  

Similar kinds of modifications were also explored by Pearl, Goldwater, & Steyvers 

(2011) in the context of word segmentation from naturalistic corpus data.  Like Frank et 



al., Pearl et al. wanted to examine cognitively plausible algorithms that could be used to 

implement an approximate version of Goldwater et al.'s Bayesian model.  

To simulate limited cognitive resources, all the algorithms explored in Pearl et al. 

(2011) processed utterances one at a time, rather than in a batch as the ideal learner of 

Goldwater et al. (2009) did.  Two algorithms used variants of a method called dynamic 

programming, which allows a learner to efficiently calculate the probability of all 

possible segmentations for a given utterance.  A third algorithm attempted to additionally 

simulate the human memory decay process, and so focus processing resources on data 

encountered more recently.  This algorithm was a modified form of the Gibbs sampling 

procedure used for ideal learners, and is called decayed Markov Chain Monte Carlo 

(DMCMC) (Marthi et al. 2002).  Notably, the DMCMC algorithm can be modified so it 

does significantly less processing than the ideal learner’s Gibbs sampling procedure (for 

the simulations in Pearl et al, the DMCMC algorithm did 89% less processing than the 

ideal learner’s algorithm). 

Simulations using these algorithms showed that in most cases, constrained 

learners were nearly as successful at segmentation as the ideal learner, despite their 

processing and memory limitations.  These results suggest that children may not require 

an infeasible amount of processing power to identify words using an approximation of 

Bayesian learning.  On the other hand, Pearl et al. found that constrained learners did not 

always benefit from the bigram assumption which was helpful to the ideal learner, 

perhaps because those constrained learners lacked sufficient processing resources to 

effectively exploit that information.   

Interestingly, Pearl et al. also found that some of their constrained learners 

actually outperformed the ideal learner when the learners used a unigram assumption.   

This is a somewhat counterintuitive finding, since we might naturally assume that having 

more memory and more processing power (like the ideal learner has) is always better.  

However, these results are compatible with the “Less is More” hypothesis (Newport 

1990), which suggests that fewer cognitive resources may actually be beneficial for 

language acquisition.  This turned out to be true in the unigram learners Pearl et al. 

examined.  In particular, a property of all unigram learners is that they will undersegment 

frequent short words that often appear in sequence (like it’s and a), preferring to make 

them a single word (itsa) in order to explain why they appear together so frequently.  

Because the ideal learner has a perfect memory, it can see all the data at once and realize 

that this sequence of phonemes often occurs.  In addition, because the ideal learner also 

has more processing resources, it has more opportunity to “fix” a mistaken hypothesis 

that these are two separate lexical items instead of one.  In contrast, the constrained 

learner lacks both the ability to see all the data at once and the processing resources to 

easily fix a “mistake” it made earlier on in learning (where the “mistake” is viewing the 

phoneme sequence it’s a as two lexical items).  As such, it does not make the 

undersegmentation errors the ideal learner does. Though the Bayesian modeling studies 

discussed here are preliminary and the robustness of the results should be verified on 

other languages, they provide a tantalizing example of this idea that is used to explain 

children’s excellent language acquisition abilities. 

 

3.3. Word-meaning mapping 



 There have been two notable recent studies involving Bayesian models for 

learning word-meaning mappings.  In Section 1 we briefly mentioned some experimental 

results from one of these, Xu & Tenenbaum (2007), and refer the reader to that paper for 

a description of the computational aspects of the study.  Here we discuss instead the work 

of Frank, Goodman, & Tenenbaum (2009), who developed a Bayesian model that 

incorporates both non-linguistic context and speaker intentions in learning noun-object 

mappings.  Their model assumes that the words uttered by a speaker (and therefore 

observed by the learner) are determined by the process represented schematically in 

Figure 2.  Given the set of objects O that are currently present, the speaker chooses some 

subset of those objects I as intended referents.  The speaker also has a lexicon L  

containing one or more labels for each object. The utterance W contains one referring 

word for each intended referent, where that word is chosen at random from the labels 

available in L for the referent. W can also include non-referring words (verbs, 

determiners, etc.), but the model is set up in such a way that it prefers words to be 

referential if possible. 

  

   
Figure 2. Generative process for producing words in a specific situation.  The words 

uttered (W) depend on both the lexicon (L) and the intended objects (I).  The intended 

objects (I) depend on what objects are current present (O). 

  

 The model is tested using a corpus derived from videos of parent-child 

interactions, where each utterance was transcribed and annotated with the small number 

of objects that were visible during that utterance. Given the words uttered by a speaker 

(W) in the presence of a set of objects (O), the model simultaneously infers the most 

probable lexicon for the speaker (L) and which objects in O the speaker intended to refer 

to (I).  Although each (W,O) pair can be highly ambiguous, pooling the data across many 

observable pairs allows the model to disambiguate the word-meaning mappings, just as 

humans were able to do in the cross-situational word learning experiments of Yu & Smith 

(2007) and Smith & Yu (2008). The model far out-performed other statistical learning 

methods such as conditional probability and mutual information, identifying the most 

accurate set of lexicon items and speaker-intended objects. 

 In addition to its overall high accuracy, the Bayesian model reproduced several 

known word-learning behaviors observed in humans.  For example, the model exhibited a 



mutual exclusivity preference (Markman & Wachtel 1988, Markman 1989, Markman, 

Wasow, & Hansen 2003) because having a one-to-one mapping between a lexicon item 

and an object referent maximized the probability of a speaker using that lexicon item to 

refer to that object. The Bayesian model can also reproduce a behavior that children show 

called one-trial learning (Carey 1978, Markson & Bloom 1997), where it only takes one 

exposure to a word to learn its meaning.  This occurs when the learner’s prior knowledge 

and the current available referents in the situation make one word-meaning mapping 

much more likely than others.  For example, suppose there are two objects in the current 

situation, a bird and an unknown object.  Suppose the word dax is used.  If the child has 

prior knowledge of the word bird and what it tends to refer to, then the model will view 

the lexicon item dax as most likely referring to the unknown object after only this one 

usage.   

 A third child behavior this model can capture is the use of words for individuating 

objects (Xu 2002).  Xu (2002) found that when infants hear two different labels, they 

expect two different objects and are surprised if only one object is present; when only one 

label is used, they expect only one object to be present.  That is, infants have an 

expectation that words are used referentially. This behavior falls out naturally in the 

Bayesian model because the model has a role for speaker intentions.  Specifically, the 

models used its assumptions about how words work (they are often used referentially) to 

make inferences about the states of the world that caused a speaker to produce particular 

utterances (i.e., one label indicates one object, and two labels indicate two objects).  In 

this way, the model replicated the infant behavior results from Xu (2002).    

 In a similar fashion, this model can directly incorporate speaker intention to 

explain behavioral results such as those of Baldwin (1993).  Baldwin found that children 

could learn the appropriate label for an object even if a large amount of time elapsed 

between the label and the presentation of the object as long as the speaker’s intention to 

refer to the object with that label was clear.  In the Bayesian model, this information can 

be directly incorporated at the level of speaker intentions. 

 

3.4. Syntax-semantics mapping 

 The meaning of a word is not always directly connected to a referent in the world, 

however.  Some words are anaphoric – that is, they refer to something previously 

mentioned. Here is an example of one being used anaphorically in English: 

 

(1)   “Look! A black cat. Oh, look - there’s another one!”  

  

 In this situation, most adults would expect to see a second black cat. That is, the 

default interpretation of one is a cat that has the property black and this utterance would 

sound somewhat strange (without additional context) if the speaker actually was referring 

to a grey cat. This interpretation occurs because most adults assume the linguistic 

antecedent of one is the phrase black cat (i.e., one could be replaced by black cat without 

the meaning of the utterance changing: Look! A black cat.  Oh, look – there’s another 

black cat.) Lidz, Waxman, & Freedman (2003) ran a series of experiments with 18-

month-old children to test their interpretations of one in utterances like (1), and found 

that they too shared this intuition. So, Lidz, Waxman, & Freedman (2003) concluded that 

this knowledge about how to interpret one must be known by 18 months. 



 The interpretation of one depends on what antecedents one can have. According to 

common linguistic theory, an anaphor and its antecedent must have the same syntactic 

category.  But what category is that?  A common representation of the syntactic structure 

for black cat is in (2), where N
0
 refers to a basic noun like cat and Nʹ′ is a category that 

includes both basic nouns like cat and nouns containing modifiers like black cat. 

 

 (2)  

 

 Since one can have the string black cat as its antecedent, and black cat is category 

Nʹ′, then one should also be category Nʹ′.  If one were instead category N
0
, it could never 

have black cat as its antecedent – it could only have cat as its antecedent, and we could 

not get the interpretation most adults do for (1).  Note that the bracketing notation in (2) 

indicates that cat can be labeled as both syntactic category Nʹ′  (  ) and 

syntactic category N
0
 (  ).  This is what allows us to have cat as one’s antecedent 

sometimes, as in I don’t want a black cat – I want a grey one.  In this utterance, one must 

refer to cat, rather than black cat, and this is possible because cat can also be category Nʹ′, 

just as one is. 

 Under this view, adults (and 18-month-olds) have apparently learned that one 

should be category Nʹ′, since they allow black cat to be its antecedent.  This includes both 

syntactic and semantic interpretation knowledge.  On the syntactic side, one is category 

Nʹ′ in utterances like (1).  On the semantic side, when the potential antecedent of one 

contains a modifier (such as black), that modifier is relevant for determining the referent 

of one. This relates to syntax-semantics mapping: because the modifier is relevant for 

determining the referent, the larger of the two Nʹ′ options should be chosen as the 

intended antecedent (black cat instead of just cat). 

 How this knowledge is acquired by 18 months has long been debated. The problem 

is the following. Suppose the child encounters utterance (1) from above in the context 

where two black cats are present. Suppose this child is not sure which syntactic category 

one is in this case –  Nʹ′ or N
0
. If the child thinks the category is N

0
, then the only possible 

antecedent string is cat, and the child should look for the referent to be a cat. Even though 

this is the wrong syntactic category for one, the observable referent will in fact be a cat.  

How will the child realize that this is the wrong category, since the observable referent (a 

cat that also happens to be black) is compatible with this hypothesis?  The same problem 

arises even if there’s no modifier in the antecedent: Look! A cat.  Oh, look – there’s 

another one.  The hypothesis that one is category N
0
 is compatible with the antecedent 

cat, which is compatible with the observable referent being a cat, as indeed it is.  

 These ambiguous data dominate children’s input for anaphoric one, and only rarely 

do unambiguous data appear (approximately 0.25% according to a corpus analysis by 

Lidz, Waxman, & Freedman (2003) and never in the corpus analysis conducted by Pearl 

& Mis (2011)).  This is unsurprising once we realize that unambiguous data require a 

specific coincidence of utterance and situation.  For example, suppose there are two cats 

present, one black and one gray.  An unambiguous utterance would be Look! A black cat. 

Hmmm…there’s not another one around, though. In this utterance, one cannot refer to 

cat, since there is clearly another cat around.  Instead, one must refer to black cat, which 

would allow the utterance to make sense – there’s not another black cat around (the other 



cat is gray).  Because black cat includes both a modifier and a noun , it must be Nʹ′, so 

this data point is unambiguous for one’s syntactic category and semantic interpretation. 

 Because unambiguous data are so rare in children’s input, knowledge of anaphoric 

one was traditionally considered unlearnable without innate, domain-specific biases on 

the hypothesis spaces of children.  In particular, many nativists such as Baker (1978), 

Hornstein & Lightfoot (1981), and Crain (1991) proposed that children already knew that 

one was category Nʹ′, so the choice between N
0
 and Nʹ′ would never occur, eliminating the 

syntactic component of the learning problem.  

 Regier & Gahl (2004) discovered that a learner using Bayesian inference can 

leverage useful information from ambiguous examples that include a modifier, like (1).  

Specifically, for examples like (1), the learner observes how often the referent of one is a 

cat that is black. If the referents keep being black cats, this is a suspicious coincidence if 

one referred to cat, and not to black cat.  The learner capitalizes on this suspicious 

coincidence and soon determines that one takes black cat as its antecedent in these cases. 

Since the string black cat can only be an Nʹ′ string (see (2)), the learner can then infer that 

one is of category Nʹ′ as well.  The only specific linguistic knowledge the learner requires 

is (1) the definition of the hypothesis space (hypothesis 1: one = Nʹ′ category, hypothesis 

2: one = N
0
 category), and (2) knowing to use these specific informative ambiguous data. 

 Pearl & Lidz (2009) later explored the consequences of a Bayesian learner that 

did not know this second piece of information, and instead attempted to learn from all 

potentially informative ambiguous data involving anaphoric one (such as Look, a cat!  

Oh, look – another one).  Pearl & Lidz found that this “equal opportunity” learner made 

the wrong choice, inferring that one was category N
0
 due to the suspicious syntactic 

coincidences available in the additional ambiguous data.   Thus, the second piece of 

information is vital for success, and Pearl & Lidz speculated that it is linguistic-specific 

knowledge since it requires the child to ignore a specific kind of language data (note, 

however, that it could be derived using a domain-general strategy - see Pearl & Lidz 

(2009) for more detailed discussion of this point).   

 Foraker, Regier, Khetarpal, Perfors, & Tenenbaum (2009) investigated another 

strategy for learning the syntactic category of one, this time drawing only on syntactic 

information and ignoring information about what the intended referent was.  In particular, 

a learner could notice that one is restricted to the same syntactic arguments (called 

modifiers) that words of category Nʹ′ are restricted to, rather than being able to have both 

modifiers and another syntactic argument (complements) that words of category N
0
 can 

have.  That is, one, like Nʹ′ words, can take only modifiers as arguments, while N
0
 words 

can take both modifiers and complements as arguments.  This restriction is a suspicious 

coincidence if one is really category N
0
.  So, a Bayesian learner can infer that one is 

category Nʹ′.  Notably, however, the ability to distinguish between modifiers and 

complements requires the child to make a complex conceptual distinction (see Foraker et 

al. (2009) for more discussion on this point) as well as link that conceptual distinction to 

the syntactic distinction of complements and modifiers, and it is unclear if 18-month-old 

children would be able to do this. 

 Pearl & Mis (2011, submitted) considered expanding the learner’s view of the 

relevant data to include what they call indirect positive evidence.  Specifically, they note 

that one is not the only anaphoric element in English.  Other pronouns also have this 

referential property, such as it, her, him, etc.  Moreover, other pronouns share 



distributional properties with one: Look, at the black cat!  I want it/her/him/one.  This 

might cause children to view data involving these other pronouns as informative for 

learning about one. Notably, the antecedents for these pronouns always include the 

modifiers – in the above utterance, the antecedent is the black cat, and so the referent will 

be the black cat in question.  If a Bayesian learner is tracking whether the mentioned 

property (e.g., “black”, as indicated by the modifier black) is important for picking out 

the intended referent, these additional pronoun data will cause that learner to assume that 

mentioned properties are indeed important for interpreting anaphoric elements.  So, when 

the child encounters an ambiguous example with anaphoric one like Look, a black cat!  

Oh, look – another one, the child will assume the mentioned property black is important, 

and pick one’s antecedent to be black cat rather than cat.  This then leads to the correct 

interpretation. Moreover, because black cat can only be category Nʹ′, this also leads to the 

correct syntactic category for one in this context. Interestingly, while the learner gets the 

correct interpretation in this context, and so matches the 18-month-old behavioral data 

from Lidz et al. (2003), the learner actually has the wrong hypothesis about one’s 

category (one=N
0
) when no modifier is present (Look, a cat! Oh, look – another one.)  

However, this wrong hypothesis does not lead to the wrong interpretation in this 

utterance, and so could easily go undetected.  (See Pearl & Mis (submitted) for discussion 

of examples where the wrong hypothesis about one has observable consequences.) This 

suggests that the 18-month-olds from Lidz et al. (2003) may not have the full range of 

adult intuitions either.    

 

3.5. Syntactic structure 

 Children must also discover the rules that determine what order words appear in.  

For example, consider the formation of yes/no questions in English.  If we start with a 

sentence like The cat is purring, the yes/no question equivalent of this sentence is Is the 

cat purring?  But how does a child learn to form this yes/no question?  One rule that 

would capture this behavior would be “Move the first auxiliary verb to the front”, which 

would take the auxiliary verb is and move it to the front of the sentence.  This rule is a 

linear rule, since it only refers to the linear order of words (“first auxiliary”). Another 

rule that would capture this behavior is “Move the main clause auxiliary verb to the 

front”.  This is a structure-dependent rule, since it refers to the structure of the sentence 

(“main clause”). 

 

 (3) Example of yes/no question formation 

  (i)  Sentence:   

      The   cat  is    purring. 

  (ii) Linear Rule: Move the first auxiliary verb 

        Is     the     cat    tis   purring 

  (iii) Structure-Dependent Rule: Move the main clause auxiliary verb 

          Is  [S the     cat   tis    purring] 

 

 Both of these rules account for simple yes/no questions like the one above, but 

only the structure-dependent rule accounts for behavior of more complex yes/no 

questions, as in (4).  

 



 (4) Example of complex yes/no question formation 

  (i)  Sentence:   

      The   cat    who   is  in  the  corner  is  purring. 

  (ii) Linear Rule: Move the first auxiliary verb 

        *Is    the    cat     who  tis  in  the  corner  is  purring 

  (iii) Structure-Dependent Rule: Move the main clause auxiliary verb 

             Is  [S the    cat [S who is  in the  corner]  tis  purring] 

 

 Children as young as three years old appear to know that structure-dependent 

rules are required for complex yes/no question formation in English (Crain & Nakayama, 

1987), yet unambiguous examples like (4iii) that explicitly demonstrate this structure-

dependence are rare in child-directed speech (Pullum & Scholz 2002, Legate & Yang 

2002).   Since the yes/no question data children usually see are compatible with both 

linear and structure-dependent rules, it seems surprising that children know the structure-

dependent rule for complex yes/no questions at such an early age. A standard explanation 

is that children innately know that language rules are structure-dependent, so they never 

consider other kinds of analyses for their input, such as linear rules (e.g., Chomsky, 

1971). 

 Perfors, Tenenbaum, & Regier (2006, 2011) investigated whether a Bayesian 

learner that considered both linear and structure-dependent analyses could correctly infer 

that structure-dependent analyses were preferable, given child-directed speech data.  

Children must have a structure-dependent analysis of the linguistic data before they can 

hypothesize structure-dependent rules, so inferring a structure-dependent representation 

is a foundation for later inferring structure-dependent rules. Perfors et al. proposed that 

while complex yes/no questions implicating structure-dependent analyses might be rare, 

other data in the input, taken together, might collectively implicate structure-dependent 

analyses for the language as a whole.  This could indirectly implicate the correct complex 

yes/no question structure without the need to observe complex yes/no questions in the 

input.    

 The hypothesis space of the Bayesian learner included both a linear set of rules (a 

linear grammar) and a structure-dependent set of rules (a hierarchical grammar) to 

explain the observable child-directed speech data. That is, given data (D), the learner 

inferred which grammar (G) satisfied two criteria:  

 

(1) the grammar best able to account for the observable data 

(2) the simplest grammar, where a grammar with fewer and/or shorter rules can 

be thought of as simpler   

 

 The posterior probability P(G|D), which Bayes’ Theorem tells us is proportional 

to P(D|G)*P(G), incorporates both criteria. The likelihood P(D|G) rewards grammars 

that are best able to account for the observable data, while also rewarding simpler 

derivations using the available grammar rules. The prior P(G) rewards simpler grammars. 

  For data, Perfors et al. used the child-directed sentences from the Adam corpus 

(Brown 1973) of the CHILDES database (MacWhinney 2000), and divided the sentences 

into six groups based on frequency.  The most frequent sentences also tended to be 

simpler.  Perfors et al. found that a hierarchical grammar was optimal for all the data sets 



that included more complex sentence forms, i.e. those that included at least some 

sentences that occurred less frequently than 100 times.  Thus, if the Bayesian learner is 

exposed to enough complex sentences, it can infer that structure-dependent rules for 

generating the observed data are better than linear rules, and can apply this knowledge to 

analyzing and proposing rules for complex yes/no questions, even if no complex yes/no 

questions have been encountered before. Interestingly, even the earliest data in the Adam 

corpus shows a diversity of linguistic forms, suggesting that young children’s data may 

be varied enough for them to prefer structure-dependent analyses if they are 

approximating the Bayesian inference procedures used by Perfors, Tenenbaum, & Regier.  

An open question is whether children have the memory and processing capabilities to 

make these approximations. 

 Perfors and colleagues (Perfors, Tenenbaum, Gibson, & Regier 2010) also used 

Bayesian learners to investigate how recursion might be instantiated in grammars.  

Recursion occurs when a phrasal category can be expanded using rules that eventually 

include another instance of that category, as in (5), where an S can be expanded using an 

NP (5i) and an NP can be expanded using an S (5ii).   

 

 (5) Recursive rule example 

  (rule i)   S  NP VP 

  (rule ii) NP  N complementizer S  

 

 Recursion has been argued to be a fundamental and possibly innate part of the 

language faculty (Chomsky 1957), as well as the one of the only parts of the language 

faculty specific to humans (Hauser, Chomsky, & Fitch 2002).  Perfors et al. (2010) 

evaluated grammars with and without recursive rules to decide which was optimal for 

parsing child-directed speech data.  Grammars with recursive rules allow infinite 

embedding (Depth 3+ in (6)), while grammars without recursive rules allow embedding 

only up to a certain depth, e.g., 2 clauses deep (Depth 0, 1, and 2 in (6)). 

 

 (6)  Embedding 

  (a) Subject-embedding 

  [Depth 0]   [Subj The cat] is purring. 

  [Depth 1]   [Subj The cat that [Subj the girl] petted] is purring. 

  [Depth 2]   [Subj The cat that [Subj the girl that [Subj  the boy] kissed] petted]  

          is purring. 

  [Depth 3+] [Subj The cat that [Subj the girl that [Subj the boy that  [Subj…]  

          kissed] petted] is purring. 

  

  (b) Object-embedding  

  [Depth 0]   The cat chased [Obj the mouse]. 

  [Depth 1]   The cat chased [Obj the mouse that scared [Obj the dog]]. 

  [Depth 2]   The cat chased [Obj the mouse that scared [Obj the dog that  

          barked at [Obj the mailman]]]. 

  [Depth 3+] The cat chased [Obj the mouse that scared [Obj the dog that  

          barked at [Obj the mailman that [Obj…]]]]. 

 



 The Bayesian learner had the same preferences as the one in Perfors, Tenenbaum, 

& Regier (2006, 2011): it attempted to identify the grammar that best balanced simplicity 

and the ability to account for the observed data.  Note that grammars with recursive rules 

predict sentences that will rarely or never occur, such as the sentences with embedding of 

Depth 3+ in (6), so these grammars will not fit the data as well as grammars with limited 

embedding.  However, a recursive grammar is often simpler than one that needs to 

encode exactly a specific depth of embedding, so whether recursion is learned will 

depend on the trade-off between these two factors with respect to the observed data. 

 Perfors et al. could have assumed that the learner considered only two kinds of 

hypotheses: grammars where rules are recursive whenever possible, or grammars where 

no rules are recursive. Instead, they also allowed the learner to have separate recursive 

rule types for subject-NPs (as in 6a) as opposed to object-NPs (as in 6b), since 

embedding is more often observed and more easily comprehended when it is object 

embedding (compare Depth 2 in 6a to Depth 2 in 6b).   

 The Bayesian learner, when given child-directed speech data, inferred that the 

optimal grammar was one where the subject-NP rules allowed both recursive rules and 

depth-limited embedding while the object-NP rules were only recursive.  This result is 

due to the fact that multiple embeddings are much more frequently observed in object-

NPs than in subject-NPs. More broadly, it also suggests that a statistical learner may be 

able to discover when recursive rules are useful and when they aren't.  A child would not 

necessarily need to innately know that recursion is required for representing object-NPs.  

Instead, if recursive rules are available in their hypothesis space, children would be able 

to infer from their input that recursion is required for some parts of the grammar. 

 

3.6. General summary of studies 

 We have tried to review several studies that highlight the contribution of Bayesian 

inference to language acquisition, including studies in the domains of phonetics and 

phonology, word segmentation, word-meaning mapping, syntax-semantics mapping, and 

syntactic structure.  Though Bayesian modeling is only one approach to understanding 

language acquisition, it provides a way to investigate questions about the utility of 

statistical information in the data and which acquisition problems statistical learning can 

deal with effectively.  In addition, it can often provide a coherent account of observed 

human behavior by demonstrating what a learner using Bayesian inference would do with 

the available data.  

 

4. Conclusion 

 In this chapter, we have discussed ways in which Bayesian modeling can be used 

to explore questions of interest to the language acquisition community.  As Bayesian 

models assume humans can use statistical information in sophisticated ways, we also 

provided a historical overview of statistical learning within the field of language 

acquisition, including experimental studies that demonstrate human statistical learning 

ability.  We then discussed the Bayesian modeling framework, including some of its 

benefits that may be particularly interesting to both developmental and theoretical 

linguists. Finally, we reviewed several computational studies that modeled acquisition of 

knowledge in different domains using Bayesian inference techniques.  Statistical learning 

techniques such as Bayesian inference, when coupled with well-defined problems and 



hypothesis spaces, can help us understand both the nature of the data available to children 

and how they are able to acquire complex linguistic generalizations so rapidly.  
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