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Abstract
Recent evidence (Maye, Werker & Gerken, 2002) suggests that statistical learning may be an
important mechanism for the acquisition of phonetic categories in the infant's native language. We
examined the sufficiency of this hypothesis and its implications for development by implementing
a statistical learning mechanism in a computational model based on a Mixture of Gaussians
(MOG) architecture. Statistical learning alone was found to be insufficient for phonetic category
learning—an additional competition mechanism was required in order to successfully learn the
categories in the input. When competition was added to the MOG architecture, this class of
models successfully accounted for developmental enhancement and loss of sensitivity to phonetic
contrasts. Moreover, the MOG with competition model was used to explore a potentially
important distributional property of early speech categories -- sparseness -- in which portions of
the space between phonetic categories is unmapped. Sparseness was found in all successful
models and quickly emerged during development even when the initial parameters favored
continuous representations with no gaps. The implications of these models for phonetic category
learning in infants are discussed.

Infants face a difficult problem in acquiring their native language because the acoustic/
phonetic variability in the input far exceeds the limited number of distinctive differences that
define language-specific phonemes. How do infants attend to the relevant information that
distinguishes words? Recent evidence suggests that phonemic categories may be induced, in
whole or in part, by a rapid statistical learning mechanism that is sensitive to the
distributional properties of phonetic input (Maye, Werker & Gerken, 2002; Maye, Weiss &
Aslin, 2008). This evidence suggests that the detailed frequency-of-occurrence of tokens
along continuous speech dimensions plays a crucial role in the formation and modification
of phonemic categories.

The present paper describes a computational model of statistical speech category learning
that examines the necessary and sufficient mechanisms needed to account for known
empirical data from infants, and the implications of those mechanisms for early speech
categories. We demonstrate that statistical learning alone is insufficient: competition is also
required. However, once this feature is added to the model, it can account for a number of
developmental trajectories in speech category learning. Finally, we examine the possibility
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that early speech categories are independent and sparsely distributed; that is, they do not
fully cover all values along a phonetic dimension.

Statistical Learning and Development
The classic view of speech perception in both adults (cf., Liberman, Harris, Hoffman &
Griffith, 1957) and infants (cf., Eimas, Siqueland, Jusczyk & Vigorito, 1971; see Jusczyk,
1997) is that stop consonants are perceived categorically. However, more recent evidence
confirms within-category sensitivity in both adults (Pisoni & Tash, 1974; Carney, Widen &
Viemeister, 1979; Miller, 1997) and infants (Miller & Eimas, 1996; McMurray & Aslin,
2005). Nevertheless, adults and infants have a bias to group acoustically similar sounds into
categories, and these categories begin to match their native language by 6 to 12 months of
age. This matching process can take a number of forms. For some dimensions infants are
initially able to distinguish a number of contrasts not found in their native language followed
by a loss of the unnecessary contrasts (Werker & Tees, 1984; see Werker & Curtin, 2005
and Kuhl, 2004 for recent reviews). For others, contrasts are initially indiscriminable and
enhanced over development (Eilers & Minifie, 1975; Eilers, Wilson & Moore, 1977).

Speech exemplars tend to cluster statistically along continuous acoustic/phonetic
dimensions. For example, Figure 1 shows measurements of Voice Onset Times (VOTs:
distinguishing voiced from voiceless sounds) from English speakers, illustrating two clusters
corresponding to voiced and voiceless categories (Lisker & Abramson, 1964;Allen & Miller,
1999). These clusters approximate Gaussian distributions, one centered at 0 ms (voiced) and
one at 60 ms (voiceless). While the incidence of tokens near 0 and 60 ms is frequent, few are
attested at 30, 100, and -20 ms.. Similar clustering is seen for the cues to vowels (Peterson &
Barney, 1951;Hillenbrand, Getty, Clark & Wheeler, 1995) and approximants (Espy-Wilson,
1992).

This suggests that the frequency of occurrence of tokens along a given speech dimension
could allow listeners to induce phonetic categories from the clusters of tokens in the input.
This has been explicitly tested behaviorally with adults (Maye & Gerken, 2000) and infants
(Maye et al., 2002, 2008). Listeners who were exposed to a series of speech sounds for
which the frequency of any VOT was distributed bimodally (characteristic of two
categories) were able to discriminate two exemplars that straddled the category boundary,
whereas listeners exposed to a unimodal (single category) distribution could not. Thus, a few
minutes of exposure to statistically structured input biases perception in a way that is
consistent with statistical learning.

Existing Models
A variety of computational models implement category learning via clustering algorithms.
Connectionist models (Elman & Zipser, 1986; Guenther & Gjaja, 1996; Nakisa & Plunkett,
1998; see also McCandliss, Fiez, Protopapas, Conway & McClelland, 2002) have
demonstrated the feasibility of input-driven learning mechanisms, but such models
incorporate other features that make it difficult to isolate statistical learning. Elman and
Zipser (1986) used nonlinear activation functions and competition (dimensionality
reduction); Guenther and Gjaja (1996) employed topographic competition; and Nakisa and
Plunkett (1998)'s genetic algorithm produced an array of specialized architectures and
learning rules. In these models, statistical learning is one of many mechanisms involved in
speech category development.

To better isolate the clustering mechanism, we simulated statistical learning in a model that
uses a simple architecture; makes few theoretical assumptions; and only adds constraints
when needed to account for the data. Many models start with a theoretical paradigm (e.g.,
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connectionism or dynamical systems theory), and ask whether the principles of this
paradigm are sufficient to solve a problem. Our goal was to start with the computational
problem the system is trying to solve (learning the mapping between continuous inputs and
categories), and use current theory (distributional learning) to arrive at an architecture suited
to that problem.

This led us to use the Mixture of Gaussians (MOG) approach. This is a classic tool from
statistics and computer science used for estimating the parameters of a set of probabilistic
clusters (Titterington, Smith & Makov, 1985). While this requires certain architectural
assumptions, these are made with respect to the problem being solved, not due to any
paradigmatic approaches to development. This approach allows us to isolate and evaluate
statistical learning as a mechanism for forming categories.

The Mixture of Gaussians Model
The MOG approach to speech categorization estimates the probability ( M[VOT] ) of
obtaining any individual cue-value (e.g., a specific VOT) as the sum of probabilities from
some number (K) of overlapping Gaussians, each with some prior likelihood. The model
represents each potential or actual category (e.g. voiced or voiceless) with a single Gaussian
(Gi) that has a set of parameters that describe the frequency of that category (ϕ), its location
in the input-space (μ), and its variability in the input-space (σ) (see Figure 2, Equation 1 for
an example along the VOT dimension).

(1)

Each Gaussian computes the likelihood of hearing a specific VOT if that category was the
intended production. The MOG estimates the likelihood of a given input (e.g. a specific
VOT) as the sum of the likelihood that that input was obtained from each of the K
Gaussians.

(2)

For example, the probability of obtaining a VOT of 40 ms from a mixture of K=2 Gaussians
is the sum of the likelihood that it was generated by either category: the low probability that
it arose from the voiced category (e.g. μ=0, σ=10), plus the higher probability that it arose
from a voiceless category (e.g. μ=50, σ=20). Category membership is simply a matter of
determining which Gaussian in the mixture was most likely for a given input.

The MOG approach can fit any continuous cue that forms clusters in the input, and it only
assumes that each input category creates a different probability distribution. Speech category
learning is simply a matter of estimating the number of categories and their parameters from
the input. Multiple contrasts (e.g., voicing and place) can be learned by estimating the
parameters of multiple mixtures simultaneously, and Toscano and McMurray (in press) have
shown that this framework can be extended to weight multiple cues for the same category.
The MOG assumes that the psychological representation of such categories is Gaussian.
This is not unreasonable, given the prevalence of Gaussian tuning curves in auditory cortex,
and the fact that speech categories exhibit considerable gradiency within categories that
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takes a more or less Gaussian form (Miller & Volaitis, 1989; McMurray, Tanenhaus &
Aslin, 2002).

The MOG approach has been used by De Boer and Kuhl (2003) demonstrate that a MOG
can learn a small number of vowel categories, and that infant-directed speech (Kuhl,
Andruski, Chistovich & Chistovich, 1997) can facilitate acquisition. Their model, however,
learned with Expectation Maximization (EM), which employs a complex, multi-stage
procedure and estimates parameters after receiving a large batch of input. Infants, however,
must learn iteratively (i.e., learning occurs after each input). Additionally, the model was
incapable of learning the number of categories needed for a given contrast (the number was
specified a priori). Since different languages have different numbers of categories, the
model must be able to determine this on the basis of the input. Thus, we developed an
iterative approach to learning that was simple, plausible, and capable of learning the correct
number of categories to fit the native language structure.

The Learning Algorithm
Our learning algorithm is based on Maximum Likelihood Estimation (MLE) by stochastic
gradient descent. MLE is a standard way to estimate the parameters of any function by
maximizing the likelihood of the parameters given the data. Gradient descent is a general
optimization technique which virtually all connectionist learning rules (as well as classic
learning theory) implement in some way (see Barto, 1995, for an overview). Gradient
descent simply adjusts parameters of the likelihood function (equation 2) along the
derivative of the likelihood function (with respect to the parameter). When the derivatives
become 0, no further change in the parameters is possible - the function has reached
maximum likelihood. This can be a local maximum (for example if the model
overgeneralized to a single category), or a global maximum, the best parameter-set for the
data.

Our model uses gradient descent to adjust μ, σ, and ϕ as it encounters individual VOTs (or
other cues). This, then maximizes the likelihood of the input given the particular parameter-
set. This allows us to model learning, as it happens, in the moment (see McMurray, Horst,
Toscano & Samuelson, in press, for a theoretical discussion). Thus, our learning rules are as
follows:

(3)

After updating ϕ, the vector of all ϕ's is normalized to sum to 1 since ϕ represents a prior
probability which must be between 0 and 1.

(4)

(5)

In all three equations, η is a learning rate parameter and μi, σi and ϕi represent the
parameters of Gaussian i (Gi). As before M(vot) is the sum of all Gi's. These learning rules
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are applied to each Gaussian after each input. By updating each parameter in small
increments (η), the system gradually moves to a set of Gaussians whose parameters are more
optimal for the dataset. After sufficient learning, these parameters will typically be truly
optimal (a global minimum). However, occasionally the model will converge on a local
minimum in which the parameters are not optimal, but cannot be further improved. In all of
the simulations that were run, a local minimum were only seen when the model incorrectly
estimated the the number of Gaussian with non-zero ϕ's: either over-generalizing (too few
Gaussians) or under-generalizing (too many).

The model was trained as follows. First, an array of K Gaussians is randomly generated to
serve as the initial state. K is relatively high (e.g., 10-20) since the model does not know
how many categories (Gaussians) it will need. The μs of these Gaussians are randomly
selected, σs are set to a small constant value1, and ϕs to 1/K. After initializing the model, it
is exposed to a set of inputs. On each generation, a single value of a speech cue is selected.
For these simulations, VOT was generally used, but this is arbitrary—a MOG can be applied
to any continuous cue. These cue values are randomly generated from a bimodal (2-
category) Gaussian distribution (whose means and standard deviations are based on the
means and standard deviations reported by speech production measurements such as Lisker
& Abramson, 1964). After this cue-value is selected, the three parameters (ϕ, μ and σ) of
each of the K Gaussians are adjusted according to the learning rules in Equations 3-5. This is
repeated until the model converges on a solution (the parameters reach asymptote), usually
several thousand iterations2.

Tests of the Model
Simulation 1: Statistical learning requires competition

The first simulations determined if these learning rules were sufficient to learn speech
categories. 100 models were initialized (parameters in Table 1, Sim 1) and trained for
100,000 generations on a random sampling from a dataset based on Lisker and Abramson's
(1964) estimates of English VOTs. We then determined if (1) the model converged on the
correct number of categories (i.e., the frequency parameter, ϕ, was much greater than .01 for
the correct number of Gaussians) and (2) if those categories approximated the training
distribution (had correct values for μ and σ).

None of the models converged on a reasonable solution, averaging 11.9 (SD=1.8) active
Gaussians, and no model reached the true two-category solution. Thus while the model
suppressed some Gaussians (K was 25), it never arrived at the correct number. Nonetheless,
the model could have approximated the training distribution across a set of Gaussians (a
distributed representation). To test this, each active Gaussian was categorized as belonging
to either the voiced or the voiceless category (which ever it was closest to), and the
parameters of the corresponding sets of Gaussians were analyzed to determine if they
collectively approximated the input. First, we considered whether ϕ was estimated correctly.
Since multiple Gaussians were above-threshold for each category, the sum of their ϕs should
be .5. However, only 57 of the 100 models were between .45 and .55. μ and σ were equally
inaccurate. The average RMS difference of each Gaussian's μ from the closest input
category was 6.14 ms of VOT (SD=.9), and for σ this value was 3.68 ms (SD=.9). Thus,
even a representation distributed across multiple Gaussians did not match the input
distribution.

1While σinitial is arbitrarily set by the experimenter, Simulation 4 tested success on σinitial ranging from 1 ms of VOT to 50 and
found that σs between 3 and 25 were largely successful (Figure 5A)
2The MOG described here was implemented in MATLAB (code is available from the first author).
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To improve the model, a simple change was introduced: winner-take-all competition. The
model used the same learning rules, with the exception that ϕ was changed only for the
single Gaussian that had the highest likelihood for the current input. This is psychologically
plausible, since only the frequency of one category should be adjusted for a given input.
Computationally, it approximates Rumelhart and Zipser's (1986) competitive learning,
which McMurray and Spivey (1999) applied to bimodal Gaussian distributions.

We implemented 100 new models and found that 97 arrived at the correct two-category
solution. For these 97 models, ϕ was always between .45 and .55 for the two categories, μ
averaged .52 ms of VOT (SD=.28) from that of the closest input category, and σ averaged .
69 ms from that of the nearest input category (SD=.63). Thus, competition allowed the
MOG to learn the correct number of categories and to align them nearly perfectly with the
input.

The discreteness of winner-take-all competition, however, may oversimplify what is most
likely an underlyingly continuous process. Thus, we attempted three additional competition
schemes: simple linear normalization, quadratic normalization, and the softmax function
(with and without winner-take-all). As Table 2 shows, without competition, quadratic
normalization and softmax outperformed the original implementation. However, when
competition is included, these two schemes offered no additional benefit over the original
model. Thus, this form of statistical learning is only successful with competition, and, of the
competition methods examined, winner-take-all seems to yield the best performance.

A number of unsupervised connectionist architectures show the same property. Competitive
Hebbian learning (e.g. Rumelhart & Zipser, 1986) uses winner-take-all competition;
Hebbian Normalized Recurrence uses quadratic normalization and cannot learn speech
categories without it (McMurray et al., in press); and self-organizing feature maps (Guenther
& Gjaja, 1992) employ a topographic excitation/inhibition rule. These architectures buttress
the current point: competition is required for distributional category learning.

Modeling the Developmental Timecourse
Using the hybrid model (learning + competition) we now ask whether it accounts for the
developmental timecourse of phonetic category formation. Figure 3 shows a characteristic
run of the model. Over the course of development, unnecessary Gaussians are eliminated
and the remaining ones adjust to fit the input from the training distribution. Thus, at 2,000
training generations (Panel B), the model has a large number of categories that are not
aligned to the training data. At this point, any two VOTs are likely to fall under different
categories and be easily discriminable. However, after 30,000 generations (Figure 3D), the
model successfully represents the input and many (within-category) contrasts will fall under
the same Gaussian and be indiscriminable.

This simplistic analysis assumes that infants only discriminate tokens that fall completely
into different categories. However, early in development, inputs may fall under a number of
overlapping categories. Discrimination could occur for differences between any of these
Gaussians. We developed a discrimination measure to account for this. Each of the two
VOTs that were to be compared were converted to K-length vectors of the probabilities of
each Gaussian (category). The RMS distance of these vectors was used to compare the two
VOTs in “category-space”. A small RMS would arise if baseline and comparison stimuli are
represented with a similar set of categories. On the other hand, a large RMS indicates largely
different sets of categories.
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Simulation 2: Pruning
Many phonetic dimensions exhibit an overgeneration/pruning pattern over the course of
development: infants are initially sensitive to a wide range of phonetic contrasts, and lose
sensitivity to contrasts that are not used (e.g. Werker & Tees, 1984). To model this, we
exposed 30 models to the Lisker and Abramson (1964) distribution of English VOTs for
30,000 epochs using the parameters described in Table 1 (Simulation 2). They were tested
every 500 epochs on three VOT contrasts: 0 vs. 40 ms (tokens from opposite categories), 30
vs. 70 ms (a within-category difference that should be lost), and 50 vs. 90 ms (still within-
category, but the difference is between a prototypical and non-prototypical token; e.g.,
Miller & Eimas, 1996).

Figure 4A shows discrimination performance of the model (RMS) over the course of
training. Initially, the model is equally good at all three. Over the course of training,
between-category discriminability increases, while within-category discrimination is lost.
Discriminability between prototype/non-prototype distinctions also increases (as the model
extracts the structure of the category), but never approaches between-category
discriminability. Thus, the model starts with some ability to discriminate all three contrasts
and loses the ones it does not need.

Simulation 3: Enhancement
A small number of speech contrasts (e.g. s/z and f/θ, Eilers & Minifie, 1975; Eilers, Wilson
& Moore, 1977) show developmental enhancement: infants initially lack the ability to
discriminate a meaningful speech contrast and develop it later.

To simplify this problem to a single dimension, we assumed that the underlying cue for
fricative discrimination was sensitivity to the spectral mean of the frication noise. Since
these spectral-mean detectors have Gaussian tuning curves, and many frequencies are
present at once for a fricative, the starting categories (σinitial) and statistical distributions are
quite broad. Thirty additional simulations were run using a hypothetical training distribution
based on these estimated spectral means. These simulations were identical to the prior ones
for VOT except that the model's σs (σinitial) started out broad (σ=20), and the distributions of
the input were highly overlapping (Table 1, sim 3).

Again the model started with relatively equal abilities to discriminate the three contrasts
(Figure 4B). As in the previous simulation, the between-category contrast was enhanced
over the course of learning, as was the contrast between the prototypical and non-
prototypical exemplars. In addition, the within-category contrast was enhanced slightly.
While this seems counterintuitive, if we assume that within-category contrasts are difficult
to discriminate in adulthood, this upward trend would imply that everything is
indiscriminable early.

Simulation 4: Sparseness
The MOG model can account for the developmental trends in speech categorization along
several different acoustic/phonetic dimensions. However, it also provides novel insights
about development. One non-obvious implication of this model is that infants do not learn
category boundaries; rather, they learn the distribution of exemplars that define a category.
Since each category is defined independently of any others they are not required to
completely encompass the phonetic space, and there may be regions of the phonetic space
that are not mapped to any category (a gap).

McMurray and Aslin (2005) provided evidence that is suggestive of such a sparse
representation. After being exposed to a series of words with syllable-initial VOTs near 3-4
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ms, infants discriminated them from tokens with VOTs near 12 ms (and these were not
different from 40 ms). This could be explained by a category boundary between 3-4 and 12
ms, though there is no evidence for such a boundary in any language or age group.
Alternatively, there may be no category at all in the middle region of the VOT dimension.
To test this conjecture, a series of simulations evaluated the amount of input space that was
uncategorized over the course of learning. Since this sparseness value is likely to be related
to the number of categories available to fill this space (K), and to the width of the initial
categories (σinitial), a range of 21 σs (from 1-60) and 13 Ks (from 4 to 50) were selected.
Fourteen models were trained with each combination of these parameters (Table 1,
Simulation 4).

As in the prior simulations, the number of categories learned (i.e., ϕ > .01 after training) was
used to measure success. Both K and σinitial were related to success. While the model was
successful over a large range of σs, it tended to fail when σinitial exceeded 25 (Figure 5A),
half the distance between the category means (50 ms). In a sense, it was easier for the model
to work from small to large categories than to divide initially large categories. Large Ks
could mitigate this effect, but not eliminate it: even with K=50, no model was able to learn
when σinitial was greater than 40.

To estimate the amount of input space that the model left uncategorized between 0 to 50 ms
(the two prototype VOTs), we computed a sparseness coefficient (SC). At each VOT, the
posterior probabilities of each of the K Gaussians was computed. If any of these was higher
than 10% of the maximum posterior3, that point was said to have been categorized,
otherwise it was uncategorized. The SC was the percentage of these 51 VOTs (between 0
and 50 ms) that were left uncategorized.

Figure 5B displays the SC as a function of training epochs and starting σ. Not surprisingly,
models starting with large σs were not sparse—these wide categories encompassed most of
the cue-space. Also not surprisingly, small initial σs (1-4) yielded early sparseness that
gradually decreased. Interestingly, however, medium σs (5-20) showed an initial lack of
sparseness, followed by a rapid increase between 250 and 1000 generations, and finally a
decrease to complete representations. Most of the models with large σs (71%) failed at
learning the input (compared to 98% and 76% for medium and small σs, respectively),
implying that sparseness arises naturally for most of the successful starting states.

The same pattern was seen with respect to K (Figure 5C). Ks greater than 20 had quite
complete representations initially, while medium and small Ks started out sparser. However,
all Ks showed an increase (and decrease) in sparseness between 250 and 3500 generations.
Moreover, the largest increases occurred for the largest values of K. As before, this increase
in sparseness appeared to be related to success: large Ks were associated with the greatest
success rate (83%) compared to medium (79%) and small (69%) Ks. Thus, again, optimal
starting parameters led (developmentally) to sparse representations of the input, even where
the optimal K led to an initially complete representation.

A hierarchical logistic regression was used to determine if sparse representations led to
successful learning. Success was regressed against K, σinitial, and SC (between 250 and 3000
generations). In the first step of the regression, significant main effects of both σinitial (B=-.
105, Wald(1)=815.2, p<.001) and K (B=.04, Wald(1)=91.2, p<.001) were found. Here,
σinitial was inversely correlated with success (lower σs led to greater success), while K was
positively correlated. In the second step, the K × σ interaction was significant (B=-.002,
Wald(1)=48.4, p<.001): higher Ks allowed the model to overcome larger σs. In the third

325% was also tried as a criteria with similar results.
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step, SC was added and was highly significant, over and above the other two factors
(χ2

change(1)=67.4, p<.0001; B=14.2, Wald(1)=43.5, p<.0001). Thus, while K and σ
influenced sparseness, SC had a positive effect on success beyond that of K and σ (and their
interaction). Models that arrived at sparse representations were more likely to succeed after
further input than those that did not.

Conclusions
The MOG approach to the statistical learning of speech categories highlights a number of
important points. First, statistical learning is insufficient to accomplish the task: competition
of some kind is required. Competition is a property of many models in many domains,
including unsupervised connectionist architectures and models of adult word recognition
(McClelland & Elman, 1986; Luce & Pisoni, 1998). Moreover, once competition is
incorporated into the model, it accounts for both developmental trajectories observed
empirically: overgeneration/pruning and enhancement. Here, the specific trajectory does not
arise from differences in developmental mechanisms, but rather from differences in how the
cues are perceived and in their statistical distributions.

An alternative to the competition/distributional learning account presented here might make
sole use of the counts of each VOT. Such an alternative would simply track the frequency of
individual VOTs, perhaps recording these counts by warping perceptual space. However, for
this set of frequency statistics to create a set of categories, a decision criterion must be
employed. This or any other decision process would invariably involve competition. As a
result, we agree with Remez (2005)—simple counts of token frequency may not be
sufficient for category learning. However, across a range of architectures (the MOG as well
as the connectionist architectures discussed), competition can transform these counts into
useful categories.

Second, the MOG model implies that infants are not learning phonological distinctions (e.g.,
voicing), but rather that the process of category acquisition is one in which isolated regions
of these dimensions are gradually grouped together. Categories are independent of one
another and do not need to completely encompass a given dimension (at least early in
learning). Our simulations demonstrate that even models that do not start out sparse go
through a sparse stage and sparseness is correlated with later success. By not categorizing
certain regions of the input (typically the more ambiguous regions), the model is, in a sense,
waiting for more data before committing to a mutually exclusive category structure4.

Finally, the implications of sparseness suggest a different understanding of classic data
concerning the seemingly counterintuitive ability of young infants to discriminate non-
native phonetic contrasts. Colloquially, this ability is often described as infants “having”
non-native categories. However, the MOG model suggests that discrimination could also
occur when one input is categorized and one falls into a sparse region of the space (no
category).

This computational work provides further evidence for the plausibility of unsupervised
learning of speech categories via a statistical learning mechanism. Our implementation

4In the extreme, the sparseness approach could be interpreted as a sort of null-category encompassing any uncategorized region along
the cue dimension. Under this view it is possible that infants would treat sparse regions of VOT between the two voicing categories as
members of the same category as a sparse region outside the categories (e.g., a very long VOT). However, it is accepted that phonetic
discrimination in adults is a function of both continuous stimulus differences and discrete category differences (Pisoni & Tash, 1974).
Thus, it is likely that infant phonetic discrimination can take advantage of both continuous differences, the emerging phonetic
categories (or null-categories), and, as we discussed, the marginal activations of neighboring categories. This would result in infants
discriminating tokens from two sparse regions (that differed physically).
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suggests that statistical learning alone is not sufficient for robust learning. However, when
combined with another core mechanism (competition), the MOG yields not only successful
data-driven learning that approximates the developmental timecourse, but also novel insights
about the sparse nature of early speech categories.
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Figure 1.
The bimodal distribution of voice-onset-time VOT in English. Shown is relative frequency
as a function of VOT collapsed across all three places of articulation. Two clusters are
clearly visible: one centered around 10-15 ms (Voiced) and one centered around 65-75 ms
(Voiceless). Data are from Allen & Miller (1999).
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Figure 2.
The parameters of the Gaussian distributions used to represent each speech category. The
mean (μ) refers to the location (in cue-space) of the prototype, the SD (σ), refers to the width
of the category, and the height (ϕ) to its frequency (or posterior probability).
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Figure 3.
A single MOG over the course of training on a distribution with means of 0 and 50 and
equal standard deviations of 15. Dashed vertical lines represent the means of the two
training categories. A) With no input, all K (8) Gaussians are equally likely. B and C) After
a few thousand exposures, the model suppresses some of the unnecessary Gaussians, until
D) by the end of training, only the two correct Gaussians remain.
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Figure 4.
Changes in the RMS discrimination metric over the course of training. Models were tested
every 500 generations on three comparisons: discrimination between 0 and 40 ms tokens
that crossed the category boundaries (black lines), discrimination between the 30 and 70 ms
tokens in the same category (gray lines), and discrimination between a prototypical (50 ms)
and a non-prototypical (90 ms) exemplar (dashed lines). A) The average of 30 models that
started with small σ's and were given as input the distribution of VOT in English. B) The
average of 30 models that started with large σ's and were given as input the highly
overlapping distribution of exemplars that simulate English fricatives.
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Figure 5.
Results of Simulation #4: Sparseness. A) The effect of starting σ and K on the probability of
success (learning the correct 2-category solution). B) Sparseness coefficient, SC (the
proportion of the input space not mapped onto a category) over the course of training for
small, medium and large initial σ's. C) SC over the course of training for small, medium and
large values of K.
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