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Abstract. In this paper we first overview the main concepts of Statistical Learning Theory, a framework
in which learning from examples can be studied in a principled way. We then briefly discuss well known as
well emerging learning techniques such as Regularization Networks and Support Vector Machines which
can be justified in term of the same induction principle.
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1. Introduction

The goal of this paper is to provide a short in-
troduction to Statistical Learning Theory (SLT)
which studies problems and techniques of super-
vised learning. For a more detailed review of SLT
see [5]. In supervised learning – or learning-from-
examples – a machine is trained, instead of pro-
grammed, to perform a given task on a number of
input-output pairs. According to this paradigm,
training means choosing a function which best de-
scribes the relation between the inputs and the
outputs. The central question of SLT is how well
the the chosen function generalizes, or how well it
estimates the output for previously unseen inputs.

We will consider techniques which lead to solu-
tion of the form

f(x) =
�∑

i=1

ciK(x,xi). (1)

where the xi, i = 1, . . . , l are the input examples,
K a certain symmetric positive definite function
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named kernel, and ci a set of parameters to be
determined form the examples. This function is
found by minimizing functionals of the type

H[f ] =
1
�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K ,

where V is a loss function which measures the
goodness of the predicted output f(xi) with re-
spect to the given output yi, ‖f‖2

K a smoothness
term which can be thought of as a norm in the
Reproducing Kernel Hilbert Space defined by the
kernel K and λ a positive parameter which con-
trols the relative weight between the data and the
smoothness term. The choice of the loss func-
tion determines different learning techniques, each
leading to a different learning algorithm for com-
puting the coefficients ci.

The rest of the paper is organized as follows.
Section 2 presents the main idea and concepts
in the theory. Section 3 discusses Regularization
Networks and Support Vector Machines, two im-
portant techniques which produce outputs of the
form of equation (1).

2. Statistical Learning Theory

We consider two sets of random variables x ∈
X ⊆ Rd and y ∈ Y ⊆ R related by a probabilis-
tic relationship. The relationship is probabilis-
tic because generally an element of X does not
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determine uniquely an element of Y , but rather
a probability distribution on Y . This can be
formalized assuming that an unknown probabil-
ity distribution P (x, y) is defined over the set
X × Y . We are provided with examples of this
probabilistic relationship, that is with a data set
D� ≡ {(xi, yi) ∈ X×Y }�

i=1 called training set, ob-
tained by sampling � times the set X × Y accord-
ing to P (x, y). The “problem of learning” consists
in, given the data set D�, providing an estimator,
that is a function f : X → Y , that can be used,
given any value of x ∈ X , to predict a value y. For
example X could be the set of all possible images,
Y the set {−1, 1}, and f(x) an indicator function
which specifies whether image x contains a certain
object (y = 1), or not (y = −1) (see for example
[12]). Another example is the case where x is a
set of parameters, such as pose or facial expres-
sions, y is a motion field relative to a particular
reference image of a face, and f(x) is a regression
function which maps parameters to motion (see
for example [6]).

In SLT, the standard way to solve the learn-
ing problem consists in defining a risk functional,
which measures the average amount of error or
risk associated with an estimator, and then look-
ing for the estimator with the lowest risk. If
V (y, f(x)) is the loss function measuring the er-
ror we make when we predict y by f(x), then the
average error, the so called expected risk, is:

I[f ] ≡
∫

X,Y

V (y, f(x))P (x, y) dxdy

We assume that the expected risk is defined on a
“large” class of functions F and we will denote by
f0 the function which minimizes the expected risk
in F . The function f0 is our ideal estimator, and
it is often called the target function. This function
cannot be found in practice, because the probabil-
ity distribution P (x, y) that defines the expected
risk is unknown, and only a sample of it, the data
set D�, is available. To overcome this shortcom-
ing we need an induction principle that we can
use to “learn” from the limited number of train-
ing data we have. SLT, as developed by Vapnik
[15], builds on the so-called empirical risk mini-
mization (ERM) induction principle. The ERM
method consists in using the data set D� to build
a stochastic approximation of the expected risk,

which is usually called the empirical risk, defined
as

Iemp[f ; �] =
1
�

�∑
i=1

V (yi, f(xi)).

Straight minimization of the empirical risk in F
can be problematic. First, it is usually an ill-
posed problem [14], in the sense that there might
be many, possibly infinitely many, functions min-
imizing the empirical risk. Second, it can lead to
overfitting, meaning that although the minimum
of the empirical risk can be very close zero, the
expected risk – which is what we are really inter-
ested in – can be very large.

SLT provides probabilistic bounds on the dis-
tance between the empirical and expected risk of
any function (therefore including the minimizer
of the empirical risk in a function space that can
be used to control overfitting). The bounds in-
volve the number of examples � and the capacity
h of the function space, a quantity measuring the
“complexity” of the space. Appropriate capacity
quantities are defined in the theory, the most pop-
ular one being the VC-dimension [16] or scale sen-
sitive versions of it [9], [1]. The bounds have the
following general form: with probability at least η

I[f ] < Iemp[f ] + Φ(

√
h

�
, η). (2)

where h is the capacity, and Φ an increasing func-
tion of h

� and η. For more information and for
exact forms of function Φ we refer the reader to
[16], [15], [1]. Intuitively, if the capacity of the
function space in which we perform empirical risk
minimization is very large and the number of ex-
amples is small, then the distance between the em-
pirical and expected risk can be large and overfit-
ting is very likely to occur.

Since the space F is usually very large (i.e. F
could be the space of square integrable functions),
one typically considers smaller hypothesis spaces
H. Moreover, inequality (2) suggests an alterna-
tive method for achieving good generalization: in-
stead of minimizing the empirical risk, find the
best trade off between the empirical risk and the
complexity of the hypothesis space measured by the
second term in the r.h.s. of inequality (2). This
observation leads to the method of Structural Risk
Minimization (SRM).
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The idea of SRM is to define a nested sequence
of hypothesis spaces H1 ⊂ H2 ⊂ . . . ⊂ HM, where
each hypothesis space Hm has finite capacity hm

and larger than that of all previous sets, that is:
h1 ≤ h2, . . . ,≤ hM. For example Hm could be
the set of polynomials of degree m, or a set of
splines with m nodes, or some more complicated
nonlinear parameterization. Using such a nested
sequence of more and more complex hypothesis
spaces, SRM consists of choosing the minimizer
of the empirical risk in the space Hm∗ for which
the bound on the structural risk, as measured by
the right hand side of inequality (2), is minimized.
Further information about the statistical proper-
ties of SRM can be found in [3], [15].

To summarize, in SLT the problem of learn-
ing form examples is solved in three steps: (a) we
define a loss function V (y, f(x)) measuring the er-
ror of predicting the output of input x with f(x)
when the actual output is y; (b) we define a nested
sequence of hypothesis spaces Hm, m = 1, . . . , M
whose capacity is an increasing function of m; (c)
we minimize the empirical risk in each of Hm and
choose, among the solutions found, the one with
the best trade off between the empirical risk and
the capacity as given by the right hand side of
inequality (2).

3. Learning machines

3.1. Learning as functional minimization

We now consider hypothesis spaces which are
subsets of a Reproducing Kernel Hilbert Space
(RKHS) [17]. A RKHS is a Hilbert space of func-
tions f of the form f(x) =

∑N

n=1 anφn(x), where
{φn(x)}N

n=1 is a set of given, linearly independent
basis functions and N can be possibly infinite. A
RKHS is equipped with a norm which is defined
as:

‖f‖2
K =

N∑
n=1

a2
n

λn
,

where {λn}N
n=1 is a decreasing, positive sequence

of real values whose sum is finite. The constants
λn and the basis functions {φn}N

n=1 define the
symmetric positive definite kernel function:

K(x,y) =
N∑

n=1

λnφn(x)φn(y),

A nested sequence of spaces of functions in the
RKHS can be constructed by bounding the RKHS
norm of functions in the space. This can be done
by defining a set of constants A1 < A2 < . . . < AM

and considering spaces of the form:

Hm = {f ∈ RKHS : ‖f‖K ≤ Am}

It can be shown that the capacity of the hypothe-
sis spaces Hm is an increasing function of Am (see
for example [5]). According to the scheme given
at the end of section 2, the solution of the learn-
ing problem is found by solving, for each Am, the
following optimization problem:

minf

∑�
i=1 V (yi, f(xi))

subject to ‖f‖K ≤ Am

and choosing, among the solutions found for each
Am, the one with the best trade off between em-
pirical risk and capacity, i.e. the one which min-
imizes the bound on the structural risk as given
by inequality (2).

The implementation of the SRM method de-
scribed above is not practical because it requires
to look for the solution of a large number con-
strained optimization problems. This difficulty is
overcome by searching for the minimum of:

H[f ] =
1
�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K. (3)

The functional H[f ] contains both the empirical
risk and the norm (complexity or smoothness) of f
in the RKHS, similarly to functionals considered
in regularization theory [14]. The regularization
parameter λ penalizes functions with high capac-
ity: the larger λ, the smaller the RKHS norm of
the solution will be.

When implementing SRM, the key issue is the
choice of the hypothesis space, i.e. the param-
eter Hm where the structural risk is minimized.
In the case of the functional of equation (3), the
key issue becomes the choice of the regularization
parameter λ. These two problems, as discussed
in [5], are related, and the SRM method can in
principle be used to choose λ [15]. In practice, in-
stead of using SRM other methods are used such
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as cross-validation ([17]), Generalized Cross Vali-
dation, Finite Prediction Error and the MDL cri-
teria (see [15] for a review and comparison).

An important feature of the minimizer of H[f ]
is that, independently on the loss function V , the
minimizer has the same general form ([17])

f(x) =
�∑

i=1

ciK(x,xi), (4)

Notice that equation (4) establishes a representa-
tion of the function f as a linear combination of
kernels centered in each data point. Using differ-
ent kernels we get functions such as Gaussian ra-
dial basis functions (K(x,y) = exp(−β‖x−y‖2)),
or polynomials of degree d (K(x,y) = (1+x ·y)d)
[7], [15].

We now turn to discuss a few learning tech-
niques based on the minimization of functionals
of the form (3) by specifying the loss function
V . In particular, we will consider Regularization
Networks and Support Vector Machines (SVM),
a learning technique which has recently been pro-
posed for both classification and regression prob-
lems (see [15] and references therein):
• Regularization Networks

V (yi, f(xi)) = (yi − f(xi))2, (5)

• SVM Classification

V (yi, f(xi)) = |1 − yif(xi)|+, (6)

where |x|+ = x if x > 0 and zero otherwise.
• SVM Regression

V (yi, f(xi)) = |yi − f(xi)|ε, (7)

where the function | · |ε, called ε-insensitive loss, is
defined as:

|x|ε ≡
{

0 if |x| < ε
|x| − ε otherwise. (8)

We now briefly discuss each of these three tech-
niques.

3.2. Regularization Networks

The approximation scheme that arises from the
minimization of the quadratic functional

1
�

�∑
i=1

(yi − f(xi))2 + λ‖f‖2
K (9)

for a fixed λ is a special form of regularization. It
is possible to show (see for example [7]) that the
coefficients ci of the minimizer of (9) in equation
(4) satisfy the following linear system of equations:

(G + λI)c = y, (10)

where I is the identity matrix, and we have de-
fined

(y)i = yi, (c)i = ci, (G)ij = K(xi,xj).

Since the coefficients ci satisfy a linear system,
equation (4) can be rewritten as:

f(x) =
�∑

i=1

yibi(x), (11)

with bi(x) =
∑�

j=1(G + λI)−1
ij K(xi,x). Equation

(11) gives the dual representation of RN. Notice
the difference between equation (4) and (11): in
the first one the coefficients ci are learned from the
data while in the second one the bases functions bi

are learned, the coefficient of the expansion being
equal to the output of the examples. We refer to
[7] for more information on the dual representa-
tion.

3.3. Support Vector Machines

We now discuss Support Vector Machines (SVM)
[2], [15]. We distinguish between real output (re-
gression) and binary output (classification) prob-
lems. The method of SVM regression corresponds
to the following minimization:

Minf
1
�

�∑
i=1

|yi − f(xi)|ε + λ‖f‖2
K (12)

while the method of SVM classification corre-
sponds to:
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Minf
1
�

�∑
i=1

|1 − yif(xi)|+ + λ‖f‖2
K, (13)

It turns out that for both problems (12) and (13)
the coefficients ci in equation (4) can be found by
solving a Quadratic Programming (QP) problem
with linear constraints. The size of the box is in-
versely proportional to the regularization parame-
ter λ. The QP problem is non trivial since the size
of matrix of the quadratic form is equal to �×� and
the matrix is dense. A number of algorithms for
training SVM have been proposed: some are based
on a decomposition approach where the QP prob-
lem is attacked by solving a sequence of smaller
QP problems [11], others on sequential updates of
the solution [13].

A remarkable property of SVMs is that loss
functions (7) and (6) lead to sparse solutions. This
means that, unlike in the case of Regularization
Networks, typically only a small fraction of the
coefficients ci in equation (4) are nonzero. The
data points xi associated with the nonzero ci are
called support vectors. If all data points which are
not support vectors were to be discarded from the
training set the same solution would be found. In
this context, an interesting perspective on SVM
is to consider its information compression proper-
ties. The support vectors represent the most infor-
mative data points and compress the information
contained in the training set: for the purpose of,
say, classification only the support vectors need to
be stored, while all other training examples can be
discarded. This, along with some geometric prop-
erties of SVMs such as the interpretation of the
RKHS norm of their solution as the inverse of the
margin [15], is a key property of SVM and might
explain why this technique works well in many
practical applications.

3.4. Kernels and data representations

We conclude this short review with a short dis-
cussion on kernels and data representations. A
key issue when using the learning techniques dis-
cussed above is the choice of the kernel K in equa-
tion (4). The kernel K(xi,xj) defines a dot prod-
uct between the projections of the two inputs xi

and xj , in the feature space (the features being

{φ1(x), φ2(x), . . . φN (x)} with N the dimension-
ality of the RKHS). Therefore its choice is closely
related to the choice of the “effective” representa-
tion of the data, i.e. the image representation in
a vision application.

The problem of choosing the kernel for the ma-
chines discussed here, and more generally the is-
sue of finding appropriate data representations for
learning, is an important and open one. The the-
ory does not provide a general method for finding
“good” data representations, but suggests repre-
sentations that lead to “simple” solutions. Al-
though there is not a general solution to this prob-
lem, a number of recent experimental and theoret-
ical works provide insights for specific applications
[4], [8], [10], [15].
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