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Statistical Learning Theory to Evaluate The
Performance of Game Theoretic Power Control

Algorithms for Wireless Data in Arbitrary Channels
M. Hayajneh & C. T. Abdallah

Dept. of Electrical & Computer Engr., Univ. of New Mexico,

EECE Bldg., Albuquerque, NM 87131-1356, USA.
{hayajneh, chaouki}@ eece.unm.edu

Abstract—In this paper we use statistical learning theory to eval-
uate the performance of game theoretic power control algorithms
for wireless data in arbitrary channels, i.e., no presumed channel
model is required. To show the validity of statistical learning theory
in this context, we studied a flat fading channel, and more specifi-
cally, we simulated the case of Rayleigh flat fading channel. With
the help of a relatively small number of training samples, the re-
sults suggest the learnability of the utility function classes defined
by changing the users power (adjusted parameter) for each user’s
utility function.

I. INTRODUCTION

In game theoretic power control algorithms used in wireless
code division multiple access (CDMA) cellular systems, the ob-
jective is to find the equilibrium power vector that maximizes
the utility function of all users currently served in the cell [1]-
[6]. The utility function quantifies the quality of service (QoS)
obtained by a user in terms of the number of bits received cor-
rectly at the base station (BS) per one joule of power expanded
[1]. The number of bits received correctly at the BS depends
on the modulation scheme, coding, channel characteristics, etc.
Unfortunately, most of the work on power control algorithms in
wireless data CDMA cellular systems, has modelled the channel
as an additive white Gaussian noise (AWGN) channel with de-
terministic channel gains [1]-[6]. Practically, the wireless data
channel in CDMA cellular systems is a fading channel. In this
paper we propose a distribution-free learning algorithm to evalu-
ate the performance of game theoretic power control algorithms
for wireless data in arbitrary channels, i.e, without prior knowl-
edge of the channel model.

It is very important in wireless data CDMA cellular systems
to have a high signal-to-interference ratio (SIR), since this will
result in very low error rate, a more reliable system, and a higher
channel capacity, which means that more users can be served
per cell [9]. It is however also important to lower the transmit
power level, because low power levels result in longer batteries
life and helps alleviate the near-far problem [12]. In this paper
the original work in [1] is extended by considering more realistic
channels benefiting from the ideas of distribution-free learning

theory. To show the validity of this technique we discuss in de-
tail the application of distribution-free learning theory to a non-
cooperative power control game (NPG) and a noncooperative
power control game with pricing (NPGP) under the assumption
that the channel is modelled as a flat fading channel.

The remaining of this paper is organized as follows: In sec-
tion II we describe the utility function used in this paper, while
in section III we present a discussion of two power control algo-
rithms: NPG and NPGP. A brief discussion of distribution-free
learning theory is presented in section IV. The application of
distribution-free learning theory to NPG and NPGP under a flat
fading channel model is introduced in section V. Discussion of a
Rayleigh flat fading channel and simulation results are outlined
in section VI. Finally, conclusions are presented in section VII.

II. UTILITY FUNCTION

Microeconomists use the concept of a utility function to quan-
tify the level of satisfaction a player can get by choosing an ac-
tion from its strategy profile given the other players’ actions. A
utility function is chosen in such a way that puts all the elements
of the game taking place between self-interested players in their
most desired order. A formal definition of a utility function is
available from [8].

Definition 1: Let A represent the set of all action sets that a
player can choose, then the function u that evaluates numeri-
cally the elements of A such that u : A → R is called a utility
function if for all a, b ∈ A, a player chooses the action set a
rather than b if and only if u(a) ≥ u(b).

It is known that in a cellular CDMA system there are a num-
ber of users sharing a spectrum and the air interface as common
radio resources. Henceforth, each user’s transmission adds to
the interference of all users at the receiver (BS). The objective of
each user is to achieve a high quality of reception at the BS, i.e.,
a high SIR, by using the minimum possible amount of power to
extend the battery’s life. Suppose we have a single-cell system
with N users, where each user transmits packets of M total bits
with L information bits and with power pWatts per bit. The rate
of transmission is R bits/sec for all users. Let Pc(γ) represents
the probability of correct reception of all bits in the frame at

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 723



the BS at a given SIR γ. A suitable utility function for wireless
data in CDMA system is then given by (see [1] and references
therein):

u =
LR

M p
Pc (1)

u thus represents the number of information bits received suc-
cessfully at the BS per joule of expanded energy. With the
assumption of no error correction, perfect detection, and that
each bit is experiencing independent noise, Pc is then given as∏M

l=1(1 − Pe(l))M , where Pe(l) is the lth bit error rate (BER)
at a given SIR.

III. POWER CONTROL ALGORITHMS FOR WIRELESS DATA

The increase demand for handling information services
within CDMA cellular systems increases the need for a new
power control technology to improve the system performance,
and to improve the efficiency of utilizing the shared radio re-
sources by the different users currently served by the system. In
this section, we review two power control algorithms that belong
to a class of distributed asynchronous power control algorithms
for wireless data: Non-cooperative power control game (NPG)
and noncooperative power control game with pricing (NPGP).
Both have already been studied in the literature [1]-[3] but we
modify them in order to fit the fading channels that users expe-
rience in wireless data CDMA cellular systems.

A. NPG

Let N = {1, 2, ..., N} represent the index set of the users cur-
rently served in the cell and {Pj}j∈N represents the set of strat-
egy spaces of all users in the cell. Let G = [N , {Pj}, {uj(.)}]
denote a noncooperative game, where each user chooses its
power level from a convex set Pj = [pj−min, pj−max] and
where pj−min and pj−max are the minimum and the maximum
power levels in the jth user strategy space, respectively. With
the assumption that the power vector p = [p1, p2, ..., pN ] is the
result of NPG, the utility of user j is given as [1]:

uj(p) = uj(pj , p−j) (2)

where pj is the power transmitted by user j, and p−j is the vec-
tor of powers transmitted by all other users. The right side of (2)
emphasizes the fact that user j can just control his own power
and this will have great importance as we will see in section IV.
We can rewrite (1) for user j as:

uj(pj , p−j) =
LR

M pj
Pc(γj) (3)

The formal expression for the NPG is given in [1] as:

NPG : max
pj∈Pj

uj(pj , pj), for all j ∈ N (4)

This game will continue to produce power vectors until it con-
verges to a point where all users are satisfied with the utility
level they obtained. This operating point is called Nash equilib-
rium point of NPG.

B. Nash Equilibrium in NPG

The resulting power vector of NPG is called a Nash equilib-
rium power vector.

Definition 2: [1] A power vector p = [p1, p2, ..., pN ] is a
Nash equilibrium of the NPG defined above if for every j ∈
N , uj(pj , p−j) ≥ uj(p

′

j , p−j) for all p
′

j ∈ Pj .
One interpretation of Nash equilibrium is that no user can in-
crease its utility by changing its power level unilaterally. Some-
times, a user may find different values of transmit power levels
from its strategy space that give the user similar values of the
utility function for given power levels of the other users. For
this reason, the best response correspondence rj(p−j) was in-
troduced [1]. It assigns to each p−j ∈ P−j the set

rj(p−j) =
{
pj ∈ Pj : uj(pj , p−j) ≥ uj(p

′

j , p−j)

for all p
′

j ∈ Pj

}
(5)

In light of this correspondence one can announce the power vec-
tor p = [p1, p2, ..., pN ] as a Nash equilibrium power vector if
and only if pj ∈ rj(p−j) for all j ∈ N .

If we multiply the power vector p by a constant 0 < β < 1 we
may get higher utilities for all users. This means that the Nash
equilibrium is not efficient, that is, the resulting p is not the most
desired social operating point. To obtain a Pareto dominant over
pure NPG, NPGP was proposed in [1].

C. NPGP

In NPGP, each user’s utility is the difference between its util-
ity function defined under NPG and a pricing function. This al-
lows us to use the system resources more efficiently, since each
user is aware of the cost he/she incurs for aggressive use of the
resources and of the harm he/she causes other users in the cell
[1]. The pricing function discussed here is a linear pricing func-
tion, i.e., it is a pricing factor multiplied by the transmit power.
This pricing factor is announced by the BS to the users currently
in the cell in order to impose a Nash equilibrium that improves
the sum of all utilities in the cell at lower power levels com-
pared to the pure NPG [1]-[3]. In other words, the resulting
power vector of NPGP is Pareto dominant [1] compared to the
resulting power vector of NPG, but still not Pareto optimal in the
sense that we can multiply the resulting power vector of NPGP
by a constant 0 < β < 1 to obtain higher utilities for all users.
Let us denote the N -player noncooperative power control game
with pricing (NPGP) by Gc = [N , {Pj}, {uc

j(.)}], where the
utilities are given as [1]:

uc
j(p) = uj(p) − c pj for all j ∈ N (6)

Where c is a positive scalar, chosen to get the best possible im-
provement in the performance. Therefore, NPGP with linear
pricing function can be expressed as:

NPGP : max
pj∈Pj

{uj(p) − c pj} for all j ∈ N (7)
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The question then becomes: does NPGP have a Nash equi-
librium operating point similar to NPG?. In fact, the exis-
tence of Nash equilibria for NPG can be proved using analyt-
ical techniques because uj(p) is a quasiconcave utility func-
tion [1]. However, the utility function of NPGP (uc

j(p)) is no
longer quasiconcave which invalidates the analytical techniques
used to prove the Nash existence for NPG. Fortunately, NPGP
is a supermodular game [10] which has a Nash equilibria set
Ec = [ps(c), pl(c)], where ps(c) and pl(c) are the smallest
and the largest power vectors associated with pricing factor c,
respectively [1]. More details about supermodular games and
proofs are found in [1]. It should be noted here that for super-

modular games ∂2Pc(γ)
∂2γ ≥ 0 must hold to guarantee the ex-

istence of a Nash equilibria set (Ec). Suppose ∂2Pc(γ)
∂2γ = 0

holds at γ = γ∗. The effect of this condition is that the strategy
space (Pj ∀ j ∈ N ) must be modified to P̂j = [p̃j , pj−max]
where p̃j leads to an SIR greater than γ∗ for the jth user. Con-
sider the asynchronous power control algorithm proposed in [1],
which generates a sequence of power vectors that converges to
the lowest power vector ps(c) in Ec. Assume user j updates
its power level at time instances that belong to a set Tj , where
Tj = {tj1, tj2, ...}, with tjk < tjk+1 and tj0 = 0 for all
j ∈ N . Let T = {t1, t2, ...} where T = T1

⋃
T2

⋃
...

⋃
TN

with tk < tk+1 and define p to be the smallest power vector in

the modified strategy space P̂. We then use the following algo-
rithm to find a Nash equilibrium point of NPG (c = 0) and of
NPGP (c 	= 0).

Algorithm 1: [1] Consider NPGP as given in (7) and gen-
erate a sequence of power vectors as follows:

1) Set the power vector at time t = 0: p(0) = p, let k = 1
2) For all j ∈ N , such that tk ∈ Tj:

a) Given p(tk−1), calculate rj(tk)= arg

max
pj∈

ˆPj

uc
j(pj , p−j(tk−1))

b) Let the transmit power pj(tk) = min(rj(tk))
3) If p(tk) = p(tk−1) stop and declare the Nash equilibrium

power vector as p(tk), else let k := k + 1 and go to 2.
The following algorithm is to find the best pricing factor c:

Algorithm 2: 1) Set c = 0 and announce c to all users
currently in the cell.

2) Use Algorithm1 to obtain uc
j for all j ∈ N at equilibrium.

3) Increment c := c + ∆c, ∆c is a positive constant, and
announce c to all users, and then go to 2.

4) If uc+∆c
j ≥ uc

j for all j ∈ N go to 3, else stop and declare
the best c.

In the next section we present a brief discussion of distribution-
free learning theory, where we focus on the learnability of the
utility function class, depending on learning samples received at
the BS.

IV. DISTRIBUTION-FREE LEARNING

Distribution-free learning theory enables us to evaluate the
performance of a game theoretic power control algorithms for

wireless data without the need to know the channel model a pri-
ory. Of course, this only can be done under the condition that
the utility function class is learnable. Learnability of the utility
function class highly dependent on the channel model as will be
apparent shortly.

If a function (concept) class has a finite P -dimension ( VC-
dimension), then such function (concept) class is said to be a
distribution-free learnable [13], that is we can learn the target
function (concept) using the learning samples drawn accord-
ing to an unknown probability measure. The learning prob-
lem under study is as follows: assume (X,S) is a given mea-
surable space (S is σ-algebra of subsets of X), and U (utility
function class) is a family of measurable functions such that
u : X → [0, 1] ∀u ∈ U . It should be noted here that the inter-
val [0, 1] does not necessarily mean that the function u ∈ [0, 1],
but rather that it is bounded [14]. Suppose P represents the
set of all probability measures on (X,S). For a given function
u ∈ U , a probability measure P ∈ P , and a learning multisam-
ple x = [x1, x2, ..., xn] ∈ Xn. Then the average utility function
U is given by:

U := EP (u)

:=
∫

X
u(x)dP (x) (8)

while the empirical utility function Uemp is given by:

Uemp := n−1
n∑

l=1

u(xl) (9)

For ε > 0, define δ(n, ε, P ) as follows [13]:

δ(n, ε, P ) := Pn

{
x ∈ Xn : sup

u∈U
|Uemp − U | > ε

}
(10)

where Pn denotes the n-manifold probability measure on Xn,
and define

δopt(ε, n) := sup
P ∈P

δ(n, ε, P )

The family of function classes U has the property of
distribution-free uniform convergence of empirical means if
δopt(n, ε) → 0 as n → ∞ for each ε > 0 [13]. Which is a
result of the following theorem stated without proof, which may
be found in [13].

Theorem 1: [13] Suppose the family U has a finite P-
dimension with value equal to d. Consider 0 < ε <
e/(2 log2 e) ≈ 0.94. Then

δopt(n, ε) ≤ 8
(

16e
ε

ln
16e
ε

)d

exp(−nε2/32) ∀n

Therefore U has the property of distribution-free uniform con-
vergence of empirical means.
One can see from the above theorem that the learnability of U
is highly dependent on the P-dimension (d) for a given accu-
racy (ε), where a large value of d could lead to a prohibitive
sample complexity (n) to achieve the accuracy with confidence
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δopt(n, ε). In the next section we study the learnability of the
utility function class defined under NPG and NPGP by evalu-
ating the P-dimension with the assumption that the channel is
modelled as a flat fading channel.

V. APPLICATION TO NPG AND NPGP IN A FLAT FADING

CHANNEL

In this section we apply distribution-free learning theory
where the channel is modelled as a flat fading channel. Using
this model, the SIR (γi) of the ith user is given by [11]:

γi =
W

R

pi hi α
2
i∑N

k �=i pk hk α2
k + σ2

(11)

where W is the spread-spectrum bandwidth, R is the data rate
(bits/sec), pk is the transmitted power (the adjusted parameter)
of the kth user, hk is the path gain between the BS and the kth
user, σ2 is the variance of the AWGN channel, and αk is a flat
fading coefficient of the path between the BS and kth user. For
both NPG and NPGP, it is assumed that each user knows the
background noise and the interference from other users at each
time instance he updates his transmit power level. This allows
the user to adjust his own parameter (power) to obtain the maxi-
mum possible utility function. This then enables us to write (11)
in the form:

γi = Cγi
pi α

2
i , (12)

where

Cγi
=
W

R

hi∑N
k �=i pk hk α2

k + σ2

A simple interpretation of (12) is that the interference and the
background noise are considered constant at each time instance
the user adjusts its power (see algorithm 1). Suppose that each
user is using noncoherent binary shift keying (BFSK) to transmit
each data bit, i.e, Pe = 1

2 e
−γ/2 . The channel is assumed to be

a slow flat fading channel, in other words, the fading coefficient
αi is constant for each frame time interval. This enables us to
write Pc(γi) = (1 − Pe(γi))M . So, we can rewrite (1) for the
ith user in the following form:

ui =
L R

M pi
(1 − e−γi/2)M (13)

Where Pe was replaced by 2Pe to give the utility function (ui)
this property: ui → 0 as pi → 0 and ui → 0 as pi → ∞
[1]. Let us split up the ith utility function into the following
functions ∀i ∈ N :

f1 = 1 − e−γi/2, (14)

f2 = fM
1 , (15)

f3 =
1
pi
, (16)

and finally

f4 =
f2
f3

(17)

Notice that ui = L R
M f4. Now, we need to find the first-order

partial derivative of {fk} with respect to pi and αi in order to
show the learnability of ui in (13).

∂f1
∂αi

=
∂f1
∂γi

∂γi

∂αi

= (−f1 + 1)(Cγi
pi αi) (18)

∂f1
∂pi

=
∂f1
∂γi

∂γi

∂pi

= (−1
2
f1 +

1
2
)(Cγi

α2
i ) (19)

∂f2
∂αi

=
∂f2
∂f1

∂f1
∂αi

= M fM−1
1 (−f1 + 1)(Cγi

pi αi) (20)

∂f2
∂pi

=
∂f2
∂f1

∂f1
∂pi

= M fM−1
1 (−1

2
f1 +

1
2
)(Cγi

α2
i ) (21)

∂f3
∂αi

= 0 (22)

∂f3
∂pi

= −f2
3 (23)

∂f4
∂αi

=
f3

∂f2
∂αi

− f2
∂f3
∂αi

f2
3

= M fM−1
1 (−f1 + 1)(Cγi

p2i αi) (24)

∂f4
∂pi

=
f3

∂f2
∂pi

− f2
∂f3
∂pi

f2
3

= M fM−1
1 (−1

2
f1 +

1
2
)

× (2Cγi
pi α

2
i + p2i f2 f

2
3 ) (25)

As we can see from the above first-order partial derivatives that
f1, f2, f3, f4 are a Pfaffian chain of length q = 4 and of degree
at most D = 3 in αi and pi. The importance of this observation
is in the following result ([13], Theorem 10.8):

d ≤ 2l(l(q + 1)2/2 + log2 d+ (2(q + 1) + 1) log2 l

+ (q + 2) log2(2(d+D)) + log2(2e)) (26)

Where d is the P -dimension of the function class U , l is the
number of adjustable parameters of each user (in the case under
study the parameters are pi and Cγi

, that is l = 2). Substituting
the numerical values of D, q, and l, we get d ≤ 247. These
results can be extended to NPGP in a straight forward lending
to get the same values of D, q and l. Henceforth, utility func-
tion classes defined under NPG and under NPGP have the same
upper bound on the P -dimension.

726



VI. DISCUSSION OF RAYLEIGH FLAT FADING CHANNEL

AND SIMULATION RESULTS

As a specific case of flat-fading channel model we present
results for the case where αi is modelled as a Rayleigh random
variable with a probability distribution given by:

p(αi) =
αi

σ2
r

exp(−α2
i /2σ

2
r), i = 1, 2, ..., N (27)

Where σ2
r = E{α2

i }/2 is the measure of the spread of the
distribution. In the following calculations it was assumed that
σ2

r = 1/2. For simplicity let us express the interference from all
other users as xi, i.e.

xi =
N∑

k �=i

pk hk α
2
k (28)

therefore (11) can be written as:

γi =
W

R

pi hi

xi + σ2 α2
i

= γ
′

iα
2
i (29)

In this context (13) should be written as:

ui(p/γi, xi) =
L R

M pi
(1 − e−γi/2)M (30)

Using (29) and (27) the distribution of γi for fixed xi is given
as:

p(γi/xi) =
1
γ

′
i

exp(−γi

γ
′
i

) (31)

and ui(p/xi) is given by:

ui(p/xi) =
∫ ∞

0
ui(p/γi, xi) p(γi/xi) dγi

=
∫ ∞

0

L R

M pi
(1 − e−γi/2)M 1

γ
′
i

exp(−γi

γ
′
i

) dγi

=
L R

M pi γ
′
i

M∑

k=0

(−1)k

(
M

k

)

×
∫ ∞

0
exp

(
−(
k

2
+

1
γ

′
i

) γi

)
dγi

=
L R

M pi

M∑

k=0

(
M

k

)
2 (−1)k

k γ
′
i + 2

(32)

For high SIR (γ
′

i � 1) (32) can be approximated by

u(p/xi) ≈ L R

M pi

(
1 +

1
γ

′
i

M∑

k=1

(
M

k

)
2 (−1)k

k

)
(33)

To complete the derivation of average utility function of the ith
user Ui(p), we only need to find the expectation of (33) with

respect to xi. Since αi is Rayleigh distributed random vari-
able, then α2

i is exponentially distributed with mean equal to
1. Therefore, µxi

the mean of xi is given as:

µxi
= E{xi} = E






N∑

k �=i

α2
kpk hk






=
N∑

k �=i

pk hk E{α2
k}

=
N∑

k �=i

pk hk (34)

Henceforth, the average utility function of the ith user is given
by:

Ui(p) =
L R

M pi

(
1 +

1
γi

M∑

k=1

(
M

k

)
2 (−1)k

k

)
(35)

where γi is the average SIR given by:

γi =
W

R

pi hi∑N
k �=i pk hk + σ2

(36)

While the empirical value of the utility function Uempi
is given

by:

Uempi
= n−1

n∑

l=1

ui(α̌l), (37)

where α̌ = [α1, α2, ..., αN ]. The system studied is a single-
cell with 9 stationary users (N = 9) using the same data
rate R and the same modulation scheme, noncoherent BFSK.
The system parameters used in this study are given in Table
I. The distances between the 9 users and the BS are d =
[310, 460, 570, 660, 740, 810, 880, 940, 1000]. The path atten-
uation between user j and the BS using the simple path loss
model [12] is hj = 0.097/d4

j . Using (26) and theorem 1 with
accuracy ε = 0.94 and confidence 1 − δopt(ε, n) ≈ 0.99 (see
theorem 1 for the definition of δopt(ε, n) ) the sample complex-
ity required was n ≤ 47000.

Fig.1 and Fig.2 show, respectively, the equilibrium utilities
and the equilibrium powers (o) obtained by NPG using the av-
erage utility function in (35) compared to the empirical values
obtained by simulating the Rayleigh flat fading channel (+). In
the simulation, the sample complexity (the number of samples
drawn from the channel according to a Rayleigh distribution)
was 47, 000 as mentioned above. NPG was run for each sample
from the channel, then the empirical means of the equilibrium
utilities were calculated according to (37). As one can see, the
figures show that the empirical results (+) fit the results obtained
by averaging with respect to the known distribution (Rayleigh
distribution in our case) (o). This proves the learnability of the
utility function classes U with reasonable sample complexity.
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TABLE I
THE VALUES OF PARAMETERS USED IN THE SIMULATIONS.

L, number of information bits 64
M length of the codeword 80
W , spread spectrum bandwidth 107 Hz
R, data rate 104 bits/sec
σ2, AWGN power at the BS 5 × 10−15

N , number of users in the cell 9
W/R, spreading gain 1000

VII. CONCLUSIONS

We studied a noncooperative power control game (NPG) and
noncooperative power control game with pricing (NPGP) intro-
duced in [1]-[3] using more realistic channels as in [7]. We
proposed the use of distribution-free learning theory to evalu-
ate the performance of game theoretic power control algorithms
for wireless data CDMA cellular systems in arbitrary channels.
We studied in detail the case when the channel is modelled as
a flat fading channel. We evaluated an upper bound for the P-
dimension of the utility function class and we presented a simu-
lation results for the Rayleigh case, which showed the learnabil-
ity of the utility class function defined by adjusting the power
for each user.

We are currently studying the application of distribution-free
learning theory to a frequency and a time selective fading chan-
nels.
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Fig. 1. Equilibrium utilities of NPG for Rayleigh flat fading channel by using
(35) (o) and by simulation with samples drawn according to Rayleigh distribu-
tion (+) versus the distance of a user from the BS in meters with W/R = 1000.
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Fig. 2. Equilibrium powers of NPG for Rayleigh flat fading channel by using
(35) (o) and by simulation with samples drawn according to Rayleigh distribu-
tion (+) versus the distance of a user from the BS in meters with W/R = 1000.
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