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STATISTICAL LIMIT SUPERIOR AND LIMIT INFERIOR

IN PROBABILISTIC NORMED SPACES

M. Mursaleen and Q. M. Danish Lohani

Abstract

In this paper we study the concept of statistical limit superior and statis-
tical limit inferior in probabilistic normed spaces. Our results are analogous
to the results of Fridy and Orhan [Proc. Amer. Math. Soc. 125(1997), 3625-
3631] but proofs are somewhat different and interesting. We also demonstrate
through an example how to compute these points in PN-spaces.

1 Introduction

In [1] Menger introduced the notion of statistical metric space, now called prob-
abilistic metric space, which is an interesting and important generalization of the
notion of a metric space. Later on this notion was developed by many authors, for
example [2], [3] and [4]. The notion of probabilistic metric space gives rise to the
concept of probabilistic normed space [2] which is an important and useful general-
ization of the concept of normed space. These two concepts of PM and PN-spaces
help us to deal with the fuzzy like situations. The concept of statistical convergence
was first introduced by Fast [5] and then studied by many authors. In particular,
active researches on this topic were started after the paper of Fridy [6]. This idea
was extended for double sequences by Mursaleen and Edely [7]. The idea of sta-
tistical convergence in probabilistic normed space has been studied by Karakus [8].
Many of the results in the theory of ordinary convergence have been extended to
the theory of statistical convergence. For instance, Fridy [9] introduced the concept
of statistical limit points and Fridy and Orhan [10] introduced the statistical ana-
logues of limit superior and limit inferior of a sequence of real numbers. Recently,
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statistical convergence and some of its related concepts for fuzzy numbers have been
studied in [11], [12], [13], [14] and [15].

In this paper, we study the concept of statistical limit superior and statistical
limit inferior in probabilistic normed space. An example is demonstrated to cal-
culate these points in PN-space. We observe that our results are analogous to the
results of Fridy and Orhan but proofs are somewhat different when we deal with
these concepts in PN-spaces.

2 Preliminaries

Throughout N and R will denote the sets of positive integers and real numbers re-
spectively. If K ⊆ N then Kn := {k ≤ n : k ∈ K}, and |Kn| denotes the cardinality
of Kn.

Definition 2.1. A funtion f : R → R+
◦ is called a distribution funtion if it

is non-decreasing and left-continuous with inf
t∈R

f(t) = 0 and sup
t∈R

f(t) = 1. We will

denote the set of all distribution funtions by D.

Definition 2.2. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions:

(a) ∗ is associative and commutative,

(b) ∗ is continuous,

(c) a ∗ 1 = a for all a ∈ [0, 1],

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

For example, a ∗ b = max{a + b − 1, 0}, a ∗ b = ab and a ∗ b = min{a, b} on
[0,1] are t-norms.

Definition 2.3 [8]. A triplet (X, N, ∗) is called a probabilistic normed space
(in short PN -space) if X is a real vector space, N : X → D (for x ∈ X, the
distribution funtion N(x) is denoted by Nx, and Nx(t) is the value of Nx at t ∈ R)
and * a continuous t-norm satisfying the following conditions:

(i) Nx(0) = 0,

(ii) Nx(t) = 1 for all t > 0 if and only if x = 0,

(iii) Nαx(t) = Nx( t
|α| ) for all α ∈ R− {0},

(iv) Nx+y(s + t) ≥ Nx(s) ∗Ny(t) for all x, y ∈ X and s, t ∈ R+
◦ .
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Example. Suppose that (X, ‖.‖) is a normed space. Let µ ∈ D with µ(0) = 0
and µ 6= h, where

h(t) =
{

0, t ≤ 0,
1, t > 0.

Define

Nx(t) =
{

h(t), x = 0,
µ( t
‖x‖ ), x 6= 0,

where x ∈ X, t ∈ R. Then (X,N, ∗) is a PN-space. For example, if we define
functions µ and µ′ on R by

µ(x) =
{

0, x ≤ 0,
x

1+x , x > 0,

and

µ′(x) =
{

0, x ≤ 0,
exp(−1

x ), x > 0,

then we obtain the following well known probabilistic norms

Nx(t) =
{

h(t), x = 0,
t

t+‖x‖ , x 6= 0,

and

N ′
x(t) =

{
h(t), x = 0,

exp(−‖x‖t ), x 6= 0.

Definition 2.4 [8]. Let (X,N, ∗) be a PN-space. Then a sequence x = (xn)
is said to be convergent to L with respect to the probabilistic norm N if for every
ε > 0 and λ ∈ (0, 1), there exists a positive integer k◦ such that Nxn−L(ε) > 1− λ

whenever n ≥ k◦. It is denoted by N -limx = L or xn
N→ L as n →∞.

Remark 1 [16]. Let (X, ‖.‖) be a real normed space, and Nx(t) = t
t+‖x‖ ,

where x ∈ X and t ≥ 0. Then xn
N→ x if and only if xn

‖.‖→ x.

Definition 2.5 [8]. Let (X,N, ∗) be a PN-space. Then a sequence x = (xn)
is said to be a Cauchy sequence with respect to the probabilistic norm N if for every
ε > 0 and λ ∈ (0, 1) there exists a positive integer k◦ such that Nxn−xm(ε) > 1− λ
for all n,m ≥ k◦.

Definition 2.6 [6]. If K is a subset of N, then the natural density of K
denoted by δ(K), is defined by

δ(K) := lim
n

1
n
|{k ≤ n : k ∈ K}|
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whenever the limit exists. The natural density may not exist for each set K. But
the upper density δ̄ always exists for each set K identified as follows:

δ̄(K) := lim
n

sup
1
n
|{k ≤ n : k ∈ K}|.

Definition 2.7 [6]. A sequence x = (xn) of numbers is said to be statistically
convergent to L if

δ({k ∈ N : |xk − L| ≥ ε}) = 0

for every ε > 0. In this case we write st− lim x = L.

Definition 2.8 [10]. A sequence x = (xn) of numbers is said to be statistically
bounded if there is a number B such that

δ({k ∈ N : |xk| > B}) = 0.

Definition 2.9 [8]. The real number sequence x is said to be statistically
bounded with respect to the probabilistic norm N if there exists some t◦ ∈ R and
b ∈ (0, 1) such that δ({k : Nxk

(t◦) ≤ 1− b}) = 0.

Definition 2.10 [8]. Let (X,N, ∗) be a PN–space. We say that a sequence
x = (xk) is statistically convergent to L ∈ X with respect to the probabilistic norm
N provided that for every ε > 0 and b ∈ (0, 1)

δ({k ∈ N : Nxk−L(ε) ≤ 1− b}) = 0,

In this case we write stN − lim x = L, where L = stN − lim x.

Definition 2.11 [8]. Let (X, N, ∗) be a PN-space. l ∈ X is called a limit
point of the sequence x = (xk) with respect to the probabilistic norm N provided
that there is a subsequence of x that converges to l with respect to the probabilistic
norm N . Let LN (x) denote the set of all limit points of the sequence x with respect
to the probabilistic norm N .

Definition 2.12 [8]. If {xk(j)} is a subsequence of x = (xk) and K := {k(j) :
j ∈ N}, then we abbreviate {xk(j)} by {x}K . If δ(K) = 0 then {x}K is called a
subsequence of density zero or a thin subsequence. On the other hand, {x}K is a
nonthin subsequence of x if K does not have density zero.

Definition 2.13 [8]. Let (X, N, ∗) be a PN-space. Then ξ ∈ X is called a
statistical limit point of the sequence x = (xk) with respect to the probabilistic
norm N provided that there is a nonthin subsequence of x that converges to ξ with
respect to the probabilistic norm N . In this case we say ξ is an stN -limit point of se-
quence x = (xk). Let ΛN (x) denote the set of all stN -limit points of the sequence x.
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Definition 2.14 [8]. Let (X, N, ∗) be a PN-space. Then η ∈ X is called a
statistical cluster point of the sequence x = (xk) with respect to the probabilistic
norm N provided that for every ε > 0 and a ∈ (0, 1),

δ̄({k ∈ N : Nxk−η(ε) > 1− a}) > 0.

In this case we say η is an stN -cluster point of the sequence x. Let ΓN (x) denote
the set of all stN -cluster points of the sequence x.

3 Statistical Limit Superior and Inferior

In this section we define the concept of statistical limit superior and statistical limit
inferior in probabilistic normed spaces and demonstrate through an example how
to compute these points in a PN-space.

Definition 3.1. The real number sequence x is said to be bounded with re-
spect to the probabilistic norm N if there exists some t◦ ∈ R and for every b ∈ (0, 1)
such that Nxk

(t◦) > 1− b for all k.

For a real sequence x let us define the sets BN
x and AN

x by

BN
x := {b ∈ (0, 1) : δ({k : Nxk

(ε) < 1− b}) 6= 0}
AN

x := {a ∈ (0, 1) : δ({k : Nxk
(ε) > 1− a}) 6= 0}

Note that throughout this paper the statement δ({K}) 6= 0 means that either
δ({K}) > 0 or K does not have natural density.

Definition 3.2. If x is a real number sequence then the statistical limit su-
perior of x with respect to the probabilistic norm N is defined by

stN − lim supx :=
{

sup BN
x if BN

x 6= ∅,
0 if BN

x = ∅.
Also, the statistical limit inferior of x with respect to the probabilistic norm N is
defined by

stN − lim inf x :=
{

inf AN
x if AN

x 6= ∅,
1 if AN

x = ∅.

Example. A simple example will help to illustrate the concepts just defined.
Let X = R and Nx(t) = t

t+|x| . Define the sequence x = (xk) by

xk :=





2k, if k is an odd square,
−1, if k is an even square,
1/2, if k is an odd nonsquare,
0, if k is an even nonsquare.
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This is clearly unbounded sequence with respect to N . On contrary, let x be
bounded. Then

Nxk
(t◦) > 1− b

for all k and for some b ∈ (0, 1), t◦ ∈ R. Then we have t◦
t◦+xk

> 1 − b for all k

and for some b ∈ (0, 1) and t◦ ∈ R. This implies that xk < bt◦
1−b for all k and

for some b ∈ (0, 1) and t◦ ∈ R. But xk = 2k if k is an odd square. Therefore√
2k < bt◦

1−b for all k = m2 where m is odd, which is not possible. Hence x must
be unbounded with respect to N .
On the other hand it is statistically bounded with respect to N . For this

δ({k ≤ n : Nxk
(t◦) ≤ 1− b}) = δ({k ≤ n :

t◦
t◦ + |xk| ≤ 1− b}),

= δ({k ≤ n : |xk| ≥ bt◦
1− b

}).

Since 0 < b < 1, 1
b − 1 > 0. Choose t◦ = 1−b

3b . Then t◦ > 0 and

δ({k ≤ n : Nxk
(t◦) ≤ 1− b}) = δ({k ≤ n : |xk| ≥ b

1− b
× 1− b

3b
=

1
3
})

= δ({k ≤ n : |xk| ≥ 1
3
}) = lim

n→∞
1
n
×√n = 0

Hence it is statistically bounded with respect to N .
To find BN

x , we have to find those b ∈ (0, 1) such that

δ({k : Nxk
(ε) ≤ 1− b}) 6= 0.

Now,
δ({k : Nxk

(ε) ≤ 1− b}) = δ({k ≤ n :
ε

ε + |xk| ≤ 1− b}),

= δ({k ≤ n : |xk| ≥ bε

1− b
}).

We can easily choose any ε > 0 as ε < 1
3 ( 1

b − 1) for 0 < b < 1, so that

0 <
bε

1− b
<

b

1− b
× 1− b

3b
=

1
3
.

Therefore

δ({k ≤ n : |xk| ≥ bε

1− b
}) = δ({k ≤ n : |xk| ≥ r =

bε

1− b
}),

and by the above condition r ∈ (0, 1). Now the number of members of the sequence
which satisfy the above condition is always greater than n − n

2 or n − n−1
2 for the

case n is even or odd respectively. Therefore

δ({k ≤ n : |xk| ≥ r =
bε

1− b
}) > lim

n→∞
1
n
× n

2
=

1
2

or lim
n→∞

1
n
× n + 1

2
=

1
2
.
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Thus
δ({k ≤ n : |xk| ≥ r =

bε

1− b
}) 6= 0 for all b ∈ (0, 1).

Hence BN
x = (0, 1), and stN − lim supx = 1. The above sequence has two subse-

quences

x = (xni
) where xni

= 1 for each ni ∈ {3, 5, 7, 11, 13, · · · },
and

x = (xnj ) where xnj = 0 for each nj ∈ {2, 6, 8, 10, 12, · · · },
i, j ∈ N; which are of positive density and clearly convergent to 1 and 0 respectively.
Therefore x is not statistically convergent. Similarly we have AN

x = (0, 1). Hence
stN− lim inf x = 0. Now by applying the definition, we get the set of statistical clus-
ter points of x as {0, 1}, where stN − lim inf x = least element and stN − lim sup x
= greatest element of the above set.

This observation suggests the main idea of our first theorem of the next section.

4 Main Results

The following results are analogues of the results due to Fridy and Orhan [10], while
the proofs are different which show the technique to work with PN-spaces.

Theorem 4.1. If b = stN − lim sup x is finite, then for every positive numbers
ε and γ

δ({k : Nxk
(ε) < 1− b + γ}) 6= 0 and δ({k : Nxk

(ε) < 1− b− γ}) = 0. (1)

Conversely, if (1) holds for every positive ε and γ then b = stN − lim sup x.

Proof. Let b = stN − lim supx where b be finite. Then

δ({k : Nxk
(ε) < 1− b}) 6= 0. (2)

Since Nxk
(ε) < 1− b + γ for every k and for any ε, γ > 0,

δ({Nxk
(ε) < 1− b + γ}) 6= 0.

Now applying the defination of stN − lim sup x we have 1 − b as the least value
satisfying (2). Now if possible,

Nxk
(ε) < 1− b− γ for some γ > 0.

Then 1 − b − γ is another value with 1 − b − γ < 1 − b which satisfies (2). This
observation contradicts the fact that 1 − b is least value which satisfies the above
condition. Hence,

δ({Nxk
(ε) < 1− b− γ}) = 0 for every γ > 0.
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Conversely, if (1) holds for every positive ε and γ , then

δ({k : Nxk
(ε) < 1− b + γ}) 6= 0 and δ({k : Nxk

(ε) < 1− b− γ}) = 0.

Therefore

δ({k : Nxk
(ε) ≤ 1− b}) 6= 0 and δ({k : Nxk

(ε) = 1− b}) = 0.

That is
δ({k : Nxk

(ε) < 1− b}) 6= 0 for every ε > 0.

Hence b = stN − lim sup x.

This completes the proof of the theorem.

The dual statement for stN − lim inf x can also be proved similarly.

Theorem 4.1′. If a = stN− lim inf x is finite, then for every positive number
ε and γ

δ({k : Nxk
(ε) > 1− a− γ}) 6= 0 and δ({k : Nxk

(ε) > 1− a + γ}) = 0. (1′)

Conversely, if (1′) holds for every positive ε and γ then a = stN − lim inf x.

Remark. From the definition of statistical cluster points in [9] we see that
Theorems 4.1 and 4.1′ can be interpreted as saying that stN − lim supx and stN −
lim inf x are the greatest and the least statistical cluster points of x, respectively.

Theorem 4.2. For any sequence x, stN − lim inf x ≤ stN − lim supx.

Proof. First consider the case in which stN − lim sup x = 0, which implies that

BN
x = ∅.

Then for every b ∈ (0, 1),

BN
x = δ({k : Nxk

(ε) < 1− b}) = 0,

that is
δ({k : Nxk

(ε) ≥ 1− b}) = 1.

Also for every a ∈ (0, 1), we have

δ({k : Nxk
(ε) > 1− a}) 6= 0.

Hence, stN − lim inf x = 0.
The case in which stN − lim sup x = 1, is trivial.
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Suppose that b = stN − lim supx, and a = stN − lim inf x; where a and b are finite.
Now for given any γ, we show that 1− b− γ ∈ AN

x . By Theorem 4.1, we have

δ({k : Nxk
(ε) < 1− b− γ

2
}) = 0, where 1− b=least upper bound of BN

x .

Therefore
δ({k : Nxk

(ε) ≥ 1− b− γ

2
}) = 1,

which in turn gives
δ({k : Nxk

(ε) > 1− b− γ}) = 1.

Hence, 1− b− γ ∈ AN
x .

By definition
a = inf AN

x ,

so we conclude that
1− b− γ ≤ 1− a.

Since γ is arbitrary, we have
1− b ≤ 1− a,

that is
a ≤ b.

This completes the proof of the theorem.

Theorem 4.3. In PN-space (X,N, ∗) the statistically bounded sequence x is
statistically convergent if and only if

stN − lim inf x = stN − lim sup x.

Proof. Let α, β be stN − lim inf x and stN − lim sup x respectively. Now we
assume that stN − limx = L. Then for every ε > 0 and b ∈ (0, 1),

δ({k : Nxk−L(ε) ≤ 1− b}) = 0,

so that
δ({k : Nxk

(
ε

2
) ∗NL(

ε

2
) ≤ 1− b}) = 0.

Let for every ε > 0,

sup
ε

Nxk
(
ε

2
) = 1− b1 and sup

ε
NL(

ε

2
) = 1− b2

such that
(1− b1) ∗ (1− b2) ≤ 1− b. (1)

Then
δ({k : Nxk

(
ε

2
) ≤ 1− b1}) = 0, (2)
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and therefore

δ({k : Nxk
(
ε

2
) < 1− b1 − γ}) = 0 for every γ > 0. (3)

Now applying Theorem 4.1 and the definition of stN − lim sup x, we get

δ({k : Nxk
(
ε

2
) < 1− β − γ}) = 0 for every γ > 0. (4)

From (3) and (4) and by the definiton of stN − lim sup x, we get

1− b1 − γ ≤ 1− β − γ,

that is,
β ≤ b1. (5)

Now we find those k such that

Nxk
(
ε

2
) > 1− b1 + γ.

We can easily observe that no such k exists which satisfy (1) together with the
above condition. Therefore this implies that

δ({k : Nxk
(
ε

2
) > 1− b1 + γ}) = 0.

Since α = stN − lim inf x, by Theorem 4.1′, we get

δ({k : Nxk
(
ε

2
) > 1− α + γ}) = 0.

By the definition of stN − lim inf x, we have

1− α + γ ≤ 1− b1 + γ,

that is,
b1 ≤ α. (6)

From (4) and(5), we get β ≤ α. Now combining Theorem 4.2 and the above in-
equality, we conclude α = β.

Conversely, suppose that α = β and supε NL(ε) = 1− α. Then for any γ > 0,
Theorems 4.1 and 4.1′ togather imply that

δ({k : Nxk
(
ε

2
) < 1− α− γ

2
}) = 0, (7)

and
δ({k : Nxk

(
ε

2
) > 1− α +

γ

2
}) = 0. (8)

Now
1− α ≥ NL(ε) = Nxk−(xk−L)(ε) ≥ Nxk

(
ε

2
) ∗Nxk−L(

ε

2
).



Statistical limit superior and inferior in probabilistic normed spaces 65

Therefore
Nxk

(
ε

2
) ∗Nxk−L(

ε

2
) ≤ 1− α. (9)

Let
sup

ε
Nxk−L(

ε

2
) = 1− a1 where a1 ∈ (0, 1) and (7) and (9) hold.

Then
δ({k : Nxk−L(

ε

2
) < 1− a1 − γ

2
}) = 0,

which is true for all γ > 0. Hence

δ({k : Nxk−L(
ε

2
) ≤ 1− a1}) = 0,

which is true for all a ≤ a1 ∈ (0, 1), because 1 − a1 is the least upper bound.
Now repeat the process by taking (8) and (9) instead of (7) and (9). If (8) and
(9) are satisfied, then infε Nxk−L( ε

2 ) = 1 − a1. On contrary suppose that 1 − a1 6=
infε Nxk−L( ε

2 ) while conditions (8) and (9) hold. This implies that there exists
some t in {Nxk−L( ε

2 ) : ε > 0 is arbitrary} such that t > 1 − a1. Let us suppose
infε Nxk−L( ε

2 ) = 1− a2. Then, we have

1− a2 > 1− a1, (10)

and by (9), we get
Nxk

(
ε

2
) ∗ (1− a2) ≤ 1− α.

Using (8) we get,

(1− α +
γ

2
) ∗ (1− a2) ≤ 1− α, for all γ > 0.

Clearly,
(1− α− γ

2
) ∗ (1− a2) ≤ 1− α. (11)

Now

1− a1 = sup
ε

Nxk−L(
ε

2
) where a1 ∈ (0, 1) and which satisfy (7) and (9).

From (11) we conclude that 1 − a2 is another value satisfying (7) and (9). Hence
1 − a2 < 1 − a1. which contadicts (10). Hence 1 − a1 = infε Nxk−L( ε

2 ) satisfying
conditions (8) and (9). Therefore the inequality becomes true for all a ≥ a1 ∈ (0, 1),
because 1− a1 is the greatest lower bound, and hence

δ({k : Nxk−L(
ε

2
) ≤ 1− a}) = 0,

for each ε > 0 and a ∈ (0, 1). Therefore stN − lim x = L.

This completes the proof of the theorem.
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