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Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible
to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we
discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions
and limitations of the methods reviewed. There are several methods available to analyse FNI data indi-
cating that none is optimal for all purposes. In order to make optimal use of the methods available it is
important to know the limits of applicability. For the interpretation of FNI results it is also important to
take into account the assumptions, approximations and inherent limitations of the methods used. This
paper gives a brief overview over some non-inferential descriptive methods and common statistical
models used in FNI. Issues relating to the complex problem of model selection are discussed. In general,
proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference.
The non-inferential section describes methods that, combined with inspection of parameter estimates and
other simple measures, can aid in the process of model selection and verification of assumptions. The
section on statistical models covers approaches to global normalization and some aspects of univariate,
multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connec-
tivity are discussed. In the companion paper we review issues related to signal detection and statistical
inference.

Keywords: functional neuroimaging methods; PET; fMRI; statistical models; non-inferential methods;
model selection
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1. INTRODUCTION

During the last two decades a body of well-described
theories and empirically validated methods has been
developed, providing a framework for investigating
functional neuroimaging (FNI) data and making neuro-
scientific inferences. This provides a background for the
development of new analytical tools and experimental
methods. The methods for analysing FNI data are in
rapid development, illustrating the need for descriptive
tools, validated statistical models, and methods for
effective statistical inference. Descriptive and exploratory
methods are used to characterize the nature of the signals
present in the data, including possible unsuspected effects.
Inferential methods are used to test hypotheses and deter-
mine confidence intervals addressing the reproducibility
or predictability of the observed effects.

Progress in science is dependent on the long-term
consistency and convergence of empirical results. Discus-
sion and evaluation of the methods used in a scientific
field is of central importance in this process (e.g. Aguirre
et al. 1998a; Clark & Carson 1993; Ford 1995; Ford et al.
1991; Frackowiak et al. 1996; Friston 1993, 1995; Halber et
al. 1997, Holmes et al. 1998; McColl et al. 1994; Petersson
1998; Roland & Gulyas 1996; Strother et al. 19956; Taylor
et al. 1993; Van Horn et al. 1995; Worsley et al. 1993). In
line with this perspective, several investigations of
different approaches to the statistical analysis of FNI data
(Arndt et al. 1995; Grabowski et al. 1996; Holmes 1994;
McColl et al. 1994; Xiong et al. 1996), as well as different
statistical models (Holmes 1994; McColl et al. 1994;
Senda et al. 1998; Woods 1996), have been reported. Relia-
bility across different variables has also been studied, for
example, across laboratories (Ojemann et al. 1998; Poline
et al. 1996; Senda et al. 1998), groups, sample sizes, and
imaging modalities (Andreasen et al. 1995; Grabowski et
al. 1996; Ojemann et al. 1998; Strother et al. 1997). In addi-
tion, studies of statistical power (Iriston et al. 19946,
19964; Van Horn et al. 1998) and activation pattern repro-
ductbility (Strother et al. 1997) have recently been
reported.

The field of FNI methodology has developed into a
mature but still evolving area of knowledge. The scope of
this overview is limited to the common methods used
when analysing data from positron emission tomography
(PET) or functional magnetic resonance imaging
(fMRI), concentrating on regional cerebral blood flow
(rCBF) PET and blood oxygenation level dependent
(BOLD) fMRI. In this paper we give an overview of
some non-inferential methods (principal components
analysis (PCA), independent components analysis (ICA),
and the scaled subprofile model (SSM)) that in conjunc-
tion with inspection of parameter estimates and other
simple measures can be used in the process of model
selection and verification of assumptions in an informal
sense. Next, we cover some models for global effects and
approaches to global normalization. Univariate (the
general linear model (GLM), fixed versus random
effects), multivariate (MANCOVA, canonical variates
analysis (CVA), partial least squares (PLS), multivariate
linear models (MLM)), and Bayesian models, including
some specific issues relating to fMRI (temporal auto-
correlation, models of the haemodynamic response) will
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also be discussed. The last section of this paper describes
approaches to functional connectivity (covariance
analysis, partial correlation coeflicients, covariance fields)
and network analysis of effective connectivity (structural
equations modelling). In the companion paper (Petersson
et al., following paper) we give an overview and discuss
some issues relating to signal detection and methods for
statistical inference used in FNI. The emphasis of both
papers 1s on assumptions and limitations. The descrip-
tions of the methods reviewed are necessarily brief and
for more details the reader is referred to the appropriate
literature.

Several methods for FNI data analysis have been
proposed indicating that none is optimal for all purposes.
In this context, it is important to know the limitations
inherent in the different approaches enabling the optimal
use of available methods. It should be noted that focusing
on assumptions and limitations of the methods reviewed
is different from the claim that these methods should or
should not be used. On the contrary, this indicates the
limits of applicability and usefulness inherent in any given
method. In order to interpret accurately FNT results it is
of importance to know the assumptions, approximations
and inherent limitations of the methods used. When the
assumptions and limitations are taken into account, the
different methods and approaches reviewed in this paper
(and its companion paper) generally serve their purposes
well. The benefits and examples of their applicability are
well described in the original literature and are not
repeated here.

Statistical models make explicit assumptions about
data. Both the explicit and implicit assumptions about
data need to be critically examined (Lange 1997). The
methods used in FNI differ in assumptions made
regarding the data and in the approximations used in the
statistical analysis. What are of importance in this context
are not the assumptions or approximations themselves but
how well these are fulfilled by empirical data. Of crucial
importance, in the case where these assumptions or
approximations are not fully met, is the robustness of the
methods used. This notion emphasizes the importance of
theoretical and empirical investigations of its robustness
in addition to empirical validation and explicit character-
1zation of the inherent limitations of a given method.

The classic strategy for data analysis starts with data
exploration and model selection, fitting of a statistical
model, assessing the goodness-of-fit and investigating
diagnostics for violations of assumptions. If the model
does not fit or assumptions are seriously violated then the
model selection starts anew. When an appropriate model
has been selected and assumptions are not seriously
violated, valid statistical inferences can be made. In the
case of ill-fitting models or violated assumptions the
ensuing inference may be statistically invalid. However, it
should be stressed that model selection is a complex
process and it 1s difficult to fully account for the inter-
action between model selection and statistical inference
unless model selection and statistical inference are
performed on independent sets of data.

In general, to study a phenomenon of interest, the
investigator chooses an experimental design and primary
FNI data are collected. The primary data are commonly
pre-processed (e.g. realigned, anatomically normalized,
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and low-pass filtered), a statistical model and a test
statistic chosen, model parameters estimated, and statis-
tical inference obtained, taking into account multiple
non-independent comparisons and possible temporal
autocorrelation (figure 1). Most FNI methods are based
on voxel (volume element) data, even though some use
regions of interest (ROI) data. Most often, the ROI
approach presupposes prior regionally specific hypotheses
and brain regions outside the chosen ROIs are not investi-
gated potentially leading to undetected effects. The voxel-
by-voxel approach, pioneered by Tox et al. (Fox &
Mintun 1989; Fox et al. 1988) and Friston et al. (1990,
1991), was proposed as a less arbitrary alternative.
Several standard approaches used in image processing
and signal detection (e.g. optimal filtering theory, linear
and nonlinear systems theory) are naturally applied to
voxel data. Voxel approaches also preserve more of the
inherent resolution of the imaging system and make it
possible to investigate brain functions without a regional
specific hypothesis. However, small structures may natu-
rally be viewed as ROIs and with sufficient prior informa-
tion regionally specific hypothesis can be formulated and
an ROI approach is natural. Here the prior information
is used to restrict the search volume and correspondingly
increase the sensitivity of the hypothesis testing.

2. NON-INFERENTIAL METHODS FOR SIGNAL
CHARACTERIZATION

Non-inferential or exploratory methods are used to
characterize the nature of the signal present in data in a
manner that does not strongly depend on a particular
choice of model for the data. Exploratory methods can
play an important role both before and after statistical
inference. Before inference, they can aid the process of
model building and model selection by pointing to sources
of variability that might not have been expected. After
inference, they can similarly serve as a check that the
model has adequately accounted for most of the systematic
variability in the data. In this section we review three non-
inferential methods: PCA, ICA and the SSM. We close by
suggesting some basic exploratory approaches that can be
applied to almost any inferential model.

(a) Principal components analysis

PCA provides a means to identify spatio-temporal
patterns in a data-driven manner. In general, PCA is a
way of summarizing the sample variance—covariance
structure of multivariate data. As will be seen later, PCA
plays a key role in multivariate statistical techniques, used
as an exploratory tool to guide model building, to identify
patterns, and to estimate the approximate dimensionality
of the data, and may be used as a dimensionality reduc-
tion device. Here we will concentrate on its descriptive
use. In addition, Friston et al. (1993) interpret PCA results
as information on functional connectivity, defined as the
observed correlation over time between different brain
areas. This is distinguished from effective connectivity,
which is defined as the direct influence one neural system
has on another (see also § 3(e) on functional connectivity
and network analysis).

The definition of PCA is as follows: consider each
brain image to be a single multivariate observation, with
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each voxel in the brain being an element in a long row
vector. Stacking the rows will create a data matrix, X,
where each column represents a voxel and each row a
scan of centred (mean corrected) data. The voxel-by-
voxel sample variance—covariance matrix, proportional
to XX, expresses the first-order relationship between
each pair of voxels. A PCA of XX’ can be accomplished
by a singular value decomposition (SVD) of X (Jolliffe
1986). The SVD produces three objects: principal compo-
nents (PCs), which are spatial patterns; component
scores, which are temporal or scan-order patterns; and
singular values (eigenvalues), which express the relative
variability accounted for by each PC.

PCs are defined in a natural order: the first component
is the single image or brain pattern (also called eigen- or
singular image or vector) that explains the most varia-
bility across all images. Each subsequent component
explains the most variability, subject to the constraint that
it 1s orthogonal to all the previous components (Jolliffe
1986). The component scores indicate the temporal
pattern corresponding to each PC, and the singular
values allow for a qualitative assessment of the impor-
tance of each PC.

The SVD actually produces eigenvalues and eigenvec-
tors of both XX and X'X; the former is proportional to
the sample voxel-by-voxel covariance matrix, the latter is
similar to the scan-by-scan covariance matrix. The voxel-
by-voxel eigenvectors are the PCs, and the scan-by-scan
eigenvectors are the component scores. The eigenvalues
are the same for both and, when scaled to sum to 1, are
the proportion of variability that each eigenvector or PC
accounts for. There is a symmetry between PCs and
component scores: the first component is the pattern over
voxels (i.e. brain pattern) that accounts for the most
variability across all scans. The first component score is
the pattern over scans (i.e. temporal pattern) that
accounts for the most variability across all voxels. In fact,
the components and corresponding scores should be
viewed as spatio-temporal objects, and interpreted
conjointly.

PCA may be used after inference to check for unex-
pected or unaccounted patterns in the data. If the PCA
produces a small number of PCs whose components
correspond to the experimental paradigm, and these PCs
account for a large part of the observed variability, then
one can be fairly confident that the experiment incurred
the majority of the variability in the data, and that this
variability is appropriately modelled. If, on the other
hand, there are spatio-temporally structured components
that explain a large amount of variability but do not
correspond to the experimental paradigm, then there
may be important additional sources of variance not
included in the statistical model, potentially biasing both
the model coeflicients and variance estimates making
subsequent inference invalid (cf. Petersson et al., following
paper). Typical examples of such sources are temporal
effects (e.g. trends in levels of anxiety or attention,
increasing boredom or discomfort, and effects of practice),
evidenced by components similar to temporal trends or
PCs consisting of a few strong weightings on just the first
or last replications of an experimental condition. In addi-
tion, it is possible to investigate the standardized residual
images with a PCA (Ford 1995), to check if there are any
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Figure 1. The classic strategy for data analysis starts with data exploration and model selection, fitting of a statistical model,
assessing the goodness-of-fit and investigating diagnostics for violations of assumptions. In general, proper model selection is a
necessary prerequisite for the validity of the subsequent statistical inference. Model selection is a complex process and it is difficult
to account for the interaction between model selection and statistical inference unless model selection and statistical inference are
performed on independent sets of data. In FNI, the primary data are commonly pre-processed, e.g. realigned, anatomically
normalized, and filtered. A statistical model is chosen, determined by the experimental design and the previous model selection
procedures. A test statistic is chosen and model parameters are estimated. Finally, statistical inference, taking into account
multiple non-independent comparisons and possible temporal autocorrelation, represented as a statistic image is obtained.

structured components left in the residual. If structured
components are found, then an assumption of indepen-
dence may be violated (Petersson et al., following paper).

The result of a PCA may be sensitive to outliers, and is
crucially dependent on the type of pre-processing
performed on data. For example, if the image data are
normalized by dividing by the standard deviation image,
then the PCs are based on the correlation matrix rather
than the covariance matrix and the influence of high
variance regions will be reduced possibly giving a
different result (Chatfield & Collins 1980; Jolliffe 1986).
Another example is how the PCA of Iriston et al. (1993)
only examines voxels that survive an F-test of significant
experimental variance, the result of so-called F-masking.
This implies that variability not sufficiently well
accounted for by the statistical model will not be consid-
ered in the PCA, and this changes the interpretation of
the results. Rather than partition all the observed varia-
bility, the PCs only partition the variability among those
voxels in which the model explains a sufficient part (as
determined by the F-threshold) of the observed variation.
We note, though, that the F-masking may not always
have a great impact on the results (Strother et al. 1995q).
In addition, since the PCA (Friston et al. 1993) is typically
based on data after adjustments for nuisance effects, the
results will be dependent on the particular nuisance
effects modelled, their model fit, and the proper removal
of these.

There is nothing inherent in PCA to guarantee a
straightforward interpretation of the PCs. For example, it
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is possible that a given PC represents a mixture of effects,
and understanding spatio-temporal patterns that are
constrained to be orthogonal may be challenging unless
the observed variability has a natural elliptic structure.
This is particularly the case with fMRI data, where there
are multitudes of effects. While the first component
always has the intuitive explanation of expressing the
greatest amount of variability in the data, each of the
subsequent components must be interpreted as expressing
the greatest amount of variability orthogonal to the
previous components. The easiest way to conceptualize
this is to think of the PCA as a sequential process. After
the first component is identified, the data are regressed
on it and any patterns it can account for are removed.
Then the next component is the pattern that expresses the
greatest amount of variability in this modified data set.
The same process is repeated for each subsequent compo-
nent.

(b) Independent components analysis

The ICA is another non-inferential method closely
related to PCA. The ICA approach was originally
proposed by Common (Common 1994) and it has
recently been applied to fMRI data (McKeown et al.
1998). For an introduction to ICA see McKeown et al.
(1998), and for theoretical details see Bell & Sejnowski
(1995); here we describe ICA as it has been applied to
fMRI. The application of ICA to fMRI data so far has
focused on the spatial aspects of data, which may be
called ‘spatial ICA. Like PCA, it is also possible to
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analyse the temporal aspects of data with ‘temporal ICA’.
In contrast to PCA, the spatial patterns or component
maps (CM) generated by ICA are constrained to be not
just orthogonal but statistically independent and spatially
sparse, that 1s, with only a few voxels having large values
in each CM. Further, while PCA constrains the compo-
nent scores (temporal patterns) to be orthogonal, ICA
puts no constraint on the temporal components.

ICA is motivated through information theory (Ash
1965; Cover & Thomas 1991) with the objective of maxi-
mizing the joint entropy of suitably transformed CMs
(McKeown et al. 1998). Maximizing the joint entropy is
equivalent to minimizing the mutual information, which
produces independent components. Independent compo-
nents have zero mutual information and the transforma-
tion of the CMs biases the method in favour of spatially
sparse CMs. It must be stressed that the independence at
hand is not linear independence, a geometric property,
but statistical independence, a distributional property.
Statistical independence is a notion of separability. Two
random variables or random vectors are independent if]
and only if, their joint distribution can be written as a
product of the marginal distributions: p(x, y) =p(x)p(»).

ICAs principle strength is that the interpretation of the
temporal profiles may be ecasier compared with the
temporal profiles generated by PCA, since they are not
forced to be orthogonal. As a result, several temporal
patterns can be found which are very similar but not
identical to the main task component. In contrast, PCA
would not identify transiently task-related temporal
components since they would tend not to be orthogonal
to the task. The main weakness is that the spatial modes
are required to be independent. For example, brain areas
activated by task performance must be spatially indepen-
dent of the distributions of areas affected by artefacts
(McKeown et al. 1998), though this seems not to be a
problem in the data analysed by McKeown et al. (1998).
However, it has been argued that functional integration
among brain regions implies that large-scale cognitive
neural networks may have substantial anatomic overlap,
and that ICA precludes nonlinear interaction between
spatial modes subserving context-sensitive modulation of
one area by another (Friston 19985). This issue could be
addressed by performing a ‘temporal ICA, where the
temporal profiles are independent and the spatial profiles
are unconstrained. This requires a dimensionality reduc-
tion step so that the spatial dimensionality of the data is
reduced below that of time.

(c) The scale subprofile model approach

The SSM was introduced by Moeller et al. (1987) to
study subject-by-region interactions while addressing the
issue of confounding between the global and regional
signal. SSM is a non-inferential multivariate method
initially described for ROI analyses of IP-fluorodeoxy-D-
glucose (FDG) data and has subsequently been extended
to O water activation data (Strother et al. 19954). SSM
works with log-transformed data and is a type of factor
ANOVA, that 1s, a two-way ANOVA with factor analysis
of the residuals. SSM decomposes variability into three
different components: a multiplicative global scale factor
(GSF), a group mean image or group mean profile
(GMP), and components and scores akin to PCA. These
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components and scores describe the covariance structure
of the remaining variability (the components are named
group invariance subprofiles, and the scores subprofile
scaling factors (SSF)). These effects are estimated on the
log-transformed data by a serial process. For purposes of
explanation we assume that there is only one scan per
subject, though this is not a limitation of SSM (Moeller et
al. 1987; Strother et al. 19954). First the SSF are estimated
from a PCA of centred data (i.e. after voxel and subject
effects have been removed). The SSF consists of the first £
eigenvectors of the subject by subject sample covariance
matrix. A multivariate test of dimensionality is used to
determine k. The GSF are then estimated as the global
mean activity orthogonalized with respect to the SSFs.
The SSFs represent the principal subject covariance
patterns across the volume, after removal of the main
effects of subject and location, and thus give an estimate
of the vector space of subject-by-location interactions.
This approach is intended to prevent the GSF from being
confounded with individual differences. The group effect
(GMP) 1s then estimated from the log-transformed data
adjusted for the global effect; the GMP with the SSF are
used to estimate the group invariance subprofile (cf.
Moeller & Strother 1991; Strother et al. 1995a).

Originally the authors presented evidence that their
method for estimating global effects allows for more accu-
rate modelling and more specific estimates of regional
activity (rA) (Moeller et al. 1987). The imaging work
(Strother et al. 19954) suggested that SSM was less suscep-
tible to artefactual decreases than other methods. SSM
stands out for its consideration of intra-subject and inter-
subject variation as well as the thoughtful estimation of
global effects. The latter is important since the method of
intensity normalization can have a strong impact on the
analysis of spatial covariance structure (Ford 1986).
Working with ROIs, Moeller et al. (1987) presented
evidence that their method for estimating global effects
allows for more accurate modelling, and more specific
estimates, of rA. Theoretical comparisons are not possible,
since a statistical model does not back the SSM.

(d) Imspection of functional neuroimagimg data

We close this non-inferential section by noting some
basic descriptive approaches that can be employed with
almost any statistical model of data. Simple devices such
as viewing the parameter estimate images can be most
valuable in assessing model fit and increasing under-
standing of the properties of data. For example, in the
case of FNI activation studies, these images would be the
parameter estimates of the difference between two
conditions, or in the case of a covariate regressor, the
slope estimates of rA against the covariate. Examining
the images of the parameter and its estimated standard
error can indicate possible problematic features in data.
For example, a parameter image and corresponding /-
statistic image that are starkly different may indicate an
unexpected pattern in the standard error image. Such
features may be artefacts due to a failure in some pre-
processing step, but other possibilities exist. For a given
statistical model, it may be useful to examine the different
components of variation represented by, for example,
subject, condition or various interactions. In this context,
useful images to inspect are the root of the mean sum of
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squares related to these components. For example, Senda
et al. (1998) illustrate the usefulness of these procedures
examining the mean sum of squares images in order to
investigate the effect of different anatomical normal-
ization procedures and different statistical models on the
results of the data analysis.

In conclusion, non-inferential methods can be most
useful in describing properties or characteristics of parti-
cular data sets and also in outlier detection. In particular,
simple methods can be of great value, like direct inspec-
tion of the mean difference, variance, sums of squares
and residual images, or after transformation using more
sophisticated methods like PCA or SSM. The nature of
FNI data often makes the systematic diagnosing of model
fit and verification of assumptions challenging. However,
many problems can be identified by simple methods and
close examination of the image data at all steps, from
initial data collection through model fitting. Unexplained
structure in the normalized residual image may be inves-
tigated by PCA. Recent elaboration of the PCA concept
in terms of subspace transformations like projection
pursuit (Huber 1985), or other related approaches like
ICA, may turn out to be valuable exploratory tools and
are naturally applied to FINI data.

3. STATISTICAL MODELS FOR FUNCTIONAL
NEUROIMAGING

As a prelude to statistical inference, non-inferential
descriptive methods can aid in the process of model
building and model selection. The importance of reason-
able model fit and verification of assumptions cannot be
overestimated since this is of central importance for the
validity of the subsequent statistical inference (cf.
Petersson et al., following paper). In general, statistical
inference requires a sufficiently well-fitting statistical
model and several statistical models have been described
and applied to FNI data. In this section, models for
global effects and approaches to global normalization are
described. In particular, the importance of correctly
modelling a fluctuating baseline, potential confounding
between global and regional effects, and limitations of the
commonly used models in the case of several different
ranges of global effects will be considered. Different issues
relating to univariate statistical inference (e.g. sources of
random variation, fixed versus random effects and scope
of inference), Bayesian, and multivariate models (e.g.
dimensionality reduction, the need to characterize the
multivariate signal when detected) are also discussed.
Last, some issues specific to fMRI (e.g. temporal autocor-
relation, models of the haemodynamic response) are
covered.

(a) Baseline fluctuations and global normalization
FNI experiments usually test hypotheses regarding
regionally specific changes in neuronal activity. These
changes are, in the case of PET, indirectly indicated by
changes in rCBF or regional cerebral counts (rCC), and
by changes in regional susceptibility in the case of
BOLD fMRI. (Below regional activity will represent
rCBF, rCC, or regional fMRI BOLD  time-series,
depending on the imaging modality) For practical and
other reasons, the imaging systems are commonly used
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in a non-quantitative mode. Therefore the focus is on
relative regional changes which are related to a baseline.
This can be problematic since, for example, variability
in global factors often induces baseline fluctuations.
Different measures of global activity (gA) have been
used to account for some of the baseline variability. An
often used simple estimator of gA is the intracerebral
average of rA. Global activity defined in this way varies
between subjects and over time. The variability depends
on several variables (Frackowiak et al. 1997; McColl et al.
1994), for example, physiological (e.g. changes in pCO,
levels and circulatory system changes), factors relating to
the measurement procedures (e.g. differences in injected
radioactive dose) and the imaging system (e.g. between-
run variability in fMRI gain). Global changes are there-
fore difficult to interpret without quantification.

When there 1s a lack of absolute quantification and the
experimentally induced regional changes are assessed
relative to a baseline, changes in this baseline are often
considered a nuisance effect. Since baseline fluctuations
may be large, potentially hiding the effects of interest, it
1s necessary to account for or remove this variability in
some appropriate manner. The notion of baseline varia-
bility as a nuisance effect implicitly assumes that the
scan-to-scan baseline fluctuations are independent of the
experimental manipulations. In order to properly account
for baseline variability there are two issues. First, how to
measure or estimate the baseline fluctuations, and second,
how these measurements are used to explicitly model or
remove the variability in baseline activity. Measurements
of global effects, and consequently global normalization,
1s predicated on the assumption that the variability in
global effects adequately represent the baseline fluctua-
tions and that the experimentally induced regional
changes are superimposed on this according to some
model.

(1) Different approaches to global normalization

Several approaches to account for global changes have
been proposed and compared. For example, proportional
scaling (Fox & Raichle 1984; Kanno et al. 1996), log-
linear regression models (Herholz et al. 1993), histogram—
rank equalization (Arndt et al. 1996), <-score transforma-
tion of data (Mclntosh et al. 19965), or modelled as a
nuisance covariate in the GLM (Triston ef al. 1990). Both
the ANCOVA (Iriston 1995; Friston et al. 1990; Ramsay et
al. 1993) and the proportional scaling (Kanno et al. 1996)
approaches have been empirically validated for PET data.

The relation between rCBF and global cerebral blood
flow (gCBF) is most likely nonlinear. However, over
small ranges it can be expected that the relation is well
approximated as linear. For normal subjects and small
ranges of gCBF, the incorporation of the gCBF as a
covariate in a linear model affords a reasonably good
model of the relationship between rCBF and gCBF
(Frackowiak et al. 1997). The additive ANCOVA model
was proposed under the assumption that changes in gCBF
and the experimentally induced changes in rCBF are well
approximated as independent (Ramsay et al. 1993). It was
pointed out that the results of this approach may be
problematic to interpret if changes in gCBF are correlated
with experimentally induced changes in rCBIF (Ramsay
et al. 1993; see also Aguirre et al. 1998b; Andersson 1997)
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or if the gCBF estimation 1s biased. This is also the case
for proportional scaling. Recent fMRI studies indicate
that there may be complex interactions between induced
vasodilation (CO, modulation, Bandettini & Wong 1997,
acetazolamide modulation, Bruhn et al. 1994) and activa-
tion-related BOLD signal changes. For example, Bandet-
tini & Wong (1997) observed that the amplitude of
activation-induced signal changes was damped during
hypercapnia. However, there are some indications that
the interaction between activation-related signal changes
and vasodilation induced by hypercapnia can be limited
(Corfield et al. 1998) in certain cases.

The variability in global cerebral counts (gCC) is often
larger than in gCBF. Even if gCBF is relatively constant,
subject differences in head fraction and variability in the
introduced radioactive dose cause variability in gGC. In
the case of count data, rCC is proportional to gCC when
rCBF is constant. If it is expected that the variability in,
for example, head fraction or introduced radioactive dose
is dominating, proportional scaling is a reasonable
approach. It has been suggested that the regional
variance may increase with increased radioactive dose
reflecting the Poisson origin of data (Frackowiak et al.
1997). In the case of a large range or variability in gCC,
a proportional model may therefore be preferred, in
particular since this approach has variance-stabilizing
properties (Holmes 1994). The <-score transformation
also has variance-stabilizing properties (MclIntosh et al.
19964). The use of variance-stabilizing transforms is a
well-known approach in statistics (Bickel & Docksum
1977) and estimation of variance-stabilizing transforms
with applications to metabolic PET data have recently
been described (Moeller & Strother 1991; Ruttimann et
al. 1998). The empirical comparisons performed so far
have vyielded little differences between the proposed
approaches to global normalization, neither for PET data
(Arndt et al. 1996; Trackowiak et al. 1997, Holmes 1994;
Mclntosh et al. 1996b) nor for fMRI data (Aguirre et al.
199856). More specifically, in most FNI studies using
normal subjects, the results are similar using either
proportional scaling or the ANCOVA approach.
(Provided the effect of gA in the ANCOVA approach is
allowed to vary between subjects, 1.e. a subject-specific
ANCOVA model of gA. This allows for a subject-by-gA
interaction. However, if the effect of gA is included as a
single effect in the GLM, with a single global slope used
for all subjects, there may be differences in results
between the ANCOVA and proportional scaling
approach.)

(i1) Confounding of global and regional effects

Another important issue in the context of global normal-
whether global and regional effects are
confounded; that is, global and regional effects can be
more or less dependent. If the gA is estimated as the intra-
cerebral spatial average of rA there is a risk that the varia-
bility in gA may be significantly confounded with
behavioural manipulations or experimentally induced
effects. Since the gA is the average of rA, and rA is
hypothesized to correlate with experimental manipulations,
the gA may be correlated with changes in experimental
conditions, unless all regional increases are matched by
regional decreases. This seems unlikely, implying that gA

ization 1s

Phil. Trans. R. Soc. Lond. B (1999)

estimated in this way is more or less confounded with the
experimental paradigm. Whether this confounding 1is
appreciable to the point of affecting results is an empirical
matter. However, there are indications that this sometimes
can be the case. Suppose, for example, that state A activates
several brain regions compared to a reference state B. Then,
in addition to components reflecting baseline fluctuations in
the two states, the estimate of gA in A will contain a
component reflecting regional activations in relation to B.
This implies that voxels will tend to get relatively overcor-
rected in A but not in B, biasing the distribution of voxel
values, and increasing the risk of artefactual deactivations
or decreased sensitivity for detecting activations. Consistent
with this are observations of a greater than expected
proportion of negative -score voxel values (Andersson
1997, Strother et al. 19954, 1996). This problem should be
less important if closely matched activation and reference
states are used. However, with increasing activation differ-
ences between states, this may become a significant
problem, reiterating the need for carefully designed experi-
ments that includes active reference conditions.

It has been suggested that when the global signal is
significantly confounded with the experimental para-
digm, it may be preferable in some situations to omit
global normalization entirely and examine absolute
changes (Aguirre et al. 19985). An alternative strategy is
to use a more robust measure of gA, that is estimating gA
independent of task-induced changes in rA to give a more
accurate estimate of baseline fluctuations. One possibility
is to estimate the background activity from white matter
or by examining brain regions known to be relatively
unaffected by the experimental paradigm (Irackowiak et
al. 1997). An iterative solution to the latter suggestion has
been proposed that successively eliminates voxels that
indicate experimental effect from the set used to compute
gA (Andersson 1997). These suggestions should work suffi-
ciently well in the case of relative moderate or localized
activations but may become problematic in the case of
large spatially extended activations that are not matched
in the reference condition.

(111) Global normalization in group studies and pharmacological
neuroumaging

Since the relationship between rA and gA is most likely
nonlinear it may be inappropriate to use simple additive
or proportional models to account for global effects in
situations in which the gA varies over large or different
ranges. For example, in pharmacological neuroimaging
there may be separated ranges of gA,
corresponding  to drug-altered states, each
demanding a different linear approximation. Comparing
these states, either directly or via their interaction on a
task—baseline comparison, effectively extrapolates the
data beyond the different gA ranges observed to compare
with a gA attained in neither condition. The validity of
such comparisons is dependent on the appropriateness of
the extrapolation, which in turn is determined by the
accuracy of the local gA model over the larger gA range
implied by the comparison. Most of the simple models
described so far may not be comprehensive enough to
approximate the actual behaviour of gA over large
ranges. Using an inappropriate model may imply that the
results of different comparisons simply highlight areas

several
several
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where the gA model is inappropriate; that is, real effects
are confounded by apparent effects that are related to an
ill-fitting model. In addition, if the drug greatly affects
the gA, then it is likely that the global value and drug
concentration covariates are highly correlated. Under
such circumstances the effects are highly parallel, and if
an ANCOVA approach is used, estimates of the global
and drug effects will be unstable. Similar problems arise
with the proportional scaling approach.

Other examples when simple models of global effects
may be problematic are when patients with gross struc-
tural or functional abnormalities (significantly affecting
the gA) are compared with normal controls, or, when
ictal scans are compared with inter-ictal scans in
epileptic patients. In the ictal scans there may be intense
focal activity in the seizure area, contributing to the
global mean measure of gA. Normalizing for the global
effect by simple standard approaches, in effect inter-
preting changes relative to the global measure, will then
tend to underestimate the magnitude of the ictal activa-
tion and other areas which have not changed their level
of activity will appear deactivated, biasing the results.
One approach here has been to use reference regions to
estimate the baseline flow and normalize in relation to
this measure. However, the results of such an approach
are sensitive to the choice of reference region (McCrory
& Ford 1991).

In summary, several different approaches to global
normalization have been proposed and empirical
comparisons indicate that there is little difference
between them. Which model is most appropriate depends
on the sources of global variability. For example, if the
major part of the variability is due to differences in the
amount of injected activity (PET), or drifts in gain
(fMRI), then a proportional model may be appropriate.
If, on the other hand, the variability 1s due to physiolo-
gical variability (e.g. heart rate, pCO,) the choice is more
difficult. With proportional scaling, the noise is scaled,
but is unaffected by the additive ANCOVA model. This
has implications for the validity of subsequent statistical
analysis. The gA can be confounded with the experi-
mental induced effects if gA is estimated as a simple
spatial average of rA. Hence, it may be necessary to use
more robust methods to estimate the global effects inde-
pendent of experimentally induced regional effects.
Furthermore, when large or several different ranges of gA
are expected, it may be necessary to first empirically
study the behaviour of gA over the relevant ranges, in
order to develop a more comprehensive model of gA. This
1s necessary in order to base comparisons on appropri-
ately modelled gA. More comprehensive models of global
effects may also be necessary to account for baseline
fluctuations in fMRI data.

(b) Univariate statistical models

A single observation in FNI is generally a volume or
image of voxels. When individual observations are not
scalars, multivariate strategies are often the natural
approach to statistical modelling. However, for unique
reasons, the most common FNI analysis strategy is essen-
tially a (massively) univariate approach, where identical
univariate models are fitted at each voxel, so-called
image regression. There are two main reasons for this.
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First, there are usually far more voxels than observations,
which prevents the standard use of an arbitrary spatial
covariance structure. (The covariance structure may be
estimated, but the estimate is singular, precluding most
multivariate analyses, which require the determinant of
the estimated variance—covariance matrix.) Second,
multivariate techniques characterize image volumes
(observations) as a whole, and not as individual elements.
Hence they do not directly address regionally specific
questions, and commonly do not allow for any statistical
inference at specific voxels. In this section, we review
some common univariate statistical models used in FNI;
the process of assigning significance to the results of the
model, statistical inference, is reserved for the companion
paper (Petersson et al., following paper).

Univariate modelling 1s a well-developed area, whose
methods form the core toolbox of statistics (e.g. Bickel &
Docksum 1977; Edgington 1993; Good 1994; Winer et al.
1991). The enterprise consists of estimating the relation-
ship between known effects (e.g. condition, time, subject,
performance) and the data, then using the estimated
effects to eliminate systematic variability from the data,
leaving only residual variability, which is used to estimate
the variance parameter(s) in the model. There is a trade-
off between including all conceivable explanatory vari-
ables (effects), and parsimony, using the fewest number of
effects to form an adequate model. Including too many
effects can make the fit of the model too specific to the
data at hand, degrading the generalizability of the
results, while not including an effect that is present in the
data generally will inflate the residual variability and
hence bias the estimate of the model variance.

Suppose there is a parsimonious or true model, such
that the residuals are independently identically distrib-
uted. Using an over-parameterized model reduces the
power, since each additional effect modelled consumes
degrees of freedom (d.f.), while the additional variability
explained is limited. This reduction in power may be
negligible when there are many d.f., but when there are
few d.f. (e.g. in PET or random effects models), additional
effects will, by reducing d.f., increase uncertainty in the
estimate of the model variance. Hence with fewer than
about 20d.f., adding an effect to the model will reduce
the certainty of the variance estimate and the significance
of a given effect (unless including the additional effect
significantly reduces the residual wvariability). Using
instead a reduced model has two consequences. First, the
unmodelled effects will appear in the residuals in a struc-
tured way, introducing dependencies among the residuals.
This implies that the assumptions are not fulfilled,
making standard inference invalid. Practically, the unmo-
delled effects usually, but not always, inflate the variance
estimate. Second, there are more d.f. available for esti-
mating the variance, implying increased confidence in the
estimated variance, and therefore greater significance for
a given change, with increased effect at lower d.f. So, on
the one hand the variance increases, which would suggest
decreased power, but on the other hand the d.f. increases,
suggesting increased power. In general, all that can be
said 1s that the inference is invalid, reiterating the impor-
tance of appropriate model selection. However, at high
d.f. (e.g. fMRI and fixed effects models) the additional

d.f. are unlikely to have much impact, and one might
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expect inference to be conservative in general. Note that
the ‘true’ model may still be over-fitted (under-fitted) in
that parameters may be included (excluded) just because
there is evidence for (against) them in this particular
data set, such that the model is larger (smaller) than need
be when applied to a subsequent data set, degrading
generalizability of the results.

Another consideration is the sources of random varia-
tion. The most basic models consider only one source, the
residual error variation. These models are called fixed
effects models as all the model effects are considered fixed
(but unknown). A hierarchical mixed or random effects
model has multiple sources of random variation. An
effect is considered to be a random effect if it is the reali-
zation of a stochastic variable, that is, its values can be
considered random draws from a population. For
example, subjects that are studied are typically considered
as randomly drawn from some population. In contrast,
the levels of parametric manipulation of an experimental
task are systematic, and not randomly drawn from a
greater population. Random effects models will be
further discussed below.

The general linear model (GLM) is a framework that
encompasses all basic univariate fixed effects models, e.g.
ANOVA, ANCOVA, and multiple regression models.
(Note that while we abbreviate general linear models as
GLM, it should be recognized that statisticians currently
use GLM to refer to generalized linear models, a regres-
sion framework for non-normal, possibly discrete data
(see McCullagh & Nelder 1989). Fortunately the GLM is
a special case of the generalized linear model, so the
ambiguity is not a source of problems) In the GLM
framework n observations (from a single voxel) are repre-
sented as a column vector of length 7, Y; the p effects and
predictor variables are represented as p column vectors
also of length n, forming an nxp matrix X called the
design matrix. The fixed unknown parameters are repre-
sented as a column vector B of length p; the residual
random error is written as the column vector € of length
n. With the assumption of mean zero, independent and
identically distributed error of magnitude o2 the concise
representation of the GLM is

E(Y) = X3 and var(Y) = o°I,

where [ is the n xn identity matrix. Note that we have
made no specific distributional assumptions; the usual
normality assumption is only needed for statistical infer-
Using only the general assumptions above,
according to the Gauss—Markov theorem (Bickel &
Docksum 1977), the linear unbiased estimates of 3 and o2
that are best in terms of minimizing squared estimation
error are given by

ence.

b= (XX) XY,
s*=1/(n—p)(¥ — Xb)'(Y — Xb),

where b and s? are the estimate of the true unknown (3
and o’ respectively. The form of b can be found from
algebraic manipulation of ¥Y=X3. Note that ¥ — Xb is
the residuals, so that the form of s? is just the mean
squared residuals (the n — p reflecting the dimensionality
of the residuals that are left after fitting p effects). Tests of
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linear combinations of the parameters can be made under
the normality assumption, which gives

Cb~ N(CB,C(X'X)"'C),

where C is a row vector of length p, often called a
contrast (see further IFrackowiak et al. 1997). As an
example of how this framework accounts for the basic
models, consider the ubiquitous ¢-test for comparing the
sample A with B. In this case, the X-matrix will consist
of two columns composed of ones and zeros; for obser-
vations belonging to group A, the corresponding
elements in the first column of X will be one, the
elements of the second column zero; for observations
belonging to group B, the corresponding elements in the
first column of X will be zero, the second column one.
Then applying the machinery above with € =[—11]
will effect a ¢-test. Note that we had to make no special
accommodations for unequal group sizes. Note, also, if
we had three groups instead of two, we simply add
another column to X and create contrasts C that will
express tests of interest; this is equivalent to estimating
contrasts for a fixed effect ANOVA. When the X-matrix
consists of a column of ones and column containing a
continuous covariate, a linear regression is affected, and
the test for zero slope (€b,C =[01]) is equivalent to a
test of a zero correlation coeflicient (Snedecor &
Cochran 1967).

One application when the homogeneity of variance
assumption may not be valid is the case of pharmacolo-
gical neuroimaging. The pre- and the post-drug scans
may show differences in terms of variance. For example,
the neurophysiological response may be more stable than
the post-drug response, implying that the variance appro-
priate for assessing the post-drug scans is underestimated.
The GLM cannot directly account for heterogeneity of
variance and including the pre- and post-drug scans into
a comprehensive analysis introduces bias violating the
common assumption of homogeneous variance. Similar
problems may arise in FNI studies of patients. Instead
other approaches have to be used.

(1) Random versus fixed effects models—the scope of inference

Fixed effects model parameters are linear combina-
tions of the data (see equations above), and so can be
estimated very efficiently. In contrast, random effect
parameters are generally not linear functions of the
data, and requiring nonlinear, iterative methods of esti-
mation (e.g. expectation maximization, Laird & Ware
(1982)). There 1s one notable special case where the stan-
dard GLM can be used with a random effects model,
that is, when there is only one random effect, the design
balanced, and the model is separable into individual
subject models. In this case the data can be analysed in
two stages. For the first stage, each subject is analysed
individually, creating images of parameters of interest,
one for each subject. For the second stage, the parameter
images are analysed, with a one-sample ¢-test or, if there
are two groups, with a two-sample ¢-test (Holmes &
Iriston 1998).

The scope of inference of fixed effects is for those
values of the fixed effects, that 1s, if a subject effect is
regarded as fixed then the inferences are for the cohort of
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subjects studied. Random effects models are used to make
inferences about the population sampled. The only
variance modelled in a fixed effects model of repeated
observations on a group of subjects is the within-subject,
within-condition variability (the variability from scan-to-
scan of the same condition within an individual). This
includes measurement variability, confounded with other
physiological, physical and cognitive effects. The random
effects model additionally accounts for the between-
subject variability. This implies that a fixed effect analysis
can declare a significant effect in a set of subjects, while a
random effects analysis can declare an effect significant
for the population sampled. This is especially important
for group comparisons.

While it might seem that one would only want to
perform population inference, there are several critical
issues to consider. First, the ability to randomly sample a
broad population of human subjects is often practically
impossible. When non-random samples are used, the
random effects models will have questionable validity.
The lack of correct random sampling is an argument for
the use of fixed effects models. It has been argued that in
the context of non-random sampling, fixed effect (non-
parametric) models should be used in conjunction with
non-statistical generalization, as a natural part of science
(Edgington 1995). Note that even if the non-random
sample can be viewed as a ‘representative’ sample from
some population of interest, defining the correct popula-
tion, if it exists, seems difficult. Hence the results from
random effects models of non-random samples are inher-
ently difficult to interpret. Second, if it can be argued that
a population 1s randomly sampled, random effects models
have the additional assumption of normality of the popu-
lation sampled. This is often an assumption that is diffi-
cult to verify, in particular for a broad population of
human subjects. Last, the second-level analysis of the
random effects model (Holmes et al. 1998) has degrees of
freedom determined by the number of subjects. This
implies that the number of subjects included in a random
effects study is central for sensitivity and statistical power.
This has implications for the use of random field theory
methods for statistical inference which are best at large
d.f. (cf. Petersson et al. 1999; Worsley et al. 1996). In the
situation of low d.f., the use of the smooth random field
approach to statistical inference can be problematic and
lack sensitivity for voxel level inference. However, alter-
native approaches are available, for example, the use of
variance smoothing and pseudo (-tests in combination
with non-parametric inference (Holmes et al. 1996); this is
further discussed in Petersson et al. (following paper).

It should be noted that group comparisons are not
served well by fixed effects models, since a between-group
difference must be compared with a measure of between-
group variation, that is, a between-subject estimate of
subject variability within group. A fixed effects model
with repeated measures only accounts for within-subject
variability and measurement error. For fMRI the within-
subject variability is most certainly smaller than the
between-subject variability, and hence significance of
between-group differences will be overestimated. It
follows that group comparisons aiming at inference about
population differences are crucially dependent on the use
of random effects models.
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(i1) Statistical challenges for the analysis of fMRI data

In this subsection, three principal statistical challenges
introduced by fMRI will be addressed. First, the problem
to identify a function of time that predicts the haemo-
dynamic response, the haemodynamic response function
(HRF). Second, methods to account for the temporal
autocorrelation of fMRI data, and third, modelling of
slow variations drift in fMRI data. The first issue relates
to the fact that the BOLD response is delayed and
dispersed in time, the second that the residual error of
fMRI time-series are dependent (Aguirre et al. 1997,
Boynton et al. 1996; Triston et al. 19944, 1995; Purdon &
Weisskoff 1998; Weisskoft et al. 1993; Worsley & Itriston
1995; Zarahn et al. 1997), and the last issue regards slow
changes in the fMRI signal whose sources are unknown,
but whose occurrence is common.

The BOLD contrast is the result of an interaction
between neuronal activity, oxygen extraction, blood flow
and blood volume (Buxton et al. 1998; Ogawa et al. 1998;
Vazquez & Noll 1998). While the exact relationship
between the quantity of interest, the neuronal activity,
and the BOLD response is unknown, the qualitative char-
acter of the HRF is well known. Given a discrete on—off
stimulus, the BOLD response is delayed and dispersed in
time; from time of stimulus start, there is approximately
a 2—3s delay until an appreciable response (some labora-
tories report an immediate, small-magnitude negative
response (Hu et al. 1997)), a maximum is reached after
approximately 4—7s, and after stimulus cessation there is
a delay before the signal falls and it generally falls to
negative (the ‘undershoot’) before returning to baseline.
The exact character, especially the delay until response,
is variable both between subjects, and across the brain
within a subject (Aguirre ef al. 1998¢).

The earliest approaches used ¢-tests and simple tests on
the correlation coefficient (Bandettini et al. 1993) to deter-
mine significant changes. F-test methods comparing the
power at the paradigm frequency with the average power
have also been used (Bullmore e al. 1996; Lange & Zeger
1997), with the advantage that they are insensitive to the
exact phase or delay of the response. However, they suffer
when the haemodynamic response departs significantly
from a sinusoidal response, since they are equivalent to
regressing the data on a sine and cosine with frequency
identical to the paradigm. Recently, a x? random field
approach for detecting sinusoidal signals has been
described (Worsley 1999; Worsley et al. 1997a).

Many recent approaches have focused on treating the
BOLD response as a linear time-invariant (LTT) system
(Jain 1989; Oppenheim & Schafer 1989). The linearity
implies that the predicted haemodynamic response is the
convolution of a fixed impulse response function (IRF or
HRF) with the waveform of the experimental paradigm.
The time invariance implies that the IRF is stationary, that
is, independent of time and prior responses. This approach
is attractive as the IRF completely characterizes the system
(Oppenheim & Schafer 1989). Usually the IRF 1s assumed
to be known and the statistical modelling reduces to esti-
mating the amplitude of the response. We begin by giving
an overview of models for the IRF and then review the
evidence for the BOLD response as an LTT system.

Use of the ¢-tests corresponds to a Dirac-delta HRF.
Early work used functions corresponding to common



Non-inferential methods and statistical models

K. M. Petersson and others 1249

probability distributions, though there is no theoretical
motivation for this, just a qualitative similarity between
the distributions and the HRF. Friston et al. (1994a) first
used a Poisson probability mass function; others have
used the slightly more flexible gamma density (Cohen
1997; Lange & Zeger 1997). Triston et al. (1995) later used
the Gaussian density not so much as an IRF but as part
of a filtering approach motivated by the matched filter
theorem (Rosenfeld & Kak 1982). Others have also used
the Gaussian kernel (Rajapakse et al. 1998). An alterna-
tive approach is to specify not a single IRF but a family
or basis of IRFs; this will potentially enhance the fit of a
model, though possibly at the expense of the interpret-
ability of the fit. A third approach is to first estimate the
IRF on an independent data set.

(ii1) Models of the haemodynamic response function and linear time
wnvariance

It 1s generally accepted that the transformation from
the experimentally induced signal via the neural response
and the BOLD response generated to the fMRI signal
(i.e. input—neural activity—=>BOLD response—{MRI
measurement) is not a perfect LTT (Boynton et al. 1996;
Dale & Buckner 1997; Friston et al. 1998; Rosen et al. 1998;
Vazquez & Noll 1998). It is an open question whether it is
well approximated as an LTT system or not. The central
issues are identifying the conditions under which is it well
approximated as linear and time invariant, and charac-
terizing the forms and sources of the nonlinearities. The
primary visual system seems satisfactorily approximated
as an LTT, over a range of stimulus duration (5-22.55s)
and contrasts (0-100%) (Boynton et al. 1996). A recent
investigation of this question, also in the primary visual
system (Vazquez & Noll 1998), found evidence indicating
that stimuli shorter than 4s and less than 40% contrast
yielded significant nonlinear responses. So, the transfor-
mation from neural activity to the BOLD response may
(under suitable conditions) be well approximated as an
LTT system in primary sensory (visual) areas, when
driven by simple sensory input. Whether this generalizes
to other brain regions and experimental paradigms
engaging higher cognitive function is an open question
(for an interesting example see Buckner e al. (19984,5)). It
is presently hypothesized that higher cognitive functions
are subserved by nonlinear network interactions (Amit
1989; Arbib 1995; Koch & Davis 1994; Rumelhart &
McClelland 1986; Schuster 1991). In addition, learning,
memory and the capacity of the brain to adapt in a non-
stationary environment indicate that the transformation
input—neural activity is neither linear nor time invar-
iant. This represents challenging problems for the analysis
of fMRI data.

Statistical modelling under the assumption of linearity
is straightforward, as the predicted haemodynamic
response may be used as a covariate in a multiple regres-
sion. A distinction must be made between the assumption
of linearity of the BOLD response and linearity of the
statistical models, which simply means the data is model
as an (unknown) linear combination of (known) predic-
tors. For example, Iriston and colleagues (Iriston &
Buechel 1998; Friston et al. 1998) model nonlinearities in
the HRF with a linear model using a truncated Volterra
series expansion. Another example is that the variable
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delay of the HRF, while not expressible in a statistical
linear model, can be approximated for small delays by
including the temporal derivative of the HRF in the
model (Friston et al. 1998).

In general, arbitrary HRF models that are not linear
in their parameters must be fitted with nonlinear
methods. Recently models that do not make the assump-
tion that the BOLD response is an LTT system have been
described (Frank et al. 1998; Genovese 1997; Genovese &
Sweeney 1998; Lange & Zeger 1997). These approaches
can yield richer information on the form of the HRF.
Frank et al. (1998) parameterize the response amplitude
as a proportion of baseline to demonstrate a nonlinear
model. Genovese also uses proportional response ampli-
tudes, but elaborately parameterizes the shape of the
HRF with eight parameters. In addition, recent work has
been focusing on directly modelling blood flow, blood
volume and blood oxygenation (Buxton & Irank 1997;
Buxton et al. 1998; Davis et al. 1994); these approaches
may improve the understanding of the BOLD response
and hold the potential for quantification in fMRI.

(iv) Temporal autocorrelation and dependent residuals

The development of the described GLM above was
based on the assumption that the residual errors were
mean zero, had constant variance and were independent.
It has been widely observed that fMRI time-series display
temporal autocorrelation (Aguirre et al. 1997; Boynton et
al. 1996; Friston et al. 1994a, 1995; Purdon & Weisskoff
1998; Weisskoft et al. 1993; Zarahn et al. 1997). While auto-
correlation does not bias estimates of the effects (e.g.
mean difference), it does bias estimates of variability, thus
affecting the significance of effects and altering the false
positive rates. Here, we review two general approaches to
coping with correlated errors, and how they have been
applied in the literature.

There are two linear model approaches to autocorrela-
tion, generalized least squares (GLS) and ordinary least
squares (OLS) with adjustment for correlated errors.
GLS in essence de-correlates, or ‘whitens’, the data and
then applies OLS. The second approach uses OLS on the
correlated data (in violation of its assumptions) and then
approximates the null distributions of test statistics by
adjusting the conventional degrees of freedom to the so-
called effective degrees of freedom. The GLS approach is
the optimal linear estimator (minimum variance in the
class of unbiased estimators), and corresponds to the
maximum likelihood estimator for Gaussian data, but is
sensitive to the correct form of the covariance matrix.
The latter approach is not optimal, but it is more robust
to mispecifications of the covariance structure (Worsley
& TIriston 1993; Worsley e al. 1997¢). However, there are
special cases when the OLS-then-correct approach is
optimal, for example, when the regressors are sinusoidal
(Worsley & Friston 1995). Time-series methods provide
alternative means to account for autocorrelation (Chat-
field 1996; Wei 1990), though these fall into the former
GLS category as they tend to use whitening to provide
unbiased variance estimates.

To our knowledge, the GLS approach has not been
used directly, but rather through the machinery of time-
series methods. Bullmore et al. (1996) performed a
thorough statistical analysis of a collection of voxels and
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found that a first-order autoregressive model (AR(1))
seemed appropriate. Locascio et al. (1997) applied general
autoregressive moving average (ARMA) modelling at a
voxel-by-voxel basis. Prudon & Weisskoff' (1998) suggest
the use of an AR (1) plus white noise model.

The OLS model with adjusted null distribution was
first presented to the FNI community by Worsley &
Triston (Friston et al. 1995; Worsley & Friston 1995). In
these works, a temporal smoothing filter was applied
referring to the matched filter theorem (Rosenfeld & Kak
1982). It was then assumed that the intrinsic autocorrela-
tion was negligible relative to the temporal smoothing
kernel, such that the form of the covariance matrix can
be approximated by that determined by the temporal
smoothing kernel. The temporal smoothing of fMRI
time-series acts as a low-pass filter, discarding high-
frequency effects. An alternative approach is to empiri-
cally model the intrinsic temporal autocorrelation, for
example, using a 1/f form in the square root of the power
spectrum, estimated from null data and pooled across the
brain (Aguirre et al. 1997; Zarahn et al. 1997). It was found
that the convolution with an empirically determined
HRF, and an assumed 1/f intrinsic autocorrelation,
produced the most accurate false-positive rates with
smoothed data (Aguirre et al. 1997; Zarahn et al. 1997).
Significantly, the use of the 1/f intrinsic autocorrelation
function with no HRF convolution did not control the
false-positive rate (using the local maximum statistic), a
result explained by spatially inhomogeneous autocorrela-
tion, that is, the degree of autocorrelation varied across
the brain. This inhomogeneity has also been noted by
others (Purdon et al. 1998). Finally, the temporal
smoothing may not be beneficial for event-related fMRI
data. Since the BOLD HRF has high-frequency compo-
nents, temporal smoothing discards the high-frequency
components of the signal, and this portion of the signal
may convey specific localizing information (Paradis et al.
1998).

Finally, the source of slow variations in fMRI time-
series is not well understood, but represents a large source
of variability (Genovese 1997). The likely causes include
slow subject motion artefacts, biorhythms (respiratory
and cardiac pulsation artefacts) and physiological defor-
mation of the brain. These drifts have been modelled in a
variety of ways, including linear slopes (Fitzgerald 1996),
exponentials (Vazquez & Noll 1998), and discrete cosine
bases (Holmes et al. 1997). The last approach essentially
implements a high-pass filter as a part of the model.
There have also been attempts to directly correct physio-
logical effects, such as respiration and the cardiac cycle
(Hu et al. 1995).

We note that most approaches described use the same
model at every voxel. For independent data this amounts
to using the same regressors at every voxel, but for
temporally correlated data it additionally means using
the same autocorrelation function model at every voxel.
An alternative is to use model selection techniques and
consider ARMA models of arbitrary order at each voxel
(Locascio et al. 1997). Locascio et al. (1997) found that
some voxels required higher order ARMA terms, while
others passed a test for white noise without whitening.
New approaches may leave behind the computational
convenience of image regression in exchange for more
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comprehensive models improving the quality of the statis-
tical modelling.

(c) Bayesian models for functional neuroimaging
data

Bayesian methods can be used to incorporate prior
knowledge in a systematic fashion (Bretthorst 1990a,b;
Descombes et al. 1998; Frank et al. 1998; Genovese 1997,
Genovese & Sweeney 1998; Holmes & Ford 1993). In
general, Bayesian methods can be used in two different
ways; either for Bayesian estimation, or as a method for
stochastic regularization (cf. Petersson et al., following
paper). Bayesian estimation is naturally biased towards
the prior information used (Billingsley 1995) and can be
regarded as enforcing soft constraints on parameter
values. However, the Bayesian approach provides a
coherent framework for statistical analysis (Box & Tiao
1992; Lee 1997), of which the classical approach can be
viewed as a special case. The bulk of statistical tools are
labelled frequentist, and their justification is built on
repeated sampling from a theoretical population. The
observed data are a realization of a random process and
the parameters of interest are fixed and unknown quanti-
ties. In contrast, the Bayesian approach regards the para-
meters as random variables as well. Before an experiment
is performed, the parameters have an a prior: distribution,
called the prior. After the experiment is performed the
prior is updated to give the posterior distribution, which
reflects the information gained from the data. Questions
about the parameters are addressed via the posterior
distribution: for example, the probability that the
response amplitude is greater than zero is simply the inte-
gral of the posterior from zero to infinity.

While regarding unknown, unobservable quantities
(the parameters) as random may seem intuitively reason-
able, it is an area of contention in statistics. The main
criticism is the potential subjective element inherent in
assigning prior distributions. Despite this issue, and the
ubiquity of classical statistical tools, Bayesian methods
are gaining popularity. This growth is due in large part
to increased access to the necessary computing power.
Bayesian methods can also have a greater intuitive
appeal than frequentist methods. For example, the
frequentist 95% confidence interval is often misinter-
preted as the range in which the parameter lies with
probability 0.95; in fact, this is the correct interpretation
for the Bayesian credible interval. The correct inter-
pretation for a confidence interval is that with repeated
experiments with identical conditions, 95% of the confi-
dence intervals created will contain the true, fixed,
unknown parameter.

Bayesian methods are also understood as a formalized
version of regularized optimization, or penalized likeli-
hood, where the standard maximum-likelihood approach
1s biased towards favourable parameter values. From this
approach, one can understand the Bayesian and frequen-
tist perspectives together. With increasing number of
observations, the prior becomes less and less important,
and hence the Bayesian results will converge to the
likelihood-only frequentist result. One can also think of
increasing the spread of the prior until it is flat, at which
point the Bayesian machinery will in general produce the
frequentist result.
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Frank et al. (1998) present a good introduction to the
general Bayesian framework for fMRI, calling it a ‘prob-
abilistic analysis’, considering illustrative examples. A key
point of this work is that if one considers more general
models than permitted by regression, a much richer variety
of questions can be answered. For example, a haemo-
dynamic delay with fixed HRF could be directly modelled.
For prior distributions they constrain themselves to so
called non-informative priors, which are invariant under
natural transformations of the parameter (Jaynes 1968).

Genovese (1997; Genovese & Sweeney 1998) presents a
Bayesian model which considers a very general HREF.
Defined as a sum of polynomial bells, the HRF smoothly
rises to, and falls from, a flat plateau. In addition, the
shape and response amplitude is separately parameter-
ized. For example, the shape is described by at least four
parameters: the delay until initial rise; time of plateau
start; delay until fall from plateau; and time of return to
baseline (delays are relative to stimulus onset and cessa-
tion, respectively). Further, the model includes baseline
drifts modelled with cubic smoothing splines. This repre-
sents an alternative to the use of high-pass filters to
reduce the influence of low-frequency noise. In contrast to
Frank et al. (1998), this work also uses informative priors.
For example, the response amplitude prior is the sum of
an impulse at zero amplitude and a gamma density,
reflecting the expectation that most voxels are not acti-
vated (zero amplitude) by the stimulus, and that, if acti-
vated, the expected range of positive activation is likely to
be ca. 1-5% (as described by the parameters of the
gamma density). While both these works allude to the
need to account for autocorrelation in the time-series,
neither has addressed this in the models presented.

Finally, it should be pointed out that there are alterna-
tives to the Bayesian approach for incorporating prior
knowledge. For example, pre-processing, various regulari-
zation approaches and the use of appropriate subspaces
spanned by sets of basis functions may be viewed as ways
of incorporating prior knowledge. For example, a set of
temporal basis functions can offer some flexibility in the
modelling of a (partially) unknown response form (e.g.
the HRF) and at the same time incorporate prior knowl-
edge of the response form. Fundamentally, the whole
model-building process and the choice of a statistical
model reflect prior knowledge.

(d) Multivariate statistical models

FNI data are inherently multivariate and multivariate
approaches are natural alternatives for data analysis.
Three different multivariate approaches (PCA—
MANCOVA-CVA, PLS, and MLM) will be reviewed in
this section. Issues discussed include linear dimensionality
reduction, the need to characterize the multivariate
response, some non-parametric approaches to multi-
variate data, the generalized S-test and dimensionality
estimation. Since it is difficult to clearly separate the
modelling aspects from the inferential aspects in the
multivariate approaches described, some of the inferential
aspects are naturally commented upon in this section. A
more general picture of statistical inference is given in the
companion paper (Petersson et al., following paper).

As already noted, the high dimensionality of FNI data
relative to the number of observations often excludes
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straightforward applications of standard multivariate
statistics, since the estimated covariance structure of the
data will be singular. In the case of a few pre-selected
ROIs and large enough number of measurements, stan-
dard multivariate statistics are applicable. However,
several multivariate voxel approaches have been adapted
to the context of FNI. These approaches often aim at
characterizing the overall distributed pattern of experi-
mentally induced changes in brain activity regardless of
location. In general, this precludes statistical inference
about regional specific effects; that is, the regional struc-
ture of the experimental effect can only be interpreted
descriptively. This lack of localizing power in multivariate
approaches implies that univariate techniques are
complementary to the multivariate. Some of the
suggested multivariate techniques (for an overview, see
Worsley 1997b) are closely related to CVA (Chatfield &
Collins 1980). CVA is a standard multivariate technique
for selecting the linear compound of the multivariate
response, which demonstrates the greatest inconsistency
between the experimentally induced effect and the null
hypothesis (Chatfield & Collins 1980). The CVA can be
used to characterize the signal present in data when the
null hypothesis has been rejected. The CVA therefore
shares some features with the descriptive non-inferential
methods. For example, it has been pointed out that CVA
informally may be viewed as a PCA that accounts for
error effects (Friston et al. 19965).

(1) Optimal linear dimensionality reduction, MANCOVA and CVA

One of the earliest voxel-based multivariate strategies
for PET data analysis suggested that the problem with the
high dimensionality of FNI data may be handled by
optimal linear dimensionality reduction (Friston et al.
1993, 199656). In this approach, dimensionality reduction
1s achieved by applying a PCA to the adjusted PET data
(mean corrected data adjusted for confounding effects,
e.g. global and block effects) and keeping only the most
important eigenimages (c.g. the PCs with eigenvalues
greater than wunity). This dimensionality
represents the optimal linear approximation in a mean
square sense. Another way of looking at this is to consider
the linear transformation as representing that projection
of data on a subspace of given dimensionality which
preserves the maximum amount of observed variability.

The outcome of the PCA is sensitive to the pre-proces-
sing performed on the primary data (e.g. 1mage
smoothing, fitting and adjusting for confounding effects
or standardization of voxel-per-voxel variance). For
example, unless the components of interest are first ortho-
gonalized to components of no interest, part of the
components of no interest may be left in the adjusted
data. In addition, the result of the PCA may be sensitive
to outliers in the data, if the particular experimental
effects are relatively weak. The dimensionality reducing
PCA also alters the multivariate distribution of data. If
the observations are temporally uncorrelated, as in PET,
then the inference procedure described by Friston et al.
(19964) 1s still valid. However, if the observations are
temporally correlated, this is no longer the case (Worsley
et al. 1997¢).

The result of the PCA is a set of pairs, each pair
consisting of a time component (component scores or

reduction
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temporal pattern) and a space component (eigenimage or
spatial pattern, cf. §2(a)). Taking the N first pairs reduces
the dimensionality of the data to N. The component
scores represents the temporal expression over observed
time points or scans of the corresponding eigenimage. In
effect, a transformed data set is created; it has the same
number of observations as the original data set but now
each observation only consists of N elements, instead of
the number of voxels (i.e. an N-dimensional time-series is
generated). This multivariate data set is then modelled
with a multivariate GLM (MANCOVA). Statistical infer-
ence is achieved using the Wilks’ A-statistic, and a x*
distributional approximation for the log-transformed
Wilks’ statistic (Chatfield & Collins 1980). This 1s valid to
the extent that the residuals of the multivariate GLM are
distributed identically and independently multivariate
normal. The Wilks’ test is comparable to an F-test in the
univariate case, that is, the Wilks’ statistic is a test of
whether the model as a whole explains a significant part
of the observed variability. In other words, the overall
significance of the multivariate GLM, allowing for the
covariates of no interest, is assessed. The Wilks’ statistic
may in this way also be used as a test of specific effects in
a way analogous to the use of an F-statistic under the
extra sum of squares principle (Draper & Smith 1981).

When the null hypothesis is rejected this indicates that
there is an experimentally induced signal present in data,
but without giving a detailed characterization of the
signal. It is therefore necessary to characterize the dis-
crepancies between the experimental effects and the null
hypothesis. Friston et al. (19965) suggest the use of a CVA
to this aim. The multivariate experimental effect is char-
acterized as so-called canonical variates (orthogonal or
uncorrelated by construction, Chatfield & Collins
(1980)). Since this characterization is performed on trans-
formed data (i.e. transformed into the space spanned by
the N eigenimages) it is necessary to transform the char-
acterized effects back into image space, where the effects
are represented as canonical images (i.e. canonical
variate— canonical image). The effects described by the
canonical images need to be interpreted post hoc,
commonly guided by the form of the temporal response
profile of the corresponding canonical variate. Any local
structure in the canonical image has to be interpreted
descriptively. As with PCA, there is nothing inherent in
the CVA approach to guarantee a straightforward inter-
pretation of the results, unless the signal is naturally
divided into several orthogonal components. In general, it
is possible that a canonical variate-image represents a
mixture of effects. In principle, characterization of the
experimentally induced response necessitates an estimate
of its dimensionality; that is, the number of canonical
variates required to describe the experimental effect. With
cach canonical variate there is associated a canonical
value that may be interpreted as a variance ratio between
the experimental effect as expressed by the corresponding
canonical variate in relation to its expression in the resi-
dual. Friston et al. (1996b) suggest that the canonical
value can be interpreted heuristically as an F-value and
used as an indication of the more important effects and
their corresponding canonical images.

An interesting application of the PCA-MANCOVA-
CVA approach is the possibility to investigate different
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models for data. If the models can be organized in a hier-
archical tree-structure, the Wilks’ statistic may be used
for model selection purposes in a way analogous with a
sequential hierarchical F-test (Holmes 1994). This allows
for a comprehensive model selection procedure, relatively
independent of any assumptions on the spatial covariance

structure of the PET data (Iriston et al. 19965).

(i1) PLS approach and bootstrapping

A different technique to analyse spatial patterns is the
PLS approach (Joreskog & Wold 1982; Wold 1985),
described and applied to PET data by Mclntosh et al.
(19964). Hypotheses are often tested in the form of
specific contrasts related to the experimental design, and
are used in PLS to study multivariate effects induced by
experimental manipulation. Briefly, the so-called cross-
correlation matrix between a matrix of contrasts (e.g.
representing differences between states) and the data
matrix is generated. The PLS approach avoids dimension-
ality reduction by directly studying the cross-correlation
matrix. An SVD is then performed on the cross-correlation
matrix generating singular images, the corresponding
singular values, and effect profiles. Subject scores are
generated by the inner product of a given singular image
and the subject’s brain images. The subject score reflects
the degree to which the singular image is expressed in a
given brain image, that is, how parallel the singular and
the brain image are. The effect profiles reflect the degree
a given singular image is related to (or expresses) the
contrasts of interest. Similar to the canonical images, the
singular images have to be interpreted post hoc, often
guided by the form of the effect profiles or the variation
of subject scores over states (MclIntosh et al. 1996a). As
with PCs or canonical images, a singular image may
represent a mixture of structured effects.

The PLS approach entails statistical test procedures
that requires careful interpretation. The singular images
and their effect profiles are assessed in an indirect way
using a permutation test. Specifically, the explanatory
significance represented by the matrix of contrasts in rela-
tion to the subject scores is assessed. This means that the
subject scores are regressed on the matrix of contrasts and
a test statistic, R? (representing the proportion of the
overall observed variance explained by the model) is used
to assess the overall significance of the effects represented
in the matrix of contrasts. The significance of the R’
statistic 1s assessed using a permutation test (Edgington
1995; Good 1994). The R2-test is generally not a test on
any specific effect represented by the singular images or
the subject scores, but tests whether the matrix of
contrasts as a whole explains a significant part of the
observed variability in the subject scores. However, since
the scores are derived from the singular image and the
contrasts are the same as those used in the original
analysis, this variant of the PLS approach may in an
informal sense be viewed as assessing the link between
the two elements. The permuting and redoing of the PLS
for each permutation in effect assesses how many other
pairings of contrasts and brain images produces as good a
link as the original pairing, measured as the proportion
of the overall variance in the subject scores explained by
the matrix of contrasts. An alternative to this PLS scheme
has been proposed (Grady et al. 1998), in which the
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singular values are sequentially assessed by permutation
tests. It should be noted that permutation tests are valid
only if the data fulfil the assumption of exchangeability
under the null hypothesis (cf. the non-parametric section
in Petersson et al. (following paper)).

As with the PCA-MANCOVA-CVA approach, it is
difficult to use the significance assessment as a basis for
more detailed empirical conclusions in any direct sense, for
example, interpreting specific effects characterized by the
contrasts used in the analysis or in terms of regional specifi-
city. Instead, the singular images are often arbitrarily thre-
sholded and the local structure in these descriptively
interpreted. It has been suggested that this aspect of the
PLS approach can be made more rigorous by generating
confidence intervals corresponding to the voxel values of a
given singular image, using non-parametric bootstrap
estimates (Efron & Tibshirani 1986). Under the assump-
tion of independent and identically distributed observa-
tions, the bootstrap procedure is asymptotically exact (for
a precise definition of exactness, see Petersson et al
(following paper)). This implies that for a sufficiently large
sample size the bootstrap estimates can be considered
approximations of the exact p-value or confidence interval.

The PLS approach is, like PCA, sensitive to the type of
pre-processing performed on the data. The singular
images depend on what effects are incorporated in the
matrix of contrasts and what pre-processing has been
performed on data. This implies that the singular images
depend on the context in which they are computed. Even
if there is a hierarchical or nested relationship between
different matrices of contrasts (e.g. if other contrasts
representing subject or repetition effects are included or
not), there may not always be a simple relation between
the corresponding sets (or subsets) of singular images
(MclIntosh et al. 1996a). Mclntosh et al. (19964) suggest
that the results from different matrices of contrasts may
be compared to see if results are stable or not. If the
result is judged unstable, then it is suggested that these
effects are adjusted for during pre-processing.

The description above has focused on the use of PLS to
study the cross-correlation between a matrix of contrasts
and PET data. The approach has been extended to study
the cross-correlation between a matrix of behavioural
covariates and PET data, as well as the cross-correlation
between different PET data sets (McIntosh ez al. 1998a,b).
It should be noted that the PLS approach (as described)
1s generally not invariant under arbitrary linear transfor-
mations of the matrix of contrasts. For example, if the
matrix of contrasts is scaled differently the results will be
different. The same may be the case if different predictors
in the same predictor space are chosen (Worsley et al.
1997¢). As a solution to these problems, Worsley et al.
(1997¢) suggest an orthonormalized PLS approach. (Note
that PLS with orthonormal matrices of contrasts is a
special case of the orthonormalized PLS approach.)
Finally, it may also be noted that it is not straightforward
to extend the use of non-parametric tests to temporally
correlated fMRI data (cf. the section on non-parametric
inference in Petersson ef al. (following paper)).

(i11) General MLMs and the generalized S-test
Worsley et al. (1995) described a test for comparing
distributed non-focal differences between two states (cf.
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the omnibus tests section in Petersson et al. (following
paper)). The approach described did not attempt to
characterize the experimental response. Recently, this
approach was generalized to arbitrary GLMs and a
strategy for characterizing the departure from the null
hypothesis, that is, the experimentally induced response
was described (Worsley et al. 1997¢). This general MLM
approach has similarities with the MANCOVA-CVA
approach. The MLM approach uses a test for distributed
change in combination with a PCA of the normalized
effects. This approach can also be used to analyse tempo-
rally correlated data and is thus applicable to fMRI
data.

In brief, given a GLM, the voxel F-statistic image is
generated and the F-statistic averaged over all voxels in
the search volume, representing a generalization of the
S-statistic described by Worsley et al. (1995). In this way
the MLM approach avoids the need for explicit dimen-
sionality reduction. Rather than filter the data with a
pre-whitening filter in combination with maximum-
likelihood estimation, this approach uses the more robust
OLS estimation procedure (cf. §3(b)(iv)). The general-
ized S-statistic is approximately F-distributed with estim-
able effective degrees of freedom (d.f.>10 is required for
the approximation to be sufficiently accurate). The S-
statistic is used to assess the null hypothesis that no signal
explained by the model is present in the search volume. If
the null hypothesis is rejected, indicating that experimen-
tally induced changes are present in the search volume,
the spatio-temporal response needs to be characterized in
greater detail. Note that the F=statistic image may
alternatively be submitted to a univariate approach and
searched for activations using the unified p-value for
I-fields (Worsley et al. 1996).

As indicated above, CVA is a technique for finding
the linear compounds of multivariate response which
demonstrates the greatest inconsistency between the
experimentally induced effect and the null hypothesis
(Chatfield & Collins 1980). In this context, Worsley et al.
(1997¢) suggest that a PCA of the normalized effects
may be used to find the linear combination of predictors
that optimally describes the distributed response. Specifi-
cally, a PCA is performed on the mean sums of squares
and cross-products matrix, and the dimensionality of the
multivariate response is estimated. The dimensionality is
estimated using a test similar to the Lawley—Hotelling
trace, sequentially testing the significance of the PCs.
The sequential testing procedure presupposes that the
signal is large enough to be detected. If the signal is
weak it may remain undetected, or perhaps the signal
PCs may become contaminated by lower order sample
PCs (noise). Simulations may be used to investigate these
issues further (K. Worsley, personal communication).
Furthermore, the MLM approach assumes that the
Gaussian random field theory is applicable and that the
spatial accurately
approximated by a Gaussian point spread function (cf.
the section on random field theory in Petersson e/ al.
(following paper)). The MLM approach is validated on
simulated data, indicating that the method works well
when data fulfil the assumptions made. There remains
the question of how robust the method is to departures
from these assumptions.

autocorrelation function can be
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(e) Functional connectivity and network analysis

The statistical models so far described have been used
to investigate the relationship between the experimental
paradigm and the changes induced in brain activity.
These approaches study changes in regional activity and
how these changes covary with specific external experi-
mental manipulations (i.e. changes over which experi-
mental control 1s exerted). Irom the perspectives of
theoretical modelling (Amit 1989; Hertz et al. 1991
Rumelhart & McClelland 1986), cognitive psychology
(Horgan & Tienson 1996; Macdonald & Macdonald
1995), and cognitive neuroscience (Mesulam 1990, 1998),
as well as from lesion observations (Squire 1992; Zola-
Morgan & Squire 1993) and FNI data (Friston 1994
Friston et al. 1993; Gonzalez-Lima & MclIntosh 1994;
Horwitz et al. 1984), it has been suggested that higher
cognitive functions are the result of the network interac-
tions between different brain regions. This indicates that
the understanding of different brain functions may benefit
from analysing the interactions between brain regions.
Based on the idea that brain regions that constitute
components of a functional network will have activities
that are correlated this is often done by studying the
covariance pattern observed in FNI data. The previously
described models and approaches, which are used to
analyse the relative changes in regional activity, can be
used to identify the components of such large-scale
cognitive networks.

Functional and effective connectivity was originally
defined in the context of electrophysiology (Aertsen et al.
1989; Aertsen & Preissl 1991) and these concepts were
introduced into FNI with a modified connotation by
Triston (1994). Functional connectivity was defined as the
observed correlations over time between different brain
areas, independent of the sources of these correlations,
and effective connectivity refers explicitly to the influence
that one neural system exerts over another (Friston 1994).
In this section, we will discuss some issues related to
sources, different approaches
(partial correlation coeflicients and covariance fields) and
network analysis of effective connectivity (structural
equations modelling).

covariance covariance

(1) Covariance sources

Two different ways to estimate the covariances within a
cognitive state have been described: over time within
subject (Buechel & Iriston 1997), and over subjects
(Horwitz et al. 1995). The basic hypothesis is that the
intrinsic variability in the neural response of a cognitive
state will emulate the relevant functional interactions and
that these interactions will be reflected in the covariance
structure. It should also be noted that the sources of
within-state interregional covariances are beyond experi-
mental control.

Several sources of interregional covariances have been
proposed (Horwitz et al. 1992b) and the actual sources of
the observed covariances are largely unknown. However,
several of the proposed sources of observed covariances
may give rise to spurious correlations that are necessarily
confounded with correlations arising because of effective
connectivity (e.g. adaptation, fatigue, attentional drift,
anomalous task response, however, cf. Horwitz et al.
(19925)). Obvious potential confounders in the study of
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interregional covariances are global effects. Variability in
any global signal will introduce correlations that most
often are of no interest. This reiterates the importance of
adequate global normalization. It was suggested that the
problem of global effects may be discounted by using
partial correlation coeflicients (Horwitz et al. 1984) or
proportional scaling, both of which yield similar results
(Horwitz & Rapoport 1988). However, it has been indi-
cated that accounting for global effects with simple
approaches such as ANCOVA, proportional scaling or
the use of partial correlation coefficients may not always
yield appropriate results. Ford (1986) pointed out that
these approaches could yield highly biased results intro-
ducing spurious correlations. In this context, it was
argued that the spurious correlations most often are small
and their presence can (to some extent) be tested for
(Horwitz & Rapoport 1988). However, the presence of
spurious correlations will bias the results unless properly
removed or accounted for.

If the covariances are estimated over subjects, it is
necessary to assume that the subjects implement a suffi-
ciently similar functional organization. In this case,
speaking informally, the covariance structure may reflect
an average common functional organization. However,
the functional organization can vary substantially
between subjects, that is, the covariance structure of a
subject may or may not be related to a common func-
tional organization (Iriston 1995). In PET studies the
number of intra-subject observations is limited (restricted
by radiation exposure), so, in order to increase sensitivity
data is often pooled over subjects. With fMRI, it is
possible to study functional and effective connectivity in
single subjects (Buechel & Friston 1997). One advantage
of performing several single subject studies is that this can
give an indication of the generalizability of the results.
Within- and between-subjects studies are complementary,
and both group and single-subject analyses may be
confounded by the factors described above.

(i1) Partial correlations and covariance fields

Several different approaches have been proposed to
study interregional covariances. Early attempts studied the
matrix of partial correlation coefficients between pairs of
pre-selected ROIs (Horwitz ef al. 1984). Subsequent
approaches concentrated on selecting a reference region
(Horwitz et al. 1992a) or a reference voxel (Horwitz et al.
1995), and then studying the correlations with the rest of
the brain or a set of pre-selected regions. In both cases, the
multiple comparisons problem needs to be addressed
(cf. the multiple comparisons section in Petersson et al.
(following paper)). For the reference region or voxel
approach known results for ¢-fields may be applied
(Worsley 1994; Worsley et al. 1996, 1998). In the case of
voxel-by-voxel correlations, a recently developed theory
for so-called autocorrelation fields may be used to handle
the multiple comparisons problem (Cao & Worsley 1999;
Worsley et al. 1998). These new theoretical advances in
random field theory also include cross-correlation and
homologous correlation fields (Cao & Worsley 1999).

(i11) Structural equation modelling
To characterize effective connectivity in FNI data a
network approach based on structural equation modelling
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(SEM) (Bollen 1989; Hayduk 1987) was suggested by
MclIntosh & Gonzalez-Lima (1994). SEM provides the
opportunity to investigate functional-anatomical models
subserving different cognitive functions in terms of which
regions are involved and how they interact in a given
network model. SEM commonly assumes multivariate
normally distributed data. In order to characterize a
functional network a specific functional-anatomical
model is used in conjunction with SEM to model the
observed covariance structure between the regions
included in the model. The functional-anatomical model
1s specified by selecting the network components (ROIs or
voxels) and the connections between the components
based on theoretical or empirical considerations. Different
constraints on the connections may also be specified (cf.
MclIntosh & Gonzalez-Lima 1994). The interregional
covariances are computed and finally the connection
strengths or path coeflicients are estimated within condi-
tion. Differences between conditions or groups can be
estimated using a stacked models approach (Bollen 1989;
Hayduk 1987; McIntosh & Gonzalez-Lima 1994).

SEM commonly uses a linear system of equations to
describe the interrelation between regional activities in
the functional-anatomical model with the connection
coefficients as free parameters. Nonlinear extensions have
been described (Kenny & Judd 1984) and applied to
fMRI data (Buechel & Friston 1997). The connection
strengths are estimated in an optimization process. This
procedure recreates the observed covariance between
regions as closely as possible by finding optimal values of
the path coefficients. There are several optimization algo-
rithms available. Commonly, the optimization process
uses estimated starting values in combination with an
iterative maximum-likelihood estimation procedure. For
example, the standard implementation in the LISREL
program (Joreskog & Sorbom 1996; see also Boomsma
1985) uses instrumental variables and a two-stage least
square approach in combination with the Davidon—
Fletcher—Power algorithm and line search (other alter-
natives are available, cf. Joreskog & Sorbom (1996)). With
reasonably well-fitting models, the initial estimates are
often close enough to the final maximume-likelihood esti-
mate for the optimization algorithms to quickly converge
to this estimate. It should be noted that when the esti-
mates depend nonlinearly on the model parameters there
is no guarantee that the global optimum will be reached
with deterministic gradient descent algorithms or non-
exhaustive search procedures. Alternatively, a simulated
annealing approach to optimization can be used (Geman
& Geman 1984; Kirkpatrick et al. 1983) even though
practical annealing schedules generally only generate
good sub-optimal solutions.

The results of SEM analysis are potentially difficult to
interpret for several reasons. There is no guarantee that the
connections modelled actually reflect direct effective
connections—it is possible that they are mediated through
areas or connections not included in the model. Similarly,
observed changes in the weights between states or groups
may reflect common input from regions not modelled. This
touches on the general problem of model selection, that is,
the problem of matching model and data complexity. In
the case of SEM, model selection may be performed in a
data-driven mode, guided by goodness-of-fit values,
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modification indices or using a hierarchical model-
building approach when subsets of weights are estimated
recursively. The data-driven approach is vulnerable to
over-fitting, since sample specific characteristics may be
modelled, which may limit the generalizability of the
results. For example, outliers or noise may be modelled
increasing the risk that the model becomes over-fitted.
Alternatively, model selection may be theory driven,
running the risk of investigating incomplete models where
there may be regions or links missing in the model. These
aspects illustrate the model selection problem.

The results of a stacked models comparison can be
difficult to interpret, unless reasonable goodness-of-fit can
be achieved with a given model in all states or groups
investigated. For example, using an under-parameterized
model to test differences between states or groups in a
stacked approach may yield results due to an ill-fitting
model (in one of the states or groups). The effect of using
under-parameterized models (i.e. omission of one
network component, connection, or feedback loop) has
been investigated in a relatively simple model (McIntosh
& Gonzalez-Lima 1994). This simulation study indicates
that the results from analysing moderately reduced
models can be fairly stable and the modification indices
can to some extent provide indications of such omissions.
These and other issues may be of interest for further
investigation in more complex models, for example, the
implications of introducing different constraints on the
weights, the residuals, as well as not taking nonlinear
effects into account. More severely under-parameterized
models may also be studied. The aspects so far
investigated relate to model selection. The inferential
consequences of ill-fitting models are also relevant to
investigate, when a stacked models comparison is
attempted.

Alternative approaches to effective connectivity have
been proposed. For example, Mclntosh & Gonzalez-
Lima (1994) describe a simple model for studying the
effects of experimental manipulation on both regional
activity and interregional covariance. This approach has
since become known as psychophysiological interactions
(Friston et al. 1997). Other approaches suggest the use of
nonlinear techniques (Friston & Buechel 1998; see also
Friston et al. 1998) in the form of truncated Volterra series
expansion (Priestley 1988), or variable parameter regres-
sion (Buechel & Friston 1998; cf. Chatfield 1996) in
conjunction with Kalman filtering (Chatfield 1996; Wei
1990). Note that when these network approaches or SEM
are applied to fMRI data it is necessary to take the
temporal autocorrelation into account. Finally, it has
been suggested that the interface between FNI, network
analysis and large-scale neural modelling may add to our
understanding of human cognition (Iriston 1998a;
Horwitz 1998; Horwitz et al. 1999).

4. CONCLUSION

FNI methods provide experimental access to the living
human brain and have been rapidly developing during the
last two decades. A framework of well-described theories
and empirically validated methods are available providing
a background for the development of new analytical tools.
The FNI methods used differ in assumptions and these
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need to be examined in order to indicate the boundaries
of optimal use. Central to this is, on the one hand, how
well empirical data fulfil the assumptions and the approx-
imations made, and on the other, the robustness of the
methods used. This notion emphasizes the importance of
empirical validation, investigation of robustness, and the
explicit characterization of the inherent limitations of a
given method. In this paper we have focused on assump-
tions and inherent limitations of the methods reviewed.
This indicates the limits of applicability and defines
constraints on the interpretations of results obtained.
When these assumptions and limitations are taken into
account, the different methods and approaches described
generally serve their purposes well.

We have discussed some aspects of the complex
problem of model selection. Model identification is of
particular importance for future developments in the
analysis of fMRI data. In general, proper model selection
1s a necessary prerequisite for the validity of the subse-
quent statistical inference, which depends on the use of
sufficiently well-fitting models. Assessing model fit and
verification of assumptions are challenging tasks and
effective tools for assessing the goodness-of-fit of models
and diagnostics for violations of assumptions are gener-
ally lacking in FNI. However, there are several non-
inferential descriptive methods that, combined with
inspection of parameter estimates and other simple
measures, can help in the process of model selection,
outlier detection, and verification of assumptions. In addi-
tion, multivariate methods can be used to perform model
selection in a comprehensive way.

It is of importance for the interpretation of FNI results
to take into account the assumptions, approximations and
inherent limitations of the methods used. There are
several areas in need of attention. One is the characteriza-
tion of the baseline and its fluctuations relative to which
regional activations are measured and effective methods
for estimating global effects independent of experimen-
tally induced changes. In addition, comprehensive models
of gA are lacking, which are necessary when large or
several different ranges of activity are expected. Another
issue is the need for HRF models that effectively incorpo-
rate potential regional specificity of the haemodynamic
response as well as its variability over subjects and time.
There may also be a need for more comprehensive statis-
tical modelling allowing for regionally specific models
moving beyond the image regression approach. We have
also indicated the possibility of using a general Bayesian
framework. This allows for the systematic incorporation of
prior knowledge, informed modelling, and more flexible
models than permitted by regression and a richer variety
of questions can potentially be answered. Last, it is impor-
tant to acknowledge the importance of random effects
models when the scope of inference is to the whole popula-
tion sampled. Group comparisons are not served well by
fixed effects when population
attempted, instead random effects models are necessary.

Finally, one of the great challenges to the field of FNT is
the development of effective methods to study higher
cognitive functions, subserved by nonlinear network inter-
actions and non-stationary dynamics, in greater detail,
using the full potential of the methods available in terms
of spatio-temporal resolution.

models inference 1is
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