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Abstract

The problem of defining appropriate distances between shapémages and modeling the
variability of natural images by group transformations igte heart of modern image analysis.
A current trend is the study of probabilistic and statidtespects of deformation models, and the
development of consistent statistical procedure for thienasion of template images. In this paper,
we consider a set of images randomly warped from a mean téenplaich has to be recovered.
For this, we define an appropriate statistical parametridehto generate randomftiomorphic
deformations in two-dimensions. Then, we focus on the mmobbf estimating the mean pattern
when the images are observed with noise. This problem idecttahg both from a theoretical
and a practical point of view. M-estimation theory enablssta build an estimator defined as
a minimizer of a well-tailored empirical criterion. We pmthe convergence of this estimator
and propose a gradient descent algorithm to compute thistihator in practice. Simulations of
template extraction and an application to image clusteaimgclassification are also provided.

Key words and phrasesimage Warping, Template extraction, Randonffetimorphism, Large Deformable Models, M-
Estimation, Asymptotic Statistics, Clustering.
AMS 1991 subject classificatiarBrimary 62F12; secondary 65Hxx.

AcknowledgementdVe are very much indebted to the referees and the Editohér tonstructive criticism, comments and
remarks that resulted in a significant improvement of thginal manuscript.

1 Introduction

Image analysis and pattern recognition has been an inngefisid of motivation in statistics over the last
decade. One of the mainfiiculty comes from the choice of a proper definition for the magmerating
the images. Several methods have been investigated, eadealing with a dferent point of view in
statistics.

In practice, we always observe noisy images. The noise majubeeither to the measurement
devices or to the way images are generated, which makesciiparison dficult. One of the main
difficulty in image analysis is the definition of a distance to careghe diferent observations. Several
choices can be made and recently, originating in Grenangeattern theory [Gre], new distances have



been investigated. Such distances are based on the us@ohdé&bn groups to model the variability of
natural images (see e.g. [TY05a], [TYO05b], [GM98]).

In this paper we will mainly be concerned by the estimatioraahean template while observing
similar noisy images. There are not so many results in thisstal literature dealing with the problem
of building appropriate models to reflect the variabilityraftural images due to the presence of local
deformations between them. A first attempt in this directirthe statistical framework based on
penalized maximum likelihood proposed in [GMO01] (see als® discussion therein) to approximate
the mean of a set of images.

More recently, [AATO7] have proposed a statistical modéhgBayesian modeling and maximum
likelihood estimation in the context of small parametridaimations. The approach proposed in
[AATO7] yields a consistent estimator of a mean of a set ofgasa and shows interesting classification
performances. An extension of this work [AKTO7] uses a sastic algorithm for approximating
a maximum a posterior estimator. However, in all these ngid-rdeformation approaches the
transformations used to model the images variability atecanstrained to be one-to-one, and therefore
these approaches fail in generatinfefbmorphic stochastic models. Note that a recent work [CRKO05
proposes also to use an infinitesimal gradient descent w#pect to the Hausd®rtopology to define
the empirical mean and covariance of shapes but withoutgizny one-to-one matching between points
of random shapes. Recently, statistical interpretatioth@landmark matching problem with a random
model for generating ieomorphisms has been proposed in [Mar04] and [Mar07] bsitaipproach has
not been applied to image template estimation.

On the other hand, numerous works have been proposed toagemiEfeomorphisms using flows
governed by appropriate time-dependent vector fields (fee re [KBCL99], [TYO05a], [Pen06], [KT93]
for further details). A current trend is the study of prolliabc and statistical aspects of deformation
models, and the development of consistent statisticalgohae for the estimation of template images.
Some works in this direction ([VMTY04], [CFK05b]) have besstently published where the authors
define probabilistic models of shapes or images that coulesbd to generate new data.

Our objective is therefore to combine powerful approacloegé&nerating dieomorphisms with an
automatic statistical estimation of image mean and defoom& More precisely, our goal is to provide
a statistical model to generate random images that yieldmatehing criterions to align a set of images.

For this, we define a general procedure to generate randffeoitiorphic deformations, and we
consider a statistical model for a set of images randomlypacifrom an unknown mean template.
We then focus on the estimation of the mean pattern of thesssifdy noisy) images. This problem
is challenging both from a theoretical and a practical pahview. M-estimation theory (see e.g.
[VdW98]) enables us to build an estimator defined as a mirénif a well-tailored empirical criterion.
This generic method has been successfully applied in [Hw@#f8 [BM01] to define the Fréchet mean
of a set of curves or to describe central tendency of randawesuFields of applications are numerous
ranging from pattern recognition, brain atlas construcaad computational anatomy to name but a few
(see the various examples discussed in [GM98]).

Our contribution is the following. First we propose a newdam difeomorphic model for noisy
images and we prove the convergence of our estimator to sczae pattern image when the number
of observations (images) goes to infinity. Our estimator loarinterpreted as the Fréchet mean of a



set of images based on a distance involvingedimorphic deformations. Consistency of Fréchet mean
for curves and shapes has been investigated in [BMO01] an®8fubut to the best of our knowledge
Fréchet mean for images usingfdomorphisms has not been investigated from a statistidat pb
view. We also present a new class of matching functionalsall@vs to easily incorporate penalization
terms to control the amplitude of the estimated deformatammd the amount of noise in the reconstructed
mean pattern. A new gradient descent algorithm is finallyppsed to minimize such functionals. This
approach is also shown to be useful for clustering and ¢ieason problems in pattern recognition.

This article falls into the following parts. Section 2 dealgh the definition of a new warping
model. In Section 3, we state our statistical problem, andtwdy the asymptotic properties of various
estimators of a mean pattern. In Section 4, we discuss soeweetital and practical aspects of our
procedure, and we compare them with those of the Bayesiawagpof [AAT07]. Section 5 is devoted
to the description of the algorithm needed to constructakisnate. Section 6 presents some experiments
with simulated and real images. We also focus on clustenmmictassification problems to illustrate the
usefulness of our methodology. We end the paper by a comgjugtiction with a discussion on further
developments of this work.

2 Model for image deformation

We start with discussing our random model of image defoimnatiConsider a two dimensional gray-
level image as a real function defined on a compact(set R?. For sake of simplicity, we will set
Q = [0;1)? and the generic notation for images will be [0; 2> — R. Assume moreover thatis a
bounded function, which is not too restrictive since grayel images typically take values between 0
and 255.

2.1 Alarge deformation model with O.D.E

Our goal is to generate a large enough deforma®do model the variability between observed images,
but still being a dfeomorphism of0; 1]2 in order to provide non ambiguous point displacements. &hes
deformations will later be combined with a templateto generate a set of warped imagkEse ®. For
this, we follow the approach proposed in [You] and [TY05a].

Definition 2.1 (Diffeomorphism®!) Let v be a smooth vector field froj; 1] — R? vanishing on the
boundary of this domain i.e.:
=0. (2.1)

V|a[o;1]2
Define a sequence offfiomorphisms db; 1]2 denoted byd!, t € [0; 1]}, as the solution of the following
ordinary differential equation (O.D.E.):

®0(x) = x and dq’gfx) — v (®(x)) 2.2)

where t ranges ove0; 1] and xe [0; 1)2.

As we want to have a deformation which remaingini]?, we have imposed th@t\}la[o_l]z = |d, meaning
that our difeomorphism is the identity at the boundarieg@fl]?. Note that in the above definition, the
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vector field is not time dependent and in what follows, suattaefields will be called homogeneous.
Moreover, as usual, by smooth we meadafunction.

The solution at time = 1 denoted byd! of the above O.D.E. is a fieomorphic transformation of
[0; 1]? generated by the vector field which will be used to model image deformations. One carlyeasi
check (see [You]) that the vanishing conditions (2.1) orvéetor fieldv imply that®y([0; 1]2) = [0; 1)
and that®!, is a difeomorphism for all time € [0,1]. Thus®} is a convenient object to generate
diffeomorphisms.

To illustrate the influence of the choice of the vector fieloh the shape of the deformatidr{, we
consider a simple example in one-dimension (i.e.vforf0, ] — R which generates a ieomorphism
of the interval[0, 1]). In Figure 2.1, we display two vector fields that have the esapport o0, 1]
but different amplitudes, and we plot the corresponding deformabf One can see that the amount
of deformations (measured as the local distance betwgeand the identity) depends on the amplitude
of the vector field. In the intervals whevas zero, then the deformation is locally equal to the idgntit
Hence, choosing compactly supported vector fields allovestorgenerate local deformations.

Figure 2.1: A one-dimensional example of two vector field§wiifferent amplitudes (left images) and
corresponding dieomorphisms at time= 1 (right images).

To generate random fiéomorphisms, we propose to use a parametric classfigodiorphisms.
Consider an integeK and some basis functions (not necessarily linearly indégefe, : R? — R?
whose choice will be discussed later on. We then decompaséotimer vector fieldr on the set of
functionse, = (e}, €). The random deformations are generated as follows(&4g®?), k = 1,...,K
be random cadiicients drawn independently from a distributi®a with compact support included in
[A, A] for given realA > 0. Then, we define a random vector figldas

[Zf_la&e&(x))
S, a2ed(x))

Finally, one has just to run the previously defined O.D.E)(®2roduce a random deformatiod,, .

vxe[0;12  va(x) = (2.3)

Choice of prior distribution Pp

Choosing the prior distribution of the ceients of the vector field; determines the corresponding
deformation. For example, one can takeRarthe uniform distribution on—A, A] i.e. a{( ~Uppn, 1=
1,2. However, it should mentioned thBjy can be any distribution o provided it has a compact



support. The compact support assumptiondas mainly used to simplify the proof for the consistency
of our estimator. Hence, the paramefecan be a viewed as an a priori on the size of the deformations,
and be considered as a kind of regularizing parameter. Mispaission on the role on the parameter
and other regularizing parameters to control the amplitfdieformations is deferred to Section 4.

Choice of basis functions

In order to get a smooth bijection §; 1], the ¢ should be at least fierentiable. Such functions are
built as follows. First, we choose a set of one-dimensionapBnes functions (of degree at least 2)
whose supports are included [i@; 1]. To form two-dimensionaB-splines, the common way is to use
tensor products for each dimension. Recall that to definpliBes, one has to fix a set of control points
and to define their degree. Further details are provided BVE) and we will fix these parameters in the
section dealing with experiments.

We use B-splines functions because they are compactly sigopwith a local &ect on the knots
positions (see [DB78] for instance). This local influencevésy useful for some problems in image
warping where the deformation must be the identity on largespof the images together with a very
local and sharpfEect at some other locations. The choice of the knots and thgliBe functions allows
one to control the support of the vector field and thereforgetiine a priori the areas of the images that
should be transformed.

In Figure 2.2 we display an example of a baﬁs: e& k = 1,...,K for vector fields generated
by the tensor product of two one-dimensiomasplines (henc& = 4). An example of deformation of
the classical Lena image is shown in Figure 2.3 with twitedent sets of cdBcientsay sampled from
a uniform distribution orf{—A, A] (corresponding to dlierent values for the amplitud&, a small and a
large one). The amount of deformation depends on the ardplibfiA, while the choice of the B-spline

functions allows one to localize the deformation.

Figure 2.2: Left: two 1D B-splinegRight: corresponding bas@ :[0,2?> -» R,k =1,...,4 generated
by tensor products of two 1D B-splines.

2.2 Random Image warping model with additive noise

Given a discretization dD; 1] as aN; x N square grid oN = N3N, pixels, we will generically denote
a pixel position byp. Once the deformation by random parametriffedtimorphisms with the O.D.E
method are generated, we can define the general warping toydel

Definition 2.2 (Noisy random deformation of image)fix an integer K and a real A 0, we define a



Figure 2.3: Random deformation of the Lena image with 0.1 andA = 0.5.

noisy random deformation of the mean templdtai$

lsa(p) = 1* o @ (p) +&(p), pe 0,17

where a~ P§2K and ¢ is an additive noise independent from the fioeents a. The new imaged is
generated by deforming the template(LUsing the composition rule) and by adding a white noise at
each pixel of the image.

In our theoretical approach, we consider the pixelss a discretization of the s@; 1] since our
applications will be set up in this framework. It is often ttese in the statistical literature on image
analysis. However, our model could be formulated in a coiwrs setting using the continuous white
noise model and a decomposition of the images in a wavelet @aslescribed in section 3.3. This model
involves the use of an integration measure c[()eft]2 instead of sums over the pixgbsof the image, see
e.g. [CDO0Q] for further details. Finally, remark that theaigel * is considered as a function of the whole
squaref0; 1), giving sense to* (d}(x)).

In what follows, we denote b$a(p) = ®;_(p) the solution of the following equation (starting from
pixel p at timet = 0)

1
vpe 012 @l (p)=p+ fo va(@, (p))alt (2.4)

Using this property, we consider now a setnofoisy images that are random deformations of the
same unknown templaté as follows:

lag(p) =1*o®@L(p)+£(p),i=1....,n (2.5)
wheree' are i.i.d unknown observation noise addare i.i.d unknown ca@icients sampled aB3*".
Our goal is to estimate the mean template imEge
2.3 Mathematical Assumptions
For our theoretical study, we will need some mathematicaliaptions:

Al There exists a consta@tsuch that
le| < C.

A2
| *is L-Lipschitz.



Assumption A1 means that the level of noise is bounded which seems redsosaite we
generally observe gray-level images which take values omite fdiscrete set. Assumptiof2 is
more questionable. Indeed it implies thatis continuous, which seems impossible for natural models
of images with structural discontinuities (think of the spaof bounded variation (BV) functions for
instance). However, one can vidWwas a map from all points if0; 1]2 rather than just a function defined
on the pixels. Orj0; 1]2, it is more likely to suppose that is the result of the convolution af*-filters
with captors measurements, which yields a smodiedintiable map of0; 1]2. We refer to [FH02] for
further comments on this assumption.

3 Statistical Estimation of a mean pattern

Consider a set ofl noisy imageds,...I,. Assume first that these images are independent realization
from the model (2.5). We aim at constructing an estimate eféfierence image*. Without any convex
structure on the images, averaging directly the obsemsimlikely to blur thenimages without yielding

a sharp "mean shape”. Indeed, computing the arithmetic miearset of images to estimate the mean
pattern does not make sense as the space of deformed iriag®$ and the space of fieomorphisms
are not vectorial spaces, as shown in Figure 3.4. To havesastent estimation df*, one needs to solve
an inverse problem as stated in [BMO01] and [Hui98] derivedrfithe random deformable model (2.4).

21312[2]2{al{z]2]2

Figure 3.4: Naive mean (right image) of a set of 10 images ghuatabase, 28 28 pixels images, see
[LBBH98] for more details on this data set).

In our framework, estimating the patterh involves finding a best image that minimizes an energy
for the best transformation which aligns the observatiaris the candidate. So, following [VdW98], we
will therefore define an estimator 6f as a minimum of an empirical contrast functibp (based on the
observationd,, ... I,) which converges, under mild assumptions, toward a minirafisome contrasft.

3.1 A new contrast function for estimating a mean pattern

Definition 3.1 (Contrast function) Denote byZ = {Z : [0,1?> — R} a set of images uniformly
bounded (e.g. by the maximum gray-level). Note ffadoes not need to contain the true imagde |
Assume also tha is compact for the supremum norm {f 1]2. Then, definel’4 as the set of vector
fields given by (2.3). An elementin V can thus be written as

Vo = [i ater, i aﬁeﬁ] for some @ € [-A, Al.
|



Recall that N is the number of pixels. For an image Z, a vector field y € Va, and a given reference
image I, we define the following function f as

f(a,&Z) = min S (|a,8(p)_zocp3(p))2 (3.1)

Thus f measures the cost of optimally aligning the image 5 tré image 4. using a dffeomorphic
transformation. Note that this minimum is computed overigefset of bounded cgeients|[-A; A]X.
Moreover, one can prove using [You04] that this energy isrgiooious function of v and thus of the set of

cogﬁcients(a{()lgkgK;KKz. This minimum is therefore reached at somge& vV . For sake of simplicity,
we introduce a notation that corresponds to a discretizedmaver the pixels:

N

lae =Zo @Yo = > (lan(p) - Z0 BL(p))
p=1

At last, we define the mean contrast function F given by
F(z) = f f(a,e,2)dP(a,¢)
[-AA]ZKXRN

where dRa, ¢) is the product measure on a aad

The interpretation of (Z) is the following: it measures "on average" how far an imge from the
imagel, . generated from our random warping model using an optimghaient ofZ ontol,.. Our
goal is to estimate a mean pattern image(possibly not unique) which corresponds to the minimum of
the contrast functiofr whenl* is unknown.

Note that we only observe realizations. . . |, that have been generated with the parameters . a"
andel, ... &". To estimateZ*, it is therefore natural to define the following empiricalanecontrast:

Definition 3.2 (Empirical mean contrast) We define the measuRy and the empirical contrast fas
1 n
Pa(ae) = =) oxand Fo(2) = f (a6 2)dPu(a,5).
i=1

Note that even if we do not observe the deformation parametaand the noise', it is nevertheless
possible to optimizé-,(Z) with respect t& since it can be written as:

1 n . 112
Fn(Z) = HZVWJ"‘Z"@VJP' (3.2)
Note that the expressiqh— Zo <I>$|P does not define a distance between imdgasdZ since obviously
| -Zo q>\1/|7> = 0 can occur even if # Z. Moreover, this expression is not symmetrid iandZ.
Moreover, note that in the above equatiois not requiredto specify the lawPa or the law of the
additive noise to compute the criteriéf(Z). We then introduce quite naturally a sequence of sets of
estimators

Qn = arg minFy(Z) (3.3)
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and we will theoretically compare the asymptotic behavidhese sets with the deterministic one
=argminF(Z). 3.4
Qo g Iir (2) (3.4)

Remark that both set§, andQ are not necessarily restricted to a singleton, but theseasebviously
not invariant with respect to any smooth deformatibh since the way we generatefidgiomorphisms
does not provide any group structure. Consequentl, éf Qo, it is not clear whetheZ o ®! is in Qg

or not. However, for any generated deformatidp, there exists some other vector fiefdsuch that
@} o dL is closed to the identity provided the basis used to gendhateleformation is reach enough.
Hence, even if for ang € Qp and any vector field, Z o ® does not belong necessary@g, probably

it is possible to find some othey, such thatZ o CD\%a is closed enough tQp. This unigueness issues
disappear by the addition of a regularization term on themof the difeomorphism as it is done in
Section 3.3.

3.2 Convergence of the estimator

The following theorem gives $licient conditions to ensure the convergence of the M-estimatthe
sense of Theorem (3.1). The proof is deferred to the appendix

Theorem 3.1 Assume that condition81 and A2 hold, then

Qw € Qo as,

whereQ., is defined as the set of accumulation points ofAké.e the limits of convergent subsequences
2, of minimizersZ, € Q.

This theorem ensures that the M-estimator, when consttdmbe in a fixed compact set of images,
converges to a minimizet* of the limit contrast functior(Z). It seems therefore natural to ask how
one chooses the compact $&tin practice, and also to determine the relationship betv&eand the
mean patterh*. These problems will be discussed in the next sections.

Remark that Theorem 3.1 only proves the consistency of dima®r when the observed images
comes from the true distribution (2.4). This assumptionbigiausly quite unrealistic, since in practice
the observed images generally come from a distributionishditferent from the model (2.5). In Section
3.3, we therefore address the problem of studying the demsig of our procedure when the observed
imagesl;,i = 1,...,nare an i.i.d. sample from an unknown distributionfh (see Theorem 3.2).

3.3 Penalization through basis expansions

The first M-estimator (3.3) minimizes a rough criterion, berthe minimuniZ* may be very dterent
from the original imagd*, leading to very poor estimate. This behavior is well knowrsiatistics,
see for instance [vdG00], and the empirical mean contra) {&s often to be balanced by a penalty
which regularizes the matching criterion. In a Bayesiamgwork, it is well known that this penalized
point of view can be interpreted as a special choice of a pligiributions. In nonparametric statistics,
this regularization often takes the form of a penalizedcedon which enforces the estimator to belong



to a specific space satisfying appropriate regularity damt. In our setting one needs to control both
the smoothness of the estimated mean pattern and the anfadefoomation allowed to align a set of
images.

Penalization on the deformations

To impose regularity on the deformations, we propose to guehalty term to the matching criterion to
exclude unlikely large warping (see e.g. [AGP91]). For thesT a symmetric positive definite matrix,
and define

K

2
pen (v Z Z akF Kk S
i=1kk=1
This choice for pepmeans that one can incorporate spatial dependencies thtbegise of the matrix
I'. Choosing such a penalty function implies that we do notragsanymore that all deformations have
the same weight, as done in the original definitior-gfZ).

Penalization on the images

To control the smoothness of the mean pattern, we have chiosexpand the imageg € Z into a
set of wavelet basis function,),ca, since these functions are well suited for image procesSieg

g. [Mal98]) ). Here, the seh can be finite or not. This means that any imafjean be written
asZ = Zy = Yen 00, Where thed,’s are the cofficients ofZ in the wavelet basis. Estimating a
noisy image expanded in a wavelet basis is generally donanvappropriate thresholding of its wavelet
codficient, and it is well known (see [AJO1], [LvdGO02]) that stiftresholding estimator correspond to
the use of the following penalty function on thgs

peny(8) = Z 10l
AeN

Soft-thresholding estimators enable to incorporate sopagsgy constraint on the sef and have
good properties for image smoothing. We could have chosdalltav some decomposition in some
reproducing kernel Hilbert space with a finite set of conpoints as in [AATO7]. But to the best of
our knowledge, theféect of penalization in RKHS with a quadratic penalty is nalisewell suited to
image analysis, whereas soft-thresholding methods harediewn to produce sparse representation of
an image in a wavelet basis and have thus extremely good>dpyation and statistical properties (see
e.g. [Mal98]) ).

Note that other choices of penalty can be studied for pralctipplications. In what follows, we
provide a general consistency result that is stated forrgépenalties. Lefl; and A, be two smoothing
parameters that we use to balance the contribution of thérealpnean contrast (3.2) and the penalties.
Then, define the following penalized estimafar= Y. ,cx 611, with

n

1
On € argere%ly s m|n (|II Zyo D, |§, + Alpeq(vi)) + Azpery(6). (3.5)

The above minimum may not be unique. However, some speamlittons ona;, 1, and A could
ensure uniqueness 6éf but studying such issue is beyond the scope of this paper.
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Note that high values of; and A, impose further regularity constraints on the mean pattedhtiae
deformations. The numerical advantages of incorporatiratp penalization terms are studied in Section
6.3. The dects of adding such extra terms can also be studied from aetfiead point of view. If the
smoothing parametery and.1, are held fixed (they do not depend onthen it is possible to study the
converge of), asn grows to infinity under appropriate conditions on the pgn@tms and the set.

More precisely, we address now the problem of studying tmsistency of ouM-estimator when
the observed images (viewed as random vector®Nh come from anunknown distribution Pthat
does not necessarily correspond to the model (2.5). For claknplicity we still use the notatiori
introduced in Equation (3.1). However within a penalizeshfework with unknowrP, the dependency
on ¢ disappears, anélis now defined as

f(1,29) = min [Ii - Zy o D}l + Aspeny(v)] + Azpery(0), (3.6)

where;, 1, € RY, pen(v) := pen(a) : R — R*, and pen(d) : R* — R*. For anyé that
“parametrizes” the imagg, in the basigy,).ca, let F denote the general contrast function

F(z,) :ff(l,ze)dP(l), (3.7)

andF, the empirical one defined as

Fn(Zy) = f(li,2Zy).

=

n
i—1
The following theorem, whose proof is deferred to the Apfenarovides stficient conditions to ensure

the consistency of our estimator in the simple case Whghy) has a uniqgue minimum & for 6 € ©,
where® c R” is a compact set, andl is finite.

Theorem 3.2 Assume thad is finite, that the set of vector fieldsv v, € V is indexed by parameters a
which belong to a compact subsefgf, that a peny (va) andé — peny(6) are continuous. Moreover,
assume that FZ,) has a unique minimum at,Zfor 6 € ®, where® c R” is a compact set. Finally,
assume that the basig,) . and the se® are such that there exists two positive constanisaktl M,
which satisfy for any € ©

M1 supld, < sup |Zg(x)| < Masupld,l. (3.8)
AeN x€[0,1)2 AeA

Then, if P satisfies the following moment condition,

f|||||§o,NdP(|) < oo,

wherel|llon = MaXp—1, n 1l (P), the M-estimator defined &, = Z; where
. inE
On € arg minFn(Zy)

is consistent for the supremum norm of functions definef®dij? i.e.

lim 120 = Zs+llo =0 a.s.
n—oo
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Two remarks on the last theorem can be made. First, the hggistbn the uniqueness assumption can
be substituted assuming that the set of minimurk ofoes not have some accumulation point:

In>0 V6 suchthat [|0* 0|l <n,0+ 6" F(Ze) < F(Zy)

Secondly, the hypothesis on the existenceMaf and M, will be here rather trivial since we will
decompose our images in some finite wavelet bAsis

4 Discussion

4.1 Comparison with a Bayesian approach

We discuss here the fiiirences and the similarities between our approach and thesiBa model
proposed in [AATO7].

First, assume that we do not use a penalization term on tleerdafions and images{, 1, are set
to 0). Then, an important question raised by our model is thblpm of deciding if the true templaté,
used to generate the observed images, belongs to the setiafiz@rs of the limit criterior(Z) i.e. if
I* € Qo whereQp = arg minyez F(Z). Obviously, the seQo depends both on the choice of the compact
setZ of candidate images, and on the level of noise. Determimiaglistance between animagte Qg
and the mean patteirt is rather dfficult in the presence of additive noise. Thus, if we considgngple
model without additive noise, then our limit criterion bewesF (Z) = Ea Minyey, [la—Zo CD\H; where
lo =1%o <I>\1,a. Therefore, if the sel containsl*, then the set of global minima & (Z) is the "orbit
of I*" with respect to the "action" obl. In this setting our procedure is consistent in the sensheas t
number of images grows to infinity then the estimated imaglegisnean patterh*. Of course here, we
do not have any group action since the composiﬂdpo <I>\1,2 is not necessarily equal to sorde,. We
thus use the "orbit" term to design all imagesuch thatl = 1* o &I,

Now, using penalization terms, the limit criterion becomes

. 2
F(Zy) = Ea min |la—Zy 0 Y[, + A1pen(v) + Azpen(6).

In this case]™* is not guaranteed to be a minimizer®fut arguing as in section 3.1, if the basis is rich
enough, we believe that arg nmfinis closed enough tb*.

The approach proposed in [AAT07] can also be interpretenh filoe M-estimation point of view.
Note that their proofs of consistency relies on Wald’s tkeomwhich is a classical technique to prove
the convergence of M-estimators, see e.g. [VdW98]. Thdimesed mean template is obtained via
the minimization of an empirical criterio8,(#) depending on an imageé = Z, = ZE:l Oy that is
decomposed into a set of basis functignsb = 1,...,B : R? — R. It is shown that as grows to
infinity then arg mip.e Gn(6) converges to the set arg mig G(0) whereG(6) correspond to the limit
of Gh(6) and® is some compact set of parameters. However, their conistnuct the criterionG(6) and
Gn(0) is derived through Bayesian arguments, which thereforgsléa diferent matching functionals.
More precisely, in our notations their Bayesian model isftlewing

I(p) = 1"(p-us(p)) +oe(p), p=1,...,N, (4.1)

12



wheree(p) ~iia N(0,2), I"(p) = Yp_; 6¥n(p), andug is a deformation field parametrized by set
of codficientss. If a Gaussian prior is set gh ~ N(0,I') (which yields random deformations), then
[AATO7] propose to estimate the cieients 9* via maximization of the incomplete likelihood (for
simplicity we assume hereafter tHaando are known):

q(116) « f & 31-Zasly=$ log(2nr?) - 34T 4 (4.2)
whereZz(p) = 22, fo¥n(p - Us(p)) for each pixelp. This yields the following MAP estimator
1 n
6 = arg ggénGn(e) = arg min—— ; log q(1i|6)
and their limit criterion is thus of the form

G(0) = ~Elogq(l16),

where the expectation is taken over random imbamlowing the model (4.1). They also consider the
case where the observed images follows another distrib&iahich is not necessarily the one induced
by (4.1), and they study the consistency of their M-estimatahis case.

Explicit computation ofj(1|6) requires an integration over the hidden varialfieghich can be done
numerically via an EM algorithm, but no analytical formulfithis integral is available. Moreover,
a natural question is to ask whether the true paranttarsed to generate the observed images is a
minimizer of G(6). This problem still remains an open issue since such mimreizlepend of* in
a complicated way, through the law of the noise and the defttom. Note that this problem is also
not solved in [AAT07] or [AKTO7] since their consistency ttems only assert thah converges to a
minimizer of G(6).

However, following the arguments in Appendix B of [AATO7hecan approximate the integral (4.2)
by

logq(116) ~ U(8*), (4.3)

whereU (8) = -3|i —Zeﬁ|; - Jlog(2na?) - 34T~ andp* = argminU(B). Therefore, using the
above approximation and if we eliminate the terms not dejpgnoin 6 andg, then

A . 1 n . 2 tr—1
fn ~ arg min~ ; rrg!n(|li - Zyp|, +BT ﬁ)
and the limit criterion is therefore of the form:
G(6) ~E mﬁin(|l ~Zoglp +BTB),

where again the expectation is taken over a random inhagdowing some distributionP. Hence,
using a first order approximation for the integration over thidden variableg, G(9) is exactly our
matching criterionF(Z) (if the imageZ is decomposed into some set of basis functions), with an
additional penalty8'T~138 on the parameters controlling the deformation. These aggisnillustrate
the classical interpretation of MAP estimate as a penaliketihood estimator for suitable choices of
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the a priori distributions. Again, if we consider a simplesbdel with no additive noise and do not
impose any penalization on the parameters of the deformati@né* € arg minG(6). However, if

one keeps the penalization tegiT 18, then in the absence of noise there is no reason to believe tha
6* € argminG(#) since the minimizers oB(#) depends on the balance between image alignment and
the amount of deformation.

4.2 Choice of the basis functions for the vector field and theegularizing parameter 11
and A

Our estimation procedure obviously depends on the choidbeobasis functiong = (e&,eﬁ) that
generate the vector fields. In our simulations, we have chtwsase tensor products of one-dimensional
B-spline organized in a multiscale fashion. Lsbe some integer that represents a given order of the
B-spline and, letJ > 1 be some positive integer. For each scple= 0,...,J -1, we denote by
¢j.e, 0 =0,..., 2/ — 1 the 2 the B-spline functions obtained by taking-2 sknots points equispaced on
[0, 1] (see [DB78]). This gives a set of functions organized in atisedle fashion, and in our numerical
experiments we took = 3 andJ = 3 as shown in Figure 4.5. Note that pimcreases the support of the
B-spline decreases which makes them more localized.

Figure 4.5: An example of multiscale B-splingg,,¢ = 0,..., 2l — 1 with J = 3 ands = 3, ordered
left toright,j = 0,1, 2.

Forj=0,...,J -1, we then generate a multiscale basis, r, : [0,1]2 > R, £1,6=0,...,J-1
by taking tensor products thg /s i.e.

01,0 (X1, %2) = 6,6 (X1) 81,6, (%2)
Then, we takex = €0, = (Bje160:Piasy) © [0, % — R2 This makes a total ok = 377422 =
% basis functions.

The assumptions of Theorem 3.2 impose that théhobents used to compute the vector field belong
to a compact subset @K, and this is mainly made to simplify the proof of the theore@ne could
choose to control the amplitude of the deformations by adlitig the size of this compact set which
would then be a way to incorporate some regularization. Hewave prefer to leave the size of this
set very large (in practice we do not use any size constrant) the amplitude of the deformations is
rather control by the penalty teriapen;(v) in (3.6). The parameter can be used to prevent huge or
not-very-smooth deformations when searching for an optimaching. Finding a data-based choice for
A1 is a challenge and to the best of our knowledge there doexisbia® automatic method for choosing
such regularizing parameter in image warping problemswaiplan to study this in a future work.

14



Instead, we provide in our simulations various examplestitating the influence of this parameter (see
Section 6).
For the choice ofl,, we took the so-called universal threshold (see e.g. [AJ01]

Ap = 20 4|2 % log(N),

whereo denotes some estimation of the standard deviation of thithaddoise andN is the number

of pixels. Universal thresholding is a standard choice iagandenoising that has good theoretical and
numerical properties, and can be easily derived from the wavelet flagents of a noisy image at high
frequencies resolution (see [Mal98] for further details).

4.3 Further refinements of the model

Our matching criterion to compare the alignment of two ins&gebased on the sum of the square
difference between the pixels of the images, which correspamdsi®w to a Gaussian prior for the

additive noisee. However, one can use other matching criterion to compaeg@s. Indeed one can

check that it is possible to adapt our proofs of consisterfcthe M-estimators, if one replaces the
discretized norm over the pixels:

N

llae - Zo @2 = Y (las(p) - Zo @L(p))’
p=1

by any criterion of the form. (Ia,e,Z ° QD&) whereL : RN xRN — R* is a real function which satisfies
appropriate smoothness and convexity conditions.

Moreover, a set images may also present intensity varstiomt our model does not take this into
account. A nice extension for future investigation woulddecorporate an amplitude parameter in the
estimation procedure to account for possible intensitiatians between images.

5 Practical computation of the M-estimator

5.1 Algorithm for mean pattern estimation

We describe an iterative procedure to compute the pendlizedtimator (3.5) . Givenimagedy, ... Iy,
recall that we have to find an imagg = 3 ,cx a4, with

PN 1 s . 112
On = arg min— ; Jqnin (||i ~Zyo 0y, + ﬂlperh(Vi)) + Az2peny(6).

In order to handle the two minimization steps, we use anratere iterative procedure that works as
follows:

Initialization m= 0 : start with an initial gues&(®. The choice oZ(? is discussed in Section 5.3.
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Iteration m> 1 : repeat the following steps:
e fori =1,...,n compute an optimal deformatiabsm which corresponds to the vector field

m—l oq)l

(Vi) (5.1)

Vam = arl m|n|l
4 gvieﬂ/ !

One may wonder how to compute such a minimum. In what follomes will provide a gradient
descent algorithm to solve this issue (see section 5.2)

e Then, compute the imag&™ that minimizes:

n
Z(m) = argzmglz ||| —Zo q)a]m|§) .
iz

=Em

If one does not not constrained the image® belong to a specific set, thé™ can be easily
found using a change of variable since it can be remarked that

Em:Zf M 6 ) (x)dx

The last approximation is due to the fact thatis computed for the discrete measure on the pixels
of the image, and not exactly on the whole &t1]2. Changes of variables in the lasintegrals
by u = ®an(x) yield the expression:

Em z<m>)2 (u)| detJad @) (u)ldu

1R 1R
5 M-
=
5
&
=
|

Z (Ii o Dym — Z(m))zwi(u)du
i—1

The solution of this least square problem is the classicajiwed average using the dteients
wi. The value of the solutiod(™ at any pixelp, is thus given by

Z p)li o D (p)

2™ (p) = = : (5.2)

n
2w
i=1

wherew; (p) = |detJa0(d>gr% )(p)l

Then, apply wavelet soft thresholding with universal thad toZ(™ to finally obtain a denoised
imagez(™.
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5.2 A new matching algorithm between two images

The minimization step (5.1) is a crucial point in the aboveadded algorithm. It consists of finding
an optimal deformation between two images using a specifianpetrization of a set of vector fields.
Below, we describe a gradient descent algorithm with antadgagtep to perform the minimization (5.1)
which yields a new matching algorithm between two images.

To simplify the presentation, we took in our simulations ithentity matrix forI" in the formulation
of pen,. Remark that this choice does not take into account the peesef correlations between the
element of the spline basis. Another choice would’be G~! whereG is the Gram matrix with entries
given by inner products of the spline basis functdgnThis choice would correspond to a uniform prior
on deformations.

Given two images andZ, one thus needs to optimize the following term

2 K
A|’z = || —Zoq)\];a|§>+/llzz |a:(|2
i=1 k

with respect taa = (a{()k,i, k=1...Kandi € {1, 2. In the above expression, is given as (2.3). To
implement a gradient descent algorithm, one needs to canput

oDy (p)

N
P2 23" 11(p) - Z(@, (1) V2o PR LE 53
p=1 x

o,
forallk =1,...,Kandi = 1, 2. Now, suppose without loss of generality that 1. Then for any pixel
p:

1
adL (p) 3“0 Va(®y, (p))dt + p]
o o8y
\ dP\,(p)
t 1 Va
| &(@l(p) + Z_]laaw oo o8
- f K - t ( ) dt

0 oDy, (p
2 Ve o
a=1 ‘a ak

As Mf% vanishesyy 1.1(p) = aq)j% is solution at time = 1 of the following O.D.E.:

dyka(p) ’ a=1
at

with initial conditionyy 1,0(p) = 0. To get a gradient descent algorithm, one uses the aboveEQt®
evaluate the gradient (5.3). The computation of the optichaice of thea{(’s follows from a classical
gradient descent algorithm with an adaptive step startiog (aik)k,i = 0.
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This gradient descent may fall into a local minima since aiiexon may not be convex. However,
our hierarchical choice for the splines described in sacfi@ induces a kind of multi-scale framework
which gives an algorithm that performs well in practice. &dtl we have used the stopping criterion of
[GVMO04] to end the gradient descent algorithm.

5.3 Initialization of the algorithm

The simplest to initialize our iterative algorithm is to éathe naive estimatEr(]ggve = Lteth However,
this may give a very poor preliminary estimator which maysidarably &ect the quality of the mean
pattern.

Alternatively, we have implemented a new matching criterigposed by [GLMO07], [Vim06] to find
rigid transformations between a set of curves. In our sgttinis criteria is a global measure of how well

a set of images are aligned and can be written as matchingdarid,, : A" — R given by

n 1 n 2 n
_ 1 _ = . 1 i2
lo@y —— > lro®y| +41) lIalax.
=1 ir=1 P i=1

1
Mn(al,...,a") = -

whereA is a subset ak?¥ used to parametrize the vector fields. The above critévigis closely related

to Procrustes analysis which is classically used for thistital analysis of shapes (see e.g. [DM98])
and the registration of a set of curves onto a common targetiin. However, here the common target
function is directly given by the average of the registeraedges given a possible choice of deformation
parametersd, ..., a". An initial image can then be defined by searching

(al,...,a") =arg  min My(al,...,a")

and then by taking
1 n
70 = - Z lo®f (5.4)

Surprisingly, our simulations show that this initial eshitnrzio) which will be referred to as the direct
mean, already gives very accurate results. Note that thibegrtaof the criterionMl,, can be computed as
described in Section 5.2, and thus we have again chosen tputerthe cofficients (&l,...,a") via a
gradient descent algorithm with an adaptive step.

5.4 Convergence of the numerical scheme

The approximation (4.3) is used in [AATO07] to simplify tihé-step in the EM-algorithm used to compute
numerically the minimizer of the incomplete log-likelild®&,(0) = X', logq(li|0) (this is referred to
as fast approximation with modes in [AATO07]). This simpléton yields a similar iterative algorithm
to the one used in this paper. However, the fast approximatith modes used in [AATO7] does not
guarantee to obtain an iterative scheme which convergesnmimizer of G,(0). To overcome this
problem, a stochastic EM algorithm is proposed in [AKTO7Igling an iterative procedure which is
shown to converge to the true MAP estimator. In our approa&halso use an alternative scheme to
find a minimizer of the empirical contrast functi®h (Z), but this iterative procedure follows directly
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from the formulation of our criteria via a double minimizaii As we do not use any approximation of
the functionalF,(Z) to derive this alternative scheme, we believe that the seguef imageZ(™ (see
Section 5) is likely to give a good approximation &f asm grows to infinity although this remains to
be proved rigorously. Moreover, in the next section we dis@inew matching criterion to initialize our
iterative algorithm which gives surprisingly good results

6 Numerical results

Recall that in all our simulations, we used the hierarchizedis withk = 2= = 21 usings = 3 and

3
J = 3 as described in section 4.2 .

6.1 A real example (Mnist Database)

First we return to the example shown previously on handevrittigits (mnist database). As these images
are not very noisy, the denoising step via wavelet threshgldoes not improve the results. A value of
A1 = 10 gave good results but more discussion on the influencesop#rtameter can be found in the
next section of faces averaging.

In Figure 6.6, we display the naive mezﬁggve and the direct meaziio) the obtained froorm = 20
images of the digits "2". Surprisingly the result obtaineilhvsz,fo) is very satisfactory and is a better
representative of the typical shape of the digits "2" in ttiitabase. In Figure 6.6, the imagé’)
obtained after 3 iterations of the algorithm is also dispthyithZ(® = Z,EO). We wee that the iterations
slightly improves the initial result. Moreover, note tZa#) has sharper edges than the naive mean which
is very blurred.

Figure 6.6: Naive mean (lower left image), direct mé’é?? (lower middle image) and mean pattetf?)
(lower right image) based on 20 images of the digit "2" (uppers).

In Figure 6.7 we finally display the comparison between thgenmean, the direct mean and the
mean patterz(® (initialized with 2 = 79, for all digits between 0 and 9 with 20 images for each
digit. One can see that our approach yields significant ingarents. In particular it gives mean digits
with sharp edges.
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Figure 6.7: Naive mean (first row), direct mean (second rawd)mean patter#(® (last row) based on
20 images on the mnist database.

NS

6.2 Influence of the gradient descent and the initialization

In Figure 6.7, the second and third rows are almost identidaich validates our initialization using the
direct mean, see equation (5.4), but not the rest of the framie Indeed, one may wonder if the iterative
process by gradient descent does not get stuck into a locan@iand ifZ(" is really better than the
initialization Z(9). To validate our framework, we display in Figure 6.8 an extna the improvements
by the iterative process when starting from an initializatwith the naive mean instead of the direct
mean (5.4) for digits "8" and "9".

Figure 6.8: First row: naive mean for digits "8" and "9", sedagow: Z(5 obtained by starting from an
initialization Z(©) by the naive mean (images of the first row).

6.3 Influence of the choice oft; (Olivetti Database)

Influence of 1; We illustrate the role of the paramet&y which controls the amount of deformation
with a problem a faces alignment. Figure 6.9 represents wames of the same subject with varying
lighting and facial expression. These images are takemtfnken the Olivetti face database [SH94] and
their size isN; = 98 andN, = 112. The results of the gradient descent algorithm withouerivalues
for A, are given in the second row of Figure 6.9. As expected larlyesafl, yield small deformations
while a small value allows much more flexibletgiomorphic warping.
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Figure 6.9: First row: two images of the same subject takemfthe Olivetti database of faces.
Second row: warping of the left image onto the right imagehwftom left to right) varying values
of 1; = 10000, 1000, 100, 10,1 .
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Mean images on Olivetti database For each subject of the Olivetti databases 9 images have been
taken with various facial expression. Figure 6.10 showddbes used in our simulations.

Figure 6.10: 9 samples of the Olivetti database for 4 subject

In Figure 6.11 we present some mean pattern obtained wittegative algorithm witiz(©) = Z,EO),
A1 = 1000, and compare them with the corresponding naive mearvio@y our method clearly
improves the naive estimate, and yields satisfactory gecfaces especially in the middle of the images.
However, some parts along the image boundaries in the seownaf Figure 6.11 are still slightly
blurred. This is due to the fact that the basis functions wethave chosen are vanishing along image
boundaries (see Figure 4.5). This can be improved by incatipg other basis functions to allow more
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flexible warping along image boundaries, but we prefer tadehis example to illustrate the influence
of the choice of the basis functions.
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Figure 6.11: Example of face averaging for 4 subjects froenQhivetti database. First row: naive mean,
second row: mean pattez”).

6.4 A simulated example

In this section, we generate some simulated noisy imagasitgejthe quality of the method when the
true image to recover is known. The reference imige the Shepp-Logan phantom image (see [Jai89])
of size N7y x Np with N; = N = 128 shown in Figure 6.12. We have then simulated 20 noisy and
randomly warped images froirt. However, the random deformations are generated via honeogs
vector fields thatare not expresseth the basisé, k = 1,...,K to illustrate the robustness of the
method via a kind of mis-specification of the model. Thesdoreields are generated by a finite linear
combination of Gaussian kernels with random amplitudesrandom locations following a uniform
distribution on a subset ¢0; 1)2.

In Figure 6.13, we display the direct mleﬁO) followed by wavelet thresholding obtained from
these 20 images with various valuesif Again, these initial estimates are very accurate estirfte
the original template shown in Figure 6.12. In this examplening the iterative algorithm does not
improve the results, and this can be explained by the fadhttial estimate is already very good. These
simulated data tend thus to show that our method is also smmebbust to mis-specification of the
model since we recall that the random vector fields used ®simulations have been not constructed
from the multi-scale B-spline basis described previously.
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Figure 6.12: Simulated example: seven deformed and noiages of the Shepp-Logan phantom (out
of a sample of 20 images). The upper left image is the unknemplatel *.

Figure 6.13: Naive mean (right image), and direct méé(ﬁ followed by wavelet thresholding with
(from left to right) 1, = 1000, 500, 100, 10.

6.5 Application to image clustering and classification

Clustering We finally end this section on numerical experiments by shgwin example of clustering
using the k-means algorithm (see e.g. [Mac67]). To clustataf images by the k-means algorithm one
must choose a proper distance to compare images and a walguhtiag the mean of a cluster. Given
two imaged; andl, we define a "distance" between them usiniedimorphic warping as follows (with
A = lO)Z
d(11,12) = min |z 0 L — 1o + Aallaliuc
V2V a

Then, for a set images belonging to the same cluster, the imatefined ag () with initialization by
direct mean. In Figure 6.14, we give an example of k-mearstafing with two classes for the digit "2"
of the images of the training set. One can see that the aigorfives two dferent mean clustez™
which correspond to digits "2" with or without a loop. Agahetresults are visually very good. Finally,
we display in Figures 6.15,6.16 and 6.17 the clusters foirtfages of the digit "2", "3" and "5" of the
training set. In all Figures the upper left image is the m&&h of the cluster. One can see that the
images are classified according to their vertical orieotati
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Figure 6.14: K-means clustering for the 20 images for thesctd digit 2 of the training set.
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Figure 6.15: Two clusters obtained by K-means clusterimghe 20 images for the class of digit "2" of
the training set.

Classification Even if our goal is not to implement a new classification métfur image recognition,
one can easily adapt our method to reach an automatic sepdreiassification procedure. We consider
the 10 classes of the Mnist database and we compute a ahgstaritwo subsets of each class. On
each cluster, the mean patterns are computed and we usediuasify images belonging to a test set
consisting of 100 images of digits between 0 and 9 which makesverall set of 1000 images. Then, a
simple criterion based on the noit is used to classify these data. The decision rule for any éhag
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Figure 6.16: Two clusters obtained by K-means clusterimgtfe 20 images for the class of digit "3" of
the training set.
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Figure 6.17: Two clusters obtained by K-means clusterimghe 20 images for the class of digit "5" of
the training set.

in the test set follows naturally from our minimization aliglom:

d(l) = arg TITO\/?Q(I{)A“ o <I>33 - ri|2P + /llllallézw

We use herel; = 10 as it performed well in our simulations. Hedg) ) denotes the predicted class for
| in the test set. The computation @fl ) simply consists in warping the imadeto the closest image
amongly, . .. Fq. The ruled(l) will be referred to as classification with warping in whatdels.

The computational cost of the decision rule is low since émentean images$;,i € {0,...9} of the
ten classes are computefi-ne with the training set. Indeed, computing the decigigh) is equivalent
to run 10 matching algorithms with our gradient method.

To evaluate the performances of this classification rulehawe compared its misclassification rate
with those of two other approaches:

o Naive classification : simply take the naive mean for eachscs a typical representative of the
images within a class. Then, for a new imdgs the training set, take the following classification
rule simply based on the norji (without any warping)

i : ivel2
dnave(|) = arg, min I - fraive?

e Support vector machine (SVM) classification : we have a nruldtss classification problem.
Basically, SVM classifiers can only solve binary classifamaproblems (see e.g. [Vap95], [SS02)).
To allow for multi-class classification, we have used theatgm implemented in the R library
el®71 [CLO1] that uses the one-against-one technique by fittihdpiaary subclassifiers and
finding the correct class by a voting mechanism (see also (BT#er gentle introduction to SVM
classification). Note that in the case of SVM classificatitne images are simply considered as
vectors inRN and that the spatial dependency of the pixels is thus nohtite account.

The parameters of the SVM have an important influence on theracy of the prediction. They
have been set as follows: we use a Gaussian kernel (RBF) asfarqms generally better than
polynomial kernels. The several parameters (margin paer@eand variance parameter) has
been set using a tuning step of cross validation to obtairbésé performance as possible. This
can be easily performed with the tune function of the R lijprar071.
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In Table 1, we give the mis-classification rate over the 1008ges of the test samples for the two
classification methods described above and our method basedrping before and after clustering with
K-means. The classification with warping clearly gives tlestlresult. This seems natural as this rule
is the only one which takes into account the spatial locabmefitions that may exist between similar
images. One may argue that a classification rate of 15.3 %t igamp satisfactory and that much better
rates of classification have been obtained for this datafsese= e.g. [LBBH98]). However, remark
first that we have only used 20 images per class for the tiguiget which is very small. Secondly,
we only want to show that taking into account the spatial alality due to the presence of local
deformations between images may improve standard clagsficrules. At last, we can largely improve
this performance using several clusters to describe eash ak pointed in third column of Table 1 (8.6%
classification error rate).

Naive classificatiod Classification with Warpinq Classification with warping after clusteridg SVM
30.2 % | 15.3 % | 8.6 % | 21.3%

Table 1: Classification error rate on the test sample for thstnaataset.

Finally, note that classifying images using the distanodbe orbit generated by the deformation on
the learned templates for each class is questionable, antsge give not optimal results when compared
to the performances obtained by [ATO7] with small trainirgssof the MNIST database. Some further
work is certainly needed to improve these results by usingxtample non-linear edge detectors features
as in [ATO07].

7 Conclusion and perspectives

We end this paper by discussing several theoretical and etatipnal aspects of our approach. First
remark that we have built a very general model of randoffedimorphisms to warp images. This
construction relies mainly on the choice of the basis fumstig for generating the deformations. The
choice of theg/'s is relatively large since one is only restricted to takedtions with a sfficient number

of derivatives that vanish at the boundaries[@,fl]z. Moreover, our estimation procedure does not
require the choice of a priori distributions for the randouefﬁcientsa{(. Hence, this model is very
flexible as many parameterizations can be chosen.

Nevertheless, somefticult problems remain to be studied. We have discussed méieyaht ways
for incorporating some regularization in our estimatioogadure. However, all these regularization
methods depends on some hyperparameters that have to ellgacalibrated, and a challenging
problem is to find data-based choices for these parametemedver, we have only focused on the
estimation of the mean pattern of a set of images, but onediitel to build other statistics like principal
modes of variations of the learned distribution of the insagethe deformations. Building statistics
going beyond the simple mean of set of images within thergetif our model is very challenging for
future investigation.
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Appendix

7.1 Proof of Theorem 3.1

To obtain the asymptotic convergence of (3.3) toward (3&uge the following proposition whose proof
follows from Theorem 6.3 in [BMOL1]:

Proposition 7.1 Assume that the following two conditions hold

(C1) the set{f(-,-,Z) : Z € Z} is an equicontinuous family of functions at each pointXof=
[-A; AJ?K xRN,

(C2) there is a continuous functiop : X — R™ such thath #(a,e)dP(a,e) < +oo0, and for all
(a,e) e Xand Ze Z,|f(a,&,2)| < ¢(a,€).

Then
Qw € Qo as,, (7.1)

whereQ., is defined as the set of accumulation points ofAké.e the limits of convergent subsequences
2, of minimizersZ, € Q.

In what follows, we establish assumptions (C1) and (C2) tvipioves Theorem 3.1.
Let us denote bylq, 1) = 2';:1 l1(p)l2(p) the "inner product” on the pixelp and by|l4|p the
empirical "norm" associated to this inner product, whigré, denotes two images observed\apixels

(and can thus be viewed as vector®ih). We start with establishing a result on the regularitfaind
Fn.

Lemma 7.1 F and F, are continuous oveZ with respect to the supremum nofittk. on [O; 1]2.

Proof : We first study the mag — f(a,&,Z). Consider(Z;,Z,) € Z? and fix any parameters of the
deformationsa and noises. Remark that foZ € Z, one can find/z € V4 such that

Vasz = argvgin f(ae2),
A

wheref(a,e,Z) =|la+e-Zo <I>§|2P. This minimum is reached V5 sinceV, is here described by a
bounded and closed finite dimensional space which is thupaom
Using the mere definition ofz, = Vacz, andvz, = Va.z,, we get

¥ 0@z +6-Z1o®y, < 1" o D3 +e-Z1oPy, |5
<2 ody+e-Zp0d [

+2(Z1-2Z2) 0 @y, I3
Using the coarse following upper bound

(Z1-25) o DLIZ < NIIZ2 - Z4l2,
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leads to
f(ae2Z1) < f(a,&2Z) 4+ N||IZ2 - Zy2.

Finally, this implies that
If(a,&,21) - f(a,e 22)? < NlIZa - Z112

proving the continuity of the functiod — f(a,&,Z). We now return to the functiors andFn, we have

If(ae,Z)| < 21" 0 ®F + el + 2Z 0 D, I3

N——
<M

sincel|Z|| is bounded by some constaltindependent oh ande. Then we get from assumptiorsl
andA2 that

f (1% 0 @%+ &2 + M|dP(a,&) < +oo,
[~AA]K xRN

I* being bounded since it is a Lipschitz onta1]?.
HencezZ — [ f(a,&,Z)dP(a &) = F(Z) is continuous using the dominated convergence theorem.
By the same argumerf, is also continuous, which completes the proof. m]

We next establish the existence @) and Q,. From the definition of the sets of minimizer®,
stands for candidates of the estimate of the mean imag®amandidates for the mean image. Using
the continuity ofF andF, (Lemma 7.1) and sincg is compact, we deduce the next result:

Lemma 7.2 Qg and Q, are well defined and non empty for all integee .

We now establish the conditions (C1) and (C2). We study fiestamily of functions indexed b¥ € Z:
{f(.,.,2), ze Z}.

Proposition 7.2 For any compact set, {f(.,.,z), z € Z} is an equicontinuous family of functions of
variables(a, ¢).

Proof : Letay, ap, &1, &2 be such that (for the standard euclidean nornj-oft A2 x RN)

(a1, 1) — (az, &2)ll < 6,
and notevz the optimal vector field obtained to matzZhon |, .i. Hence, for any € Z, one have

f(ag,e1,Z2) = [1* o @Y +61-Zo @) I

Va]_ £1.Z

* 1 1 2
ST ody +e1-Zo q)Vaz,gZ,Z lp

* 1 1 2

S|Fodg, +e2-Zo q)Vaz,gz,ZlfD
* 1 * 1,2
tler—e2+ 170y — 170Dy |5

+ 21" o®y, +52-Zo Dy,

Va2 £2,Z !

81—82+|*oq)é1—|*oq)é2)
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Then, using the fact that the noise is bounded and that thgasiaZ are uniformly bounded, we obtain
that there is a constart such that
f(ay, e1,2) <f(a,2,Z) + 21* 0 @} —1* 0 DL[S
+ 2lez - &1l5
FA(IF 0@y, 1T oy, e +le2—21lp),

z Vay ey 2
where the last inequality follows from the Cauchy-Schwanzl #he triangular inequalities. Under
AssumptionA2, we get
f(ay, e1,2) - f(ap, 62, Z) < 2L2|®], - DL | + 22 — &1l
+ A (LD, — P31l + le2 - 21lp)
< 2L2N|I®F, - I3, + 2e2 - &1l
+ A (LVNI®L, - @1 o + le2 — £1lp)

Using results in [You04](V, ||./le) — (@, 1]l ) is continuous. Hence under an appropriate choieg of
andé, such that

llas — azll < 61 le1 — &2lp < 62,
then
If(a1,1,2) - f(a,&2,Z)I <1,
which proves the equicontinuity ¢f(.,.,Z), Z € Z}, and completes the proof. m]

Thus Assumption (C1) is proved. The proof of Assumption (@8pws from the proof of Lemma

7.2 Proof of Theorem 3.2

We provide here a proof of consistency of theestimator defined in Theorem 3.2. Recall that we
consider now the more general case where the images i.d.d. observations derived from amknown
distributionP onRN.

First remark that from Assumption (3.8) and sinkés finite, the supremum norin ||, for functions
Zy on [0, 12 (with # € R? is equivalent to the supremum norm BA. Therefore, by equivalence of
norms, any function defined on the set of images= {Zy, 6 € ®} that is continuous with respect to the
supremum norni cot|l., for functionsZ, on [0, 1J2 is also a continuous function @,

To derive the result of Theorem 3.2, one can then simply appgorem 5.10 of [VdWO02] which
provides sfficient conditions for the consistency bf-estimator in general cases. Recall that for our
purpose, we have set

K
pen(v) = Z Z CH -

i=1lkk=1
and

penp(6) = > 16l.

AeEA
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With our notations, this theorem ensures that
lim 12— Zgllo =0 as,
under the conditions
(B1) {f(.,Zy),0 € O} is a Glivenko-Cantelli class,
(B2) F(Zy) has a unique minimum &y~ for 6 € ©.

Condition (B2) is a mere assumption of Theorem 3.2. The ¢mmdi(B1) is somewhat more
complicated to establish and rely on the theory of empinrakesses. We proceed as in Lemma 7.1
using the compactness assumption for the paramatiwet define the vector fields, . For anyZ,, and
Zy,in Z, and any imagé € RN, we denote by; (1) andv,(1) the vector fields which yield (1, Z,, ) and
f(1,2Zy,) i.e.

w(l) = arg\;givn[nl — Zy 0 D2 + Alpeq(v)] . k=1,2.

If we denote byf(1,Z,) the mapf (I,Z) — 2,pen(6), we have

f(1,20) = I =2y 0 @] ) ll5+ apeny(va(1)) (7.2)
< =2Zg 0 @y ll7 + Apery (va(1))
< NIIZy, - Zy, I3,
HI = Zg, 0 DL 15 + Azpeny (va(1))
< NIZo, =~ Zo |2 + f(1,2Zs,). (7.3)

The above inequality immediately imply the continuityzdf- f(I,Z) and of course oZ +— f(I,Z) for
any fixed imagd with respect to the norrii||., on Z which establishes that — f(I,Z) is continuous,
for any imagd .

Then the compactness assumption on thé%set vector fields, and the continuity of pgnmply that
pen; (v) is uniformly bounded by a consta@¥ for v € V. Also, since pes(6) is a continuous function
of Zy, one has that for any fixed,, € Z and for anys > 0, pen,(6) — pen,(6o) is uniformly bounded by
a constantC, whenZy € B(Zo, ), and this bound is independent lof Therefore, from the inequality
(7.3), we derive that

sup  [(1,Z)] < N6% + NIl = Zoll2 \ + 41C1 + 22C,
Z/112-2Zp|lw<6

which is dominated by a function of Since it is assumed that

f|||||§o,NdP(|) < oo,

hence, on any neighborho&bf animageZ, € Z, sup,.g|f(.,Z)|is uniformly bounded by an integrable
function (with respect taP(1)) depending only om € RN,
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For anyd € O, let ®,, be a decreasing sequence of neighborhoods sucimtat, = {8}. Define
fum(.) respectivelyfi m(.) the supremum, resp. the infimum bf., Z,) overed € On:

fim(1) zgiergc f(1,2Zy) and  fym(l) = sup f(l,Z).

0eOn,

Continuity implies that linh— 4+ (fum— fim) = f(.,Zs) — f(.,Zy) = 0. Dominated Convergence
yields that limy [(fum(l) = fim(1))dP(1) = 0. Finally, for anyg € ® ande > 0, there exists a
neighborhoodB = B(#) and two functionsf,g and fig such that [(fyg(1) — fig(1))dP(l) < e
Compacity of® implies that there is a subcollection of such neighborhdddshich covers, resulting
in a finite number of couple of functior{dy,g, fig). Hence for alb € ©, write

(11, Zs) ffIZQdP quB

Since the set of function§, g and f; g is finite, we have

%;fU,B(h)-ffu,B(udp(u <e

%;fI,B(li) %Z

i=1

sup
B

sgp%;f.,B(h)-ff.,B(l)dP(l) <e
hence .
sup| - Z I.,Zg)—ff(I,Zg)dP(I) < 2e. (7.4)

From (7.4),{f(.,Z) : Z € Z} is thus a Glivenko-Cantelli class which shows that (B1) igetr
completing the proof of Theorem 3.2.
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