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Abstract

The problem of defining appropriate distances between shapes or images and modeling the
variability of natural images by group transformations is at the heart of modern image analysis.
A current trend is the study of probabilistic and statistical aspects of deformation models, and the
development of consistent statistical procedure for the estimation of template images. In this paper,
we consider a set of images randomly warped from a mean template which has to be recovered.
For this, we define an appropriate statistical parametric model to generate random diffeomorphic
deformations in two-dimensions. Then, we focus on the problem of estimating the mean pattern
when the images are observed with noise. This problem is challenging both from a theoretical
and a practical point of view. M-estimation theory enables us to build an estimator defined as
a minimizer of a well-tailored empirical criterion. We prove the convergence of this estimator
and propose a gradient descent algorithm to compute this M-estimator in practice. Simulations of
template extraction and an application to image clusteringand classification are also provided.
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1 Introduction

Image analysis and pattern recognition has been an increasing field of motivation in statistics over the last
decade. One of the main difficulty comes from the choice of a proper definition for the model generating
the images. Several methods have been investigated, each one dealing with a different point of view in
statistics.

In practice, we always observe noisy images. The noise may bedue either to the measurement
devices or to the way images are generated, which makes theircomparison difficult. One of the main
difficulty in image analysis is the definition of a distance to compare the different observations. Several
choices can be made and recently, originating in Grenander’s pattern theory [Gre], new distances have
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been investigated. Such distances are based on the use of deformation groups to model the variability of
natural images (see e.g. [TY05a], [TY05b], [GM98]).

In this paper we will mainly be concerned by the estimation ofa mean template while observing
similar noisy images. There are not so many results in the statistical literature dealing with the problem
of building appropriate models to reflect the variability ofnatural images due to the presence of local
deformations between them. A first attempt in this directionis the statistical framework based on
penalized maximum likelihood proposed in [GM01] (see also the discussion therein) to approximate
the mean of a set of images.

More recently, [AAT07] have proposed a statistical model using Bayesian modeling and maximum
likelihood estimation in the context of small parametric deformations. The approach proposed in
[AAT07] yields a consistent estimator of a mean of a set of images, and shows interesting classification
performances. An extension of this work [AKT07] uses a stochastic algorithm for approximating
a maximum a posterior estimator. However, in all these non-rigid deformation approaches the
transformations used to model the images variability are not constrained to be one-to-one, and therefore
these approaches fail in generating diffeomorphic stochastic models. Note that a recent work [CFK05a]
proposes also to use an infinitesimal gradient descent with respect to the Hausdorff topology to define
the empirical mean and covariance of shapes but without giving any one-to-one matching between points
of random shapes. Recently, statistical interpretation ofthe landmark matching problem with a random
model for generating diffeomorphisms has been proposed in [Mar04] and [Mar07] but this approach has
not been applied to image template estimation.

On the other hand, numerous works have been proposed to generate diffeomorphisms using flows
governed by appropriate time-dependent vector fields (we refer to [KBCL99], [TY05a], [Pen06], [KT93]
for further details). A current trend is the study of probabilistic and statistical aspects of deformation
models, and the development of consistent statistical procedure for the estimation of template images.
Some works in this direction ([VMTY04], [CFK05b]) have beenrecently published where the authors
define probabilistic models of shapes or images that could beused to generate new data.

Our objective is therefore to combine powerful approaches for generating diffeomorphisms with an
automatic statistical estimation of image mean and deformations. More precisely, our goal is to provide
a statistical model to generate random images that yield newmatching criterions to align a set of images.

For this, we define a general procedure to generate random diffeomorphic deformations, and we
consider a statistical model for a set of images randomly warped from an unknown mean template.
We then focus on the estimation of the mean pattern of these (possibly noisy) images. This problem
is challenging both from a theoretical and a practical pointof view. M-estimation theory (see e.g.
[VdW98]) enables us to build an estimator defined as a minimizer of a well-tailored empirical criterion.
This generic method has been successfully applied in [Hui98] and [BM01] to define the Fréchet mean
of a set of curves or to describe central tendency of random curves. Fields of applications are numerous
ranging from pattern recognition, brain atlas construction and computational anatomy to name but a few
(see the various examples discussed in [GM98]).

Our contribution is the following. First we propose a new random diffeomorphic model for noisy
images and we prove the convergence of our estimator to some mean pattern image when the number
of observations (images) goes to infinity. Our estimator canbe interpreted as the Fréchet mean of a

2



set of images based on a distance involving diffeomorphic deformations. Consistency of Fréchet mean
for curves and shapes has been investigated in [BM01] and [Hui98], but to the best of our knowledge
Fréchet mean for images using diffeomorphisms has not been investigated from a statistical point of
view. We also present a new class of matching functionals that allows to easily incorporate penalization
terms to control the amplitude of the estimated deformations and the amount of noise in the reconstructed
mean pattern. A new gradient descent algorithm is finally proposed to minimize such functionals. This
approach is also shown to be useful for clustering and classification problems in pattern recognition.

This article falls into the following parts. Section 2 dealswith the definition of a new warping
model. In Section 3, we state our statistical problem, and westudy the asymptotic properties of various
estimators of a mean pattern. In Section 4, we discuss some theoretical and practical aspects of our
procedure, and we compare them with those of the Bayesian approach of [AAT07]. Section 5 is devoted
to the description of the algorithm needed to construct thisestimate. Section 6 presents some experiments
with simulated and real images. We also focus on clustering and classification problems to illustrate the
usefulness of our methodology. We end the paper by a concluding section with a discussion on further
developments of this work.

2 Model for image deformation

We start with discussing our random model of image deformation. Consider a two dimensional gray-
level image as a real function defined on a compact setΩ ⊂ R2. For sake of simplicity, we will set
Ω = [0; 1]2 and the generic notation for images will beI : [0; 1]2 → R. Assume moreover thatI is a
bounded function, which is not too restrictive since gray-level images typically take values between 0
and 255.

2.1 A large deformation model with O.D.E

Our goal is to generate a large enough deformationΦ to model the variability between observed images,
but still being a diffeomorphism of[0; 1]2 in order to provide non ambiguous point displacements. These
deformations will later be combined with a templateI⋆ to generate a set of warped images,I⋆ ◦Φ. For
this, we follow the approach proposed in [You] and [TY05a].

Definition 2.1 (DiffeomorphismΦt
v) Let v be a smooth vector field from[0; 1]2 → R2 vanishing on the

boundary of this domain i.e.:
v|
∂[0;1]2

= 0. (2.1)

Define a sequence of diffeomorphisms of[0; 1]2 denoted by{Φt
v, t ∈ [0; 1]}, as the solution of the following

ordinary differential equation (O.D.E.):

Φ
0
v(x) = x and

dΦt
v(x)

dt
= v(Φ

t
v(x)) (2.2)

where t ranges over[0; 1] and x∈ [0; 1]2.

As we want to have a deformation which remains in[0; 1]2, we have imposed thatΦ1
v |
∂[0;1]2

= Id, meaning

that our diffeomorphism is the identity at the boundaries of[0; 1]2. Note that in the above definition, the
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vector field is not time dependent and in what follows, such vector fields will be called homogeneous.
Moreover, as usual, by smooth we mean aC∞ function.

The solution at timet = 1 denoted byΦ1
v of the above O.D.E. is a diffeomorphic transformation of

[0; 1]2 generated by the vector fieldv, which will be used to model image deformations. One can easily
check (see [You]) that the vanishing conditions (2.1) on thevector fieldv imply thatΦ1

v([0; 1]2) = [0; 1]2

and thatΦt
v is a diffeomorphism for all timet ∈ [0, 1]. ThusΦ1

v is a convenient object to generate
diffeomorphisms.

To illustrate the influence of the choice of the vector fieldv on the shape of the deformationΦ1
v, we

consider a simple example in one-dimension (i.e. forv : [0, 1] → R which generates a diffeomorphism
of the interval[0, 1]). In Figure 2.1, we display two vector fields that have the same support on[0, 1]
but different amplitudes, and we plot the corresponding deformation Φ1

v. One can see that the amount
of deformations (measured as the local distance betweenΦ1

v and the identity) depends on the amplitude
of the vector field. In the intervals wherev is zero, then the deformation is locally equal to the identity.
Hence, choosing compactly supported vector fields allows one to generate local deformations.
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Figure 2.1: A one-dimensional example of two vector fields with different amplitudes (left images) and
corresponding diffeomorphisms at timet = 1 (right images).

To generate random diffeomorphisms, we propose to use a parametric class of diffeomorphisms.
Consider an integerK and some basis functions (not necessarily linearly independent) ek : R2 → R2

whose choice will be discussed later on. We then decompose the former vector fieldv on the set of
functionsek = (e1

k, e2
k). The random deformations are generated as follows. Let(a1

k, a2
k), k = 1, . . . , K

be random coefficients drawn independently from a distributionPA with compact support included in
[A, A] for given realA > 0. Then, we define a random vector fieldva as

∀x ∈ [0; 1]2 va(x) =





∑K
k=1 a1

ke1
k(x)

∑K
k=1 a2

ke2
k(x)




. (2.3)

Finally, one has just to run the previously defined O.D.E (2.2) to produce a random deformation,Φva.

Choice of prior distribution PA

Choosing the prior distribution of the coefficients of the vector fieldva determines the corresponding
deformation. For example, one can take forPA the uniform distribution on[−A, A] i.e. ai

k ∼ U[−A,A], i =

1, 2. However, it should mentioned thatPA can be any distribution onR provided it has a compact

4



support. The compact support assumption forP is mainly used to simplify the proof for the consistency
of our estimator. Hence, the parameterA can be a viewed as an a priori on the size of the deformations,
and be considered as a kind of regularizing parameter. More discussion on the role on the parameterA
and other regularizing parameters to control the amplitudeof deformations is deferred to Section 4.

Choice of basis functionsek

In order to get a smooth bijection of[0; 1]2, theek should be at least differentiable. Such functions are
built as follows. First, we choose a set of one-dimensional B-splines functions (of degree at least 2)
whose supports are included in[0; 1]. To form two-dimensionalB-splines, the common way is to use
tensor products for each dimension. Recall that to define B-splines, one has to fix a set of control points
and to define their degree. Further details are provided in [DB78] and we will fix these parameters in the
section dealing with experiments.

We use B-splines functions because they are compactly supported with a local effect on the knots
positions (see [DB78] for instance). This local influence isvery useful for some problems in image
warping where the deformation must be the identity on large parts of the images together with a very
local and sharp effect at some other locations. The choice of the knots and the B-spline functions allows
one to control the support of the vector field and therefore todefine a priori the areas of the images that
should be transformed.

In Figure 2.2 we display an example of a basise1
k = e2

k, k = 1, . . . , K for vector fields generated
by the tensor product of two one-dimensionalB-splines (henceK = 4). An example of deformation of
the classical Lena image is shown in Figure 2.3 with two different sets of coefficientsak sampled from
a uniform distribution on[−A, A] (corresponding to different values for the amplitudeA, a small and a
large one). The amount of deformation depends on the amplitude ofA, while the choice of the B-spline
functions allows one to localize the deformation.
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Figure 2.2: Left: two 1D B-splines/ Right: corresponding basise1
k : [0, 1]2 → R, k = 1, . . . , 4 generated

by tensor products of two 1D B-splines.

2.2 Random Image warping model with additive noise

Given a discretization of[0; 1]2 as aN1×N2 square grid ofN = N1N2 pixels, we will generically denote
a pixel position byp. Once the deformation by random parametric diffeomorphisms with the O.D.E
method are generated, we can define the general warping modelby:

Definition 2.2 (Noisy random deformation of image) fix an integer K and a real A> 0, we define a

5



Figure 2.3: Random deformation of the Lena image withA = 0.1 andA = 0.5.

noisy random deformation of the mean template I⋆ as

Iε,a(p) = I⋆ ◦Φ
1
va

(p) + ε(p), p ∈ [0, 1]2,

where a∼ P⊗2K
A and ε is an additive noise independent from the coefficients a. The new image Iε,a is

generated by deforming the template I⋆ (using the composition rule◦) and by adding a white noise at
each pixel of the image.

In our theoretical approach, we consider the pixelsp as a discretization of the set[0; 1]2 since our
applications will be set up in this framework. It is often thecase in the statistical literature on image
analysis. However, our model could be formulated in a continuous setting using the continuous white
noise model and a decomposition of the images in a wavelet basis as described in section 3.3. This model
involves the use of an integration measure over[0; 1]2 instead of sums over the pixelsp of the image, see
e.g. [CD00] for further details. Finally, remark that the imageI⋆ is considered as a function of the whole
square[0; 1]2, giving sense toI⋆(Φ1

u(x)).
In what follows, we denote byΦa(p) = Φ1

va
(p) the solution of the following equation (starting from

pixel p at timet = 0)

∀p ∈ [0; 1]2 Φ
1
va

(p) = p+

∫ 1

0
va(Φ

t
va

(p))dt. (2.4)

Using this property, we consider now a set ofn noisy images that are random deformations of the
same unknown templateI⋆ as follows:

Iai ,εi (p) = I⋆ ◦Φ
1
ai (p) + εi(p), i = 1, . . . , n. (2.5)

whereεi are i.i.d unknown observation noise andai are i.i.d unknown coefficients sampled asP⊗K×n
A .

Our goal is to estimate the mean template imageI⋆.

2.3 Mathematical Assumptions

For our theoretical study, we will need some mathematical assumptions:

A1 There exists a constantC such that
|ε| < C.

A2
I⋆is L-Lipschitz.
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Assumption A1 means that the level of noise is bounded which seems reasonable since we
generally observe gray-level images which take values on a finite discrete set. AssumptionA2 is
more questionable. Indeed it implies thatI⋆ is continuous, which seems impossible for natural models
of images with structural discontinuities (think of the space of bounded variation (BV) functions for
instance). However, one can viewI⋆ as a map from all points in[0; 1]2 rather than just a function defined
on the pixels. On[0; 1]2, it is more likely to suppose thatI⋆ is the result of the convolution ofC∞-filters
with captors measurements, which yields a smooth differentiable map on[0; 1]2. We refer to [FH02] for
further comments on this assumption.

3 Statistical Estimation of a mean pattern

Consider a set ofn noisy imagesI1, . . . In. Assume first that these images are independent realizations
from the model (2.5). We aim at constructing an estimate of the reference imageI⋆. Without any convex
structure on the images, averaging directly the observations is likely to blur then images without yielding
a sharp "mean shape". Indeed, computing the arithmetic meanof a set of images to estimate the mean
pattern does not make sense as the space of deformed imagesI ∗ ◦Φ1

v and the space of diffeomorphisms
are not vectorial spaces, as shown in Figure 3.4. To have a consistent estimation ofI⋆, one needs to solve
an inverse problem as stated in [BM01] and [Hui98] derived from the random deformable model (2.4).

Figure 3.4: Naive mean (right image) of a set of 10 images (mnist database, 28× 28 pixels images, see
[LBBH98] for more details on this data set).

In our framework, estimating the patternI⋆ involves finding a best image that minimizes an energy
for the best transformation which aligns the observations onto the candidate. So, following [VdW98], we
will therefore define an estimator ofI⋆ as a minimum of an empirical contrast functionFn (based on the
observationsI1, . . . In) which converges, under mild assumptions, toward a minimumof some contrastF.

3.1 A new contrast function for estimating a mean pattern

Definition 3.1 (Contrast function) Denote byZ = {Z : [0, 1]2 → R} a set of images uniformly
bounded (e.g. by the maximum gray-level). Note thatZ does not need to contain the true image I⋆.
Assume also thatZ is compact for the supremum norm on[0; 1]2. Then, defineVA as the set of vector
fields given by (2.3). An element va inV can thus be written as

va =





K∑

k=1

a1
ke1

k,
K∑

k=1

a2
ke2

k




, for some aik ∈ [−A, A].
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Recall that N is the number of pixels. For an image Z∈ Z, a vector field va ∈ VA, and a given reference
image I⋆, we define the following function f as

f (a,ε, Z) = min
v∈VA

N∑

p=1

(

Ia,ε(p) − Z ◦Φ
1
v(p)
)2

(3.1)

Thus f measures the cost of optimally aligning the image Z onto the image Ia,ε using a diffeomorphic
transformation. Note that this minimum is computed over a finite set of bounded coefficients[−A; A]2K .
Moreover, one can prove using [You04] that this energy is a continuous function of v and thus of the set of
coefficients(ai

k)16k6K;16i62. This minimum is therefore reached at some va ∈ VA. For sake of simplicity,
we introduce a notation that corresponds to a discretized norm over the pixels:

∣
∣
∣Ia,ε − Z ◦Φ

1
v

∣
∣
∣
2

P =
N∑

p=1

(

Ia,ε(p) − Z ◦Φ
1
v(p)
)2

At last, we define the mean contrast function F given by

F(Z) =

∫

[−A;A]2K×RN
f (a,ε, Z)dP(a,ε)

where dP(a,ε) is the product measure on a andε.

The interpretation ofF(Z) is the following: it measures "on average" how far an imageZ is from the
imageIa,ε generated from our random warping model using an optimal alignment ofZ onto Ia,ε. Our
goal is to estimate a mean pattern imageZ⋆ (possibly not unique) which corresponds to the minimum of
the contrast functionF whenI⋆ is unknown.

Note that we only observe realizationsI1, . . . In that have been generated with the parametersa1, . . . an

andε1, . . . εn. To estimateZ⋆, it is therefore natural to define the following empirical mean contrast:

Definition 3.2 (Empirical mean contrast) We define the measurePn and the empirical contrast Fn as

Pn(a,ε) =
1
n

n∑

i=1

δai ,εi and Fn(Z) =

∫

f (a,ε, Z)dPn(a,ε).

Note that even if we do not observe the deformation parameters ai and the noiseεi, it is nevertheless
possible to optimizeFn(Z) with respect toZ since it can be written as:

Fn(Z) =
1
n

n∑

i=1

min
vi∈VA

∣
∣
∣I i − Z ◦Φ

1
vi

∣
∣
∣
2

P . (3.2)

Note that the expression
∣
∣
∣I − Z ◦Φ1

v

∣
∣
∣P does not define a distance between imagesI andZ since obviously

∣
∣
∣I − Z ◦Φ1

v

∣
∣
∣P = 0 can occur even ifI , Z. Moreover, this expression is not symmetric inI andZ.

Moreover, note that in the above equationit is not requiredto specify the lawPA or the law of the
additive noise to compute the criterionFn(Z). We then introduce quite naturally a sequence of sets of
estimators

Q̂n = arg min
Z∈Z

Fn(Z) (3.3)
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and we will theoretically compare the asymptotic behavior of these sets with the deterministic one

Q0 = arg min
Z∈Z

F(Z). (3.4)

Remark that both setŝQn andQ0 are not necessarily restricted to a singleton, but these sets are obviously
not invariant with respect to any smooth deformationΦ1

v since the way we generate diffeomorphisms
does not provide any group structure. Consequently, ifZ ∈ Q0, it is not clear whetherZ ◦Φ1

v is in Q0

or not. However, for any generated deformationΦ1
v, there exists some other vector fieldv′ such that

Φ1
v ◦Φ1

v′ is closed to the identity provided the basis used to generatethe deformation is reach enough.
Hence, even if for anyZ ∈ Q0 and any vector fieldv, Z ◦Φ1

v does not belong necessary toQ0, probably
it is possible to find some otherva such thatZ ◦ Φ1

va
is closed enough toQ0. This uniqueness issues

disappear by the addition of a regularization term on the norm of the diffeomorphism as it is done in
Section 3.3.

3.2 Convergence of the estimator

The following theorem gives sufficient conditions to ensure the convergence of the M-estimator in the
sense of Theorem (3.1). The proof is deferred to the appendix.

Theorem 3.1 Assume that conditionsA1 andA2 hold, then

Q̂∞ ⊂ Q0 a.s.,

whereQ̂∞ is defined as the set of accumulation points of theẐn, i.e the limits of convergent subsequences
Ẑnk of minimizersẐn ∈ Q̂n.

This theorem ensures that the M-estimator, when constrained to lie in a fixed compact set of images,
converges to a minimizerZ⋆ of the limit contrast functionF(Z). It seems therefore natural to ask how
one chooses the compact setZ in practice, and also to determine the relationship betweenZ⋆ and the
mean patternI⋆. These problems will be discussed in the next sections.

Remark that Theorem 3.1 only proves the consistency of our estimator when the observed images
comes from the true distribution (2.4). This assumption is obviously quite unrealistic, since in practice
the observed images generally come from a distribution thatis different from the model (2.5). In Section
3.3, we therefore address the problem of studying the consistency of our procedure when the observed
imagesI i , i = 1, . . . , n are an i.i.d. sample from an unknown distribution onRN (see Theorem 3.2).

3.3 Penalization through basis expansions

The first M-estimator (3.3) minimizes a rough criterion, hence the minimumZ∗ may be very different
from the original imageI⋆, leading to very poor estimate. This behavior is well known in statistics,
see for instance [vdG00], and the empirical mean contrast (3.2) has often to be balanced by a penalty
which regularizes the matching criterion. In a Bayesian framework, it is well known that this penalized
point of view can be interpreted as a special choice of a priordistributions. In nonparametric statistics,
this regularization often takes the form of a penalized criterion which enforces the estimator to belong
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to a specific space satisfying appropriate regularity conditions. In our setting one needs to control both
the smoothness of the estimated mean pattern and the amount of deformation allowed to align a set of
images.

Penalization on the deformations

To impose regularity on the deformations, we propose to add apenalty term to the matching criterion to
exclude unlikely large warping (see e.g. [AGP91]). For this, let Γ a symmetric positive definite matrix,
and define

pen1(v) =
2∑

i=1

K∑

k,k′=1

ai
kΓk,k′a

i
k′ .

This choice for pen1 means that one can incorporate spatial dependencies through the use of the matrix
Γ. Choosing such a penalty function implies that we do not assume anymore that all deformations have
the same weight, as done in the original definition ofFn(Z).

Penalization on the images

To control the smoothness of the mean pattern, we have chosento expand the imagesZ ∈ Z into a
set of wavelet basis functions(ψλ)λ∈Λ, since these functions are well suited for image processing(see
e.g. [Mal98]) ). Here, the setΛ can be finite or not. This means that any imageZ can be written
asZ = Zθ =

∑

λ∈Λ θλψλ, where theθλ’s are the coefficients ofZ in the wavelet basis. Estimating a
noisy image expanded in a wavelet basis is generally done viaan appropriate thresholding of its wavelet
coefficient, and it is well known (see [AJ01], [LvdG02]) that soft-thresholding estimator correspond to
the use of the following penalty function on theθλ’s

pen2(θ) =
∑

λ∈Λ
|θλ|.

Soft-thresholding estimators enable to incorporate some sparsity constraint on the setZ and have
good properties for image smoothing. We could have chosen tofollow some decomposition in some
reproducing kernel Hilbert space with a finite set of controlpoints as in [AAT07]. But to the best of
our knowledge, the effect of penalization in RKHS with a quadratic penalty is not really well suited to
image analysis, whereas soft-thresholding methods have been shown to produce sparse representation of
an image in a wavelet basis and have thus extremely good approximation and statistical properties (see
e.g. [Mal98]) ).

Note that other choices of penalty can be studied for practical applications. In what follows, we
provide a general consistency result that is stated for general penalties. Letλ1 andλ2 be two smoothing
parameters that we use to balance the contribution of the empirical mean contrast (3.2) and the penalties.
Then, define the following penalized estimatorẐn =

∑

λ∈Λ θ̂λψλ, with

θ̂n ∈ arg min
θ∈RΛ

1
n

n∑

i=1

min
vi∈VA

(∣
∣
∣I i − Zθ ◦Φ

1
vi

∣
∣
∣
2

P + λ1pen1(vi)
)

+ λ2pen2(θ). (3.5)

The above minimum may not be unique. However, some special conditions onλ1,λ2 andΛ could
ensure uniqueness ofθ̂n but studying such issue is beyond the scope of this paper.
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Note that high values ofλ1 andλ2 impose further regularity constraints on the mean pattern and the
deformations. The numerical advantages of incorporating such penalization terms are studied in Section
6.3. The effects of adding such extra terms can also be studied from a theoretical point of view. If the
smoothing parametersλ1 andλ2 are held fixed (they do not depend onn) then it is possible to study the
converge of̂θn asn grows to infinity under appropriate conditions on the penalty terms and the setΛ.

More precisely, we address now the problem of studying the consistency of ourM-estimator when
the observed images (viewed as random vectors inRN) come from anunknown distribution P, that
does not necessarily correspond to the model (2.5). For sakeof simplicity we still use the notationf
introduced in Equation (3.1). However within a penalized framework with unknownP, the dependency
on ε disappears, andf is now defined as

f (I , Zθ) = min
v∈VA

[

‖I − Zθ ◦Φ
1
v‖2P + λ1pen1(v)

]

+ λ2pen2(θ), (3.6)

whereλ1,λ2 ∈ R+, pen1(v) := pen1(a) : R2K → R+, and pen2(θ) : RΛ → R+. For anyθ that
“parametrizes” the imageZθ in the basis(ψλ)λ∈Λ, let F denote the general contrast function

F(Zθ) =

∫

f (I , Zθ)dP(I), (3.7)

andFn the empirical one defined as

Fn(Zθ) =
1
n

n∑

i=1

f (I i , Zθ).

The following theorem, whose proof is deferred to the Appendix, provides sufficient conditions to ensure
the consistency of our estimator in the simple case whenF(Zθ) has a unique minimum atZθ⋆ for θ ∈ Θ,
whereΘ ⊂ RΛ is a compact set, andΛ is finite.

Theorem 3.2 Assume thatΛ is finite, that the set of vector fields v= va ∈ V is indexed by parameters a
which belong to a compact subset ofR2K , that a 7→ pen1(va) andθ 7→ pen2(θ) are continuous. Moreover,
assume that F(Zθ) has a unique minimum at Zθ⋆ for θ ∈ Θ, whereΘ ⊂ RΛ is a compact set. Finally,
assume that the basis(ψλ)λ∈Λ and the setΘ are such that there exists two positive constants M1 and M2

which satisfy for anyθ ∈ Θ

M1 sup
λ∈Λ
|θλ| 6 sup

x∈[0,1]2
|Zθ(x)| 6 M2 sup

λ∈Λ
|θλ|. (3.8)

Then, if P satisfies the following moment condition,
∫

‖I‖2∞,NdP(I) < ∞,

where‖I‖∞,N = maxp=1,...,N |I(p)|, the M-estimator defined bŷZn = Zθ̂n
where

θ̂n ∈ arg min
θ∈Θ

Fn(Zθ)

is consistent for the supremum norm of functions defined on[0, 1]2 i.e.

lim
n→∞
‖Ẑn − Zθ⋆‖∞ = 0 a.s.

11



Two remarks on the last theorem can be made. First, the hypothesis on the uniqueness assumption can
be substituted assuming that the set of minimum ofF does not have some accumulation point:

∃η > 0 ∀θ such that ‖θ⋆ − θ‖ < η, θ , θ⋆ F(Zθ⋆) < F(Zθ)

Secondly, the hypothesis on the existence ofM1 and M2 will be here rather trivial since we will
decompose our images in some finite wavelet basisΛ.

4 Discussion

4.1 Comparison with a Bayesian approach

We discuss here the differences and the similarities between our approach and the Bayesian model
proposed in [AAT07].

First, assume that we do not use a penalization term on the deformations and images (λ1,λ2 are set
to 0). Then, an important question raised by our model is the problem of deciding if the true templateI⋆,
used to generate the observed images, belongs to the set of minimizers of the limit criterionF(Z) i.e. if
I⋆ ∈ Q0 whereQ0 = arg minZ∈Z F(Z). Obviously, the setQ0 depends both on the choice of the compact
setZ of candidate images, and on the level of noise. Determining the distance between an imageZ⋆ ∈ Q0

and the mean patternI⋆ is rather difficult in the presence of additive noise. Thus, if we consider asimple
model without additive noise, then our limit criterion becomesF(Z) = Ea minv∈VA

∣
∣
∣Ia − Z ◦Φ1

v

∣
∣
∣
2
P where

Ia = I⋆ ◦Φ1
va

. Therefore, if the setZ containsI⋆, then the set of global minima ofF(Z) is the "orbit
of I⋆" with respect to the "action" ofΦ1

v. In this setting our procedure is consistent in the sense as the
number of images grows to infinity then the estimated image isthe mean patternI⋆. Of course here, we
do not have any group action since the compositionΦ1

v1
◦Φ1

v2
is not necessarily equal to someΦ1

w. We
thus use the "orbit" term to design all imagesI such thatI = I⋆ ◦Φ1

v.
Now, using penalization terms, the limit criterion becomes

F(Zθ) = Ea min
v∈VA

∣
∣
∣Ia − Zθ ◦Φ

1
v

∣
∣
∣
2

P + λ1pen1(v) + λ2pen2(θ).

In this case,I⋆ is not guaranteed to be a minimizer ofF but arguing as in section 3.1, if the basis is rich
enough, we believe that arg minF is closed enough toI⋆.

The approach proposed in [AAT07] can also be interpreted from the M-estimation point of view.
Note that their proofs of consistency relies on Wald’s theorem which is a classical technique to prove
the convergence of M-estimators, see e.g. [VdW98]. Their estimated mean template is obtained via
the minimization of an empirical criterionGn(θ) depending on an imageZ = Zθ =

∑B
b=1 θbψb that is

decomposed into a set of basis functionsψb, b = 1, . . . , B : R2 → R. It is shown that asn grows to
infinity then arg minθ∈Θ Gn(θ) converges to the set arg minθ∈Θ G(θ) whereG(θ) correspond to the limit
of Gn(θ) andΘ is some compact set of parameters. However, their construction of the criterionG(θ) and
Gn(θ) is derived through Bayesian arguments, which therefore leads to different matching functionals.
More precisely, in our notations their Bayesian model is thefollowing

I(p) = I ∗(p− uβ(p)) + σǫ(p), p = 1, . . . , N, (4.1)

12



whereǫ(p) ∼i.i.d. N(0, 1), I ∗(p) =
∑B

b=1 θ
∗
bψb(p), anduβ is a deformation field parametrized by set

of coefficientsβ. If a Gaussian prior is set onβ ∼ N(0,Γ) (which yields random deformations), then
[AAT07] propose to estimate the coefficients θ⋆ via maximization of the incomplete likelihood (for
simplicity we assume hereafter thatΓ andσ are known):

q(I |θ) ∝
∫

e−
1
2 |I−Zθ,β|2P−N

2 log(2πσ2)− 1
2β

tΓ−1βdβ, (4.2)

whereZθ,β(p) =
∑B

b=1 θbψb(p− uβ(p)) for each pixelp. This yields the following MAP estimator

θ̂n = arg min
θ∈Θ

Gn(θ) = arg min
θ∈Θ
−1

n

n∑

i=1

logq(I i |θ)

and their limit criterion is thus of the form

G(θ) = −E logq(I |θ),

where the expectation is taken over random imageI following the model (4.1). They also consider the
case where the observed images follows another distribution P which is not necessarily the one induced
by (4.1), and they study the consistency of their M-estimator in this case.

Explicit computation ofq(I |θ) requires an integration over the hidden variablesβ which can be done
numerically via an EM algorithm, but no analytical formula of this integral is available. Moreover,
a natural question is to ask whether the true parameterθ⋆ used to generate the observed images is a
minimizer of G(θ). This problem still remains an open issue since such minimizers depend onθ⋆ in
a complicated way, through the law of the noise and the deformation. Note that this problem is also
not solved in [AAT07] or [AKT07] since their consistency theorems only assert thatθ̂n converges to a
minimizer ofG(θ).

However, following the arguments in Appendix B of [AAT07], one can approximate the integral (4.2)
by

logq(I |θ) ≈ U(β∗), (4.3)

whereU(β) = −1
2

∣
∣
∣I − Zθ,β

∣
∣
∣
2
P −

N
2 log(2πσ2) − 1

2β
tΓ−1β andβ∗ = arg minU(β). Therefore, using the

above approximation and if we eliminate the terms not depending onθ andβ, then

θ̂n ≈ arg min
θ∈Θ

1
n

n∑

i=1

min
βi

(
∣
∣
∣I i − Zθ,βi

∣
∣
∣
2
P + βt

Γ
−1β

)

and the limit criterion is therefore of the form:

G(θ) ≈ Emin
β

(∣
∣
∣I − Zθ,β

∣
∣
∣
2
P + βt

Γ
−1β

)

,

where again the expectation is taken over a random imageI following some distributionP. Hence,
using a first order approximation for the integration over the hidden variableβ, G(θ) is exactly our
matching criterionF(Z) (if the imageZ is decomposed into some set of basis functions), with an
additional penaltyβtΓ−1β on the parameters controlling the deformation. These arguments illustrate
the classical interpretation of MAP estimate as a penalizedlikelihood estimator for suitable choices of
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the a priori distributions. Again, if we consider a simplestmodel with no additive noise and do not
impose any penalization on the parameters of the deformation, thenθ⋆ ∈ arg minG(θ). However, if
one keeps the penalization termβtΓ−1β, then in the absence of noise there is no reason to believe that
θ⋆ ∈ arg minG(θ) since the minimizers ofG(θ) depends on the balance between image alignment and
the amount of deformation.

4.2 Choice of the basis functions for the vector field and the regularizing parameter λ1

and λ2

Our estimation procedure obviously depends on the choice ofthe basis functionsek = (e1
k, e2

k) that
generate the vector fields. In our simulations, we have chosen to use tensor products of one-dimensional
B-spline organized in a multiscale fashion. Lets be some integer that represents a given order of the
B-spline and, letJ > 1 be some positive integer. For each scalej = 0, . . . , J − 1, we denote by
φ j,ℓ, ℓ = 0, . . . , 2j − 1 the 2j the B-spline functions obtained by taking 2j + sknots points equispaced on
[0, 1] (see [DB78]). This gives a set of functions organized in a multiscale fashion, and in our numerical
experiments we tooks = 3 andJ = 3 as shown in Figure 4.5. Note that asj increases the support of the
B-spline decreases which makes them more localized.
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Figure 4.5: An example of multiscale B-splinesφ j,ℓ, ℓ = 0, . . . , 2j − 1 with J = 3 ands = 3, ordered
left to right, j = 0, 1, 2.

For j = 0, . . . , J− 1, we then generate a multiscale basisφ j,ℓ1,ℓ2 : [0, 1]2 → R, ℓ1, ℓ2 = 0, . . . , J− 1
by taking tensor products theφ j,ℓ’s i.e.

φ j,ℓ1,ℓ2(x1, x2) = φ j,ℓ1(x1)φ j,ℓ2(x2).

Then, we takeek = ej,ℓ1,ℓ2 = (φ j,ℓ1,ℓ2,φ j,ℓ1,ℓ2) : [0, 1]2 → R2. This makes a total ofK =
∑J−1

j=0 22 j =
22J−1

3 basis functions.
The assumptions of Theorem 3.2 impose that the coefficients used to compute the vector field belong

to a compact subset ofR2K , and this is mainly made to simplify the proof of the theorem.One could
choose to control the amplitude of the deformations by controlling the size of this compact set which
would then be a way to incorporate some regularization. However, we prefer to leave the size of this
set very large (in practice we do not use any size constraint), and the amplitude of the deformations is
rather control by the penalty termλ1pen1(v) in (3.6). The parametersλ1 can be used to prevent huge or
not-very-smooth deformations when searching for an optimal matching. Finding a data-based choice for
λ1 is a challenge and to the best of our knowledge there does not exist an automatic method for choosing
such regularizing parameter in image warping problems, butwe plan to study this in a future work.
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Instead, we provide in our simulations various examples illustrating the influence of this parameter (see
Section 6).

For the choice ofλ2, we took the so-called universal threshold (see e.g. [AJ01])

λ2 = 2σ
√

2∗ log(N),

whereσ denotes some estimation of the standard deviation of the additive noise andN is the number
of pixels. Universal thresholding is a standard choice in image denoising that has good theoretical and
numerical properties, andσ can be easily derived from the wavelet coefficients of a noisy image at high
frequencies resolution (see [Mal98] for further details).

4.3 Further refinements of the model

Our matching criterion to compare the alignment of two images is based on the sum of the square
difference between the pixels of the images, which corresponds somehow to a Gaussian prior for the
additive noiseǫ. However, one can use other matching criterion to compare images. Indeed one can
check that it is possible to adapt our proofs of consistency of the M-estimators, if one replaces the
discretized norm over the pixels:

∣
∣
∣Ia,ε − Z ◦Φ

1
v

∣
∣
∣
2

P =
N∑

p=1

(

Ia,ε(p) − Z ◦Φ
1
v(p)
)2

by any criterion of the formL
(

Ia,ε, Z ◦Φ1
v

)

whereL : RN ×RN → R+ is a real function which satisfies
appropriate smoothness and convexity conditions.

Moreover, a set images may also present intensity variations, but our model does not take this into
account. A nice extension for future investigation would beto incorporate an amplitude parameter in the
estimation procedure to account for possible intensity variations between images.

5 Practical computation of the M-estimator

5.1 Algorithm for mean pattern estimation

We describe an iterative procedure to compute the penalizedM-estimator (3.5) . Givenn imagesI1, . . . In,
recall that we have to find an imageẐn =

∑

λ∈Λ θ̂λψλ, with

θ̂n = arg min
θ∈RΛ

1
n

n∑

i=1

min
vi∈VA

(
∣
∣
∣I i − Zθ ◦Φ

1
vi

∣
∣
∣
2

P + λ1pen1(vi)
)

+ λ2pen2(θ).

In order to handle the two minimization steps, we use an alternative iterative procedure that works as
follows:

Initialization m = 0 : start with an initial guessZ(0). The choice ofZ(0) is discussed in Section 5.3.
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Iteration m> 1 : repeat the following steps:

• for i = 1, . . . , n, compute an optimal deformationΦâm
i

which corresponds to the vector field

vâm
i

= arg min
vi∈V

∣
∣
∣
∣I i − Z(m−1) ◦Φ

1
vi

∣
∣
∣
∣

2

P
+ λ1pen1(vi). (5.1)

One may wonder how to compute such a minimum. In what follows,we will provide a gradient
descent algorithm to solve this issue (see section 5.2)

• Then, compute the imagẽZ(m) that minimizes:

Z̃(m) = arg min
Z∈Z

n∑

i=1

∣
∣
∣I i − Z ◦Φâm

i

∣
∣
∣
2

P
︸                 ︷︷                 ︸

:=Em

.

If one does not not constrained the imagesZ to belong to a specific set, theñZ(m) can be easily
found using a change of variable since it can be remarked that

Em ≃
n∑

i=1

∫

[0;1]2

(

I i − Z̃(m) ◦Φâm
i

)2
(x)dx.

The last approximation is due to the fact thatEm is computed for the discrete measure on the pixels
of the image, and not exactly on the whole set[0; 1]2. Changes of variables in the lastn integrals
by u = Φâm

i
(x) yield the expression:

Em ≃
n∑

i=1

∫

[0;1]2

(

I i ◦Φâm
i
− Z̃(m)

)2
(u)|detJac(Φ

−1
âm

i
)(u)|du

≃
∫

[0;1]2

n∑

i=1

(

I i ◦Φâm
i
− Z̃(m)

)2
wi(u)du

The solution of this least square problem is the classical weighted average using the coefficients
wi . The value of the solutionZ(m) at any pixelp, is thus given by

Z̃(m)(p) =

n∑

i=1

wi(p)I i ◦Φ
−1
âm

i
(p)

n∑

i=1

wi(p)

, (5.2)

wherewi(p) = |detJac(Φ−1
âm

i
)(p)|

Then, apply wavelet soft thresholding with universal threshold toZ̃(m) to finally obtain a denoised
imageZ(m).
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5.2 A new matching algorithm between two images

The minimization step (5.1) is a crucial point in the above described algorithm. It consists of finding
an optimal deformation between two images using a specific parametrization of a set of vector fields.
Below, we describe a gradient descent algorithm with an adaptive step to perform the minimization (5.1)
which yields a new matching algorithm between two images.

To simplify the presentation, we took in our simulations theidentity matrix forΓ in the formulation
of pen1. Remark that this choice does not take into account the presence of correlations between the
element of the spline basis. Another choice would beΓ = G−1 whereG is the Gram matrix with entries
given by inner products of the spline basis functionei

k. This choice would correspond to a uniform prior
on deformations.

Given two imagesI andZ, one thus needs to optimize the following term

∆I ,Z =
∣
∣
∣I − Z ◦Φ

1
va

∣
∣
∣
2

P + λ1

2∑

i=1

K∑

k

|ai
k|

2

with respect toa = (ai
k)k,i , k = 1 . . .K and i ∈ {1, 2}. In the above expression,va is given as (2.3). To

implement a gradient descent algorithm, one needs to compute

∂∆I ,Z

∂ai
k

= −2
N∑

p=1

[I(p) − Z(Φ
1
va

(p))]〈∇Z
Φ1

va(p);
∂Φ1

va
(p)

∂ai
k

〉+ 2λ1ai
k, (5.3)

for all k = 1, . . . , K andi = 1, 2. Now, suppose without loss of generality thati = 1. Then for any pixel
p:

∂Φ1
va

(p)

∂a1
k

=
∂

[
∫ 1

0 va(Φt
va

(p))dt + p
]

∂a1
k

=

∫ 1

0





e1
k(Φt

va
(p)) +

K∑

α=1

a1
α〈∇e1

α
Φt

va (p)
,
∂Φt

va
(p)

∂a1
k

〉

K∑

α=1

a2
α〈∇e2

α
Φt

va (p)
,
∂Φt

va
(p)

∂a1
k

〉





dt

As
∂Φ0

va(p)

∂a1
k

vanishes,ψk,1,1(p) =
∂Φ1

va(p)

∂a1
k

is solution at timet = 1 of the following O.D.E.:

dψk,1,t(p)

dt
=





e1
k(Φt

va
(p)) +

K∑

α=1

a1
α〈∇e1

α
Φt

va (p)
,ψk,1,t(p)〉

K∑

α=1

a2
α〈∇e2

α
Φt

va (p)
,ψk,1,t(p)〉





with initial conditionψk,1,0(p) = 0. To get a gradient descent algorithm, one uses the above O.D.E. to
evaluate the gradient (5.3). The computation of the optimalchoice of theai

k’s follows from a classical
gradient descent algorithm with an adaptive step starting from (ai

k)k,i = 0.
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This gradient descent may fall into a local minima since our criterion may not be convex. However,
our hierarchical choice for the splines described in section 4.2 induces a kind of multi-scale framework
which gives an algorithm that performs well in practice. At last, we have used the stopping criterion of
[GVM04] to end the gradient descent algorithm.

5.3 Initialization of the algorithm

The simplest to initialize our iterative algorithm is to take the naive estimateZ(0)
naive = I1+···+In

n . However,
this may give a very poor preliminary estimator which may considerably affect the quality of the mean
pattern.

Alternatively, we have implemented a new matching criteriaproposed by [GLM07], [Vim06] to find
rigid transformations between a set of curves. In our setting, this criteria is a global measure of how well
a set of images are aligned and can be written as matching function Mn : An→ R+ given by

Mn(a
1, . . . , an) =

1
n

n∑

i=1

∣
∣
∣
∣
∣
∣
∣

I i ◦Φ
1
vi

a
− 1

n

n∑

i′=1

I i′ ◦Φ
1
vi′

a

∣
∣
∣
∣
∣
∣
∣

2

P

+ λ1

n∑

i=1

‖ai‖2
R2K .

whereA is a subset ofR2K used to parametrize the vector fields. The above criterionMn is closely related
to Procrustes analysis which is classically used for the statistical analysis of shapes (see e.g. [DM98])
and the registration of a set of curves onto a common target function. However, here the common target
function is directly given by the average of the registered images given a possible choice of deformation
parametersa1, . . . , an. An initial image can then be defined by searching

(â1, . . . , ân) = arg min
(a1,...,an)∈An

Mn(a
1, . . . , an)

and then by taking

Z(0)
∗ =

1
n

n∑

i=1

I i ◦Φ
1
vâi . (5.4)

Surprisingly, our simulations show that this initial estimatorZ(0)
∗ which will be referred to as the direct

mean, already gives very accurate results. Note that the gradient of the criterionMn can be computed as
described in Section 5.2, and thus we have again chosen to compute the coefficients(â1, . . . , ân) via a
gradient descent algorithm with an adaptive step.

5.4 Convergence of the numerical scheme

The approximation (4.3) is used in [AAT07] to simplify theM-step in the EM-algorithm used to compute
numerically the minimizer of the incomplete log-likelihood Gn(θ) =

∑n
i=1 logq(I i |θ) (this is referred to

as fast approximation with modes in [AAT07]). This simplification yields a similar iterative algorithm
to the one used in this paper. However, the fast approximation with modes used in [AAT07] does not
guarantee to obtain an iterative scheme which converges to aminimizer of Gn(θ). To overcome this
problem, a stochastic EM algorithm is proposed in [AKT07] yielding an iterative procedure which is
shown to converge to the true MAP estimator. In our approach,we also use an alternative scheme to
find a minimizer of the empirical contrast functionFn(Z), but this iterative procedure follows directly
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from the formulation of our criteria via a double minimization. As we do not use any approximation of
the functionalFn(Z) to derive this alternative scheme, we believe that the sequence of imagesZ(m) (see
Section 5) is likely to give a good approximation ofẐn asm grows to infinity although this remains to
be proved rigorously. Moreover, in the next section we discuss a new matching criterion to initialize our
iterative algorithm which gives surprisingly good results.

6 Numerical results

Recall that in all our simulations, we used the hierarchicalbasis withK = 22J−1
3 = 21 usings = 3 and

J = 3 as described in section 4.2 .

6.1 A real example (Mnist Database)

First we return to the example shown previously on handwritten digits (mnist database). As these images
are not very noisy, the denoising step via wavelet thresholding does not improve the results. A value of
λ1 = 10 gave good results but more discussion on the influence of this parameter can be found in the
next section of faces averaging.

In Figure 6.6, we display the naive meanZ(0)
naive and the direct meanZ(0)

∗ the obtained fromn = 20

images of the digits "2". Surprisingly the result obtained with Z(0)
∗ is very satisfactory and is a better

representative of the typical shape of the digits "2" in thisdatabase. In Figure 6.6, the imageZ(3)

obtained after 3 iterations of the algorithm is also displayed withZ(0) = Z(0)
∗ . We wee that the iterations

slightly improves the initial result. Moreover, note thatZ(3) has sharper edges than the naive mean which
is very blurred.
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Figure 6.6: Naive mean (lower left image), direct meanZ(0)
⋆ (lower middle image) and mean patternZ(3)

(lower right image) based on 20 images of the digit "2" (upperrows).

In Figure 6.7 we finally display the comparison between the naive mean, the direct mean and the
mean patternZ(3) (initialized with Z(0) = Z(0)

∗ ), for all digits between 0 and 9 with 20 images for each
digit. One can see that our approach yields significant improvements. In particular it gives mean digits
with sharp edges.
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Figure 6.7: Naive mean (first row), direct mean (second row) and mean patternZ(3) (last row) based on
20 images on the mnist database.

6.2 Influence of the gradient descent and the initialization

In Figure 6.7, the second and third rows are almost identical, which validates our initialization using the
direct mean, see equation (5.4), but not the rest of the framework. Indeed, one may wonder if the iterative
process by gradient descent does not get stuck into a local minima and ifZ(n) is really better than the
initialization Z(0). To validate our framework, we display in Figure 6.8 an example of the improvements
by the iterative process when starting from an initialization with the naive mean instead of the direct
mean (5.4) for digits "8" and "9".

Figure 6.8: First row: naive mean for digits "8" and "9", second row: Z(5) obtained by starting from an
initialization Z(0) by the naive mean (images of the first row).

6.3 Influence of the choice ofλ1 (Olivetti Database)

Influence of λ1 We illustrate the role of the parameterλ1 which controls the amount of deformation
with a problem a faces alignment. Figure 6.9 represents two images of the same subject with varying
lighting and facial expression. These images are taken taken from the Olivetti face database [SH94] and
their size isN1 = 98 andN2 = 112. The results of the gradient descent algorithm with various values
for λ1 are given in the second row of Figure 6.9. As expected large values ofλ1 yield small deformations
while a small value allows much more flexible diffeomorphic warping.

20



10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Figure 6.9: First row: two images of the same subject taken from the Olivetti database of faces.
Second row: warping of the left image onto the right image with (from left to right) varying values
of λ1 = 10000, 1000, 100, 10, 1 .

Mean images on Olivetti database For each subject of the Olivetti database,n = 9 images have been
taken with various facial expression. Figure 6.10 shows thefaces used in our simulations.

Figure 6.10: 9 samples of the Olivetti database for 4 subjects.

In Figure 6.11 we present some mean pattern obtained with an iterative algorithm withZ(0) = Z(0)
∗ ,

λ1 = 1000, and compare them with the corresponding naive mean. Obviously our method clearly
improves the naive estimate, and yields satisfactory average faces especially in the middle of the images.
However, some parts along the image boundaries in the secondrow of Figure 6.11 are still slightly
blurred. This is due to the fact that the basis functions thatwe have chosen are vanishing along image
boundaries (see Figure 4.5). This can be improved by incorporating other basis functions to allow more
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flexible warping along image boundaries, but we prefer to leave this example to illustrate the influence
of the choice of the basis functions.
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Figure 6.11: Example of face averaging for 4 subjects from the Olivetti database. First row: naive mean,
second row: mean patternZ(7).

6.4 A simulated example

In this section, we generate some simulated noisy images to judge the quality of the method when the
true image to recover is known. The reference imageI ∗ is the Shepp-Logan phantom image (see [Jai89])
of sizeN1 × N2 with N1 = N2 = 128 shown in Figure 6.12. We have then simulatedn = 20 noisy and
randomly warped images fromI⋆. However, the random deformations are generated via homogeneous
vector fields thatare not expressedin the basisek, k = 1, . . . , K to illustrate the robustness of the
method via a kind of mis-specification of the model. These vector fields are generated by a finite linear
combination of Gaussian kernels with random amplitudes andrandom locations following a uniform
distribution on a subset of[0; 1]2.

In Figure 6.13, we display the direct meanZ(0)
∗ followed by wavelet thresholding obtained from

these 20 images with various values ofλ1. Again, these initial estimates are very accurate estimateof
the original template shown in Figure 6.12. In this example running the iterative algorithm does not
improve the results, and this can be explained by the fact theinitial estimate is already very good. These
simulated data tend thus to show that our method is also somehow robust to mis-specification of the
model since we recall that the random vector fields used for the simulations have been not constructed
from the multi-scale B-spline basis described previously.
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Figure 6.12: Simulated example: seven deformed and noisy images of the Shepp-Logan phantom (out
of a sample of 20 images). The upper left image is the unknown templateI⋆.
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Figure 6.13: Naive mean (right image), and direct meanZ(0)
∗ followed by wavelet thresholding with

(from left to right)λ1 = 1000, 500, 100, 10.

6.5 Application to image clustering and classification

Clustering We finally end this section on numerical experiments by showing an example of clustering
using the k-means algorithm (see e.g. [Mac67]). To cluster aset of images by the k-means algorithm one
must choose a proper distance to compare images and a way of calculating the mean of a cluster. Given
two imagesI1 andI2 we define a "distance" between them using diffeomorphic warping as follows (with
λ1 = 10):

d(I1, I2) = min
va∈V

∣
∣
∣I1 ◦Φ

1
va
− I2

∣
∣
∣
2

P + λ1‖a‖2R2K

Then, for a set images belonging to the same cluster, the meanis defined asZ(4) with initialization by
direct mean. In Figure 6.14, we give an example of k-means clustering with two classes for the digit "2"
of the images of the training set. One can see that the algorithm gives two different mean clustersZ(m)

which correspond to digits "2" with or without a loop. Again the results are visually very good. Finally,
we display in Figures 6.15,6.16 and 6.17 the clusters for theimages of the digit "2", "3" and "5" of the
training set. In all Figures the upper left image is the meanZ(4) of the cluster. One can see that the
images are classified according to their vertical orientation.
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Figure 6.14: K-means clustering for the 20 images for the class of digit 2 of the training set.

Figure 6.15: Two clusters obtained by K-means clustering for the 20 images for the class of digit "2" of
the training set.

Classification Even if our goal is not to implement a new classification method for image recognition,
one can easily adapt our method to reach an automatic supervised classification procedure. We consider
the 10 classes of the Mnist database and we compute a clustering of two subsets of each class. On
each cluster, the mean patterns are computed and we use them to classify images belonging to a test set
consisting of 100 images of digits between 0 and 9 which makeson overall set of 1000 images. Then, a
simple criterion based on the norm|.|P is used to classify these data. The decision rule for any image I

Figure 6.16: Two clusters obtained by K-means clustering for the 20 images for the class of digit "3" of
the training set.
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Figure 6.17: Two clusters obtained by K-means clustering for the 20 images for the class of digit "5" of
the training set.

in the test set follows naturally from our minimization algorithm:

d(I) = arg min
i=1...10

min
va∈VA

∣
∣
∣I ◦Φ

1
va
− Î i

∣
∣
∣
2

P + λ1‖a‖2R2K .

We use hereλ1 = 10 as it performed well in our simulations. Here,d(I) denotes the predicted class for
I in the test set. The computation ofd(I) simply consists in warping the imageI to the closest image
amongÎ1, . . . Îq. The ruled(I) will be referred to as classification with warping in what follows.

The computational cost of the decision rule is low since the tenmean imageŝI i , i ∈ {0, . . . 9} of the
ten classes are computed off-line with the training set. Indeed, computing the decisiond(I) is equivalent
to run 10 matching algorithms with our gradient method.

To evaluate the performances of this classification rule, wehave compared its misclassification rate
with those of two other approaches:

• Naive classification : simply take the naive mean for each class as a typical representative of the
images within a class. Then, for a new imageI of the training set, take the following classification
rule simply based on the norm|.|P (without any warping)

dnaive(I) = arg min
i=1...q

∣
∣
∣I − Înaive

i

∣
∣
∣
2
P .

• Support vector machine (SVM) classification : we have a multi-class classification problem.
Basically, SVM classifiers can only solve binary classification problems (see e.g. [Vap95], [SS02]).
To allow for multi-class classification, we have used the algorithm implemented in the R library
e1071 [CL01] that uses the one-against-one technique by fitting all binary subclassifiers and
finding the correct class by a voting mechanism (see also [HTF03] for gentle introduction to SVM
classification). Note that in the case of SVM classification,the images are simply considered as
vectors inRN and that the spatial dependency of the pixels is thus not taken into account.

The parameters of the SVM have an important influence on the accuracy of the prediction. They
have been set as follows: we use a Gaussian kernel (RBF) as it performs generally better than
polynomial kernels. The several parameters (margin parameter C and variance parameterσ2) has
been set using a tuning step of cross validation to obtain thebest performance as possible. This
can be easily performed with the tune function of the R library e1071.
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In Table 1, we give the mis-classification rate over the 1000 images of the test samples for the two
classification methods described above and our method basedon warping before and after clustering with
K-means. The classification with warping clearly gives the best result. This seems natural as this rule
is the only one which takes into account the spatial local deformations that may exist between similar
images. One may argue that a classification rate of 15.3 % is not very satisfactory and that much better
rates of classification have been obtained for this database(see e.g. [LBBH98]). However, remark
first that we have only used 20 images per class for the training set which is very small. Secondly,
we only want to show that taking into account the spatial variability due to the presence of local
deformations between images may improve standard classification rules. At last, we can largely improve
this performance using several clusters to describe each class as pointed in third column of Table 1 (8.6%
classification error rate).

Naive classification Classification with warping Classification with warping after clustering SVM

30.2 % 15.3 % 8.6 % 21.3 %

Table 1: Classification error rate on the test sample for the mnist dataset.

Finally, note that classifying images using the distances to the orbit generated by the deformation on
the learned templates for each class is questionable, and seems to give not optimal results when compared
to the performances obtained by [AT07] with small training sets of the MNIST database. Some further
work is certainly needed to improve these results by using for example non-linear edge detectors features
as in [AT07].

7 Conclusion and perspectives

We end this paper by discussing several theoretical and computational aspects of our approach. First
remark that we have built a very general model of random diffeomorphisms to warp images. This
construction relies mainly on the choice of the basis functionsek for generating the deformations. The
choice of theek’s is relatively large since one is only restricted to take functions with a sufficient number
of derivatives that vanish at the boundaries of[0, 1]2. Moreover, our estimation procedure does not
require the choice of a priori distributions for the random coefficientsai

k. Hence, this model is very
flexible as many parameterizations can be chosen.

Nevertheless, some difficult problems remain to be studied. We have discussed many different ways
for incorporating some regularization in our estimation procedure. However, all these regularization
methods depends on some hyperparameters that have to be carefully calibrated, and a challenging
problem is to find data-based choices for these parameters. Moreover, we have only focused on the
estimation of the mean pattern of a set of images, but one would like to build other statistics like principal
modes of variations of the learned distribution of the images or the deformations. Building statistics
going beyond the simple mean of set of images within the setting of our model is very challenging for
future investigation.
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Appendix

7.1 Proof of Theorem 3.1

To obtain the asymptotic convergence of (3.3) toward (3.4) we use the following proposition whose proof
follows from Theorem 6.3 in [BM01]:

Proposition 7.1 Assume that the following two conditions hold

(C1) the set{ f (·, ·, Z) : Z ∈ Z} is an equicontinuous family of functions at each point ofX =

[−A; A]2K ×RN.

(C2) there is a continuous functionφ : X → R+ such that
∫

X φ(a,ε)dP(a,ε) < +∞, and for all
(a,ε) ∈ X and Z∈ Z, | f (a,ε, Z)| 6 φ(a,ε).

Then
Q̂∞ ⊂ Q0 a.s., (7.1)

whereQ̂∞ is defined as the set of accumulation points of theẐn, i.e the limits of convergent subsequences
Ẑnk of minimizersẐn ∈ Q̂n.

In what follows, we establish assumptions (C1) and (C2) which proves Theorem 3.1.

Let us denote by〈I1, I2〉 =
∑N

p=1 I1(p)I2(p) the "inner product" on the pixelsp and by |I1|P the
empirical "norm" associated to this inner product, whereI1, I2 denotes two images observed atN pixels
(and can thus be viewed as vectors inRN). We start with establishing a result on the regularity ofF and
Fn.

Lemma 7.1 F and Fn are continuous overZ with respect to the supremum norm‖.‖∞ on [0; 1]2.

Proof : We first study the mapZ → f (a,ε, Z). Consider(Z1, Z2) ∈ Z2 and fix any parameters of the
deformationsa and noiseε. Remark that forZ ∈ Z, one can findvZ ∈ VA such that

va,ε,Z = arg min
v∈VA

f (a,ε, Z),

where f (a,ε, Z) = |Ia + ε − Z ◦Φ1
v|2P. This minimum is reached inVA sinceVA is here described by a

bounded and closed finite dimensional space which is thus compact.
Using the mere definition ofvZ1 = va,ε,Z1 andvZ2 = va,ε,Z2, we get

|I⋆ ◦Φ
1
a + ε− Z1 ◦Φ

1
vZ1
|2P 6 |I

⋆ ◦Φ
1
a + ε − Z1 ◦Φ

1
vZ2
|2P

6 2|I⋆ ◦Φ
1
a + ε− Z2 ◦Φ

1
vZ2
|2P

+ 2|(Z1 − Z2) ◦Φ
1
vZ2
|2P.

Using the coarse following upper bound

|(Z1 − Z2) ◦Φ
1
v2
|2P 6 N‖Z2 − Z1‖2∞,

27



leads to
f (a,ε, Z1) 6 f (a,ε, Z2) + N‖Z2 − Z1‖2∞.

Finally, this implies that
| f (a,ε, Z1) − f (a,ε, Z2)|2 6 N‖Z2 − Z1‖2∞

proving the continuity of the functionZ→ f (a,ε, Z). We now return to the functionsF andFn, we have

| f (a,ε, Z)| 6 2|I⋆ ◦Φ
1
a + ε|2P + 2|Z ◦Φ

1
vZ1
|2P

︸        ︷︷        ︸

≤M

since‖Z‖∞ is bounded by some constantM independent ofa andε. Then we get from assumptionsA1
andA2 that ∫

[−A;A]2K×RN

[

|I⋆ ◦Φ
1
a + ε|2P + M

]

dP(a,ε) < +∞,

I⋆ being bounded since it is a Lipschitz on a[0; 1]2.
HenceZ →

∫

f (a,ε, Z)dP(a,ε) = F(Z) is continuous using the dominated convergence theorem.
By the same argument,Fn is also continuous, which completes the proof. �

We next establish the existence ofQ0 and Q̂n. From the definition of the sets of minimizers,Q̂n

stands for candidates of the estimate of the mean image andQ0 candidates for the mean image. Using
the continuity ofF andFn (Lemma 7.1) and sinceZ is compact, we deduce the next result:

Lemma 7.2 Q0 andQ̂n are well defined and non empty for all integer n∈ N.

We now establish the conditions (C1) and (C2). We study first the family of functions indexed byZ ∈ Z:
{ f (., .,z), z ∈ Z}.

Proposition 7.2 For any compact setZ, { f (., .,z), z ∈ Z} is an equicontinuous family of functions of
variables(a,ε).

Proof : Let a1, a2,ε1,ε2 be such that (for the standard euclidean norm on[−A; A]2K ×RN)

‖(a1,ε1) − (a2,ε2)‖ 6 δ,

and notevZi the optimal vector field obtained to matchZi on Iai ,εi . Hence, for anyZ ∈ Z, one have

f (a1,ε1, Z) = |I⋆ ◦Φ
1
a1

+ ε1 − Z ◦Φ
1
va1,ε1,Z

|2P
6 |I⋆ ◦Φ

1
a1

+ ε1− Z ◦Φ
1
va2,ε2,Z

|2P
6 |I⋆ ◦Φ

1
a2

+ ε2− Z ◦Φ
1
va2,ε2,Z

|2P
+ |ε1− ε2 + I⋆ ◦Φ

1
a1
− I⋆ ◦Φ

1
a2
|2P

+ 2〈I⋆ ◦Φ
1
a2

+ ε2 − Z ◦Φ
1
va2,ε2,Z

,

ε1 − ε2 + I⋆ ◦Φ
1
a1
− I⋆ ◦Φ

1
a2
〉
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Then, using the fact that the noise is bounded and that the images inZ are uniformly bounded, we obtain
that there is a constantΛ such that

f (a1,ε1, Z) 6 f (a2,ε2, Z) + 2|I⋆ ◦Φ
1
a1
− I⋆ ◦Φ

1
a2
|2P

+ 2|ε2 − ε1|2P
+ Λ

(

|I⋆ ◦Φ
1
va1,ε1,Z

− I⋆ ◦Φ
1
va2,ε2,Z

|P + |ε2 − ε1|P
)

,

where the last inequality follows from the Cauchy-Schwarz and the triangular inequalities. Under
AssumptionA2, we get

f (a1,ε1, Z) − f (a2,ε2, Z) 6 2L2‖Φ1
a2
−Φ

1
a1
‖2 + 2|ε2 − ε1|2P

+ Λ

(

L‖Φ1
a2
−Φ

1
a1
‖+ |ε2 − ε1|P

)

6 2L2N‖Φ1
a2
−Φ

1
a1
‖2∞ + 2|ε2 − ε1|2P

+ Λ

(

L
√

N‖Φ1
a2
−Φ

1
a1
‖∞ + |ε2 − ε1|P

)

Using results in [You04],(v, ‖.‖∞)→ (Φ1
v, ‖.‖∞) is continuous. Hence under an appropriate choice ofδ1

andδ2 such that
‖a1 − a2‖ 6 δ1 |ε1 − ε2|P 6 δ2,

then
| f (a1,ε1, Z) − f (a2,ε2, Z)| 6 η,

which proves the equicontinuity of{ f (., .,Z), Z ∈ Z}, and completes the proof. �

Thus Assumption (C1) is proved. The proof of Assumption (C2)follows from the proof of Lemma
1.

7.2 Proof of Theorem 3.2

We provide here a proof of consistency of theM-estimator defined in Theorem 3.2. Recall that we
consider now the more general case where the imagesI i are i.d.d. observations derived from anunknown
distributionP onRN.

First remark that from Assumption (3.8) and sinceΛ is finite, the supremum norm‖ · ‖∞ for functions
Zθ on [0, 1]2 (with θ ∈ RΛ is equivalent to the supremum norm onRΛ. Therefore, by equivalence of
norms, any function defined on the set of imagesZ = {Zθ, θ ∈ Θ} that is continuous with respect to the
supremum norm‖ cot‖∞ for functionsZθ on [0, 1]2 is also a continuous function onRΛ.

To derive the result of Theorem 3.2, one can then simply applyTheorem 5.10 of [VdW02] which
provides sufficient conditions for the consistency ofM-estimator in general cases. Recall that for our
purpose, we have set

pen1(v) =
2∑

i=1

K∑

k,k′=1

ai
kΓk,k′a

i
k′ ,

and
pen2(θ) =

∑

λ∈Λ
|θλ|.
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With our notations, this theorem ensures that

lim
n→∞
‖Ẑn − Zθ⋆‖∞ = 0 a.s,

under the conditions

(B1)
{
f (.,Zθ), θ ∈ Θ

}
is a Glivenko-Cantelli class,

(B2) F(Zθ) has a unique minimum atZθ⋆ for θ ∈ Θ.

Condition (B2) is a mere assumption of Theorem 3.2. The condition (B1) is somewhat more
complicated to establish and rely on the theory of empiricalprocesses. We proceed as in Lemma 7.1
using the compactness assumption for the parametersa that define the vector fieldsva . For anyZθ1 and
Zθ2 inZ, and any imageI ∈ RN, we denote byv1(I) andv2(I) the vector fields which yieldf (I , Zθ1) and
f (I , Zθ2) i.e.

vk(I) = arg min
v∈V

[

‖I − Zθk ◦Φ
1
v‖2P + λ1pen1(v)

]

, k = 1, 2.

If we denote byf̃ (I , Zθ) the mapf (I , Z) − λ2pen2(θ), we have

f̃ (I , Zθ1) = ‖I − Zθ1 ◦Φ
1
v1(I)‖

2
P + λ1pen1(v1(I)) (7.2)

6 ‖I − Zθ1 ◦Φ
1
v2(I)‖

2
P + λ1pen1(v2(I))

6 N‖Zθ1 − Zθ2‖2∞
+‖I − Zθ2 ◦Φ

1
v2(I)‖

2
P + λ1pen1(v2(I))

6 N‖Zθ1 − Zθ2‖2∞ + f̃ (I , Zθ2). (7.3)

The above inequality immediately imply the continuity ofZ 7→ f̃ (I , Z) and of course ofZ 7→ f (I , Z) for
any fixed imageI with respect to the norm‖.‖∞ onZ which establishes thatZ 7→ f (I , Z) is continuous,
for any imageI .

Then the compactness assumption on the setV of vector fields, and the continuity of pen1, imply that
pen1(v) is uniformly bounded by a constantC1 for v ∈ V. Also, since pen2(θ) is a continuous function
of Zθ, one has that for any fixedZθ0 ∈ Z and for anyδ > 0, pen2(θ) − pen2(θ0) is uniformly bounded by
a constantC2 whenZθ ∈ B(Z0, δ), and this bound is independent ofI . Therefore, from the inequality
(7.3), we derive that

sup
Z/‖Z−Z0‖∞6δ

| f (I , Z)| 6 Nδ2 + N‖I − Z0‖2∞,N + λ1C1 + λ2C2,

which is dominated by a function ofI . Since it is assumed that
∫

‖I‖2∞,NdP(I) < ∞,

hence, on any neighborhoodBof an imageZ0 ∈ Z, supZ∈B | f (.,Z)| is uniformly bounded by an integrable
function (with respect todP(I)) depending only onI ∈ RN.
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For anyθ ∈ Θ, let Θm be a decreasing sequence of neighborhoods such that∩mΘm = {θ}. Define
fu,m(.) respectivelyfl,m(.) the supremum, resp. the infimum off (.,Zθ) overθ ∈ Θm:

fl,m(I) = inf
θ∈Θm

f (I , Zθ) and fu,m(I) = sup
θ∈Θm

f (I , Zθ).

Continuity implies that limm→+∞( fu,m− fl,m) = f (.,Zθ) − f (.,Zθ) = 0. Dominated Convergence
yields that limm

∫

( fu,m(I) − fl,m(I))dP(I) = 0. Finally, for anyθ ∈ Θ and ǫ > 0, there exists a
neighborhoodB = B(θ) and two functionsfu,B and fl,B such that

∫

( fu,B(I) − fl,B(I))dP(I) 6 ǫ.
Compacity ofΘ implies that there is a subcollection of such neighborhoodsB, which coversΘ, resulting
in a finite number of couple of functions( fu,B, fl,B). Hence for allθ ∈ Θ, write

1
n

n∑

i=1

fl,B(I i) − ǫ 6
1
n

n∑

i=1

f (I i , Zθ) −
∫

f (I , Zθ)dP(I) 6
1
n

n∑

i=1

fu,B(I i) + ǫ.

Since the set of functionsfu,B and fl,B is finite, we have

sup
B

∣
∣
∣
∣
∣
∣
∣

1
n

n∑

i=1

fu,B(I i) −
∫

fu,B(I)dP(I)

∣
∣
∣
∣
∣
∣
∣

6 ǫ,

sup
B

∣
∣
∣
∣
∣
∣
∣

1
n

n∑

i=1

fl,B(I i) −
∫

fl,B(I)dP(I)

∣
∣
∣
∣
∣
∣
∣

6 ǫ,

hence

sup
θ∈Θ

∣
∣
∣
∣
∣
∣
∣

1
n

n∑

i=1

f (I i , Zθ) −
∫

f(I , Zθ)dP(I)

∣
∣
∣
∣
∣
∣
∣

6 2ǫ. (7.4)

From (7.4),{ f (.,Z) : Z ∈ Z} is thus a Glivenko-Cantelli class which shows that (B1) is true,
completing the proof of Theorem 3.2.
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