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ABSTRACT

In this article, we discuss how to use a variety of machine learning methods, e.g. tree bagging, random forest, boost,

support vector machine, and Gaussian mixture model, for building classifiers for electroencephalogram (EEG)

data, which is collected from different brain states on different subjects. Also, we discuss how training data size

influences misclassification rate. Moreover, the number of subjects that contributes to the training data affects

misclassification rate. Furthermore, we discuss how sample entropy contributes to building a classifier. Our results

show that classification based on sample entropy give the smallest misclassification rate. Moreover, two data sets

were collected from one channel and seven channels respectively. The classification results of each data set show

that the more channels we use, the less misclassification we have. Our results show that it is promising to build a

self-adaptive classification system by using EEG data to distinguish idle from active state.
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1 INTRODUCTION

Renowned scientist and philosopher Galvani was the first

person to discover electrical activity in living organisms.

Later Hans Berger successfully recorded electrical ac-

tivity from the human brain using electroencephalogra-

phy (EEG), which measures voltage oscillations [27].

An EEG records the electrical activity of a brain via

electrodes affixed to an individuals scalp. Today, EEG

is one of the popular non-invasive techniques to record

brain activity in clinical and research settings. The de-

velopment of cheap EEG devices, for example, EPOC

from Emotiv and NeuroSky, helps increase the interests

in studying EEG data in different brain states [19].

A human brain is composed of many interrelated but

also anatomically separable areas. Different areas ex-

hibit different features while the brain stays in the same

state [9]. Sometimes EEG records also change spon-

taneously [5]. Thus, a statistical classification method

is a useful tool in analyzing EEG data. Many mod-

ern machine learning algorithms and models have been

successfully utilized in studying features hidden in EEG

data collected from brains in different states. Supervised

machine learning models include tree bagging, boost

[24], random forest [6], and support vector machine [7].

Unsupervised machine learning algorithms, such as hi-

erarchy clustering, are also utilized. Sample entropy,

a method that aims to measure the uncertainty inside

a sequence of data, also helps analyze brain activities

through EEG records [20]. Different machine learning

methods have different bases. Some are based on a deci-

sion tree; others are simply based on distance. Therefore,
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different classifiers exhibit different features. Our previ-

ous work shows that delta waves and theta waves change

significantly between reading and meditation states.

Our experiments have shown that using only delta

waves and theta waves that k-nearest-neighbor classi-

fiers have misclassification rates between 15% and 35%,

and support vector machine classifiers have misclassifi-

cation rates between 15% and 85%. These results indi-

cate that using these two types of brain waves can have

very good classification results, but sometimes they may

not be informative enough [13, 23, 4, 22]. Our exper-

iments shows that besides theta and delta brain waves,

that blink strength, another factor that can be measured

by a Neurosky headset, also has a significant influence

on brain state classification [18]. Based on all these re-

sult, we have designed an EEG data analysis system to

classify brain states. However, it shows collinear it with

different brain waves. As a consequence, when we build

our brain state classifiers, we use brain waves and blink

strength as mutually exclusive features.

In this article, we discuss how to classify EEG data

collected from different brain states. We collected data

from different subjects with their brains in different

states. We used these data to build classification mod-

els and then tested these models using this data. We dis-

cuss how the training data size and the number of sub-

jects influence the precision of our classifiers. We use

data that was collected from 2 different headsets, EPOC

made by Neurosky and EPOC made by Emotiv. The dif-

ference between the 2 headsets is the number of chan-

nels. In Section 2, we discuss performance of different

classification algorithms in different situations using data

collected by a Neurosky headset. In Section 3, we dis-

cuss the potential of using unsupervised machine learn-

ing to extract features from the amplitude of different

brain waves. In Section 4, we demonstrate sample en-

tropy is a good method to classify different brain states.

It works even better with multiple channels.

2 CLASSIFICATION OF MULTIPLE BRAIN

STATES FROM MULTIPLE SUBJECTS

In our work, we use data collected from both Neurosky

headsets and Emotiv headsets. The data collected using

Neurosky headsets is from 19 different subjects (volun-

teers). Neurosky headsets have a build-in system that can

reduce the noise of the hardware and utilize embedded

solutions for the signaling process and output [3, 12]. In

our experiments, volunteers walk in, put on a Neurosky

headset, and do what they are told to do (for example,

play a video game). Data is recorded in a txt file. We

drop the first minute of data, as we believe brains need

time to adjust. Then, for each subject, the recording time

is between 5 and 10 minutes. Thus, for each subject, ev-

ery data entry is between 153600 and 307200 ( sample

rate 512 times per second ). Some subjects, for exam-

ple, subject C, as we will mention in Section 2.3, has

the EEG data collected multiple times. The EEG data of

each subject (volunteer) was acquired at different times

and in 5 different states. Data collected using Emotiv

headsets was from 5 subjects (volunteers) in 3 different

states. Our classification models are built based on tree

bagging, random forest, k-nearest neighbors, boost, and

support vector machine.

2.1 Pooled Subjects with Multiple Brain States

We use pooled subjects with different brain states. By

pooled subjects, we mean that data collected from the

same subjects can be in a training data set, testing data

set, and validation data set. We put all the data together

regardless of when and who it was collected from, then

we train our models and do classifications.

Data from 19 different subjects were collected using

Neurosky headsets. Some data was collected in 2 dif-

ferent brain states, while other data was collected in 3

different brain states, for comparison. Our models used

11 variables: attention, blink strength, meditation, alpha

low (8-9Hz), alpha high (10-12Hz), beta low (13-17Hz),

beta high (18-30Hz), gamma low (31-40Hz), gamma

mid (41-50Hz), delta (1-3Hz), and theta (4-7Hz).

We firstly used the validation data set to tune the pa-

rameters in the different models, then we used the train-

ing data set to train our models, and finally we plugged

in the testing data set to see how the classification results

differed from the true classes (Figure 1). Our models and

parameters are:

• tree bagging

– number of trees

• random forest

– number of trees

– number of variables

• k-nearest neighbor

– number of neighbors

• boost

– number of trees

– shrinkage in every step

– interaction depth

• support vector machine

– kernels functions (linear, polynomial, sig-

moid, and radial kernels), and parameters in

kernel functions

– restrictions on boundary (cost, ǫ)
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Table 1: Classification for Pooled Subjects with 3 Different Brain States

Parameter: tree number=5000;

shrinkage=0.0019; interaction depth=5;

Misclassification Rate = 0.001423

Boost
Predicted States

video meditation reading

T
ru

e

video 530698 633 253

meditation 542 493966 99

reading 368 228 465026

Parameter: tree number=5000;

Misclassification Rate = 6.837× 10−5

Bagging
Predicted States

video meditation reading

T
ru

e

video 494604 3 0

meditation 0 465562 60

reading 11 28 531545

Parameter: tree number=5000; number of vars=3

Misclassification Rate = 6.64× 10−5

Random Forest
Predicted States

video meditation reading

T
ru

e

video 531545 11 28

meditation 0 494607 0

reading 60 0 465562

Parameter: k=4

Misclassification Rate = 8.647× 10−5

KNN
Predicted States

video meditation reading

T
ru

e

video 531516 0 68

meditation 61 494546 0

reading 0 0 465622

Parameter: radial core, γ = 1, cost = 20, ǫ = 0.1;

Misclassification Rate = 0.042

SVM
Predicted States

video meditation reading

T
ru

e

video 133613 3882 1249

meditation 1258 136200 1372

reading 1506 2517 21208
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Figure 1: Prosedure of building a classifier

Detailed results regarding confusion matrices, param-

eters and misclassification rates are in Table 1 and Table

2. We also found that kernel functions have little im-

pact on the misclassification rates of support vector ma-

chines ( < 2%, regardless of changing the kernel func-

tions or the parameters in kernel functions), but choosing

good restriction conditions for the boundary can largely

improve the classification result. Thus, we used the ra-

dial kernel here. It is easy to see that they all have very

low misclassification rates (most of them < 4.2%; only

boost for two brain states has a misclassification rate of

17%), regardless of whether there are 2 (in Table 2 ) brain

states. Therefore, we conclude that pooled subjects mod-

els have very good classification results.

2.2 Different Subjects in Training and Testing

From the success that we mention in our previous sec-

tion, it is natural to be curious as to what will happen if

the training and testing data are from different subjects.

Still using the previous models with the established pa-

rameters, the results worsened. The data we used to train

our models was collected from 6 subjects. Then we used

data from 6 other subjects to test our models. Every

classification algorithm was run twice. Each time, we

randomly chose 6 training subjects and used the rest as

testing subjects. Also, we noticed that there were some

continuous entries of data that were the same. Since we

were not using any classification method related to time

series, we removed these repeated entries, but kept one

to accelerate the calculation speed.

Confusion matrices are in Table 3. The results are not

ideal, as the misclassification rates increases to around

35%; the highest misclassification rate is 52.9%, which

is far bigger than the misclassification rate reported in

2.1.

In order to decrease the misclassification rate, we used

the majority vote here. That is, we used classification

Table 2: Classification for Pooled Subjects with 2

Brain States

Misclassification Rate = 0.015

Tree Bagging
Predicted States

gaming idle

T
ru

e gaming 42782 744

idle 545 42672

Misclassification Rate = 0.172

Boost
Predicted States

gaming idle

T
ru

e gaming 37482 6047

idle 8931 34286

Misclassification Rate = 0.024

Support Vector Machine
Predicted States

gaming idle

T
ru

e gaming 41404 2125

idle 0 43217

results from tree bagging, boost, and support vector ma-

chine to do a majority vote. For example, for a certain

entry of testing data, both tree bagging and boost clas-

sified it as meditation, while the support vector machine

assigned it as reading, then majority vote assigned it to

be in the meditation class. The confusion matrix is in

Table 4. The misclassification rate decreases to 36.7%.

It is better, but not significantly.

As shown in the Table 4, it is clear that most of the

mistakes are made when classifying a subject that is in

a meditation state, as there is only 35% correct classifi-

cation of the test data from meditation. This is reason-

able since all the subjects are not professionals in med-

itating. Thus, we will disregard meditation data in any

future analysis. Moreover, the size of the training data

set influences the misclassification rates. We provide a

graph showing how misclassification rates change with

increasing training data set sizes in Figure 2. Here, the

data size increases five times, while the misclassification

rate decreases 3%.

2.3 Training and Testing from the Same Sub-
ject

In this section, we investigate how the size of the train-

ing data set influences the misclassification rate. We fo-

cus on what if the training and testing data are from the

same subject. From section 2.1, we assume that it should

be good. Then we use data collected in 2015 from sub-

ject C to see how it works. We use data collected using

Neurosky headsets from different times from subject C,

and we use tree bagging, boost, support vector machine,

and majority votes based on the previous three models to
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Table 3: Different Classifications for Different Subjects

Misclassification Rate = 0.529
Correct Rate for True Brain State is Watch Video = 0.534
Correct Rate for True Brain State is Meditation = 0.357
Correct Rate for True Brain State is Reading = 0.901

Bagging
Predicted States

watch video meditation reading

T
ru

e

video 613 213 322

meditation 587 382 100

reading 230 154 426

Misclassification Rate = 0.350
Correct Rate for True Brain State is Watch Video = 0.708
Correct Rate for True Brain State is Meditation = 0.357
Correct Rate for True Brain State is Reading = 0.949

Boost
Predicted States

watch video meditation reading

T
ru

e

watch video 813 335 0

meditation 34 382 635

reading 0 42 778

Misclassification Rate = 0.372
Correct Rate for True Brain State is Watch Video = 0.687
Correct Rate for True Brain State is Meditation = 0.355
Correct Rate for True Brain State is Reading = 0.901

SVM
Predicted States

watch video meditation reading

T
ru

e

watch video 789 338 68

meditation 56 379 634

reading 2 79 739

Table 4: Majority Vote Classification for Different Subjects

Misclassification Rate = 0.367
Correct Rate for True State is Watch Video = 0.687
Correct Rate for True State is Meditation = 0.333
Correct Rate for True State is Reading = 0.946

Confusion Matrix
Predicted States

video meditation reading

T
ru

e

video 789 308 51

meditation 56 356 657

reading 2 42 776
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Figure 2: Misclassification rate with different training data size

(Explanation: This graph describes different classification methods’ behavior towards increasing in training data

size. Pentagon stands for misclassification rate using boost classifier, which gives the highest misclassification rate

here. Rectangles are for support vector machine classifiers. Support vector machine classification is performed

twice with different training and testing data that are collected from different subjects. Circles are misclassification

rate given by majority votes based on tree bagging, boost, and support vector machine. Tree bagging, which marked

by triangles, are the best classifier here. The misclassification rate is close to 0.)

Figure 3: Misclassification rate with different training data size, subject C

(Explanation: In this graph, we compare misclassification rate with different size training data sets. Here, both

training and testing data set are collected from the same subject, which is subject C. Subject C has been collected

EEG data of 2 different brain states for multiple times. Here we change training data set by combining a different

number of data sets collected from subject C. The testing data set is collected from a different time from training

data set. Majority vote is based on tree bagging, boost, and support vector machine.)
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Figure 4: Misclassification rate with different training data size for support vector machine, subject A, B, C,

D, E, H, J

(Explanation: In this graph, we present how training data size influences misclassification rate. Difference in training

data set is result in difference in time length when collecting data, and in different combination of raw data set.)

Figure 5: Misclassification rate with different training data size for support vector machine, subject A, B, C,

D, E, H, J

(Explanation: Here we use subject C as our test data set. Training sets combination are as follows:

Subjects: 2 3 4 5 6

E & H A, E & H A, B, E & H A, B, D, E & H A, B, D, J, E & H
)
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see what happens when the training data size increases.

Figure 3 illustrates that support vector machine classi-

fications always give the highest misclassification rate

(about 20% more). This implies the difference between

brain states might not be directly associated with Eu-

clidean distances between observation entries.

It can be seen that with the increasing size of train-

ing data, the support vector machine has the most sig-

nificant decrease in misclassification rates. It is an in-

teresting observation. We further investigate whether it

is true among different subjects. We use data collected

from subjects A, B, D, E, H, and J to see whether there

is a similar pattern. Figure 4 shows a pattern that with

the increasing training data set size, the misclassification

rate for the support vector machine decreases by 41% at

most. This result is significantly better than our previous

result using only theta waves and delta waves.

2.4 Number of Subjects includes in Training
Data

From the sections 2.1, 2.3, we assume that with increas-

ing the number of subjects in the training data set, that

the misclassification rate decreases. This is reasonable

because the difference between sections 2.1 and 2.3, is

how many subjects contribute to the training data set.

Figure 5 gives more information about our experiment

results. It is an interesting observation that with different

training and testing data sets, the performance of differ-

ent models changes.

For example, the support vector machine gives the best

classification for this data set. The most significant de-

crease is given by a majority vote. Its misclassification

rate decreases by 23% at most. However, it is also ob-

served that the misclassification rate does not necessarily

decrease when the number of subjects used in the train-

ing data set increases. This might imply that there are

still lots of individual differences between different sub-

jects.

3 UNSUPERVISED MACHINE LEARNING

In this section, we consider unsupervised learning using

EEG data. The reason we consider this situation is based

on if the test data come from a class other than the classes

presented in the training data. For example, in the train-

ing data, we could only have gaming and idle for two

different brain states. We want to know whether it is pos-

sible to develop a classifier that is capable of reporting a

state other than known states.

Consider the audacity of every different band of brain

wave as dimensional coordinates, and then it is natu-

ral to consider whether it is possible to classify a data

entry based on distance in a high-dimension Euclidean

space. Following this idea, we use k-means clustering

[28, 25]. K-means clustering is a vector quantization

method grouping similar data entries [26, 21].Compared

to supervised learning, it is only based on the feature that

the data entry presented, but it is not related to the group

it is supposed to be in. Here, we use leave-one-out cross-

validation to see the performance of k-means clustering

[1]. Detailed results are in Table 5.

Since we have no idea what might be the best number

of clusters, we try from 2 to 6 to find the best parameters

[25]. However, to our disappointment, it seems that lit-

tle pattern exists. The two brain states are almost evenly

distributed in different clusters, which is not quite dif-

ferent from random guessing. Thus, we conclude that

k-means is not a good method to identify differences be-

tween these 2 known different brain states (gaming &

idle). Compared to other studies showing k-means clus-

tering is good at this might indicate that differences be-

tween normal brain states are more subtle compared to

differences between neural spike or other pathological

situations, or that other information, such as EOG (elec-

trooculogram) or other filters, is needed in this situation

[17, 14, 10]. Thus, here we conclude that unsupervised

learning, which leaves out some information compared

to supervised learning, is less effective. This result is

consistent with the result we will present in our next sec-

tion, where unsupervised learning performs well with ex-

tra feature extraction, more channels of EEG signal, and

further assumptions.

4 SAMPLE ENTROPY: MACHINE LEARNING

BASED ON FEATURE

In this section, we will discuss using data collected from

Neurosky headsets and Emotiv headsets. The most sig-

nificant difference between these headsets is the number

of channels, namely, the number of locations on the head

where data is collected. While Neurosky headsets collect

only one channel, Emotiv headsets collect 16 channels.

Here we use the well connected seven channels from

Emotiv headsets. We calculate the sample entropy of an

individual with given brain states in 1 minute, and then

we use sample entropy to do the classification. Classifi-

cation models include tree bagging, boost, support vector

machine, and the Gaussian mixture model.

Before calculating sample entropy, we normalize the

data in each variable. Normalization is defined as fol-

lows:

Normalized(ei) =
ei − Emin

Emax − Emin

(1)

where Emin the minimum value for variable E and Emax

the maximum value for variable E.

Furthermore, we perform hierarchy clustering on sam-

ple entropy results to have a more thorough view of them.
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Table 5: Data Entries Located in Different Clusters

Created by K-means Clustering

Clusters Number
True Brain State

gaming idle

2
1 557594 536260

2 1910658 1931822

3

1 459710 424656

2 1650628 1596870

3 357914 446556

4

1 1442952 1384117

2 378640 360144

3 357914 446556

4 288746 277265

5

1 294690 276753

2 350480 310992

3 1325449 1241404

4 238535 287085

5 259098 351848

6

1 1325449 1242404

2 200638 284776

3 288234 276753

4 97884 111604

5 378640 360144

6 177407 193401

The Emotiv data were collected from 5 different sub-

jects. There are three different brain states in the col-

lected data: talking, idle, and meditating, which are la-

beled as 1, -1, and 0, respectively. For Emotiv headsets,

the sampling rate is 128 times per second. Thus, every

sample of entropy is based on 7680 ( = 128*60 sample

entries collected every minute) consecutive data entries.

To keep up the quality of our data, we chose only the

seven channels that are well connected to be in our train-

ing and testing data sets.

The Neurosky data were collected from 5 different

subjects. There are four different brain states in the train-

ing and testing data: idle, gaming, from idle to gaming,

and from gaming to idle, which are labeled as 0, 1, 2, and

3, respectively. For Emotiv headsets, the sampling rate

is 512 times per second. Thus, every sample of entropy

is based on 30720 (=512*60, sample entries collected in

every minute) consecutive data entries.

4.1 Classification Based on Entropy

We split the data into two parts: training and testing.

We used the training data to train our models and then

plugged in the testing data to see what the prediction

results would be. Confusion matrices of data collected

through Neurosky headsets are in Table 6 and Figure 6

and Figure 7 (misclassification rate between 52% and

40%; lowest misclassification rate given by majority

vote), Emotiv headset are in Table 7 and Figure 8 and

Figure 9 (all misclassification rate = 0).

From the two figures, overlapping between different

classes of data collected from Neurosky headsets is far

more significant than data collected from Emotiv head-

sets. Apparently, misclassification rates for Neurosky

data are higher than for Emotiv data. It is clear that the

latter one gives a much better result than the former one,

even though the former one is not bad.

4.2 Hierarchy Clustering Based on Entropy

We further perform hierarchy clustering on sample en-

tropy to have a more thorough picture of their features.

Hierarchy clustering results presented in dendrograms

are in Figure 10. From here, it is clear that sample en-

tropy calculated from data collected using Emotiv head-

sets is far better than that using Neurosky headsets, as

there are lots of mix-ups in the Neurosky data between

different classes. This is reasonable since the former has

seven channels and the latter has only one channel.

5 DISCUSSION

In this paper, we compare different classifiers in classify-

ing EEG data collected from different brain states. In the

beginning, we base our classifiers using spectral ampli-

tude contents of EEG beta. Supervised machine learning

classifiers perform much better than unsupervised learn-

ing classifiers.

We also notice that, with increasing number of sub-

jects in the training data, the misclassification rate may

or may not go down. However, increasing the size of

the training set obtained from the same subject, the mis-

classification rates, especially misclassification for sup-

port vector machines, go down significantly. Compared

to other works that tried to identify differences between

different brain states or emotion situations, we can deal

with larger data sets [11, 15]. Also, we used R in all

our classifications. And since R can be implanted into

Neurosky headset systems, we anticipate that with a self-

adaptive system, our classifiers will have very low mis-

classification rates identifying differences between gam-

ing and idle two brain states. Our experiments also show

that performance of classifiers is related to the training

data set. Sometimes tree-based methods have better clas-

sification results; sometimes other distance based meth-

ods work better. Majority vote, which combines all the

result together, may or may not give the smallest mis-

classification rate for a single case. However, it is stable

in general.

Other studies have shown that different methods in

studying brain help improving childrens study[2], and
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Figure 6: Scatter Plot of Sample Entropy (Collected using Neurosky Headset)

(Explanation: blue dots: idle; purple cross: gaming; red diamond: idle to gaming; gree triangle: gaming to idle.

Variables are raw data reported by Neurosky headset)

Figure 7: Scatter Plot of Sample Entropy (Collected using Neurosky Headset)
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Figure 8: Scatter Plot of Sample Entropy (Collected using Emotiv Headset)

(Explanation: blue dots: talking; red diamond: idle; gree triangle: meditation. 7 variables are 7 different channel’s

name, and raw values reported by Emotiv headset.)

Figure 9: Scatter Plot of Sample Entropy (Collected using Emotiv Headset)
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Table 6: Classification Neurosky Data Sample En-

tropy

Tree Bagging
Predicted States

0 1 2 3

T
ru

e 0 9 0 0 0

1 1 5 3 0

2 2 0 4 2

3 2 2 1 4

Gaussian Mixture Model
Predicted States

0 1 2 3

T
ru

e 0 8 0 1 1

1 1 5 3 0

2 2 1 4 1

3 2 1 5 1

Boost
Predicted States

0 1 2 3

T
ru

e 0 7 1 1 0

1 1 4 3 1

2 1 2 3 2

3 2 3 1 3

Support Vector Machine
Predicted States

0 1 2 3

T
ru

e 0 9 0 0 0

1 1 4 4 0

2 2 1 5 0

3 4 0 4 1

Majority Vote
Predicted States

0 1 2 3

T
ru

e 0 9 0 0 0

1 1 5 3 0

2 3 1 3 1

3 2 1 2 4

0: idle; 1: gaming; 2: idle to gaming; 3: gaming to idle

we intend to use our study to help people bring their brain

does give the smallest misclassification rate between ac-

tive to inactive states, and thus better sleep. Compared to

other studies, data mining algorithms here are closer to

being black boxes, and thus possibly be more flexible.

Previous research shows that sample entropy is help-

ful in the diagnosis of pathological conditions, such as

epilepsy or other seizures [16, 8]. Here, we demon-

strate that sample entropy is also a good tool to iden-

tifying changes in brain states. Adding extra channels

also helps identify differences, as classification results

based on seven channels is better than classification re-

sults based on one channel.

Table 7: Classification of Emotiv Data Sample En-

tropy

Tree Bagging
Predicted States

idle meditation talking

T
ru

e idle 5 0 0

meditation 0 5 0

talking 0 0 5

Gaussian Mixture
Predicted States

idle meditation talking

T
ru

e idle 5 0 0

meditation 0 5 0

talking 0 0 5

Boost
Predicted States

idle meditation talking

T
ru

e idle 5 0 0

meditation 0 5 0

talking 0 0 5

SVM
Predicted States

idle meditation talking

T
ru

e idle 5 0 0

meditation 0 5 0

talking 0 0 5

Majority Vote
Predicted States

idle meditation talking

T
ru

e idle 5 0 0

meditation 0 5 0

talking 0 0 5

6 CONCLUSIONS & FUTURE WORK

From our previous sections, we conclude that for dif-

ferent data sets, different models have different perfor-

mances. We conclude that majority vote, though maybe

not the best classifier for each situation, is the safest way

to do a classification in general. By increasing the num-

ber of subjects and increasing the training data size, the

misclassification rates decrease. Also, unsupervised ma-

chine learning is not a good method here, since k-means

could barely tell the difference between 2 different brain

states.

Sample entropy works well. This suggests that brains

in different states have different uncertainty patterns, and

entropy is a good tool to identify the differences.

Part of our future work will be to test different types

of non-intrusive EEG headsets, preferably which have

more than one channel. We are also aiming at building

an online self-adaptive system where users can upload

their data so that they can build a classifier that is the

most suitable for their brain states.
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Figure 10: Hierarchy Clustering for Sample Entropy

(Explanation: 0: idle; 1: game; 2: idle to game; 3: game to idle)
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