Statistical manifolds with almots contact structures and its statistical submersions

Kazuhiko Takano

Abstract

In this paper, we discuss statistical manifolds with almost contact sturctures. We define a Sasaki-like statistical manifold. Moreover, we consider Sasaki-like statistical submersions, and we study Sasaki-like statistical submersion with the property that the curvature tensor with respect to the affine connection of the total space satisfies the condition (2.12).

KEY words: affine connection, conjugate connection, statistical manifold, statistical submersion, semi-Riemannian manifold, semi-Riemannian submersion. 2000 Mathematics Subject Classification: 53C25, 53C50, 53A15.

1 Introduction

Let M and B be two Riemannian manifolds of class C^{∞}. A Riemannian submersion $\pi: M \rightarrow B$ is a mapping of M onto B such that π has maximal rank and π_{*} preserves lengths of horizontal vectors ([5], [6], [11], [17]). If $\pi: M \rightarrow B$ is a Riemannian submersion such that M is a Sasakian manifold with almost contact structure (ϕ, ξ, η), each fiber is a ϕ-invariant submanifold of M and tangent to the vector ξ, then π is said to be a Sasakian submersion ([7], [8], [13], [16]). If π is a Sasakian submersion, then B is Kählerian and each fiber is Sasakian. B. H. Kim ([8]) and the author ([13]) investigated a Sasakian submersion with vanishing contact Bochner curvature tensor. It is known that ([7], [13])
Theorem A. Let $\pi: M \rightarrow B$ be a Sasakian submersion. If M is a space of constant ϕ-holomorphic sectional curvature c, then B is of constant holomorphic sectional curvature $c+3(\leq 0)$.

Next, let M and B be two semi-Riemannian manifolds. A semi-Riemannian submersion $\pi: M \rightarrow B$ is a submersion such that all fibers are semi-Riemannian submanifolds of M, and π_{*} preserves lengths of horizontal vectors ([12]). Recently, N. Abe and K. Hasegawa ([1]) studied an affine submersion with horizontal distribution. They investigated when the total space is the statistical manifold. Also, the author ([14]) studied statistical manifolds with almost complex structure and
its statistical submersions.
Let M be a manifold with a non-degenerate metric g and a torsion-free affine connection ∇. If ∇g is symmetric, then (M, ∇, g) is called a statistical manifold. In [9], M. Noguchi studied statistical manifolds. On the statistical manifold, we define another connection, called the conjugate (or dual) connection ([3], [10]). This concept was widely studied in information geometry ([2], [3]). The statistical models in information geometry have a Fisher metric as Riemannian metric, and admit an affine connection which is constructed from the mean of the probability distribution. This affine connection is called α-connection, and conjugate relative to the Fisher metric is the so called $(-\alpha)$-connection, where α is a real number. The 0 -connection is the Levi-Civita connection with respect to the Fisher metric. Also, O. E. Barndorff-Nielsen and P. E. Jupp ([4]) studied a Riemannian submersion from the viewpoint of statistics. In [15], we studied the statistical submersion of the space of the multivariate normal distribution.
In this paper, we study a statistical submersion. In §2, we introduce statistical manifolds with almost complex structure (resp. almost contact metric manifold), and define a Kähler-like (resp. Sasaki-like) statistical manifold. In §3, we describe a semi-Riemannian submersion with affine connection and define a statistical submersion. We consider a Sasaki-like statistical submersion in $\S 4$. In $\S 5$, we discuss Sasaki-like statistical submersions such that the curvature tensor of the total space satisfies the type (2.12) with c and show results similar to Theorem A.
It is a great pleasure to thank the Department of Mathematics, Technische Universität Berlin, for the hospitality during a visit in June 2003, and Professor U. Simon for comments and suggestions.

2 Statistical manifolds with certain structures

An n-dimensional semi-Riemannian manifold is a smooth manifold M^{n} equipped with a metric tensor g, where g is a symmetric nondegenerate tensor field on M of constant index. The common value ν of index g on M is called the index of $M(0 \leq \nu \leq n)$ and we denote a semi-Riemannian manifold by M_{ν}^{n}. If $\nu=0$, then M is a Riemannian manifold. For each $p \in M$, a tangent vector E in M is spacelike (resp. null, timelike) if $g(E, E)>0$ or $E=0$, (resp. $g(E, E)=0$ and $E \neq 0, g(E, E)<0)$. Let \mathbf{R}_{ν}^{n} be an n-dimensional real vector space with an inner product of signature ($\nu, n-\nu$) given by

$$
\langle x, x\rangle=-\sum_{i=1}^{\nu} x_{i}^{2}+\sum_{i=\nu+1}^{n} x_{i}^{2}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the natural coordinate of \mathbf{R}_{ν}^{n}. \mathbf{R}_{ν}^{n} is called an n-dimensional semi-Euclidean space.

Let M be a semi-Riemannian manifold. Denote a torsion-free affine connection by ∇. The triple (M, ∇, g) is called a statistical manifold if ∇g is symmetric. For the statistical manifold (M, ∇, g), we define another affine connection ∇^{*} by

$$
\begin{equation*}
E g(F, G)=g\left(\nabla_{E} F, G\right)+g\left(F, \nabla_{E}^{*} G\right) \tag{2.1}
\end{equation*}
$$

for vector fields E, F and G on M. The affine connection ∇^{*} is called conjugate (or dual) to ∇ with respect to g. The affine connection ∇^{*} is torsion-free, $\nabla^{*} g$ is symmetric and satisfies $\left(\nabla^{*}\right)^{*}=\nabla$. Clearly, the triple $\left(M, \nabla^{*}, g\right)$ is statistical. We denote by R and R^{*} the curvature tensors on M with respect to the affine connection ∇ and its conjugate ∇^{*}, respectively. Then we find

$$
g(R(E, F) G, H)=-g\left(G, R^{*}(E, F) H\right)
$$

for vector fields E, F, G and H on M, where $R(E, F) G=\left[\nabla_{E}, \nabla_{F}\right] G-\nabla_{[E, F]} G$.
An almost complex structure on a manifold M is a tensor field ϕ of type $(1,1)$ such that $\phi^{2}=-I$, where I stands for the identity transformation. An almost complex manifold is such a manifold with a fixed almost complex structure. An almost complex manifold is necessarily orientable and must have even dimension. We consider the semi-Riemannian manifold on the almost complex manifold M. If ϕ preserves the metric g, that is,

$$
\begin{equation*}
g(\phi E, \phi F)=g(E, F) \tag{2.2}
\end{equation*}
$$

for vector fields E and F on M, then (M, g, ϕ) is an almost Hermitian manifold. Now, we consider the semi-Riemannian manifold (M, g) with the almost complex structure ϕ which has another tensor field ϕ^{*} of type $(1,1)$ satisfying

$$
\begin{equation*}
g(\phi E, F)+g\left(E, \phi^{*} F\right)=0 \tag{2.3}
\end{equation*}
$$

for vector fields E and F. Then (M, g, ϕ) is called an almost Hermite-like manifold. We see that $\left(\phi^{*}\right)^{*}=\phi,\left(\phi^{*}\right)^{2}=-I$ and $g\left(\phi E, \phi^{*} F\right)=g(E, F)$. According to $\phi^{2}=-I$, the tensor field ϕ is not symmetric relative to g. Thus $\phi+\phi^{*}$ does not vanish everywhere. The tensor field $\phi-\phi^{*}$ is symmetric and $\phi+\phi^{*}$ is skew symmetric with respect to g. We consider the statistical manifold on the almost Hermite-like manifold. If ϕ is parallel with respect to ∇, then (M, ∇, g, ϕ) is called a Kähler-like statistical manifold. Also, we find $R(E, F) \phi=\phi R(E, F)$. By virtue of (2.3), we get

$$
\begin{equation*}
g\left(\left(\nabla_{G} \phi\right) E, F\right)+g\left(E,\left(\nabla_{G}^{*} \phi^{*}\right) F\right)=0 \tag{2.4}
\end{equation*}
$$

for vector fields E, F and G on M. Hence (M, ∇, g, ϕ) is a Kähler-like statistical manifold if and only if so is $\left(M, \nabla^{*}, g, \phi^{*}\right)$.

For vector fields E, F and G on the Kähler-like statistical manifold, we consider the curvature tensor R with respect to ∇ such that

$$
\begin{align*}
R(E, F) G=\frac{c}{4}[& g(F, G) E-g(E, G) F-g(F, \phi G) \phi E+g(E, \phi G) \phi F \tag{2.5}\\
& +\{g(E, \phi F)-g(\phi E, F)\} \phi G]
\end{align*}
$$

where c is a constant. Changing ϕ for ϕ^{*} in (2.5), we get the curvature tensor R^{*}.
Remark 2.1. If M is a Kählerian manifold, then M, satisfying (2.5), is a space of constant holomorphic sectional curvature c.
Example 2.1. Let $\mathbf{R}_{n}^{2 n}$ be a $2 n$-dimensional semi-Euclidean space with a local coordinate system $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ which admits the following almost complex structure ϕ, the metric g

$$
\phi=\left(\begin{array}{cc}
0 & \delta_{i j} \\
-\delta_{i j} & 0
\end{array}\right), \quad g=\left(\begin{array}{cc}
2 \delta_{i j} & 0 \\
0 & -\delta_{i j}
\end{array}\right)
$$

and the flat affine connection ∇. It is easy to see that $\left(\mathbf{R}_{n}^{2 n}, \nabla, g, \phi\right)$ is a Kähler-like statistical manifold. The conjugate is flat and

$$
\phi^{*}=\frac{1}{2}\left(\begin{array}{cc}
0 & -\delta_{i j} \\
4 \delta_{i j} & 0
\end{array}\right)
$$

Next, let M be an odd dimensional manifold and ϕ, ξ, η be a tensor field of type $(1,1)$, a vector field, a 1-form on M respectively. If ϕ, ξ and η satisfy the following conditions

$$
\begin{equation*}
\eta(\xi)=1, \quad \quad \phi^{2} E=-E+\eta(E) \xi \tag{2.6}
\end{equation*}
$$

for arbitrary vector field E on M, then M is said to have an almost contact structure (ϕ, ξ, η) and is called an almost contact manifold.
The semi-Riemannian manifold (M, g) is called an almost contact metric manifold if

$$
\begin{equation*}
g(\phi E, \phi F)=g(E, F)-\eta(E) \eta(F) \tag{2.7}
\end{equation*}
$$

for vector fields E and F on M. We consider the semi-Riemannian manifold (M, g) with the almost contact structure (ϕ, ξ, η) which has an another tensor field ϕ^{*} of type (1,1) satisfying

$$
\begin{equation*}
g(\phi E, F)+g\left(E, \phi^{*} F\right)=0 \tag{2.8}
\end{equation*}
$$

for vector fields E and F. Then (M, g, ϕ, ξ, η) is called an almost contact metric manifold of certain kind. Obviously, we find $\left(\phi^{*}\right)^{2} E=-E+\eta(E) \xi$ and

$$
\begin{equation*}
g\left(\phi E, \phi^{*} F\right)=g(E, F)-\eta(E) \eta(F) . \tag{2.9}
\end{equation*}
$$

Because of (2.6), the tensor field ϕ is not symmetric with respect to g. This means that $\phi+\phi^{*}$ does not vanish everywhere. Equations $\phi \xi=0$ and $\eta(\phi E)=0$ hold on the almost contact manifold. We obtain $\phi^{*} \xi=0$ and $\eta\left(\phi^{*} E\right)=0$ on the almost contact metric manifold of certain kind.
Now, we consider the statistical manifold on the almost contact metric manifold of certain kind. If

$$
\begin{equation*}
\nabla_{E} \xi=-\phi E, \quad\left(\nabla_{E} \phi\right) F=g(E, F) \xi-\eta(F) E, \tag{2.10}
\end{equation*}
$$

then $(M, \nabla, g, \phi, \xi, \eta)$ is called a Sasaki-like statistical manifold. From $\eta(\xi)=1$, we find $\eta\left(\nabla_{E}^{*} \xi\right)=0$. Operating ∇_{E} to $\eta(\phi F)=0$, we get $g(E, F)-\eta(E) \eta(F)+$ $g\left(\phi F, \nabla_{E}^{*} \xi\right)=0$. Moreover, changing F to ϕF, we see $\nabla_{E}^{*} \xi=-\phi^{*} E$. Hence we have

Lemma 2.1. The pair (M, g, ϕ, ξ, η) is an almost contact metric manifold of certain kind if and only if so is $\left(M, g, \phi^{*}, \xi, \eta\right)$. Moreover, $(M, \nabla, g, \phi, \xi, \eta)$ is a Sasaki-like statistical manifold if and only if so is $\left(M, \nabla^{*}, g, \phi^{*}, \xi, \eta\right)$.

On the Sasaki-like statistical manifold, we get

$$
\begin{align*}
& R(E, F) \phi G-\phi R(E, F) G \tag{2.11}\\
& =-g(F, G) \phi E+g(E, G) \phi F+g(F, \phi G) E-g(E, \phi G) F
\end{align*}
$$

for vector fields E, F, G. We consider the curvature tensor R with respect to ∇ such that

$$
\begin{align*}
R(E, F) G= & \frac{1}{4}(c+3)\{g(F, G) E-g(E, G) F\} \tag{2.12}\\
+ & \frac{1}{4}(c-1)[\eta(E) \eta(G) F-\eta(F) \eta(G) E+g(E, G) \eta(F) \xi \\
& -g(F, G) \eta(E) \xi-g(F, \phi G) \phi E+g(E, \phi G) \phi F \\
& +\{g(E, \phi F)-g(\phi E, F)\} \phi G]
\end{align*}
$$

where c is a constant. Changing ϕ for ϕ^{*} in (2.12), we get the curvature tensor R^{*}.
Remark 2.2. If M is a Sasakian manifold, then M satisfying (2.12) is a space of constant ϕ-holomorphic sectional curvature c.

A Killing vector field on a statistical manifold is a vector field E for which the Lie derivative of the metric tensor vanishes, that is, $\mathcal{L}_{E} g=0$, where \mathcal{L} is the Lie derivative. Then we have
Proposition 2.1. Let (M, ∇, g) be a statistical manifold. Then the following conditions on a vector field E are equivalent:
(1) E is Killing, that is, $\mathcal{L}_{E} g=0$,
(2) $E g(F, G)=g([E, F], G)+g(F,[E, G])$ for vector fields F, G on M,
(3) $g\left(\nabla_{F} E, G\right)+g\left(F, \nabla_{G}^{*} E\right)=0$ for vector fields F and G on M.

Hence, we have
Lemma 2.2. The structure vector field ξ is Killing on the Sasaki-like statistical manifold.
Next, we give an example of a Sasaki-like statistical manifold such that the curvature tensor with respect to the affine connection satisfies the equation (2.12).
Example 2.2. Let $\mathrm{R}_{m}^{2 m+1}$ be a $(2 m+1)$-dimensional affine space with the standard coordinate $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z\right)$. We define a semi-Riemannian metric g on $\mathrm{R}_{m}^{2 m+1}$ by

$$
g=\left(\begin{array}{ccc}
2 \delta_{i j}+y_{i} y_{j} & 0 & -y_{i} \\
0 & -\delta_{i j} & 0 \\
-y_{j} & 0 & 1
\end{array}\right)
$$

We define the affine connection ∇ by

$$
\begin{aligned}
& \nabla_{\partial_{x_{i}}} \partial_{x_{j}}=-y_{j} \partial_{y_{i}}-y_{i} \partial_{y_{j}}, \\
& \nabla_{\partial_{x_{i}}} \partial_{y_{j}}=\nabla_{\partial_{y_{j}}} \partial_{x_{i}}=y_{i} \partial_{x_{j}}+\left(y_{i} y_{j}-2 \delta_{i j}\right) \partial_{z}, \\
& \nabla_{\partial_{x_{i}}} \partial_{z}=\nabla_{\partial_{z}} \partial_{x_{i}}=\partial_{y_{i}}, \\
& \nabla_{\partial_{y_{i}}} \partial_{z}=\nabla_{\partial_{z}} \partial_{y_{i}}=-\partial_{x_{i}}-y_{i} \partial_{z}, \\
& \nabla_{\partial_{y_{i}}} \partial_{y_{j}}=\nabla_{\partial_{z}} \partial_{z}=0,
\end{aligned}
$$

where $\partial_{x_{i}}=\partial / \partial x_{i}, \partial_{y_{i}}=\partial / \partial y_{i}$ and $\partial_{z}=\partial / \partial z$. Then its conjugate ∇^{*} is given as follows:

$$
\begin{aligned}
& \nabla_{\partial_{x_{i}}}^{*} \partial_{x_{j}}=2 y_{j} \partial_{y_{i}}+2 y_{i} \partial_{y_{j}} \\
& \nabla_{\partial_{x_{i}}}^{*} \partial_{y_{j}}=\nabla_{\partial_{y_{j}}}^{*} \partial_{x_{i}}=-\frac{y_{i}}{2} \partial_{x_{j}}-\frac{1}{2}\left(y_{i} y_{j}-2 \delta_{i j}\right) \partial_{z} \\
& \nabla_{\partial_{x_{i}}}^{*} \partial_{z}=\nabla_{\partial_{z}}^{*} \partial_{x_{i}}=-2 \partial_{y_{i}} \\
& \nabla_{\partial_{y_{i}}}^{*} \partial_{z}=\nabla_{\partial_{z}}^{*} \partial_{y_{i}}=\frac{1}{2} \partial_{x_{i}}+\frac{y_{i}}{2} \partial_{z} \\
& \nabla_{\partial_{y_{i}}}^{*} \partial_{y_{j}}=\nabla_{\partial_{z}}^{*} \partial_{z}=0
\end{aligned}
$$

Now we define ϕ, ξ and η by

$$
\phi=\left(\begin{array}{ccc}
0 & \delta_{i j} & 0 \\
-\delta_{i j} & 0 & 0 \\
0 & y_{j} & 0
\end{array}\right), \quad \xi=\partial_{z}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

and $\eta=\left(-y_{1}, 0,-y_{2}, 0, \ldots,-y_{m}, 0,1\right)$. Then we can verify that $\left(\mathbf{R}_{m}^{2 m+1}, \nabla, g, \phi, \xi, \eta\right)$ is a Sasaki-like statistical manifold such that the curvature tensor of $\mathbf{R}_{m}^{2 m+1}$ satisfies the type (2.12) with $c=-3$. Also we find

$$
\phi^{*}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -\delta_{i j} & 0 \\
4 \delta_{i j} & 0 & 0 \\
0 & -y_{j} & 0
\end{array}\right) .
$$

This manifold is not Sasakian with respect to the Levi-Civita connection.

3 Statistical submersions

Let $\pi: M \rightarrow B$ be a semi-Riemannian submersion. We put $\operatorname{dim} M=m$ and $\operatorname{dim} B=n$. For each point $x \in B$, the semi-Riemannian submanifold $\pi^{-1}(x)$ with the induced metric \bar{g} is called a fiber and denoted by \bar{M}_{x} or \bar{M} simply. We notice that the dimension of each fiber is always $m-n(=s)$. A vector field on M is vertical if it is always tangent to fibers, horizontal if always orthogonal to fibers. We denote the vertical and horizontal subspace in the tangent space $T_{p} M$ of the total space M by $\mathcal{V}_{p}(M)$ and $\mathcal{H}_{p}(M)$ for each point $p \in M$, and the vertical and horizontal distributions in the tangent bundle $T M$ of M by $\mathcal{V}(M)$ and $\mathcal{H}(M)$, respectively. Then $T M$ is the direct sum of $\mathcal{V}(M)$ and $\mathcal{H}(M)$. The projection mappings are denoted $\mathcal{V}: T M \rightarrow \mathcal{V}(M)$ and $\mathcal{H}: T M \rightarrow \mathcal{H}(M)$, respectively. We call a vector field X on M projectable if there exists a vector field X_{*} on B such that $\pi_{*}\left(X_{p}\right)=X_{* \pi(p)}$ for each $p \in M$, and say that X and X_{*} are π-related. Also, a vector field X on M is called basic if it is projectable and horizontal. Then we have ([11], [12])
Lemma B. If X and Y are basic vector fields on M which are π-related to X_{*} and Y_{*} on B, then
(1) $g(X, Y)=g_{B}\left(X_{*}, Y_{*}\right) \circ \pi$, where g is the metric on M and g_{B} the metric on B,
(2) $\mathcal{H}[X, Y]$ is basic and is π-related to $\left[X_{*}, Y_{*}\right]$.

Let (M, ∇, g) be a statistical manifold and $\pi: M \rightarrow B$ be a semi-Riemannian submersion. We denote the affine connections of \bar{M} by $\bar{\nabla}$ and $\bar{\nabla}^{*}$. Notice that $\bar{\nabla}_{U} V$ and $\bar{\nabla}_{U}^{*} V$ are well-defined vertical vector fields on M for vertical vector fields U and V on M, more precisely $\bar{\nabla}_{U} V=\mathcal{V} \nabla_{U} V$ and $\bar{\nabla}_{U}^{*} V=\mathcal{V} \nabla_{U}^{*} V$. Moreover, $\bar{\nabla}$ and $\bar{\nabla}^{*}$ are torsion-free and conjugate to each other with respect to \bar{g}. We put $S=\nabla-\nabla^{*}$. Then S is symmetric, that is, $S_{E} F=S_{F} E$ for vector fields E and F on M. Let $\widehat{\nabla}$ be an affine connection on B. We call $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a statistical submersion if $\pi: M \rightarrow B$ satisfies $\pi_{*}\left(\nabla_{X} Y\right)_{p}=\left(\widehat{\nabla}_{X_{*}} Y_{*}\right)_{\pi(p)}$ for basic vector fileds X, Y and $p \in M$. The letters U, V, W will always denote vertical
vector fields, and X, Y, Z horizontal vector fields. The tensor fields T and A of type $(1,2)$ defined by

$$
T_{E} F=\mathcal{H} \nabla_{\mathcal{V}_{E}} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V}_{E}} \mathcal{H} F, \quad A_{E} F=\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F
$$

for vector fields E and F on M. Changing ∇ for ∇^{*} in the above equations, we define T^{*} and A^{*}, respectively. Then we find $T^{* *}=T$ and $A^{* *}=A$. For vertical vector fields, T and T^{*} have the symmetry property. For $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$, we obtain

$$
g\left(T_{U} V, X\right)=-g\left(V, T_{U}^{*} X\right), \quad g\left(A_{X} Y, U\right)=-g\left(Y, A_{X}^{*} U\right)
$$

Thus, T (resp. A) vanishes identically if and only if T^{*} (resp. A^{*}) vanishes identically. Since A is related to the integrability of $\mathcal{H}(M), A$ is symmetric for horizontal vectors if and only if $\mathcal{H}(M)$ is integrable with respect to ∇. Moreover, if A and T vanish identically, then the total space is a product space of the base space and the fiber. It is known that ([1])
Theorem C. Let $\pi: M \rightarrow B$ be a semi-Riemannian submersion. Then (M, ∇, g) is a statistical manifold if and only if the following conditions hold:
(1) $\mathcal{H} S_{V} X=A_{X} V-A_{X}^{*} V$ for $X \in \mathcal{H}(M)$ and $V \in \mathcal{V}(M)$,
(2) $\mathcal{V} S_{X} V=T_{V} X-T_{V}^{*} X$ for $X \in \mathcal{H}(M)$ and $V \in \mathcal{V}(M)$,
(3) $(\bar{M}, \bar{\nabla}, \bar{g})$ is a statistical manifold for each $x \in B$,
(4) $\left(B, \widehat{\nabla}, g_{B}\right)$ is a statistical manifold.

For the statistical submersion $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$, we have the following Lemmas ([14]).
Lemma D. If X and Y are horizontal vector fields, then $A_{X} Y=-A_{Y}^{*} X$.
Lemma E. For $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$ we have

$$
\begin{array}{ll}
\nabla_{U} V=T_{U} V+\bar{\nabla}_{U} V, & \nabla_{U}^{*} V=T_{U}^{*} V+\bar{\nabla}_{U}^{*} V, \\
\nabla_{U} X=\mathcal{H} \nabla_{U} X+T_{U} X, & \nabla_{U}^{*} X=\mathcal{H} \nabla_{U}^{*} X+T_{U}^{*} X, \\
\nabla_{X} U=A_{X} U+\mathcal{V} \nabla_{X} U, & \nabla_{X}^{*} U=A_{X}^{*} U+\mathcal{V} \nabla_{X}^{*} U, \\
\nabla_{X} Y=\mathcal{H} \nabla_{X} Y+A_{X} Y, & \nabla_{X}^{*} Y=\mathcal{H} \nabla_{X}^{*} Y+A_{X}^{*} Y .
\end{array}
$$

Furthermore, if X is basic, then $\mathcal{H} \nabla_{U} X=A_{X} U$ and $\mathcal{H} \nabla_{U}^{*} X=A_{X}^{*} U$.
We define the covariant derivatives ∇T and ∇A by

$$
\begin{aligned}
& \left(\nabla_{E} T\right)_{F} V=\nabla_{E}\left(T_{F} V\right)-T_{\nabla_{E} F} V-T_{F}\left(\nabla_{E} V\right), \\
& \left(\nabla_{E} A\right)_{F} Y=\nabla_{E}\left(A_{F} Y\right)-A_{\nabla_{E} F} Y-A_{F}\left(\nabla_{E} Y\right)
\end{aligned}
$$

for $E, F \in T M, Y \in \mathcal{H}(M)$ and $V \in \mathcal{V}(M)$. We change ∇ to ∇^{*}, then the covariant derivatives $\nabla^{*} T, \nabla^{*} A$ are defined similarly. We consider the curvature tensor on the statistical submersion. Let \bar{R} (resp. \bar{R}^{*}) be the curvature tensor with respect to the induced affine connection $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) of each fiber. Also, let $\widehat{R}(X, Y) Z$ (resp. $\left.\widehat{R}^{*}(X, Y) Z\right)$ be horizontal vector field such that $\pi_{*}(\widehat{R}(X, Y) Z)=\widehat{R}\left(\pi_{*} X, \pi_{*} Y\right) \pi_{*} Z$ (resp. $\left.\pi_{*}\left(\widehat{R}^{*}(X, Y) Z\right)=\widehat{R}^{*}\left(\pi_{*} X, \pi_{*} Y\right) \pi_{*} Z\right)$ at each $p \in M$, where \widehat{R} (resp. $\left.\widehat{R}^{*}\right)$ is the curvature tensor on B of the affine connection $\widehat{\nabla}$ (resp. $\widehat{\nabla}^{*}$). Then we have ([14])

Theorem F. If $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a statistical submersion, then we obtain for $X, Y, Z, Z^{\prime} \in \mathcal{H}(M)$ and $U, V, W, W^{\prime} \in \mathcal{V}(M)$

$$
\begin{aligned}
g\left(R(U, V) W, W^{\prime}\right)= & g\left(\bar{R}(U, V) W, W^{\prime}\right)+g\left(T_{U} W, T_{V}^{*} W^{\prime}\right)-g\left(T_{V} W, T_{U}^{*} W^{\prime}\right), \\
g(R(U, V) W, X)= & g\left(\left(\nabla_{U} T\right)_{V} W, X\right)-g\left(\left(\nabla_{V} T\right)_{U} W, X\right), \\
g(R(U, V) X, W)= & g\left(\left(\nabla_{U} T\right)_{V} X, W\right)-g\left(\left(\nabla_{V} T\right)_{U} X, W\right), \\
g(R(U, V) X, Y)= & g\left(\left(\nabla_{U} A\right)_{X} V, Y\right)-g\left(\left(\nabla_{V} A\right)_{X} U, Y\right)+g\left(T_{U} X, T_{V}^{*} Y\right) \\
& -g\left(T_{V} X, T_{U}^{*} Y\right)-g\left(A_{X} U, A_{Y}^{*} V\right)+g\left(A_{X} V, A_{Y}^{*} U\right), \\
g(R(X, U) V, W)= & g\left(\left[\mathcal{V} \nabla_{X}, \bar{\nabla}_{U}\right] V, W\right)-g\left(\nabla_{[X, U]} V, W\right)-g\left(T_{U} V, A_{X}^{*} W\right) \\
& +g\left(T_{U}^{*} W, A_{X} V\right), \\
g(R(X, U) V, Y)= & g\left(\left(\nabla_{X} T\right)_{U} V, Y\right)-g\left(\left(\nabla_{U} A\right)_{X} V, Y\right)+g\left(A_{X} U, A_{Y}^{*} V\right) \\
& -g\left(T_{U} X, T_{V}^{*} Y\right), \\
g(R(X, U) Y, V)= & g\left(\left(\nabla_{X} T\right)_{U} Y, V\right)-g\left(\left(\nabla_{U} A\right)_{X} Y, V\right)+g\left(T_{U} X, T_{V} Y\right) \\
& -g\left(A_{X} U, A_{Y} V\right), \\
g(R(X, U) Y, Z)= & g\left(\left(\nabla_{X} A\right)_{Y} U, Z\right)-g\left(T_{U} X, A_{Y}^{*} Z\right)-g\left(T_{U} Y, A_{X}^{*} Z\right) \\
& +g\left(A_{X} Y, T_{U}^{*} Z\right), \\
g(R(X, Y) U, V)= & g\left(\left(\nabla_{X} T\right)_{U} Y, V\right)-g\left(\left(\nabla_{Y} T\right)_{U} X, V\right)-g\left(\left(\nabla_{U} \theta\right)_{X} Y, V\right) \\
& +g\left(T_{U} X, T_{V} Y\right)-g\left(T_{V} X, T_{U} Y\right)-g\left(A_{X} U, A_{Y} V\right) \\
& +g\left(A_{X} V, A_{Y} U\right), \\
g(R(X, Y) U, Z)= & g\left(\left(\nabla_{X} A\right)_{Y} U, Z\right)-g\left(\left(\nabla_{Y} A\right)_{X} U, Z\right)+g\left(T_{U}^{*} Z, \theta_{X} Y\right), \\
g(R(X, Y) Z, U)= & g\left(\left(\nabla_{X} A\right)_{Y} Z, U\right)-g\left(\left(\nabla_{Y} A\right)_{X} Z, U\right)-g\left(T_{U} Z, \theta_{X} Y\right), \\
g\left(R(X, Y) Z, Z^{\prime}\right)= & g\left(\widehat{R}^{2}(X, Y) Z, Z^{\prime}\right)-g\left(A_{Y} Z, A_{X}^{*} Z^{\prime}\right)+g\left(A_{X} Z, A_{Y}^{*} Z^{\prime}\right) \\
& +g\left(\theta_{X} Y, A_{Z}^{*} Z^{\prime}\right),
\end{aligned}
$$

where we put $\theta_{X}=A_{X}+A_{X}^{*}$.

For each $p \in M$, we denote by $\left\{E_{1}, \ldots, E_{m}\right\},\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{U_{1}, \ldots, U_{s}\right\}$ local orthonormal basis of $T_{p} M, \mathcal{H}_{p}(M)$ and $\mathcal{V}_{p}(M)$, respectively such that $E_{i}=X_{i}(i=$ $1, \ldots, n)$ and $E_{n+\alpha}=U_{\alpha}(\alpha=1, \ldots, s)$. Denote respectively by ω_{a}^{b} and $\omega_{a}^{* b}$ the connection forms in terms of local coordinates with respect to $\left\{E_{1}, \ldots, E_{m}\right\}$ of the affine connection ∇ and its conjugate ∇^{*}, where a, b run over the range $\{1, \ldots, m\}$. Set $\varepsilon_{a}=g\left(E_{a}, E_{a}\right)=+1$ or -1 according as E_{a} is spacelike or timelike, respectively. Owing to equation (2.1), we have

$$
\begin{equation*}
\omega_{b}^{* a}=-\varepsilon_{a} \varepsilon_{b} \omega_{a}^{b} \tag{3.1}
\end{equation*}
$$

We put

$$
\begin{aligned}
& g(T X, T Y)=\sum_{\alpha=1}^{s} \varepsilon_{\alpha} g\left(T_{U_{\alpha}} X, T_{U_{\alpha}} Y\right) \\
& g(T X, S E)=\sum_{\alpha=1}^{s} \varepsilon_{\alpha} g\left(T_{U_{\alpha}} X, S_{U_{\alpha}} E\right)
\end{aligned}
$$

for $X, Y \in \mathcal{H}(M)$ and $E \in T M$. The mean curvature vector of the fiber with respect to the affine connection ∇ is given by the horizontal vector field

$$
N=\sum_{\alpha=1}^{s} \varepsilon_{\alpha} T_{U_{\alpha}} U_{\alpha}
$$

Lemma 3.1. We have

$$
\sum_{\alpha=1}^{s} \varepsilon_{\alpha} g\left(\left(\nabla_{E} T\right)_{U_{\alpha}} U_{\alpha}, X\right)=g\left(\nabla_{E} N, X\right)+g\left(T^{*} X, S E\right)
$$

for $X \in \mathcal{H}(M)$ and $E \in T M$.
Proof. From (3.1), we get

$$
\begin{aligned}
\sum \varepsilon_{\alpha} g\left(\nabla_{E} U_{\alpha}, T_{U_{\alpha}}^{*} X\right) & =\sum \varepsilon_{\alpha} \omega_{\alpha}^{\beta}(E) g\left(U_{\beta}, T_{U_{\alpha}}^{*} X\right) \\
& =-\sum \varepsilon_{\beta} \omega_{\beta}^{* \alpha}(E) g\left(U_{\alpha}, T_{U_{\beta}}^{*} X\right) \\
& =-\sum \varepsilon_{\beta} g\left(\nabla_{E}^{*} U_{\beta}, T_{U_{\beta}}^{*} X\right)
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{\alpha=1}^{s} \varepsilon_{\alpha} g\left(\nabla_{E} U_{\alpha}, T_{U_{\alpha}}^{*} X\right)=-\sum_{\alpha=1}^{s} \varepsilon_{\alpha} g\left(\nabla_{E}^{*} U_{\alpha}, T_{U_{\alpha}}^{*} X\right) \tag{3.2}
\end{equation*}
$$

For $U, V \in \mathcal{V}(M)$, we find

$$
\left(\nabla_{E} T\right)_{U} V=\nabla_{E}\left(T_{U} V\right)-T_{V}\left(\mathcal{V} \nabla_{E} U\right)-T_{U}\left(\mathcal{V} \nabla_{E} V\right)-T_{U}\left(\mathcal{H} \nabla_{E} V\right)
$$

Then we have from (3.2)

$$
\begin{aligned}
& \sum \varepsilon_{\alpha} g\left(\left(\nabla_{E} T\right)_{U_{\alpha}} U_{\alpha}, X\right) \\
& =\sum \varepsilon_{\alpha} g\left(\nabla_{E}\left(T_{U_{\alpha}} U_{\alpha}\right), X\right)-2 \sum \varepsilon_{\alpha} g\left(T_{U_{\alpha}}\left(\mathcal{V} \nabla_{E} U_{\alpha}\right), X\right) \\
& =g\left(\nabla_{E} N, X\right)+2 \sum \varepsilon_{\alpha} g\left(\nabla_{E} U_{\alpha}, T_{U_{\alpha}}^{*} X\right) \\
& =g\left(\nabla_{E} N, X\right)+\sum \varepsilon_{\alpha} g\left(\nabla_{E} U_{\alpha}, T_{U_{\alpha}}^{*} X\right)-\sum \varepsilon_{\alpha} g\left(\nabla_{E}^{*} U_{\alpha}, T_{U_{\alpha}}^{*} X\right) \\
& =g\left(\nabla_{E} N, X\right)+\sum \varepsilon_{\alpha} g\left(T_{U_{\alpha}}^{*} X, S_{E} U_{\alpha}\right) \\
& =g\left(\nabla_{E} N, X\right)+g\left(T^{*} X, S E\right) .
\end{aligned}
$$

4 Sasaki-like statistical submersions

If $\pi: M \rightarrow B$ is a semi-Riemannian submersion such that (M, g, ϕ, ξ, η) is an almost contact metric manifold of certain kind, each fiber is a ϕ-invariant semi-Riemannian submanifold of M and tangent to the vector ξ, then π is said to be an almost contact metric submersion of certain kind. The horizontal and vertical distributions are ϕ invariant if and only if are ϕ^{*}-invariant. If X is basic on M which is π-related to X_{*} on B, then ϕX (resp. $\phi^{*} X$) is basic and π-related to $\widehat{\phi} X_{*}$ (resp. $\widehat{\phi}^{*} X_{*}$), where $\widehat{\phi}$ and $\widehat{\phi}^{*}$ are tensor fields of type $(1,1)$ such that $g_{B}\left(\widehat{\phi} X_{*}, Y_{*}\right)+g_{B}\left(X_{*}, \widehat{\phi}^{*} Y_{*}\right)=0$ with respect to the metric g_{B} on B. We say that a statistical submersion $\pi:(M, \nabla, g) \rightarrow$ $\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion if $(M, \nabla, g, \phi, \xi, \eta)$ is a Sasaki-like statistical manifold, each fiber is a ϕ-invariant semi-Riemannian submanifold of M and tangent to the vector ξ. Then we have
Theorem 4.1. Let $\pi: M \rightarrow B$ be an almost contact metric submersion of certain kind. Then the base space is an almost Hermite-like manifold and each fiber is an almost contact metric manifold of certain kind.

Also, it is clear from (2.10) that the following Lemmas hold.
Lemma 4.1. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion. Then we have for $X \in \mathcal{H}(M)$ and $U \in \mathcal{V}(M)$

$$
\begin{aligned}
& A_{X} \xi=-\phi X \\
& \mathcal{V} \nabla_{X} \xi=0 \\
& T_{U} \xi=0 \\
& \bar{\nabla}_{U} \xi=-\bar{\phi} U
\end{aligned}
$$

Lemma 4.2. If $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion, then we have for $X, Y \in \mathcal{H}(M)$ and $U, V \in \mathcal{V}(M)$

$$
\begin{aligned}
& \left(\mathcal{H} \nabla_{X} \phi\right) Y=0 \\
& A_{X}(\phi Y)-\bar{\phi}\left(A_{X} Y\right)=g(X, Y) \xi \\
& A_{X}(\bar{\phi} U)-\phi\left(A_{X} U\right)=-\eta(U) X \\
& \left(\mathcal{V} \nabla_{X} \bar{\phi}\right) U=0 \\
& A_{\phi X} U=\phi\left(A_{X} U\right) \\
& T_{U}(\phi X)=\bar{\phi}\left(T_{U} X\right) \\
& T_{U}(\bar{\phi} V)=\phi\left(T_{U} V\right) \\
& \left(\bar{\nabla}_{U} \bar{\phi}\right) V=g(U, V) \xi-\eta(V) U
\end{aligned}
$$

Lemma 4.3. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion. If $\operatorname{dim} \bar{M}=1$, then we have $A_{X} Y=-g(X, \phi Y) \xi$.
Moreover, we have
THEOREM 4.2. If $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion, then the base space $\left(B, \widehat{\nabla}, g_{B}, \widehat{\phi}\right)$ is a Kähler-like statistical manifold and each fiber $(\bar{M}, \bar{\nabla}, \bar{g}, \bar{\phi}, \xi, \eta)$ is a Sasaki-like statistical manifold.

By virtue of Lemmas E and 4.2, we get

$$
\left(\bar{\phi}+\bar{\phi}^{*}\right) A_{X} Y=0
$$

for $X, Y \in \mathcal{H}(M)$. Thus we have
Theorem 4.3. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion. If $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$, then we have $A_{X} Y=-g(X, \phi Y) \xi$ for $X, Y \in \mathcal{H}(M)$.
Corollary 4.1. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion. If $\bar{\phi}=\bar{\phi}^{*}$, then we have $A_{X} Y=-g(X, \phi Y) \xi$ for $X, Y \in \mathcal{H}(M)$.

Remark. If $\pi: M \rightarrow B$ is a Sasakian submersion, then $A_{X} Y=-g(X, \phi Y) \xi$ holds ([7], [8]).

5 Sasaki-like statistical submersions satisfying the certain condition

Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion. We assume that the curvature tensor of $(M, \nabla, g, \phi, \xi, \eta)$ satisfies the type (2.12) with c, that
is, for $E, F, G, G^{\prime} \in T M$

$$
\begin{aligned}
& g\left(R(E, F) G, G^{\prime}\right) \\
& =\frac{1}{4}(c+3)\left\{g(F, G) g\left(E, G^{\prime}\right)-g(E, G) g\left(F, G^{\prime}\right)\right\} \\
& +\frac{1}{4}(c-1)\left[\eta(E) \eta(G) g\left(F, G^{\prime}\right)-\eta(F) \eta(G) g\left(E, G^{\prime}\right)+g(E, G) \eta(F) \eta\left(G^{\prime}\right)\right. \\
& \quad-g(F, G) \eta(E) \eta\left(G^{\prime}\right)-g(F, \phi G) g\left(\phi E, G^{\prime}\right)+g(E, \phi G) g\left(\phi F, G^{\prime}\right) \\
& \left.\quad+\{g(E, \phi F)-g(\phi E, F)\} g\left(\phi G, G^{\prime}\right)\right]
\end{aligned}
$$

where c is a constant. Then we see from Theorem F

$$
\begin{align*}
& \text { (5.2) } \quad g\left(\left(\nabla_{U} T\right)_{V} W, X\right)-g\left(\left(\nabla_{V} T\right)_{U} W, X\right)=0, \\
& \text { (5.3) } \quad g\left(\left(\nabla_{U} T\right)_{V} X, W\right)-g\left(\left(\nabla_{V} T\right)_{U} X, W\right)=0, \\
& \text { (5.4) } \quad g\left(\left(\nabla_{U} A\right)_{X} V, Y\right)-g\left(\left(\nabla_{V} A\right)_{X} U, Y\right)+g\left(T_{U} X, T_{V}^{*} Y\right) \\
& -g\left(T_{V} X, T_{U}^{*} Y\right)-g\left(A_{X} U, A_{Y}^{*} V\right)+g\left(A_{X} V, A_{Y}^{*} U\right) \\
& =\frac{1}{4}(c-1)\{g(U, \bar{\phi} V)-g(\bar{\phi} U, V)\} g(\phi X, Y) \text {, } \\
& g\left(\bar{R}(U, V) W, W^{\prime}\right)+g\left(T_{U} W, T_{V}^{*} W^{\prime}\right)-g\left(T_{V} W, T_{U}^{*} W^{\prime}\right) \tag{5.1}\\
& =\frac{1}{4}(c+3)\left\{g(V, W) g\left(U, W^{\prime}\right)-g(U, W) g\left(V, W^{\prime}\right)\right\} \\
& +\frac{1}{4}(c-1)\left[\eta(U) \eta(W) g\left(V, W^{\prime}\right)-\eta(V) \eta(W) g\left(U, W^{\prime}\right)\right. \\
& +g(U, W) \eta(V) \eta\left(W^{\prime}\right)-g(V, W) \eta(U) \eta\left(W^{\prime}\right) \\
& -g(V, \bar{\phi} W) g\left(\bar{\phi} U, W^{\prime}\right)+g(U, \bar{\phi} W) g\left(\bar{\phi} V, W^{\prime}\right) \\
& \left.+\{g(U, \bar{\phi} V)-g(\bar{\phi} U, V)\} g\left(\bar{\phi} W, W^{\prime}\right)\right], \\
& g\left(\left[\mathcal{V} \nabla_{X}, \bar{\nabla}_{U}\right] V, W\right)-g\left(\nabla_{[X, U]} V, W\right)-g\left(T_{U} V, A_{X}^{*} W\right) \tag{5.5}\\
& +g\left(T_{U}^{*} W, A_{X} V\right)=0, \\
& g\left(\left(\nabla_{X} T\right)_{U} V, Y\right)-g\left(\left(\nabla_{U} A\right)_{X} V, Y\right)+g\left(A_{X} U, A_{Y}^{*} V\right)-g\left(T_{U} X, T_{V}^{*} Y\right) \tag{5.6}\\
& =\frac{1}{4}(c+3) g(U, V) g(X, Y) \\
& -\frac{1}{4}(c-1)\{\eta(U) \eta(V) g(X, Y)+g(U, \bar{\phi} V) g(\phi X, Y)\}, \\
& g\left(\left(\nabla_{X} T\right)_{U} Y, V\right)-g\left(\left(\nabla_{U} A\right)_{X} Y, V\right)+g\left(T_{U} X, T_{V} Y\right)-g\left(A_{X} U, A_{Y} V\right) \tag{5.7}\\
& =-\frac{1}{4}(c+3) g(X, Y) g(U, V) \\
& +\frac{1}{4}(c-1)\{g(X, Y) \eta(U) \eta(V)+g(X, \phi Y) g(\bar{\phi} U, V)\},
\end{align*}
$$

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right)_{Y} U, Z\right)-g\left(T_{U} X, A_{Y}^{*} Z\right)-g\left(T_{U} Y, A_{X}^{*} Z\right)+g\left(A_{X} Y, T_{U}^{*} Z\right)=0, \tag{5.8}\\
& g\left(\left(\nabla_{X} T\right)_{U} Y, V\right)-g\left(\left(\nabla_{Y} T\right)_{U} X, V\right)-g\left(\left(\nabla_{U} \theta\right)_{X} Y, V\right)+g\left(T_{U} X, T_{V} Y\right) \tag{5.9}\\
& -g\left(T_{V} X, T_{U} Y\right)-g\left(A_{X} U, A_{Y} V\right)+g\left(A_{Y} U, A_{X} V\right) \\
& =\frac{1}{4}(c-1)\{g(X, \phi Y)-g(\phi X, Y)\} g(\bar{\phi} U, V), \\
& g\left(\left(\nabla_{X} A\right)_{Y} U, Z\right)-g\left(\left(\nabla_{Y} A\right)_{X} U, Z\right)+g\left(T_{U}^{*} Z, \theta_{X} Y\right)=0, \tag{5.10}\\
& g\left(\left(\nabla_{X} A\right)_{Y} Z, U\right)-g\left(\left(\nabla_{Y} A\right)_{X} Z, U\right)-g\left(T_{U} Z, \theta_{X} Y\right)=0, \tag{5.11}\\
& g\left(\widehat{R}(X, Y) Z, Z^{\prime}\right)-g\left(A_{Y} Z, A_{X}^{*} Z^{\prime}\right)+g\left(A_{X} Z, A_{Y}^{*} Z^{\prime}\right)+g\left(\theta_{X} Y, A_{Z}^{*} Z^{\prime}\right) \tag{5.12}\\
& =\frac{1}{4}(c+3)\left\{g(Y, Z) g\left(X, Z^{\prime}\right)-g(X, Z) g\left(Y, Z^{\prime}\right)\right\} \\
& +\frac{1}{4}(c-1)\left[-g(Y, \phi Z) g\left(\phi X, Z^{\prime}\right)+g(X, \phi Z) g\left(\phi Y, Z^{\prime}\right)\right. \\
& \left.\quad \quad+\{g(X, \phi Y)-g(\phi X, Y)\} g\left(\phi Z, Z^{\prime}\right)\right]
\end{align*}
$$

for $U, V, W, W^{\prime} \in \mathcal{V}(M)$ and $X, Y, Z, Z^{\prime} \in \mathcal{H}(M)$. We have from Lemma 4.3, Theorem 4.3 and (5.12)
Theorem 5.1. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion. If $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$ and the curvature tensor of the total space satisfies the type (2.12) with c, then the curvature tensor of the base space satisfies the type (2.5) with $c+3$.
Corollary 5.1. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion. If $\operatorname{dim} \bar{M}=1$ and the curvature tensor of the total space satisfies the type (2.12) with c, then the curvature tensor of the base space satisfies the type (2.5) with $c+3$.

By virtue of and Lemma 4.1 and Theorem 4.3, equation (5.6) can be rewritten as follows:

$$
\begin{aligned}
& g\left(\left(\nabla_{X} T\right)_{U} V, Y\right)-g\left(T_{U} X, T_{V}^{*} Y\right) \\
& =\frac{1}{4}(c+3)[g(X, Y)\{g(U, V)-\eta(U) \eta(V)\}-g(\phi X, Y) g(U, \bar{\phi} V)]
\end{aligned}
$$

which implies from Lemma 3.1 that

$$
g\left(\nabla_{X} N, Y\right)-g\left(T^{*} X, T^{*} Y\right)=\frac{1}{4}(c+3)\{(s-1) g(X, Y)-(\operatorname{tr} \bar{\phi}) g(\phi X, Y)\} .
$$

If $\mathcal{H} \nabla_{X} N=0$, then we obtain $c+3=0$ or $\operatorname{tr} \bar{\phi}=0$. Therefore we have
THEOREM 5.2. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion such that the curvature tensor of the total space satisfies the type (2.12) with c. We assume that $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$ and $\mathcal{H} \nabla_{X} N=0$ for $X \in \mathcal{H}(M)$. Then
(1) if $c+3=0$, then the base space is flat and each fiber is a totally geodesic submanifold of M such that the curvature tensor satisfies the type (2.12) with -3 ,
(2) in the case of $\operatorname{tr} \bar{\phi}=0$ and $s>1$,
(i) if g is positive definite, then $c+3 \leq 0$,
(ii) $c+3<0$ and X is spacelike (resp. timelike) or $c+3>0$ and X is timelike (resp. spacelike) if and only if $T^{*} X$ is spacelike (resp. timelike),
(iii) the horizontal vector X is null if and only if $T^{*} X$ is null.

Corollary 5.2. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion such that the curvature tensor of the total space satisfies the type (2.12) with c. If $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$ and N is constant, then results similar to Theorem 5.2 hold.

Also, it is easy to see from (5.7) that

$$
\begin{aligned}
& g\left(\left(\nabla_{X}^{*} T^{*}\right)_{U} V, Y\right)-g\left(T_{U}^{*} X, T_{V} Y\right) \\
& =\frac{1}{4}(c+3)[g(X, Y)\{g(U, V)-\eta(U) \eta(V)\}-g(X, \phi Y) g(\bar{\phi} U, V)]
\end{aligned}
$$

Thus by virtue of Lemma 3.1, we get

$$
g\left(\nabla_{X}^{*} N^{*}, Y\right)-g(T X, T Y)=\frac{1}{4}(c+3)\{(s-1) g(X, Y)-(\operatorname{tr} \bar{\phi}) g(X, \phi Y)\}
$$

If $\mathcal{H} \nabla_{X}^{*} N^{*}=0$, then we find $c+3=0$ or $\operatorname{tr} \bar{\phi}=0$. Hence we have
Theorem 5.3. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion such that the curvature tensor of the total space satisfies the type (2.12) with c. We assume that $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$ and $\mathcal{H} \nabla_{X}^{*} N^{*}=0$ for $X \in \mathcal{H}(M)$. Then
(1) if $c+3=0$, then the base space is flat and each fiber is a totally geodesic submanifold of M such that the curvature tensor satisfies the type (2.12) with -3 ,
(2) in the case of $\operatorname{tr} \bar{\phi}=0$ and $s>1$,
(i) if g is positive definite, then $c+3 \leq 0$,
(ii) $c+3<0$ and X is spacelike (resp. timelike) or $c+3>0$ and X is timelike (resp. spacelike) if and only if TX is spacelike (resp. timelike),
(iii) the horizontal vector X is null if and only if $T X$ is null.

Corollary 5.3. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion that the curvature tensor of the total space satisfies the type (2.12) with c. If $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$ and N^{*} is constant, then results similar to Theorem 5.3 hold.

Next, we consider π as a statistical submersion with conformal fibers. For U and $V \in \mathcal{V}(M)$ if $T_{U} V=0$ (resp. $\left.T_{U} V=\frac{1}{s} g(U, V) N\right)$ holds, then π is called a statistical submersion with isometric fibers (resp. conformal fibers). Then we can get from $T_{U} \xi=0$ of Lemma 4.1
Lemma 5.1. If $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ is a Sasaki-like statistical submersion with conformal fibers, then π has isometric fibers.

THEOREM 5.4. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion with conformal fibers such that the curvature tensor of the total space satisfies the type (2.12) with c. Then each fiber is a totally geodesic submanifold of M such that the curvature tensor satisfies the type (2.12) with c.

Furthermore, we find from (5.6)
Theorem 5.5. Let $\pi:(M, \nabla, g) \rightarrow\left(B, \widehat{\nabla}, g_{B}\right)$ be a Sasaki-like statistical submersion with conformal fibers such that the curvature tensor of the total space satisfies the type (2.12) with c. If $\operatorname{rank}\left(\bar{\phi}+\bar{\phi}^{*}\right)=\operatorname{dim} \bar{M}-1$, then
(1) the total space satisfies the type (2.12) with $c=-3$,
(2) the base space is flat,
(3) each fiber satisfies the type (2.12) with -3 .

Finally, we give an example of a Sasaki-like statistical submersion such that the curvature tensor satisfies the type (2.12).
Example. Let $\left(\mathbf{R}_{n}^{2 n}, \widehat{\nabla}, \widehat{g}, \widehat{\phi}\right)$ and $\left(\mathbf{R}_{m}^{2 m+1}, \nabla, g, \phi, \xi, \eta\right)$ be a Kähler-like statistical manifold in Example 2.1 and Sasaki-like statistical manifold in Example 2.2, respectively. We define the statistical submersion $\pi:\left(\mathbf{R}_{m}^{2 m+1}, \nabla, g\right) \rightarrow\left(\mathbf{R}_{n}^{2 n}, \widehat{\nabla}, \widehat{g}\right)$ by

$$
\pi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \quad(n \leq m)
$$

Then π is a Sasaki-like statistical submersion such that the curvature tensor of $\mathbf{R}_{m}^{2 m+1}$ satisfies the type (2.12) with $c=-3$. Each fiber is a totally geodesic sub-
manifold of $\mathbf{R}_{m}^{2 m+1}$. Because of $\partial_{x_{i}}+y_{i} \partial_{z}, \partial_{y_{i}} \in \mathcal{H}\left(\mathbf{R}_{m}^{2 m+1}\right)$, we find

$$
\begin{aligned}
& A_{\partial_{x_{i}}+y_{i} \partial_{z}}\left(\partial_{x_{j}}+y_{j} \partial_{z}\right)=-A_{\partial_{x_{j}}+y_{j} \partial_{z}}^{*}\left(\partial_{x_{i}}+y_{i} \partial_{z}\right)=0, \\
& A_{\partial_{x_{i}}+y_{i} \partial_{z}} \partial_{y_{j}}=-A_{\partial_{y_{j}}}^{*}\left(\partial_{x_{i}}+y_{i} \partial_{z}\right)=-2 \delta_{i j} \partial_{z}, \\
& A_{\partial_{y_{j}}}\left(\partial_{x_{i}}+y_{i} \partial_{z}\right)=-A_{\partial_{x_{i}}+y_{i} \partial_{z}}^{*} \partial_{y_{j}}=-\delta_{i j} \partial_{z}, \\
& A_{\partial_{y_{i}}} \partial_{y_{j}}=-A_{\partial_{y_{j}}}^{*} \partial_{y_{i}}=0
\end{aligned}
$$

for $i, j \in\{1, \ldots, n\}$. Hence we find $A_{X} Y=-g(X, \phi Y) \xi$ for $X, Y \in \mathcal{H}\left(\mathbf{R}_{m}^{2 m+1}\right)$.

References

[1] N. Abe and K. Hasegawa, An affine submersion with horizontal distribution and its applications, Differential Geom. Appl. 14 (2001) 235-250.
[2] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, 28 Springer-Verlag, 1985.
[3] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS \& Oxford University Press, 2000.
[4] O. E. Barndorff-Nielsen and P. E. Jupp, Differential geometry, profile likelihood, Lsufficiency and composite transformation models, Ann. Statist. 16 (1988) 1009-1043.
[5] A. Besse, Einstein Manifolds, Springer, Berlin-Heidelberg-New York, 1987.
[6] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967) 715-738.
[7] B. H. Kim, Fibred Riemannian spaces with contact structure, Hiroshima Math. J. 18 (1988) 493-508.
[8] \qquad Fibred Sasakian spaces with vanishing contact Bochner curvature tensor, ibid. 19 (1989) 181-195.
[9] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl. 2 (1992) 197-222.
[10] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, Cambridge, 1994.
[11] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459-469.
[12] \qquad , Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.
[13] K. Takano, On fibred Sasakian spaces with vanishing contact Bochner curvature tensor, Colloq. Math. 65 (1993) 181-200.
[14] \qquad , Statistical manifolds with almost complex structures and its statistical submersions, Tensor, N. S. 65 (2004) 123-137.
[15] \qquad , Examples of the statistical submersion on the statistical model, Tensor, N. S. 65 (2004) 170-178.
[16] Y. Tashiro and B. H. Kim, Almost complex and almost contact structures in fibred Riemannian spaces, Hiroshima Math. J. 18 (1988) 161-188.
[17] K. Yano and M. Kon, Structures on Manifolds, World Scientific, 1984.

Department of Mathematics
Faculty of Engineering
Shinshu University
4-17-1 Wakasato, Nagano 380-8553, JAPAN

