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ABSTRACT 34 

The awareness of the need for robust impact evaluations in conservation is growing, and 35 

statistical matching techniques are increasingly being use to assess the impacts of 36 

conservation interventions. Used appropriately, matching approaches are powerful tools, but 37 

they also pose potential pitfalls. We present important considerations and best practice when 38 

using matching in conservation science. We identify three steps in a matching analysis. The 39 

first step requires a clear theory of change to inform selection of treatment and controls, 40 

accounting for real world complexities and potential spill-over effects. The second step 41 

involves selecting the appropriate covariates and matching approach. The third step is 42 

assessing the quality of the matching by carrying out a series of checks. The second and third 43 

steps can be repeated and should be finalized before outcomes are explored. Future 44 

conservation impact evaluations could be improved by increased planning of evaluations 45 

alongside the intervention, better integration of qualitative methods, considering spill-over 46 

effects at larger spatial scales, and more publication of pre-analysis plans. This will require 47 

more serious engagement of conservation scientists, practitioners and funders to mainstream 48 

robust impact evaluations into conservation. We hope that this paper will improve the quality 49 

of evaluations, and help direct future research to continue to improve the approaches on offer.  50 
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INTRODUCTION 51 

There have been numerous calls for conservation science to provide a stronger evidence base 52 

for policy and practice (Pullin & Knight 2001; Sutherland et al. 2004; Baylis et al. 2016). Rigorous 53 

impact assessments of conservation interventions is vital to prevent wasting conservation 54 

resources (Ferraro & Pattanayak 2006), and tackling rapid biodiversity loss. While the 55 

importance of establishing counterfactuals (what would have happened in the absence of an 56 

intervention) to generate more precise, and less biased, estimates of conservation impacts is 57 

increasingly recognized (Baylis et al. 2016), robust impact evaluations remain limited in number 58 

and scope (Schleicher 2018).  59 

 60 

It is seldom feasible, or even desirable, to randomly implement conservation interventions for 61 

ethical, logistical and political reasons. Experimental evaluations are therefore likely to remain 62 

rare (Baylis et al. 2016; Pynegar et al. 2018; Wiik et al. 2019). However, methodological 63 

advances to improve causal inference from non-experimental data have helped to better 64 

attribute conservation impacts (Ferraro & Hanauer 2014a). These methods emulate 65 

experiments by identifying treatment and control groups with similar observed and 66 

unobserved characteristics (Rosenbaum & Rubin 1983; Stuart 2010). Among the range of non-67 

experimental approaches available for impact evaluations, each with their strengths and 68 

weaknesses (see Table 1), ‘matching’ approaches are playing an increasingly important role in 69 

conservation science (e.g. Andam et al. 2008; Nelson & Chomitz 2011; Naidoo et al. 2019).  70 

 71 

Matching comprises a suite of statistical techniques aiming to improve causal inference of 72 

subsequent analyses. They do so by identifying ‘control’ units that are closely ‘matched’ to 73 

‘treatment’ units according to pre-defined measurable characteristics (covariates), and a 74 
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measure of similarity (Gelman & Hill 2007; Stuart 2010). Selecting comparable units of analysis 75 

(e.g. sites, individuals, households or communities) is important when conservation 76 

interventions are not assigned randomly. This is because units exposed to the intervention 77 

(treatment units), and those not exposed (control units) can differ in characteristics that 78 

influence the allocation of the treatment (i.e. where an intervention occurs, or who receives it) 79 

and the outcome of interest (e.g. species population trends, deforestation rates, changes in 80 

poverty levels). These characteristics are commonly referred to as confounding factors. For 81 

example, habitat conditions before an intervention can influence both the likelihood of the 82 

intervention being carried out in a specific location, and habitat condition after the 83 

intervention’s implementation.  84 

Matching has two main applications in impact evaluation. First, where researchers seek to 85 

evaluate the impact of an intervention post hoc, matching can reduce differences between 86 

treatment and control units, and help isolate intervention effects. For example, when 87 

examining protected area (PA) effects on deforestation, distance from population centers 88 

(remoteness) is a likely confounder: remote sites tend to be more likely designated as 89 

protected, and less prone to deforestation because they are harder to reach (Joppa & Pfaff 90 

2009). Second, matching can be used to inform study design and data collection prior to the 91 

implementation of an intervention. For example, to evaluate how a planned conservation 92 

intervention affects local communities, matching can be used to identify appropriate control 93 

and treatment communities to monitor effects before and after the intervention’s 94 

implementation (Clements et al. 2014).  95 

Matching is a powerful statistical tool, but not a magic wand. The strengths and weaknesses 96 

of matching relative to alternative methods should be considered carefully, and its use 97 
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optimized to maximize the benefits. Given the rapid rise in the use of matching approaches in 98 

conservation science, there is an urgent need for reviewing best practices and bringing 99 

together the diverse technical literature, mostly from economics and statistical journals 100 

(Imbens & Wooldridge 2009; Abadie & Cattaneo 2018), for a conservation science audience. 101 

The few existing related papers targeted at a conservation audience have focused on the 102 

conceptual underpinnings of impact evaluations (Ferraro & Hanauer 2014a; Baylis et al. 2016), 103 

without providing specific methodological insights. We address this gap by providing an 104 

overview of matching and key methodological considerations for the conservation science 105 

community. We do so by drawing on the wider literature and our own collective experience 106 

using matching in conservation impact evaluations. We focus on important considerations 107 

when using matching, outline best practices, and highlight key methodological issues that 108 

deserve further attention and development. 109 

 110 

IMPORTANT CONSIDERATIONS WHEN USING MATCHING IN CONSERVATION IMPACT 111 

EVALUATION 112 

Three key steps when using matching for impact evaluations 113 

As with any statistical analysis, matching studies require careful design (Stuart 2010; Ferraro & 114 

Hanauer 2014a). We identify three main steps for a matching analysis (Figure 1). The first step 115 

involves identifying units exposed to the treatment and those not. The second step consists of 116 

selecting appropriate covariates and the specific matching approach. The third step involves 117 

running the matching analysis and assessing the quality of the match (Table 2). Steps 2 and 3 118 

should be repeated iteratively until the matching has been optimized. Only then should the 119 

matched data be used for further analysis. Doing so is important in post hoc analyses to avoid 120 



6 

 

selecting a matching approach that produces a desired result (Rubin 2007). We elaborate a 121 

number of key considerations involved at each of these steps (see Figure 1) below.  122 

 123 

Defining treatment and control units (Step 1) 124 

A ‘theory of change’ is needed to make impact evaluation possible  125 

The strength of the causal inference in observational studies relies on a clear understanding 126 

of the mechanism through which interventions influence outcomes of interest. Rival 127 

explanations should be carefully considered and, if possible, eliminated. Therefore, although 128 

impact evaluation is an empirical exercise, it requires a strong theory-based explanation and 129 

model of the causal pathways linking the intervention to the outcomes of interest (Ferraro & 130 

Hanauer 2014b). This theoretical model is often referred to as a ‘theory of change’ (also called 131 

‘causal chain’ or ‘logic model’). It comprises a theoretical understanding of how a treatment 132 

interacts with the social-ecological system it is embedded in (Qiu et al. 2018). This 133 

understanding is required to successfully argue that a causal pathway runs from the 134 

intervention to the outcome of interest (and not vice versa). For example, the expansion of a 135 

PA network might lead to the development of tourism infrastructure, which might also result 136 

in poverty reduction (Ferraro & Hanauer 2014b; den Braber et al. 2018). However, causality 137 

could run in the opposite direction: the development of tourism infrastructure close to a PA 138 

might be the outcome of reduced poverty as local communities invest revenue.  139 

Real world complexity cannot be ignored  140 

Conservation interventions are seldom implemented in simple settings where the impacts of 141 

one intervention can be easily separated from others. A thorough understanding of the study 142 

area and context is essential for identifying appropriate treatment and control units. Typically, 143 
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conservation interventions are implemented in a landscape where potential treatment and 144 

control units have been exposed to a range of different interventions. The availability of 145 

spatially-explicit datasets identifying where interventions have been implemented, is 146 

inconsistent: spatial information for some interventions are much more readily available than 147 

for others (Oldekop et al. 2019). Teasing apart the effects of specific interventions can therefore 148 

be challenging. In the Peruvian Amazon for example, there are few land areas with no formal 149 

or informal land use restrictions, and these often overlap (Figure 2). This hinders the isolation 150 

of one particular treatment-type (e.g. PA) and identifying appropriate control units (e.g. non-151 

protected land without land use restrictions). Indeed, the few matching studies that have 152 

accounted for differences between land use restrictions have found that the degree to which 153 

conservation interventions can be considered effective is influenced by how control areas are 154 

defined and selected (Gaveau et al. 2012; Schleicher et al. 2017). Conservation impact 155 

assessments could be improved by being more explicit about what the alternative land uses 156 

to the conservation interventions are, and why specific controls were selected. 157 

‘Spill-over’ should be considered in the selection of controls 158 

A central assumption in matching studies is that the outcome in one unit is not affected by 159 

the treatment in other units (Rubin 1980). However, this assumption does not always hold. 160 

There are many situations where outcomes in treatment units may ‘spill-over’ and affect 161 

outcomes in control units, either positively or negatively (Ewers & Rodrigues 2008; Baylis et al. 162 

2016). For example, increased fish population in no-take zones might spill-over into adjacent 163 

non-protected habitats, a case of positive spill-over that is part of the design of no-take marine 164 

PAs. This would mask the positive impact of the intervention by reducing the difference 165 

between treatment and potential control units. In addition, fishing effort may be displaced 166 
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from a no-take zone into potential control areas (negative spill-over). One might thus wrongly 167 

conclude that the intervention was successful, despite there being no overall reduction in 168 

fishing effort. In studies evaluating the impact of PAs on deforestation, negative spill-overs 169 

(also called ‘leakage’) have usually been accounted for by excluding buffer zones around 170 

treatment areas, so that they cannot be included as controls (Andam et al. 2008). However, 171 

leakage effects can vary across landscapes (Robalino et al. 2017), and take place over larger 172 

geographical scales, which have so far not been accounted for in matching studies.  173 

Selecting covariates and matching approach (Step 2) 174 

The selection of matching covariates should be informed by the theory of change  175 

A key assumption in non-experimental studies is that selection to the treatment should be 176 

independent of potential outcomes (known as the ‘conditional ignorability assumption’; 177 

Rosenbaum & Rubin, 1983). If factors affecting treatment assignment can be ignored, all 178 

confounding factors should have been controlled for, and the study should not suffer from 179 

hidden bias (i.e. not be very sensitive to potential missing variables). Therefore, matching 180 

analyses should ideally include all covariates likely to impact both the selection to the 181 

treatment and the outcome of interest (e.g. remoteness, as how remote a piece of land is will 182 

affect the likelihood of it being designated as PA and also deforested). Researchers should 183 

thus carefully consider which covariates are likely related to the outcome. It is better to err on 184 

the side of caution by including a covariate if the researcher is unsure of its likely role as a 185 

confounder. However, it is important that no variables likely to have been influenced by the 186 

outcome of interest are used as part of the matching process (Stuart 2010), so matching should 187 

only include variables pre-dating the intervention or time-invariant variables. Creating a table 188 

of all possible confounding factors and how they relate to the selection and outcome variables, 189 
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can help organize this process (e.g. Schleicher et al. 2017). Running regression analyses prior 190 

to matching or plotting the results of a Principal Component Analysis (PCA) can also inform 191 

covariate selection. PCA can help visualize how treatment and outcome relate to the selected 192 

covariates by showing which combination of covariates explain the outcomes observed in 193 

different units of analysis, and whether treatment and outcome show similar patterns (Eklund 194 

et al. 2016).  195 

Selection of the matching approach and how it is implement should be carefully considered  196 

There are various matching approaches, all with strengths and weaknesses. It is difficult to 197 

assess a priori which method is the most appropriate for a given study. Thus, testing a suite of 198 

different matching methods to evaluate which produces the best balance (see Step 3 Figure 199 

1), instead of relying on any one method, can be useful (e.g. Oldekop et al. 2018). Matching 200 

approaches include Mahalanobis, Propensity Score, Genetic and Full Matching (Stuart 2010; 201 

Iacus et al. 2012; Diamond & Sekhon 2013). Mahalanobis and Propensity Score matching are 202 

particularly commonly used in conservation science, and there is growing interest in the use 203 

of Genetic matching. Mahalanobis matching calculates how many standard deviations a unit 204 

is from the mean of other units (e.g. Rasolofoson et al. 2015). In contrast, Propensity Score 205 

matching combines all covariates into a single distance measure that estimates the probability 206 

of units receiving the treatment (e.g. Carranza et al. 2013). Genetic matching automates the 207 

iteration process (Diamond & Sekhon 2012) by optimizing balance diagnostics, rather than 208 

mean standardized distance (e.g. Hanauer & Canavire-Bacarreza 2015). Full matching uses a 209 

Propensity Score to match multiple control units to treatment unit and vice versa, and is 210 

particularly well suited when analyzing balanced datasets with similar number of treatment 211 

and control units (e.g. Oldekop et al. 2019). The development and testing of matching 212 
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approaches remains an active research area with some strongly arguing for one method over 213 

another (King & Nielsen 2019). 214 

 215 

Each of these methods can be configured in multiple ways, requiring a series of additional 216 

decisions about: (1) Treatment-Control ratio: the ratio of treatment to control units used during 217 

matching (i.e. whether to use a one-to-one match or to match one treatment unit to several 218 

control units), (2) Replacement: whether control units can be used multiple times or not (i.e. 219 

match with or without replacement), (3) Weighting: the relative importance placed on retaining 220 

as many treatment units or control units in the analysis as possible (with some approaches 221 

applying sampling weights to give more importance to certain units and adjust for unbalanced 222 

datasets), (4) Calipers: whether to set bounds (called ‘calipers’) on the degree of difference 223 

between treatment and control units, (5) Order: the order in which matches are selected (e.g., 224 

at random or in a particular order) (Lunt 2014), and (6) Exact matching: whether or not to only 225 

retain units with the exact same covariate value. Exact matching using continuous covariates 226 

typically results in many treatment units being excluded because no control units with identical 227 

values are found. This can increase bias because data is being systematically discarded. It is 228 

thus better suited for categorical variables.  229 

Inference can only be made for the region of ‘common support’  230 

In some cases, treatments may be so closely interlinked with potential confounders that no 231 

good matches exist. For example, if intact habitat remains only on mountain tops and all 232 

mountain tops are protected, it would be impossible to separate the contribution of location 233 

from that of the intervention itself, as there are no controls with similar habitat available that 234 

are not protected (Green et al. 2013). Matching therefore depends on a substantial overlap in 235 
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relevant covariates between units exposed to the intervention and potential controls. This 236 

overlap is known as the region of ‘common support’. An assessment of common support early 237 

on in the matching process can be a good filter to determine whether matching will be useful. 238 

When using the Propensity Score, it is simple to discard potential control units with scores 239 

outside the range of the treatment group. Visual diagnostics, including the Propensity Score 240 

distribution, are a simple and robust way of diagnosing any challenges with common support 241 

(Caliendo & Kopeinig 2008; Lechner 2000; see Figure 1 and Table 2). Where many potential 242 

control units need to be discarded, it can be helpful to define the discard rule based on one 243 

or two covariates rather than the Propensity Score (Stuart 2010). If many treatment units must 244 

be discarded because no appropriate control units can be found, the research question being 245 

answered by the analysis is likely to be different from the one that was being asked to begin 246 

with. This needs to be acknowledged. In some cases, it will simply not be possible to use 247 

matching to evaluate the impact of an intervention on an outcome of interest, requiring the 248 

use of alternative quantitative or qualitative methods (e.g. Green et al. 2013).  249 

 250 

Assessing the quality of the matching (Step 3) 251 

The quality of the match achieved must be explored and reported  252 

Matching provides no guarantee that biases have been sufficiently addressed. It is therefore 253 

important to assess the quality of the match and to report relevant statistics (see Figure 1 and 254 

Table 2). In fact, an advantage of using matching rather than standard regression, is that it 255 

highlights areas of the covariate distribution where there is not sufficient common support 256 

between treatment and control groups to allow effective inference without substantial 257 

extrapolation (Gelman and Hill 2007). When assessing the performance and appropriateness 258 
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of a match, three key features should be assessed and reported: (1) how similar are the 259 

treatments and controls after matching (covariate balance), (2) how similar is the pre-match 260 

treatment to the post-match treatment (large dissimilarities can potentially increase bias), and 261 

(3) the number of treatment units that were matched and discarded during matching. In 262 

addition, when matching is done with replacement, it is prudent to check the selection rate of 263 

matched controls, to ensure that there is no oversampling of specific controls. The best 264 

matching method will be the one that keeps the post-matched treatment as similar to the pre-265 

matched treatment as possible, while ensuring maximum similarity between post-match 266 

treatment and control units, and removing the least number of observations in the process. 267 

The proportion of covariates that have met a user-specified threshold for balance and the 268 

covariate with the highest degree of imbalance, have been shown to be effective indicators in 269 

diagnosing imbalance and potential bias (Stuart et al. 2013). Standard tests and visualizations 270 

that explore match quality have been widely published in the statistical, economics, health and 271 

political science literatures (e.g. Harris & Horst 2016; Rubin 2001). It is useful to combine both 272 

numeric and visual diagnostics (see Table 2 for examples) (Caliendo & Kopeinig 2008; Stuart 273 

2010; Harris & Horst 2016). 274 

 275 

A central assumption underlying the use of matching approaches is that any difference 276 

between treatment and control populations remaining after matching are due to treatment 277 

effects alone. Validating this assumption rests on a robust theory of change, and a careful 278 

selection of covariates. However, even if all known sources of potential bias have been 279 

controlled for, unknown mechanisms might still confound either treatment or outcomes. 280 

Checks to assess whether post-matching results are sensitive to potential unmeasured 281 
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confounders (e.g. Rosenbaum bounds; Rosenbaum 2007), allow one to evaluate the amount 282 

of variation that an unmeasured confounder would have to explain to invalidate the results. 283 

The robustness of matching results to spatial autocorrelation should be considered 284 

Conservation interventions, and most data used to assess their impacts, have a spatial 285 

component. A key assumption of many statistical tests is that units of observation are 286 

independent from each other (e.g. Dormann et al. 2007; Haining 2003). Yet, this assumption is 287 

easily violated when using spatial data: units of observation that are closer together in space 288 

are often more similar to each other than units of observation that are further apart. Such 289 

spatial dependency, referred to as spatial autocorrelation (SAC), is often not discussed or 290 

explicitly tested for in conservation matching studies, despite being a well-recognized 291 

phenomenon (Legendre 1993; Dormann et al. 2007). While it is unclear how matching affects 292 

SAC, SAC can clearly affect impact estimations. For example, studies modeling deforestation 293 

have shown that the spatial coordinates of a data point are among the top predictors of 294 

deforestation (Green et al. 2013; Schleicher et al. 2017). Some matching studies in the 295 

conservation literature have acknowledged the potential resulting bias, and have attempted 296 

to account or test for any potential effects linked to the spatial sampling framework (e.g. 297 

Carranza et al. 2013; Schleicher et al. 2017; Oldekop et al. 2019). We call for increased attention 298 

to SAC when evaluating place-based interventions. Steps to test for SAC could include Moran’s 299 

I tests, semi-variograms, correlograms, and spatial plots of model residuals (Schleicher et al. 300 

2017; Oldekop et al. 2019). These could be used to test for SAC of post-matching analyses and 301 

treatment assignment (e.g. by testing SAC of Propensity Score models). SAC could also be 302 

tested separately in the treatment and control groups before and after matching. If significant 303 

SAC remains after matching, it would be a strong indication that it needs to be accounted for 304 
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in any post-matching regression, something that could be confirmed through inspection of 305 

spatial patterns of model residuals (Dormann et al. 2007; Zuur et al. 2009; Oldekop et al. 2019). 306 

Post-matching analyses 307 

Matching is often used as a data pre-processing step (Ho et al. 2007). If matching perfectly 308 

reduces the difference between treatment and control units to zero, or the residual variation 309 

is close to random and uncorrelated with treatment allocation and the outcome of interest, 310 

then the average treatment effect can be measured as the difference in the outcome between 311 

treatment and control units. However, in most instances matching reduces - but does not 312 

eliminate - differences between treatment and control units. It is often followed by regression 313 

analyses to control for any remaining differences between treatment and control units (Imbens 314 

& Wooldridge 2009). Where longitudinal panel data is available, matching can be combined 315 

with a difference-in-difference research design (e.g. Jones & Lewis 2015; Table 1). Combining 316 

matching with other statistical methods in this way tends to generate treatment effect 317 

estimates that are more accurate and robust than when using any one statistical approach 318 

alone (Blackman 2013).   319 

 320 

MOVING FORWARD  321 

The increasing use matching approaches in conservation science has great potential to 322 

rigorously inform what works in conservation. However, while matching approaches are a 323 

powerful tool that can improve causal inference, they are not a silver bullet. We caution against 324 

using matching approaches without a clear understanding of their strengths and weaknesses. 325 

Looking to the future, we highlight clear avenues for improving the use of matching in 326 



15 

 

conservation studies. This includes developing robust theories of change, incorporating real 327 

world complexities, careful selection of matching variables and approaches, assessing the 328 

quality of matches achieved, and accounting for SAC. Conservation impact evaluation would 329 

benefit by increased evaluation planning alongside conservation interventions, better 330 

integration of qualitative approaches with quantitative matching-based methods, further 331 

consideration of how spill-over effects should be accounted for, and more publications of pre-332 

analysis plans. We explore each of these in turn.  333 

Post hoc evaluations are often necessary in conservation as there is a pressing policy need to 334 

explore the impacts of past interventions. However, there are limits to what statistical analyses 335 

can do post hoc to overcome problems in the underlying study design of an impact evaluation 336 

(Ferraro & Hanauer 2014a). More integration of impact evaluations within intervention 337 

implementations is needed to address and account for biases in where interventions are 338 

located. Occasionally, this may provide the opportunity for experimental evaluation (Pynegar 339 

et al. 2018; Wiik et al. 2019). More commonly, where this is not possible or desirable, good 340 

practice should be to explore and consider potential controls using matching from as early as 341 

possible. Innovative funding is needed to allow researchers to work alongside conservation 342 

practitioners throughout their intervention to incorporate rigorous impact evaluation from the 343 

start (Craigie et al. 2015). 344 

Matching does not provide certainty about causal links, and on its own does not likely provide 345 

insights into the mechanism by which an intervention had an impact. This highlights the 346 

importance of making use of the diverse set of evaluation approaches and data sources 347 

available. This includes the important, but often overlooked, contribution that qualitative data 348 

can make to impact evaluation and counterfactual thinking. For example, incorporating 349 



16 

 

qualitative data can provide depth in understanding, identify hypotheses, and help clarify 350 

potential reasons why an effect of an intervention was or was not found. Process tracing, realist 351 

evaluation, assessment of exceptional responders and contribution analyses are all suited for 352 

exploring the mechanisms by which an intervention led to an outcome (Collier 2011; Lemire 353 

et al. 2012; Westhorp 2014; Meyfroidt 2016; Post & Geldmann 2018). Qualitative Comparative 354 

Analysis can also be useful for exploring what factors needed to be present to achieve 355 

successful outcomes, or how impacts vary among different groups and circumstances 356 

(Korhonen-Kurki et al. 2014). 357 

There are remarkably few explicit assessments of the importance of spill-over effects beyond 358 

intervention boundaries at different spatial scales (Pfaff & Robalino 2017). While impact 359 

evaluations on deforestation rates commonly avoid selecting control pixels from a pre-defined 360 

buffer area around an intervention, the size of the buffer are seldom based on a clear 361 

justification. We know of no matching studies that explicitly account for spill-over effects over 362 

larger spatial scales. This is despite the need to account for spill-overs to assess whether a net 363 

reduction in conservation pressure has taken place, instead of simply displacing it elsewhere 364 

(Pfaff & Robalino 2012). For example, stronger implementation of logging rules in one region 365 

of Brazil shifted pressures to other regions (Dou et al. 2018) and China’s national logging bans 366 

mean that timber demand is being met through imports from Indonesia (Lambin & Meyfroidt 367 

2011). Accounting for these effects is inherently complex as many factors complicate the ability 368 

to account for effects over large spatial scales, including demand and supply dynamics, 369 

feedback cycles, and behavioral adaptation (Ferraro et al. 2019) – and will require further 370 

collective, interdisciplinary thinking and methodological developments. 371 
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Increasingly, there is a push for researchers in a number of fields to publish pre-analyses plans 372 

(e.g. Nosek et al. 2018), which lay out hypotheses identified a priori, and proposed analyses 373 

before the effects are assessed (Bauhoff & Busch 2018). The aim of pre-analyses plans is to 374 

reduce the risk of HARKing (Hypothesising After Results are Known; Kerr 1998). As there are 375 

many potential acceptable ways to select appropriate matches, there are benefits in publishing 376 

the matching and planned analysis before carrying it out.  377 

Given continuous loss of biodiversity despite considerable conservation efforts, there is an 378 

urgent need to take impact evaluations more seriously, learn from other disciplines, and 379 

improve our practices as a conservation science community. The increasing interest in the use 380 

of counterfactual approaches for evaluating conservation impacts is therefore a very positive 381 

development. There is an important role for conservation practitioners, funders and academics 382 

to encourage this development and to mainstream rigorous impact evaluations into 383 

conservation practice. Furthermore, there is certainly a need to increase the capacity of 384 

conservation scientists and practitioners in both the conceptual and technical challenges of 385 

impact evaluation, including by incorporating impact evaluation and counterfactual thinking 386 

in postgraduate training of future conservationists. We hope that this paper will help both 387 

improve the general quality of evaluations being undertaken, and direct future research to 388 

continue to improve the approaches currently on offer.   389 
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TABLES AND FIGURES: 

Table 1. Commonly used non-experimental, quantitative impact evaluation approaches with the pros 

and cons of their use in environmental management or conservation.  

Method When can it be used? Pros Cons 

Matching* 

When baseline information on 

confounding factors (those affecting 

both selection to the treatment and 

outcomes) are available for both 

treatment and control units (e.g. Andam 

et al. 2008). 

Relatively low data 

requirements and 

lends itself to 

integration with other 

approaches when 

used as a data pre-

processing step. 

Assumes balance in observable 

covariates reflects balance in 

unobserved covariates, i.e. that 

there are no unobserved 

confounders. 

Before-After-

Control-

Impact 

(Difference-

in-

Difference) 

When data before and after treatment 

implementation can be collected from 

replicated treatment and ‘control’ units 

(e.g. Pynegar et al. 2018).  

Controls for time 

invariant variables 

and for variables that 

change over time but 

affect both treatment 

and control groups 

equally. 

Assumes a parallel trend in 

outcome between treatment 

and controls (confounding 

factors in this case are those 

affecting treatment 

assignment and changes in 

outcome over time).  

Regression 

discontinuity 

When selection to the intervention 

follows a sharp assignment rule (e.g., 

participants above a certain threshold 

are selected into the treatment; Alix-

Garcia et al. 2018). 

Strong causal 

inference. 

Outcomes can only be 

calculated for units close to 

the cut-off (i.e. data from only 

a small sub-group of units are 

used). 

Instrumental 

Variables 

When treatment assignment is 

correlated with the error term 

(endogeneity), a third variable (the 

instrument) that is correlated with 

treatment but uncorrelated with the 

error term can be used instead of the 

treatment (e.g. Liscow 2013).  

Helps to overcome 

endogeneity. 

Suitable instruments can be 

hard to find. 

Synthetic 

Control 

When the intervention has only 

occurred in a single unit of observation 

information from a potential pool of 

controls can be synthesised to generate 

a single artificial counterfactual (e.g. 

Sills et al. 2015). 

Can be conducted 

when large numbers 

of treatment units are 

not available. 

Credibility relies on a good 

pre-implementation fit for the 

outcome of interest between 

treated unit and synthetic 

control. 

* Matching can be used to identify control units for comparison with treatment units as a method for 

impact evaluation, but is often used to improve the rigor of other approaches. For example, matching 

can be used to select ‘control’ units for difference-in-differences analysis. 
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Table 2. Example diagnostics for the checks (suggested in Figure 1) part of a matching analysis to assess the quality of the matching and robustness of the 

post-matching analysis.  

Check Example diagnostic Explanation and purpose Example visualizations 

Check 1: Balance 

 

Mean values and standardized 

mean differences before and 

after matching 

Test whether differences among treatment and control populations 

are meaningful. Compare covariate means and deviations for 

treatment and control units (before and after matching) to assess 

whether a matching has improved balance (similarity between 

treatment and control units). After matching mean covariate values 

should be similar and the standardized mean difference should ideally 

be close to zero.  Standardized mean values of <0.25 are often 

deemed acceptable, but thresholds of 0.1 are more effective at 

reducing bias (Stuart 2010; Stuart et al. 2013). 

Love plots and propensity score 

distributions before and after 

matching (e.g. Figure 1, Oldekop et 

al. 2019) 

Check 2: Spatial 

autocorrelation 

 

Moran’s I and spatial 

distribution of post-matching 

analysis residuals 

Moran’s I values of the post-matching analysis should not be 

significantly different from zero to demonstrate low levels of spatial 

autocorrelation. Plotting the spatial distribution of post-matching 

analysis residuals can help visualize whether there is a spatial pattern 

to the error term. 

Correlograms, semi-variograms and 

bubble plots (Figure 1, Oldekop et 

al. 2019) 

Check 3: Hidden Bias Rosenbaum bounds 

Assess sensitivity of post-matching estimate to presence of an 

unobserved confounder. Rosenbaum bounds help to determine how 

much an unobserved covariate would have to affect selection into the 

treatment to invalidate the post-matching result (Rosenbaum 2007).  

Amplification Plots (Rosenbaum & 

Silber 2009) 
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Figure 1. Visual representation of the suggested workflow, including key steps of a matching 

analysis, potential checks (see Table 2) and visual diagnostics of the matching process. 
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Figure 2. Map of (A) Peru and (B) the Peruvian Amazon with the main land use designations 

in 2011 to 2013. Conserved areas include government protected areas (PAs), conservation 

concessions, ecotourism concessions, concessions of non-timber forest products and 

territorial reserves. In an analysis of the impacts of PAs, Indigenous Territories and conservation 

concessions on deforestation rates, the decision of what to consider as appropriate control 

areas from which to select control pixels is far from straight forward given the multiple, and in 

part overlapping, land use designations (Schleicher et al. 2017).  
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Figure Legends: 

Figure 1. Visual representation of the suggested workflow, including key steps of a matching 

analysis, potential checks (see Table 2) and visual diagnostics of the matching process. 
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territorial reserves. In an analysis of the impacts of PAs, Indigenous Territories and conservation 

concessions on deforestation rates, the decision of what to consider as appropriate control 

areas from which to select control pixels is far from straight forward given the multiple, and in 

part overlapping, land use designations (Schleicher et al. 2017). 
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