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since in e(F)(l) the matrix element must be anti

symmetric under interchange of ql, and q2' Therefore 
the limit of DCB), and also of X(B), does not exist, 

and no inconsistency occurs. 

SUMMARY 

We can summarize this situation by saying that 

in the high-p limit a spin-O para-Bose field has 

(a) annihilation and creation operators and an anti-

JOURNAL OF MATHEMATICAL PH YSICS 

commutator which approach the annihilation and 

creation operators and c-number anticommutator of 

a spin-O Fermi field and (b) a Hamiltonian and a 

set of number operators which approach those of 

the spin-O Fermi field, but that, on the contrary, 
the Hamiltonian density of the high-order para-Bose 

theory does not converge to an operator in the 

Fermi theory. Analogous statements hold for the 

high-p limit of a spin-! para-Fermi field. 
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It is shown that a system of coupled harmonic oscillators can be made a model of a heat bath. 
Thus a particle coupled harmonically to the bath and by an arbitrary force to a fixed center will 
(in an appropriate limit) exhibit Brownian motion. Both classical and quantum mechanical treatments 
are given. 

1. INTRODUCTION 

OUR aim here is to study a simple mechanical 

model, a chain of coupled harmonic oscillators, 
in order to come to a deeper understanding of some 
of the phenomena associated with Brownian mo
tion. 1

,2 With this model we are able to carry through 

the program one would like to achieve with more 

* Part of the work reported in this paper was done while 
one of us (M. K.) was H. A. Lorentz Visiting Professor at 
the University of Leiden. When this work was reported at 
Yeshiva University in the Fall of 1963 Dr. N. L. Balazs 
informed us that he had independently obtained some of 
the results concerning the classical case. 

t Supported in part by a grant from the National Science 
Foundation. 

1 There is an extensive literature on the motion of coupled 
oscillators, mostly concerned with motion in a lattice with 
nearest-neighbor interactions. Some of the more recent 
articles which have a bearing on our work are: P. Mazur and 
E. Montroll, J. Math. Phys. 1, 70 (1960); P. C. Hemmer, 
"Dynamic and Stochastic Types of Motion in the Linear 
Chain," thesis, Norges Tekniske HS!lgskoie, Trondheim, 
Norway (1959); R. J. Rubin, J. Math. Phys. 1,309 (1960); 2, 
373 (1961); M. Toda and Y. Koguri, Suppl. Progr. Theoret. 
Phys. (Kyoto) 23, 157 (1962); R. E. Turner, Physica 26, 
274 (1960). 

2 The classic papers on the phenomological theory of 
Brownian motion are: G. E. Uhlenbeck and L. S. Ornstein, 
Phys. Rev. 36, 823 (1930); M. C. Wang and G. E. Uhlenbeck, 
Rev. Mod. Phys. 17, 323 (1945). 

realistic interactions. This program, which really 

goes back to Gibbs, goes as follows
3

: 

(i) Solve the equations of motion of the mechanical 

system consisting of a Brownian particle coupled to 
heat bath. The solution consists of expressions for 
the coordinates and momenta at time t in terms of 
the initial coordinates and momenta. 

(ii) Assume the initial coordinates and momenta 

of the heat bath to be distributed according to some 

statistical distribution, e.g., that of the canonical 

ensemble. 
(iii) Show that the coordinate and momentum of 

the Brownian particle, as functions of time, will 
then represent stochastic processes (whose statistical 

properties arise from the initial distribution of the 

heat bath) of the kind familiar from standard 
theories. 

This is a very ambitious program, and it is no 

wonder that it can be carried out only for the simplest 
models. 

S See the article by H. Wergeland in Fundamental Problems 
in Statistical Mechanics, edited by E. G. D. Cohen (North
Holland Publishing Company, Amsterdam, 1962). 
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We have a good idea of what the results of this 

program should be, since, after all, Brownian motion 

is a throughly studied experimental phenomenon 

with a satisfactory phenomenological theory. In 

general we expect to show: 

(i) The approach to equilibrium. In particular, 

the distribution of momentum of the Brownian 

particle should approach the Maxwellian distri

bution. 
(ii) The description of this approach to equilibrium 

should be contracted, i.e., should involve only a small 

number of the possible variables describing the 

system. Another way of saying this is that there 

should be a reduced description in terms of which 

the stochastic process is Markoffian. 

(iii) What changes occur when one adopts a 

quantum description of the system. Here we have less 

of an idea of what we should expect, but somehow 

the basic features of the stochastic process should 

be preserved in the quantum description. 

We can be still more explicit about what we mean 

by a contracted description of Brownian motion; 

we mean the Langevin equation of motion. For a 

Brownian particle of mass m acted upon by an out

side force F(x) this equation is 

p = -fp/m + E(t) + F(x), (1) 

where p = m:i; is the momentum of the Brownian 

particle, f the friction constant, and E(t) is the 

random force due to the heat bath. This random force 

is a purely random Gaussian process characterized by 

(E(t» = 0, (E(t)E(t'» = 2fkT~(t - t'), 

where T is the temperature of the heat bath and k 

is Boltzmann's constant. Note that the Langevin 

equation is a contracted description in the sense 

that the heat bath is described by only two param

eters, the friction constant and the temperature, 

and that only the first two time derivatives of the 

position x of the Brownian particle appear.
4 

In Sec. 2 we discuss the dynamics of a system of 

coupled oscillators. There we formally carry through 

the program for the case of an arbitrary coupling 

of the oscillators. In Sec. 3 the arbitrary coupling 

of a linear chain is considered, and we show that 

there is a coupling for which, in the limit of an 

infinite chain, the resulting stochastic process is 

Markoffian. Taking the chain of oscillators with this 

coupling as the heat bath, we derive in Sec. 4 the 

Langevin equation for a Brownian particle. In Sec. 5 

we discuss the quantum description of the system, 

and in Sec. 6 we discuss the quantum Langevin 

4 That is, there are no memory effects. 

equation. Finally, in Sec. 7 we consider the Brownian 

motion of a quantum oscillator. 

2. DYNAMICS OF A SYSTEM OF 
COUPLED OSCILLATORS 

Consider a system of (2N + 1) coupled oscillators 

with Hamiltonian: 

1 N 2 1 N 

H = 2 i~N Pi + 2 i.2N qiAikqk' (2) 

Here qi and pj are, respectively, the canonical 

coordinate and momentum of the jth oscillator. 

The mass of each oscillator has been taken to be 

unity. The interactions of the oscillators are char

acterized by the (2N + 1) X (2N + 1) symmetric 

matrix A, whose elements are the A jk . At present, 

we make no special assumptions about this matrix 

except that it has no negative eigenvalues. The 

canonical equations of motion may be conviently 

written in matrix notations as follows: 

q = p, P = -Aq. (3) 

Here p and q are (2N + I)-rowed column matrices 

whose elements are the pj and qj, respectively. The 

formal solution of the equations of motion is 

q(t) = cos (Ait)q(O) + A -i sin (Ait)p(O), 

pet) = -At sin (Ait)q(O) + cos (Att)p(O), 

where, e.g., 

Att - ~ ( - r An t2n 

cos - ~ (2n)! . 

(4) 

(5) 

We now assume that at t = 0 the system is in 

equilibrium at temperature T. That is, we assume 

that the qj(O) and p;(O) are distributed according 

to the canonical distribution 

D(q(O) , p(O» = (211'/,B)2N+1(det A)-ie-PH(CI(O) ,P(O», (6) 

where,B = (kT) -1 and det A is the determinant of A. 

Note that there is a difficulty here, since det A = 0 

if A has zero eigenvalues. We therefore assume for 

the time being that A has no zero eigenvalues. The 

expectation of any function F(q(O), p(O» is given by 

(F) = J ... J dq-N(O) ... dqN(O) dp-N(O) " . dpN(O) 

X F( q (0), p(O»D( q (0), p(O». (7) 

Now we ask, what are the properties of the sto

chastic variables qi(t) and pj(t) which result from 

(4) under the distribution (6)? First of all, it is 

clear that the process is Gaussian. This follows from 

the fact that the distribution (6) is Gaussian and that 

the relation (4) is linear. That the process is sta-
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506 FORD, KAC, AND MAZUR 

tionary follows from the Liouville theorem of me

chanics, which states that 

D(q(t), p(t» = D(q(O), p(O». (8) 

It is well known that the statistical properties 

of such a stationary Gaussian process are completely 

described by the pair correlation functions. In our 

case these are obtained in Appendix 1; the results are
6 

(Pi(t)Pk(t + Tn = kT IlcosAlTllik' 

(qi(t)Pk(t + Tn = -kT IIA-l sin AlTII;k, 

(9a) 

(9b) 

(q;(t)qk(t + T» = kT IIA-
1 

cos AlTII;k' (9 c) 

Note that the position correlation (9c) involves the 

inverse of A, which does not exist if A has zero 

eigenvalues. 

If we fix our attention on a single oscillator, say 

the one with index 0, the momentum autocorrelation 

IS 

(10) 

This is the autocorrelation of a stationary Gaussian 

process in one variable. It is well known that such a 

process is Markoffian if and only if the autocorrela

tion is an exponential, i.e., 

(Po(t)Po(t + r» = kTe-
f1rl

, (11) 

where f is a positive constant. The question we turn 

to in the next section is that of finding an interaction 

matrix A for which (10) assumes the form (11). 

3. THE INTERACTION MATRIX 

In our model we assume the (2N + 1) oscillators 

are identical and that they are arranged in a chain 

with cyclic boundary conditions. This means that 

the interaction matrix A is a symmetric cyclic 

matrix. 6 The elements of such a matrix can be 

written in the form 

1 N 2 

Am" = 2N + 1 k~N Wk 

X exp {i 2N2~ 1 k(m - n)}, (12) 

where the symmetry of A requires 

(13) 

The eigenvalues of this matrix are the quantities 

w~, s = -N, -N + 1, ... ,N. That is 

(14) 

i We use the notation IIMII;k for the element in the jth 
row and kth column of a matrix M. 

6 See, e.g., G. Kowalewski, Determinantentheorie (Chelsea 
Publishing Company, New York, 1948), 3rd ed., p. 105. 

where the eigenvector ~<.) is a (2N + I)-rowed 

column matrix whose elements are 

~~.) = (2N + 1)-1 exp {i[211"/(2N + 1)]sn}. (15) 

These properties follow from the elementary formula 

ktN exp (ik(m - n) 2N2~ J = Om.n, 

-N :::; m, n :::; N. (16) 

With this formula we can also readily demonstrate 

that if F(A) is a function of the matrix A, then 

1 N 2 

IIF(A) 11 ... n = 2N + 1 k~N F(Wk) 

X exp {i 2N2~ 1 k(m - n)}. (17) 

Note, incidentally, that the special case of nearest

neighbor interactions is that for which 

W! = (;)2 sin
2 

[1I"s/(2N + 1)]. (18) 

Consider next the limit N -7 (X) , the infinite chain. 

If we make the additional assumption that w! is 
slowly varying function of 8, then (12) becomes 

Amn = 21 f" dO f(O)e i
<m-n)9 

11" -r 

1 fr = 211" -r dO f(O) cos (m - n)O, 

where 

f(O) = {W!}.-<2N+1)9/2r· 

The relation (17) becomes in this limit 

1 fr 
1\F(A)llm.n = 211" -r dO F(f(O» cos (m - n)O. 

(19) 

(20) 

(21) 

We are now ready to turn to the problem posed at 

the end of the last section; that of finding an inter

action matrix A for which 

(22) 

Using the result (17) we see that for a finite matrix 

1 N 

IIcosA1tli oo = 2N + 1 k~N COSWkt. (23) 

For any choice of the Wk this is a quasiperiodic func

tion and cannot be of the form (22). However, in 

the limit of large N, we can use (21) which gives 

1 fl' IIcosA1tli oo = 211" -r dO cos {[f(O)]!t}. (24) 

Taken with our requirement (22), this becomes an 

integral equation for f(O). The answer is essentially 
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unique and is
7 

1(0) = r tan
2 !O. (25) 

There is a difficulty here, however; when (25) is 

inserted in the expression (19) for the matrix ele
ments, the expression diverges! What we must do is 

employ a second limiting process (after the limit 
N -? co), defining 

IwJO) = {/2 tan
2 £, 101 < OL , (26) 

0, OL ::; 101 ::; 11'". 

Here 

(27) 

is a high-frequency cutoff in the spectrum of eigen

frequencies which ensures that the matrix elements 

(19) are finite. This frequency cutoff corresponds to 

a "microscopic interaction time" W~' which we 
assume is very small compared with the "macro

scopic relaxation time" r'. The result (22) holds 
strictly only in the limit WL -? co. Alternatively, 

we can say that, for WL » I the result (22) holds for 
times long compared with W~'. 

Our model, then, is that the interaction matrix 

elements are given by (19) with 1(0) given by (26) 

with WL » I. If in (24) we make the change of 

variable W = I tan iO, we find 

IjWL I 
Ilcos Attlloo = - dw 2 + r cos wt. 

7r -WL W 

(28) 

In the limit WL -? co this becomes e - f III and, there

fore, the Gaussian process poet) becomes also Mark
offian. 

4. THE LANGEVIN EQUATION 

Having seen that our model leads to a Gaussian 

Markoffian stochastic process for the collection of 

coupled oscillators, we are led to ask whether it also 

leads to the Langevin equation for the motion of a 

single particle coupled to a heat bath consisting of 
such oscillators. In this section we see that this is 

indeed the case. 

We select from the chain of (2N + 1) oscillators, 

the particle with index 0 to be the Brownian particle; 

the remaining 2N oscillators represent the heat bath. 
The outside force on this particle we denote by 

F(t) == F(qo(t». (29) 

If we define F(t) to be a (2N + I)-rowed column 

7 What is unique is the spectrum of eigenfrequencies: 
!l(w) = 2w/(",1'(8», where 8 is the function of w obtained by 
inverting the equation w' = f(8). For (25), !lew) = (2f/7r)' 
(w' +1')-1. 

matrix whose elements are all zero except for the 

zeroth element which is F(t), then in the notation 

of Sec. 2 the equations of motion for coupled "particle 

and heat path" are 

Ii = p, P = -Aq + F(t). 

The formal solution of these equations is 

q (t) = cos At tq (0) + A -t sin At tp(O) 

(30) 

+ { dt' sin A~ - t') F(t') , (31a) 

pet) = -At sin Attq(O) + cos Attp(O) 

+ { dt' cos At(t - t')F(t'). (3Ib) 

If, now, we take the zeroth element of Eq. (30) for p 
and substitute (31a) we get 

Po = - EllA cos Attllo; q;(O) 

- E IIAt sin At tllo; p;(O) 
; 

- {dt' IIAt sin At(t - t')llooF(t') + F(t). 

Next, we eliminate PoCO) between this equation and 
the zeroth element of Eq. (31b). The result can be 

written in the form 

Po - F(t) = -'Y(t)po + E(t) 

+ { dt' ['Y(t) - 'Y(t - t')] 

X Ilcos At(t - 1') 1100 F(t') , (32) 

where 

_ IIAt sin Attlloo _ _ !i ! 
'Y(t) - IlcosAltll oo - dt log IlcosA tlloo, (33) 

and 

E(t) = - E h(t) IIAt sin Attlloi 
; 

+ IIA cos Attllo;}q;(O) + E h(t) IlcosA!tll o; 
; 

(34) 

Note that the coefficient of PoCO) vanishes in this 
expression. Equation (32) is the equation of motion 

for the Brownian particle. The right-hand side is 
the net force exerted on the Brownian particle by 
the other particles, i.e., by the heat bath. The first 

term represents a frictional force with time-depen

dent "friction coefficient" 'Y(t), the second term 

represents a fluctuating force E(t) depending upon 

the initial state of the heat bath, and the third 
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term represents a memory effect depending upon the 

past history of the motion of the Brownian particle. 

If we assume that the interaction between the 

Brownian particle and the heat bath is invariant 

under translations, we have 

2: Ai; = 0, (35) 

and this in turn implies that (34) may be written 

E(t) = - 2:' h(t) IIA 1 sin A! t 110; 
i 

+ IIA cosA'tll)[qj(O) - qo(O)] 

+ 2:' h(t) IlcosA!tlloi -IIA1sinAttlloj}Pi(O), (36) 
; 

where the prime on the sum denotes the omission 

of the term j = O. Thus the fluctuating force depends 

only upon the initial coordinates of the particles of 

the heat bath relative to the initial coordinate of the 

Brownian particle, and is independent of the initial 

coordinate and momentum of the Brownian particle. 

Consider now what happens when the matrix of 

interactions is that of the model discussed in Sec. 3, 

in which the matrix elements are given by (19) 

with f(O) given by (26) in the limit WL » f. For this 

model 

Ilcos Aitlloo = e- fit 
I 

and therefore, from (33) we find that 

lim 'Y(t) = f, 

which is a constant. 

(37) 

(38) 

This in turn implies that the last term on the 

right-hand side of (32) (the memory-effect term) 

becomes, in the limit, identically O! 

With these results, (32) takes the form 

Po - F(t) = -fpo + E(t), (39) 

with 

E(t) = - 2: II/AlsinAit + A cos Aitllo;q;(O) 
i 

Equation (39) is the Langevin equation. 

It remains to prove that the statistical properties 

of E(t) become (again in the limit N ~ 00, WL » f) 

those of a purely random Gaussian process. This 

depends, of course on the statistical assumptions 

concerning initial positions and momenta. 

We would like to require that at t = 0 the heat 

bath is in equilibrium at temperature T and the 

simplest way of doing this is to assume that the 

initial distribution is the canonical distribution (6). 

This however is, strictly speaking, impossible since 

(35) implies that Wo = 0 so that det A = 0 and the 

canonical distribution becomes improper. The dif

ficulty is not serious and can be remedied, e.g., by 

slightly modifying the matrix A; i.e., replacing it by 

(1 is the unit matrix) 

(41) 

where eN, though positive for every finite N, ap

proaches 0 as N ----t 00 (as fast as one pleases). Now 

(35) is only approximately true and the canonical 

distribution (6) is proper. We hope that the reader 

does not become unduly confused by our use of the 

symbol A to denote three different matrices. We use 

it to denote the finite cyclic matrix (12), the modifica

tion (41), and last but not least for the infinite 

cyclic matrix (defined only with the cutoff WL)' 

Clearly, since the distribution (6) of the qj(O) and 

Pi(O) is Gaussian, E(t) is a Gaussian process. We can 

form its covariance with the help of the results of 

Appendix 1, and, in the limit considered throughout 

this paper, we find that 

(E(t)E(t'» = kT II(r + A) cos At(t - t') 1100' (42) 

But the matrix A is given by the model of Sec. 3; 

hence, using (21), we find 

(E(t)E(t') ) 

= ~~ L: dO (r + r tan
2 ~) cos f tan ~ (t - t') 

kTfJ'" = - dw cos wet - t'). 
11' _ .. 

This last integral is the well known expression for 

the Dirac delta function, so we have 

(E(t)E(t'» = 2fkTo(t - tf). (43) 

Thus E(t) is a purely random, Gaussian, stochastic 

process and Eq. (39) is the Langevin equation for 

Brownian motion. 

In order that the equation of motion (32) be

come the Langevin equation it is necessary that (i) 

the friction constant 'Y(t) be independent of time; 

(ii) the stochastic process E(t) be a purely random 

Gaussian process; (iii) the memory effects disappear. 

We feel that it is striking that, for our model, 

these three properties are intimately related. Un

doubtedly this fact is of much more general signifi

cance. 

5. THE MOTION OF COUPLED QUANTUM 
OSCILLATORS 

We turn now to the question of the changes re

quired for a quantum mechanical description of 
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the motion of coupled oscillators. The answer is 

that much of our previous discussion is, formally at 

any rate, entirely unchanged. Thus in our discussion 

of Sec. 2, the Hamiltonian (2) is unchanged, but the 

coordinates q; and momenta Pi are now operators 

whose commutation rules are 

[q,., qkJ = [p,., Pkl = 0, (44) 

[q,., Pk] = ihO ik • 

The equations of motion (3) are the equations of 

motion in the Heisenberg picture, and their solu

tion (4) relates the Heisenberg operators at time t 

to the operators at the initial time. 

At t = 0, we assume the system is in equilibrium 

at temperature T. In the quantum description this 

means that the initial state of the system is described 

by the density matrix corresponding to the canonical 

ensemble: 

p(q(O),p(O» = exp {-,BH(q(O),p(O»}. (45) 

The expectation of any function F(q(O), p(O» of the 

operators q(O), p(O) given by 

(F) = Tr f F(q(O), p(O»p(q(O), p(O» I. (46) 
Tr {p(q(O), p(O»} 

Just as in the classical case, we now consider the 

properties of the stochastic operators qi(t) and pj(t) 

which result from the equation of motion and the 

initial density matrix. These properties we describe 

in terms of the correlation functions, the simplest 

being the pair correlation functions. These are ob

tained in Appendix 2; the results are 

(P,.(t)Pk(t + T» 

= lin:! [ coth ;:; cos AtT + i sin AtT JII,.k (47a) 

(q,.(t)qk(t + T» 

= 1121t [coth;A; CosAiT + iSinAiTJllik (47b) 

(q,.(t)Pk(t + T» 

= jig [ -cothg~sinAiT + i cos AiTJllik' (47 c) 

Note that in the limit n = 0, these expressions be

come identical with the classical expressions (9). 

As indicated in Appendix 2, the higher correlations 

are given by the rule: I 
Correlations of an odd number of q's and P's 

vanish. The correlation of an even number of q's 

and P's is equal to the sum of products of pair cor-

relations, the sum being over all possible pairings of 
the operators, with order preserved. 

Except for the italicized proviso that the order be 

preserved, this rule is identical with the classical 

rule for a Gaussian random process.s The stochastic 

operators also have the classical stationarity property; 

the correlations depend only upon the time dif

ferences. There are, however, obvious differences be

tween the properties of the stochastic operators 

and the properties of the corresponding classical 

stochastic process. The principal differences arise 

from the fact that the quantum operators do not 

commute. Thus there are many (indeed, an infinity!) 

of correlations of the quantum operators which can 

be associated with a given classical correlation, 

corresponding to different orderings of the operators. 

As a simple example, 

{Eqp + (1 - f)pq)Quanturn ~ (qp).la •• ical , 

where E is an arbitrary complex number. Another 

difficulty comes from the fact that the product of 

two noncommuting Hermitian operators is not 

Hermitian, and, therefore, does not correspond to a 

physical observable. We see this difficulty explicitly 

in the correlations (47), which are complex functions, 

whereas the expectation value of a physical observ
able should be real. 

The difficulties we mention would be largely 

resolved if we had a conventional definition of the 

product of operators with the following properties: 

(a) The product is independent of the order of the 
operators. 

(b) The product of a number of Hermitian op
erators is itself Hermitian. 

(c) The classical pair decomposition rule for ex

pressing higher correlations in terms of pair correla
tions holds. 

For our system of coupled oscillators there is such a 

conventional product, namely the ordered product 

or normal product introduced in quantum field 

theory9; it is defined as follows. In Appendix 2 we 

show how the operators q(O) and p(O) can be ex

panded in terms of creation and annihilation opera
tors for the normal modes; 

q(O) = i ~ ~(·)(2~)\a. - a~), 

p(O) = ~ ~(·)e;·t(a. + a~). 
(48) 

8 See, e.g., Wang and Uhlenbeck, Ref. 2. 
~ See, e.g., G.-C. Wick, Phys. Rev. 80, 268 (1950). 

Downloaded 19 Aug 2013 to 143.107.128.41. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



510 FORD, KAC, AND MAZUR 

Here ~(.) is the eigenvector of the interaction matrix 

A, and w: is the associated eigenvalue 

(49) 

The operator a. is the annihilation operator for 

the sth normal mode and a~ is the corresponding 

creation operator. Their commutation rules are 

[a., a~] = 0." [a., a,] = [a~, a~] = O. (50) 

The time-dependent operators are expressed in terms 

of the a. and a~ by inserting (48) in (4). We find 

q(t) = i ~ ~(')(2:y(a,e-iW.t - a~e;w.t), 
(51) 

pet) = ~ ~(·)(~J(a,e-iW.t + a~e;w.t). 

The normal product of a number of the operators 

a, and a~ is defined to be that product in which all 

the a~ are written to the left of all the a •. Because of 

the commutation rules (50), this defines a unique 

order. The normal product of a number of operators 

q;(t) and pj(t) is the product in which the expansions 

(51) are used and each product of the a. and a~ is 

written in normal form. We denote the normal 

product by a colon placed before and after the 

product of factors. As an example, 

:q;(t,)Pk(t
2
): == i-

2

h L: L: (w')\:')~kd [a,a,e-i(".t.+w,t,) 
8 ,. Ws 

The normal product fulfills our requirements. It 

us clearly independent of the order of the factors, 

and, since a~ is the Hermitian conjugate of a., the 

normal product of a number of Hermitian operators 

is Hermitian. Using the results given in Appendix 2, 

we can show that the pair correlations of normal 

products of the q;(t) and Pk(t) are 

(:P;(t)Pk(t + 7):) = IIP(hAi/kT) COSA'711;ko 

(:qi(t)qk(t + 7):) = IIP(hA'/kT)A-' COSA'711iko (52) 

(:qi(t)Pk(t+ 7):) = -IIP(hA'/kT)A- t sinAt 71Iik' 

Here we have introduced the Planck function 

given by the well-known rule for a Gaussian random 

process: 

The correlation of the normal product of an odd 

number of q's and P's vanishes. The correlation of 

the normal product of an even number of q's and P's 

is equal to the sum of products of pair correlation 

of normal products, the sum being over all possible 

pairings. 

What we can say, then, is that the correlations of 

normal products of our stochastic operators are 

identical with those of a stationary Gaussian process 

whose pair correlations are given by (52).10 

Finally, if we fix our attention on a single oscilla

tor, the one with index 0, the momentum autocor

relation is 

(:Po(t)Po(t + 7):) = IIP(hA'/kT) cos At71loo. (54) 

Just as in the corresponding classical process, we can 

ask whether there is an interaction matrix A for 

which (54) is an exponential and, therefore, the 

corresponding Gaussian process is Markoffian. The 

answer is that we can, but that it is temperature

dependent, and, therefore, not of physical interest. 

If we use the model discussed in Sec. 3, in which the 

matrix elements are given by (19) with f(8) given by 

(26) in the limit WL » f, we find (54) becomes 

(:Po(t)Po(t + 7):) 

2 f'" (nw) f =:;;: 0 d",P kT ",2 + f2 COSW7. (55) 

In the limit h ~ 0, this becomes identical with the 

classical result obtained earlier, and the process 

becomes Markoffian. 

6. THE QUANTUM LANGEVIN EQUATION 

The formal manipulations we used in Sec. 4 to 

derive the Langevin equation are unchanged when 

we interpret the q's and P's as quantum operators. 

In particular, when the matrix of interactions is 
that given by the model of Sec. 3, in which the 

matrix elements are given by (19) with f(8) given by 

(26) in the limit "'L » f, we obtain an operator 

equation of motion which is formally identical with 

Langevin equation (39). That is 

Po - F(t) = -tpo + E(t), (39') 

where 

P(x) == kTx/(e
X 

- 1). (53) E(t) - L I ItA! sin At t + A cos At tllo; qi(O) 

When x = hw/kT the Planck function is the average 

energy, relative to the ground state, of a quantum 

oscillator of frequency",. As x ~ 0, P(x) ~ kT, 

the classical equipartition energy. 
The higher correlations of normal products are 

+ L Ilf cosAlt - AtsinAitlloiPi(O). (40') 
; 

'0 Essentially the same point is made in connection with 
the quantum description of statistical light beams by E. C. G. 
Sudarshan, Phys. Rev. Letters 10, 277 (1963). See also R. J. 
Glauber, Phys. Rev. Letters 10, 84 (1963). 
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The operator Langevin equation is an equation of 
motion for the time-dependent Heisenberg operators 
Po(t) and qo(t). The operator F(t) is the external 
force operator, 

(56) 

with V(qo, t) the (time-dependent) potential of the 
external force. The random-force operator E(t) is 

in fact independent of the operators PoCO) and qo(O) 

since their coefficients in the expression (40') vanish 
for our model of the interaction matrix. Because of 

the commutation rules (44), this means that 

[qo(O) , E(t») = [Po(O) , E(t») = o. (57) 

We assume that the statistical state of the initial 
coordinates and momenta of the heat bath is de
scribed by the density matrix (45). Just as in the 

classical case, this means that at t = 0 the heat bath 
(Le., the oscillators other than the Brownian parti
cle) is in equilibrium with a fictitious force-free 
Brownian particle. Since the random-force operator 
E(t) is independent of the initial coordinate and 
momentum of the Brownian particle, its stochastic 
properties are unaffected by the dependence of the 
density matrix upon these operators. The covariance 
of the normal product is readily obtained using the 
results (52), we find 

(:E(t)E(t + T):} 

= IICr + A)P(hA!/kT) cos AlTlloo. (58) 

But for our model, we may use the general expression 
(21), with f(8) given by (25). Hence 

1 1" (:E(t)E(t + T):) = 211" _ .. dO f2(1 + tan
2 le) 

X p(~~ ltan lei) cos (fT tan le) 

211'" (hw) = - dw P -- cos WT. 

11" 0 leT 
(59) 

Correlations of higher normal products of E(t) are 
again given by the rule for a Gaussian random 
process. .Hence, the stochastic properties of the 
random operator E(t), as expressed by the correla
tions of normal products, are identical with those of a 
stationary Gaussian process whose covariance is 

given by (59). In the limit h -l> 0, this covariance 
approaches the corresponding classical covariance 
(43), which is the covariance of a purely random 
Gaussian process. However, for finite h, (59) is the 
covariance of a Gaussian process which is not even 
Markoffian. This is the chief difference between the 

quantum and classical Langevin equations for our 

model. 
As an elementary application, consider the motion 

in a constant field of force, 

F(t) = e. (60) 

The solution of the operator Langevin equation is 

PoCt) = e-ftpo(O) + ]'e(l - e-
Jt

) 

+ { dt' e-!(t-t"E(t'). (61) 

If we average this expression over the initial state 
of the heat bath, we findll 

(Po(t» = e-ftpo(O) + rIe(I - eft), (62) 

since (E(t» = O. After a long time (t » rl) we find 

(PoCt» '" riC;. (63) 

This is the analog for our model of Ohm's law. The 
left-hand side is the "current," which in the steady 
state is proportional to the applied field, and in
versely proportional to the "resistance," i.e., the 
friction constant. 

The mean-square "fluctuation current" may also 
be obtained from (60) 

(:[Po(t) - (PoCt»]2:) 

= l' dt' e-f(t-.,) l' dt" e-!('-''')(:E(t')E(t"):). (64) 

Note that we have used the normal product in the 
definition of the squared fluctuation. Using the 
expression (58) for the covariance of E(t), we find 

(:[Po(t) - (PO(t»]2:) 

= 21 r (hw) 11 - e-
U -;wltI2 

11" Jo dw P leT 1 - iw ' (65) 

where we have used the elementary result 

l' dt' l' dt" e- f
(.-. 'le- l

('-' "l cos wet' - t") 

= 1(1 - e- U
-

i ",)t)/(1 - iw)12. (66) 

In the steady state, i.e., when t » rt, (65) becomes 

2 2f ('" (hw) 1 
(:[PoCt)-(Po(t»] :)=-; J

o 
dwP leT w2+r' (67) 

This is the analog for our model of the Nyquist 
formula, which relates the noise power spectrum 

11 The result of the average over the states of the heat 
bath is still in general an operator function of qo(O) and Po(O), 
We trust that our definition of this average, which involves 
an average over the initial coordinate and momentum of a 
fictitious Brownian particle, is not confusing, 
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to the resistance and the absolute temperature. I2 Here 

Note that if we had used the ordinary product in-
(73) 

stead of the normal product, we would find 

([Po(t) - (Po(t») ]2) 

== ([Po(t) - (Po(t))]· [poet) - (Po(t»)]) 

2 2f l"'L hw 1 
= (:[Po(t) - (Po(t»)] :) + -; a dw 2 w2 + f2' (68) 

The added integral is clearly related to the zero

point fluctuations of the heat bath. It is also diver

gent in the limit WL ---+ a:>, so we have retained this 

cutoff explicitly. Which of the possible definitions 

of the product corresponds to an experimental 

measurement of the fluctuation spectrum? This, in 

the last analysis, must be determined by the experi

ment itself. We tend to the opinion that the normal 

product is the physically appropriate definition, 

since it leads to a noise spectrum which vanishes at 

absolute zero. 

7. BROWNIAN MOTION OF A QUANTUM 
OSCILLATOR 

As a second application of the quantum Langevin 

equation, we consider the case of the harmonic 

oscillator, for which the external force is
I3 

(69) 

where" is the natural frequency of the oscillator. 

The quantum Langevin equation (39 /) becomes 

Po + iqo = -fpo + E(t) , (70) 

to which we must append the equation 

(71) 

The solution of this pair of coupled equations is 

qo(t) = e- lf ' {[cos vt + (1/2v) sin vt]qo(O) 

+ v -I sin vtpo(O) I 

+ r' dt'e-'f<t-,·) !sinv(t - t')E(t') , 
Jo v 

poet) = e-v' {_(,,2/V) sin ptqo(O) 

+ [cos vt - (fj2v) sin vt]po(O) I 

+ l' dt' e-'('-")[cos vet - t') 

- (f /2v) sin v(t - t') ]E(t'). 

(72) 

12 For elementary discussion of the Nyquist formula and 
its quantum generalization see C. Kittel, Elementary Statis
tical Physics (John Wiley & Sons, Inc., New York, 1958), 
pp. 141-153. See also J. Lawson and G. E. Uhlenbeck, 
Threshold Noise Signals (McGraw-Hill Book Company, Inc., 
New York, 1950), especially pp. 64-79. . 

13 The Brownian motion of a quantum oscillator IS con
sidered in a paper by J. Schwinger, J. Math. Phys. 2, 407 
(1961). 

and we restrict our discussion to the underdamped 

case, where" > tt, so v is real and positive. 

The mean motion of the oscillator is described by 

the operators obtained by averaging (72) and (73) 

over the initial states of the heat bath. Since (E(l» = 
0, we have 

(qo(t») = e-'" {[cos vt + (f/2v) sin vt]qo(O) 

+ V -I sin vtpo(O) I , 

(Po(t») = e-!f' { - "VI sin vtqo(O) 

+ [cos vt - (f /2v) sin vt]po(O) }. 

(74) 

These are just the operator solutions of the average 

of the equations of motion (70) and (71). We see 

from (74) that these operators vanish for t » r\ 
the mean motion of the oscillator vanishes for times 

long compared with the "macroscopic relaxation 
time" rl. 

To see more precisely what we mean by the 

operators (74), consider the coordinate representa

tion. The Heisenberg state of the oscillator is then 

specified by a time-independent wavefunction 

~[qo(O)], and the initial momentum operator is repre

sented by -ih a/aqo(O). The simplest kind of ques

tion we can ask about the Heisenberg operators is 

their expectation value, denoted by a subscript "ex" 

to the operator. For example, 

(qo(t»).~ == i: dqo(O) ~*[qo(O)]<qo(t»)~[qo(O)] 

= e-V
' {(cos /It + (f/2v) sin vt)[qo(O)Jex 

+ V-I sin vt [Po (0) Jex}. (75) 

As a simple illustration, if the wavefunction is 

then 

and 

(qoU»)e" = e-v'[cos vt + (f/2v) sin vt]xo, 

(PoU) lex = -e -tf',,2V -1 sin vtxo. 

(76) 

(77) 

(78) 

The operator describing the fluctuation of the 

displacement of the oscillator about the mean dis
placement is 

qo(t) - (qa(t» 

= l' dt' e-v<t-") sin v(t - t') E(t'). (79) 
o v 
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The mean-square fluctuation in displacement we 

express as the mean of the square of (79), written as 

a normal product. Using (59), we find 

(:[qo(t) - (qo(t)W:) = ~ i~ dw P(::;) 

xiI - e-eV-'''')'[cosvt + (tt -iw)v-
1 

sinvtll2 (80) 
w2 - K2 + ifw . 

Here we have used the following result of an ele

mentary but tedious integration 

l ' dt' l' dt" e- ife '-") sin v(t - t') 
o 0 v 

X 
-!f(t-''') sin v(t - t") (t' t") e cosw -

v 

_/1 - e-ev-,,,,),[cos vt + af -iw)pl sinvtll2 
- w2 _ K2 + ifw • (81) 

The time dependence of the mean fluctuation in 

displacement, as expressed by (80), is rather com

plicated. It does, however, have the simple feature 

that, for times long compared with the relaxation 

time r\ it approaches an equilibrium value 

(:[qo(t) - (qo(t»Y:).q 

square displacement of an independent oscillator of 

frequency" at temperature T. 

APPENDIX 1: CORRELATIONS IN A SYSTEM 
OF COUPLED CLASSICAL OSCILLATORS 

Consider first the correlations of the initial values 

of the coordinates and momenta, whose distribution 

is [c.f. Eq. (6)] 

D(q(O) , p(O» = (21r/,8)2N+l(det At! 

X exp {-~ [~p~(O) + ft q;(O)A;kqk(O)l}. (1) 

Since this is a Gaussian distribution, all higher 

correlations can be expressed in terms of the pair 

correlations. These are (,8 = l/kT): 

(P;(O)Pk(O» = kTo;k, 

(Pj(O)qk(O» = 0, (2) 

(q;(O)qk(O» = kT IIA -111;k' 

These expressions are consequences of well-known 

integral formulas for Gaussian distributions. 14 

The pair correlations for the time-dependent 

coordinates and momenta are found from (4), using 

(2). We have for the momentum correlation: 

2f 1~ P(liw/kT) 
= - dw ( 2 2)2 + 2j2' (82) (P;(t)Pk(t + r» = L {IIAlsinAltll; .. 

1r 0 W -K W 

In the classical limit we use the property of the 

Planck function (53) 

P(hw/kT) ~ kT, as h ~ O. (83) 

The remaining integral in (82) is elementary: 

2/ 1~ 1 -2 - dw (2 2)2 + 2j2 = K , 
1ro W-K W 

(84) 

and we find 

(:[qo(t) - (qo(t»t:).q ~ kT/K
2

, as h ~ 0, (85) 

which is the classical equipartition result. 

Another simple limit of (82) is the weak-coupling 

limit, in which the coupling of the Brownian particle 

to the heat bath is weak compared with the oscillator 

coupling. That is, K » f. In this limit the resonance 

denominator in (82) becomes sharply peaked at 

w = K, with a width ~ f. Hence, we can evaluate the 

Planck function at w = K and perform the remaining 

integral using (84). We find 

(:[qo(t) - (qo(t»t :).q ~ j p(~~), for K» j. (86) 

This is the well-known Planck result for the mean-

.... n 

X IIAl sin Al(t + r) Ilkn(q .. (O)qn(O» 

+ II cos Aitll;", IIcos A!(t + r)lIkn(p ... (O)Pn(O»1 

= kT{ IIsin Ait sin Al(t + r) 

+ cos Ait cos Ai(t + r) II;k, 

where we have used the fact that the matrix A is 

symmetric. Using the formula for the cosine of the 

difference of two angles, we find 

(3) 

In a similar way, we can also show 

(q;(t)Pk(t + r» = -kT IIA-i sin Airllik' (4) 

(q;(t)qk(t + r» = kT IIA-
1 

cos Airll;k' (5) 

Since the process is Gaussian, the higher correlations 

are given by the following rule
8

: 

The correlation of an odd number of coordinates 

and momenta vanish. The correlation of an even 

number of coordinates and momenta is equal to the 

1< See, e.g., H. Cramer, Mathematical Methods of Statistics 
(Princeton University Press, Princeton, New Jersey, 1945), 
p.118. 
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sum of products of pair correlations, the sum being 

over all pairings. 

For example, 

(q;(tJ) qk(t2) ql (ta)Pm(t4) > = (q,(tJ) qk(t2»( ql (t3)Pm(t4) > 

+ (q,(fJ)ql(ta»(qk(f2)p",(f4» 

+ (q,(f,)Pm(f4»(qk(t2)ql(ta». 

APPENDIX 2: CORRELATIONS IN A SYSTEM 
OF COUPLED QUANTUM OSCn.LATORS 

The system of oscillators is described by the 

Hamiltonian 

where the operators qi and Pi satisfy the commuta

tion relations 

The expectation value of any operator F with 

respect to the canonical ensemble at temperature T 

is defined by 

(F) = Tr {Fe-~Hl/Tr {e-~H}, (3) 

where the trace operation is in the space of the eigen

functions of the Hamiltonian operator. We are 

interested mainly in the case where the operator F 
is a product of q's and p's. 

As a first step in the evaluation of such traces, 

consider the eigenvalues and eigenvectors of the 

matrix A: 

_ . ,,/:(.)(~)i( *) 
q, - ~ '7-'''' 2w. a. - a. , 

(8) 

_ "t(')(hw.)!( + *) 
Pi - '7-'''' 2 a. a •. 

Inserting these expressions in the Hamiltonian (1) 

and using the relations (4) and (5) we find 

H = L: hw.(a~a. + !). (9) . 
The operator a~a. is the number operator for the 8th 

normal mode; its eigenvalues are the nonnegative 

integers. The operator a. is the step-down (annihila

tion) operator, and the operator a~ is the step-up 

(creation) operator; they have matrix elements only 

between eigenstates of the number operator which 
differ by unity. 16 

The evaluation of the expectation value (3) when 

F is a product of the a's and a*'s is straightforward. 

Clearly, the only nonvanishing expectation values 

are for products containing an equal number of a*'s 

and a's. The simplest of these are the pair expecta

tion values. Thus 

(a~aT) = Oar Tr {a~a.e-IlH}/Tr {e-IlH } 

i: n exp [-hw. (n + !)] 
o .. -0 kT 2 

ar i: exp [_hw. (n + !)] 
n-O kT 2 

0 .. [ exp e:r) - 1 J' 
or 

(a~ar) = !oar[coth hw./2kT) - I]. (10) 

" A. /:(.) = 2/:(,) 
4..J lkt;k WS'i'· 

k 
(4) Using the commutation relation (7), we have 

The eigenvectors are assumed normalized so that 

" t(·)/:(r) = ~ 
£-i ~1 t;"J UHf L: ~;r)~~r) = ~'k' (5) 

r 

We now introduce the operators 

a. = (2hw.)-i L: ~~.)(p, - iw,q,), , 
(6) 

a~ = (2hw.)-t 2: ~~')(Pi + iw.q,). , 
The commutation relations for these operators follow 

from (2) and (5). We find 

[a .. aT] = [a~, a~l = o. (7) 

The inversion of (6) is readily accomplished using 

the relations (5). We find 

(a.a~) = !o,,[coth (hw./2kT) + 1]. (11) 

The results for higher products are summarized by 

the following rule: The expectation value of a product 

of a's and a*'s is equal to the sum of products of 

pair expectation values, the sum being over all 

possible pairings with the order of each pair prs

served. 

For example: 

(a~aTaUa~) = <a~aT)<aUa~) + (a~au)(ara~). 

We do not prove this rule here, since the most con

vincing demonstration is by example. 

We turn now to the consideration of expectation 

Ii These properties of the operators are discussed in many 
textbooks on quantum mechanics. See, e.g., A. Messiah, 
Quantum Mechanics (North-Holland Publishing Company, 
Amsterdam, 1961), Chap. 12. 
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values of products of q's and p's. Because of the 

linear relations (8) we have the same rule for these 

expectations: 

The expectation value of an odd number of q's 

and P's vanishes. The expectation value of an even 
number of q's and P's is equal to the sum of products 
of pair expectation values, the sum being over all 
pairings which preserve the order of the pair. 

For example: 

(qiqjPkql) = (qiqj)(PkPI) + (qiPk)(qjql) + (qiql)(qjqk)' 

The pair correlations are readily obtained from (10) 

and (11), using (8). Thus 

( ) '" h th 'tuJJ o (0)/:(0) 

qjqk = 7' 2w
o 

co 2kT ~j ,k . 

Using (4) we see this can be written 

(qjqk) = II~ coth ;:;lllk' (12) 

Similarly, we find 

(P;Pk) = II!hAl coth (hAi j2kT)lljk' (13) 

(qjPk) = -(p;qk) = !ihO;k' (14) 

Consider now the time-dependent correlation 

functions in which the operators at time t are 

expressed in terms of the initial operators through the 

relations (4), considered here as formal solutions of 

the Heisenberg equations of motion. Again we have 

the rule that correlations of an odd number of 

operators vanish while a correlation of an even 
number of operators is equal to a sum of products of 
pair correlations, the sum being over all pairings 
which preserve the order of the pair. For example, 

(q;(t1)qk(t2)PI (ta) q",(tJ) = (q;(t1) qk(t2»(PI(ta)q",(tJ) 

+ (qj(t1)PI(ta»(qk(t2)q",(t4» 

+ (qj(t1) q",(t4»(qk (t2)p I (ta». 

The pair correlations are 

(Pj(t)Pk(t + T» 

= I I !hAi[coth (hAlj2kT) cosAiT + isinAiT]lljk, (15) 

(q;(t)qk(t + T» 

= II!hA -l[coth (hAi j2kT) cosAlT + isinAi T] Ilik' (16) 

(q;(t)Pk(t + T» 

= II!h[ - coth (hAi j2kT) sin AlT + i cos Ai T] Ilik' (17) 

The derivation of these expressions goes exactly 

as the derivation of the corresponding classical 

correlations, obtained in Appendix 1, but using the 
expressions (12), (13), and (14) for the initial 

expectation values. 
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