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Starting from a general ansatz, we show how community detection can be interpreted as finding the ground
state of an infinite range spin glass. Our approach applies to weighted and directed networks alike. It contains
the ad hoc introduced quality function from �J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701
�2004�� and the modularity Q as defined by Newman and Girvan �Phys. Rev. E 69, 026113 �2004�� as special
cases. The community structure of the network is interpreted as the spin configuration that minimizes the
energy of the spin glass with the spin states being the community indices. We elucidate the properties of the
ground state configuration to give a concise definition of communities as cohesive subgroups in networks that
is adaptive to the specific class of network under study. Further, we show how hierarchies and overlap in the
community structure can be detected. Computationally efficient local update rules for optimization procedures
to find the ground state are given. We show how the ansatz may be used to discover the community around a
given node without detecting all communities in the full network and we give benchmarks for the performance
of this extension. Finally, we give expectation values for the modularity of random graphs, which can be used
in the assessment of statistical significance of community structure.
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I. INTRODUCTION

The amount of empirical information that scientists from
all disciplines are dealing with is constantly increasing, and
so is the need for robust, scalable, and easy to use clustering
techniques for data abstraction, dimensionality reduction, or
visualization for many scientists performing exploratory data
analysis �1,2�. A basic objective is to group objects that are
similar together and dissimilar objects apart, but already the
question of how to measure similarity and/or dissimilarity is
a subject of discussion �2�. Two main approaches to cluster-
ing are identified in the literature �2�. On one hand there is
hierarchical clustering where the data set is grouped into a
hierarchy of clusters from single items to the whole data set.
Data points are either joined successively in an agglomera-
tive manner starting from the closest pair of data points or
the data set is recursively partitioned into two parts, an ap-
proach which is called divisive. On the other hand, there is
partitional clustering, where the data set is directly parti-
tioned into k different clusters usually optimizing some qual-
ity function. The number of clusters k is either an input pa-
rameter of the algorithm or found by the clustering procedure
itself. By transforming the similarity matrix into a graph by,
e.g., thresholding, the clustering problem can be tackled
from a graph partitioning point of view. These approaches
apply directly to networks or relational data sets where the
proximity information is given as a set of pairwise relations,
i.e., the edges of the network. The problem is then ap-
proached by a min-cut technique that partitions a connected
graph into two parts, minimizing the number of edges to cut
�3–5�. These approaches, however, suffer greatly from being
very skewed, as the min-cut is usually found by cutting off
only a very small subgraph �6�. A number of penalty func-
tions have been suggested to overcome this problem and
balance the size of subgraphs resulting from a cut. Among
these are ratio cuts �6,7�, normalized cuts �8�, or min-max
cuts �5�.

Though today the development of these methods lies
mainly in the realm of computer science, the relations be-
tween information theory and statistical physics �9,10� have
brought about a number of such methods that are based on
principles from statistical mechanics or analogies with physi-
cal models. When using spin models for clustering of multi-
variate data, the similarity measures are translated into cou-
pling strengths and either dynamical properties such as spin-
spin correlations are measured or energies are interpreted as
quality functions. A ferromagnetic Potts model has been ap-
plied successfully by Blatt et al. �11�. Bengtsson and
Roivainen �12� have used an antiferromagnetic Potts model
with the number of clusters k as input parameter, and the
assignment of spins in the ground state of the system defines
the clustering solution.

In recent years, renewed interest in the graph clustering
problem from the physics community has come under the
term “community detection.” As communities, one generally
understands subsets of nodes that are more densely intercon-
nected among each other than with the rest of the network.
Sparked by the work of Newman and Girvan �13�, a number
of other authors have developed new algorithms for this
problem that take very different approaches. The recent re-
views by Newman �14� and Danon et al. �15� may serve as
introductory reading and include methodological overviews
and comparative studies of the performance of different al-
gorithms, including the one presented by the authors in �16�.
In this paper, we intend to set the basis for a unified frame-
work under which community detection may be viewed and
which helps in understanding the underlying properties of
the problem.

First, we show that the problem of community detection
can be mapped onto finding the ground state of an infinite
range Potts spin glass via a simple first principles ansatz by
combining the information from both present and missing
links. The energy of the spin system is equivalent to the
quality function of the clustering with the spin states being
the group indices. In the above taxonomy of clustering pro-
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cedures, this corresponds to a partitional method with the
number of clusters determined automatically by the algo-
rithm as the number of occupied spin states. A single param-
eter � relates the weight given to missing and existing links
in the quality function and allows for an assessment of over-
lapping and hierarchical community structures. Thereby, we
can bridge the gap between hierarchical and partitional clus-
tering and conclude to which extent the cluster structure of
the network is hierarchical or not.

In contrast to methods based on dynamical properties of
the spin system that measure correlations between spins,
such as the superparamagnetic �SPC� Potts clustering intro-
duced by Blatt et al., mapping the problem to a ground state
bears several advantages. First, it is computationally less de-
manding, because we do not have to keep track of an N

�N correlation matrix of spin states. Rather, every spin only
carries its most probable community index. If a probabilistic
extension of the method is required, an analysis of the over-
lap of the community structures in different local minima of
the Hamiltonian can be performed as done in �16�. Second,
the properties of the ground state spin configuration lead to a
direct interpretation of the result in terms of graph theoretical
measures, which give an exact definition of what a “commu-
nity” is in this framework. The interpretation of the param-
eter � in the evaluation of hierarchy and overlap is much
clearer than the interpretation of the temperature in SPC.
Third, the zero temperature energy can be calculated analyti-
cally, which allows expectation values of the modularity to
be given and an assessment of the clustering tendency of the
graph under study.

For a natural choice of parameters, we recover the “modu-
larity” defined by Newman and Girvan �17� from our ansatz

as well as the ad hoc introduced quality function from �16�.
Then we derive a number of graph structural properties that
define the term “community” from the fact that valid com-
munity structures correspond to minima of the energy land-
scape of the system. We compare this definition to other
possibilities from the literature. We then show how hierarchi-
cal and overlapping community structures can be discovered
in this framework. Even though the quality function re-
sembles an infinite range spin glass with couplings between
all pairs of nodes, we show how efficient minimization rou-
tines can be implemented that only need to consider interac-
tions along the links in the network and some global book-
keeping. This makes the use of the method feasible even for
large systems. Furthermore, we show how a method of find-
ing the community around a given node can be developed in
this general framework and give benchmarks for this
method. All clustering procedures will find clusters even
when applied to random data. Hence, in the last part of the
paper, we focus on the statistical significance of community
detection. We show how community detection is related to
graph partitioning and that when community detection is ap-
plied to random graphs, equally sized communities are
found. From the known results for the cut size of graph par-
titionings we can calculate expectation values for the modu-
larity of random graphs which have to be exceeded by any
data set that is to be called truly modular.

II. DERIVATION OF THE HAMILTONIAN

For the term “community” or “cluster” or “cohesive sub-
group” a number of different and sometimes conflicting defi-
nitions exist �15�. All of them have in common that commu-
nities are understood as groups of densely interconnected
nodes that are only sparsely connected with the rest of the
network. Any quality function for an assignment of nodes
into communities should therefore follow the simple prin-
ciple: group together what is linked, keep apart what is not.
From this, we find four requirements of such a quality func-
tion: it should �i� reward internal edges between nodes of the
same group �in the same spin state� and �ii� penalize missing
edges �nonlinks� between nodes in the same group. Further,
it should �iii� penalize existing edges between different
groups �nodes in different spin state�, and �iv� reward non-
links between different groups. This leads to the following
function:

�1�

in which Aij denotes the adjacency matrix of the graph with
Aij =1, if an edge is present and zero otherwise, �i

� �1,2 , . . . ,q� denotes the spin state �or group index� of node
i in the graph, and aij, bij, cij, dij denote the weights of the
individual contributions, respectively. The number of spin
states q determines the maximum number of groups allowed
and can, in principle, be as large as N, the number of nodes
in the network. Note that not all group indices have to be
used necessarily in the optimal assignment of nodes into
communities, as some spin states may remain unpopulated in
the ground state. If links and nonlinks are each weighted
equally, regardless of whether they are external or internal,
i.e., aij =cij and bij =dij, then it is enough to consider the
internal links and nonlinks. It remains to find a sensible
choice of weights aij and bij, preferably such that the contri-
bution of links and nonlinks can be adjusted through a pa-
rameter. As we will see, a convenient choice is aij =1−�pij

and bij =�pij, where pij denotes the probability that a link
exists between node i and j, normalized, such that �i�jpij

=2M. For �=1 this leads to the natural situation that the total
amount of energy that can possibly be contributed by links
and nonlinks is equal: �i�jAijaij =�i�j�1−Aij�bij. For
weighted networks this approach is generalized in a straight-
forward manner by using a weighted adjacency matrix Wij.
In case of a directed network with a nonsymmetric adjacency
matrix Aij�Aij, one can construct a symmetric representa-

tion of the network introducing Ãij =1/2�Aij +A ji� and p̃ij

=1/2�pij + p ji�. In this article, we will only deal with undi-
rected, unweighted adjacency matrices. Our choice of the
weights allows us to further simplify the Hamiltonian �2�

H����� = − �
i�j

�Aij − �pij����i,� j� . �2�

This represents a spin glass with couplings Jij =Aij −�pij be-
tween all pairs of nodes: ferromagnetic where links between
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nodes exist and antiferromagnetic where links are absent.
Depending on the graph under study, one can assume dif-

ferent expressions for pij. The Hamiltonian �2� is effectively
comparing the true distribution of links in the graph under
study with the expected distribution given by a particular
null model which defines pij. With this in mind, we can
rewrite �2� in the following two ways:

H����� = − �
s

�mss − ��mss�pij
� = − �

s

css �3�

and

H����� = �
s�r

�mrs − ��mrs�pij
� = �

s�r

ars. �4�

Here, the sums run over the q spin states and mrs denotes the
number of edges between spins in group r and s. Conse-
quently, the number of internal edges of group s is denoted
by mss. The symbol �·�pij

denotes an expectation value under
the assumption of a link distribution pij, given the current
assignment of spins.

In Eqs. �3� and �4� we have also introduced the coeffi-
cients of “cohesion” css and “adhesion” ars to our network
terminology, which measure the difference between realized
and expected internal links or realized and expected external
links, respectively. Note that both depend on the choice of
the model of connectivity pij and the parameter �. The
choice of a particular form of pij allows for the adaptation of
the quality function to the specific problem under study and
hence allows for the comparison of the quality function for
graphs with different topology. The only restriction on pij is
that the number of expected edges between and within
groups is an extensive quantity, i.e., �m13�pij

+ �m23�pij

= �m1+2,3�pij
for all choices of disjoint groups n1, n2, and n3

and �m33�pij
= �m11�pij

+ �m22�pij
+ �m12�pij

for all groups n3 with
proper subgroups n1 and n2 of empty intersection and union
n3. Using these equalities, we can give a relation for the
coefficient of cohesion of a group of nodes ns and two proper
subsets ns1 and ns2 with empty intersection and union ns. It is
easy to prove that

css = c11 + c22 + a12, �5�

where c11 and c22 are the coefficients of cohesion of the
respective subsets ns1 and ns2, and a12 is the coefficient of
adhesion between ns1 and ns2. Equivalently, we can write for
the adhesion coefficients with ns of two groups nr1 and nr2

with union nr and empty intersection

ars = a1s + a2s. �6�

Two exemplary choices of link distribution models pij

shall illustrate the above. The simplest choice is to assume
every link equally probable with probability pij = p, which
leads naturally to

�mss�p = p
ns�ns − 1�

2
and �mrs�p = pnrns, �7�

with nr and ns denoting the number of spins in state r and s,
respectively. This choice of model leads to the Hamiltonian
originally quoted in Ref. �16�:

H����� = − �
i,j�E

���i,� j� + �p�
s

q
ns�ns − 1�

2
. �8�

Here, the first sum runs over all edges and only internal
edges contribute. Equivalently, we can write Eq. �8� in terms
of external edges

H����� = �
i,j�E

�1 − ���i,� j�� − �p�
r�s

q

nrns, �9�

where only edges between different groups contribute to the
first sum. We see that both �8� and �9� compare the actual
value of internal or external edges with its respective expec-
tation value under the assumption of equally probable links
and given community sizes.

A second choice for pij may take into account that the
network does exhibit a particular degree distribution. Since
links are in principle more probable between nodes of high
degree, links between these nodes get a lower weight. We
may write

pij =
kik j

2M
, �10�

which takes this fact and the degree distribution into account.
Note that it is possible to also include degree-degree corre-
lations or any other form of prior knowledge about pij at this
point. With these expressions we have

�mss�pij
=

1

2M

Ks
2

2
and �mrs�pij

=
1

2M
KrKs. �11�

Here, Ks is the sum of degrees of nodes in spin state s and
plays the role of the occupation numbers in Eq. �8�. Using
these expressions, we can also write the Hamiltonian �2� in a
form similar to Eq. �8�,

H����� = − �
i,j�E

���i,� j� +
�

2M
�

s

q
Ks

2

2
. �12�

Again, we give an equivalent formulation in terms of exter-
nal rather than internal edges, similar to Eq. �9�,

H����� = �
i,j�E

�1 − ���i,� j�� −
�

2M
�
r�s

q

KrKs. �13�

For �=1 and the model pij =kik j /2M, we can derive

2css + �
r,r�s

asr = 0. �14�

Furthermore, the cohesion is negative �css�0� if ns consists
of only one single node. We see that there must always exist
a group of nodes nr to which this node has positive adhesion.
Groups of only one node do not exist. We stress that relation
�14� and the conclusions just drawn do not hold for ��1 or
pij = p.

Even though we are dealing with an infinite range spin
glass with couplings between all pairs of nodes, one only
needs to consider the ferromagnetic interactions along the
links and the occupation numbers or the sum of node degrees
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of the individual spin states. This makes it easy to implement
an efficient minimization routine for this Hamiltonian. It
should be noted that both the formulations �8�, �9�, �12�, and
�13� are equivalent in the case of a network with fixed con-
nectivity.

III. EQUIVALENCE WITH NEWMAN-GIRVAN

MODULARITY

Comparing the performance in retrieving a known com-
munity structure from computer generated test networks may
be used as a benchmark for different community detection
algorithms. Alternatively, many authors have given values of
the quality function Q defined by Newman and Girvan as
“modularity” �17� as a global, comparative, objective mea-
sure of how good a community structure found by an algo-
rithm is. Alternative formulations focusing on the local as-
pects of community structure also exist, such as that of “local
modularity” introduced by Muff et al. �18�. Newman and
Girvans’s modularity measure can be written as �17�

Q = �
s

ess − as
2, with as = �

r

ers. �15�

Here, ers is the fraction of links that fall between nodes in
group r and s, i.e., the probability that a randomly drawn link
connects a node in group r to one in group s. The probability
that a link has one end in group s is expressed by as. From
this, we expect a fraction of as

2 links to connect nodes in
group s among themselves. Newman’s modularity measure
hence compares the actual link density in a community with
an expectation value. One can write this modularity in a
slightly different way following �19�

Q =
1

2M
�
i�j

�Aij −
kik j

2M
	���i,� j� . �16�

This already resembles Eq. �2� when pij takes the form
kik j /2M. It is now clear that we can write

Q = −
1

M
H����� �17�

with the Hamiltonian �2� and �=1. Therefore, maximum
modularity is reached when the Hamiltonian �2� with pij

=kik j /2M or equivalently, �12� or �13� with �=1, are mini-
mal. To maximize the modularity of a community structure is
hence equivalent to finding the spin configuration that mini-
mizes these Hamiltonians. This form of writing the modular-
ity Q is much simpler than the one given by Guimera et al.

�20�, which also involves three- and four-spin interactions.
We see below that by using this form, we can give efficient
update rules that allow direct optimization of the modularity
even on very large networks.

IV. PROPERTIES OF THE HAMILTONIAN

AND ITS GROUND STATE

Having mapped the problem of community finding onto
finding the ground state configuration of a spin glass, we can
investigate the properties of this minimum energy spin con-

figuration. These properties will provide us with a definition
of what a community is in the framework of maximizing a
quality function. These properties will apply to any local
minimum of the Hamiltonian as well, such that we can in-
terpret these local minima as alternative community struc-
tures. Inspection of the total energy landscape and compari-
son of global and local minima and the respective
community structure will then provide insight into the clus-
tering tendency of the network. Obviously, the more local
minima with little overlap but energies comparable to the
global minimum there are, the more spin-glass-like the en-
ergy landscape is and the less the network shows a truly
modular structure.

Since the Hamiltonians are all additive with respect to the
different communities, i.e., the numbers of edges and the
corresponding expectation values are extensive, they can be
seen as independent entities, and we can treat a single com-
munity independently from the rest of the network. The con-
figuration space over which the Hamiltonian is minimized is
a discrete space. Once we have defined a move set that is
ergodic in this discrete space, a �local� minimum of the
Hamiltonian �with respect to this move set� is defined as a
configuration for which none of the steps from the move set
leads to a lower energy. It is sufficient to consider only one
move: change a group of nodes n1 from spin state s to spin
state r. The change in energy for this move in configuration
space is

�H = a1,s\1 − a1r. �18�

Here a1,s\1 is the adhesion of n1 with its complement in ns

and a1r is the adhesion of n1 with nr. If we move n1 to a
previously unpopulated spin state, then �H=a1,s\1. This
move corresponds to dividing group ns. Furthermore, if n1

=ns, we have �H=−asr, which corresponds to joining
groups ns and nr. For a spin configuration to be a local mini-
mum of the Hamiltonian, there must not exist a move of this
type that leads to a lower energy. It is clear that some moves
may not change the energy and are hence called neutral
moves. In case of equality a1,s\1=a1,r and nr being a commu-
nity itself, we say that communities ns and nr have an over-
lap of the nodes in n1.

For a community defined as a group of nodes with the
same spin state in a spin configuration that makes the Hamil-
tonian minimal, we then have the following properties: �i�
Every proper subset n1 of a community ns has a maximum
coefficient of adhesion with its complement in the commu-
nity compared to the coefficient of adhesion with any other
community �a1,s\1=max�. �ii� The coefficient of cohesion is
non-negative for all communities �css	0�. �iii� The coeffi-
cient of adhesion between any two communities is nonposi-
tive �ars
0�.

The first property is proven by contradiction from the fact
that we are dealing with a spin configuration that makes the
Hamiltonian minimal. We also see immediately that every
proper subset n1 of a community ns must have a non-
negative adhesion with its complement ns\1 in the commu-
nity. In particular, this is true for every single node l in ns

�al,s\l	0�. Then we can write �l�ns
al,s\l	0. Since
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�l�ns
ml,s\l=2mss and �l�ns

�ml,s\l�pij
=2�mss�pij

, this implies
css	0 for all communities s and proves the second property.
The third property is proven by contradiction again. Again,
we stress that for �=1 and pij =kik j /2M, no community is
formed of a single node due to condition �14�. The last two
properties can be summarized in the following inequality,
which provides an intuition about the significance of the pa-
rameter �:

css 	 0 	 ars " r,s . �19�

Assuming a constant link probability, we can rewrite this
inequality in order to relate the inner link density of a com-
munity and the outer link density between communities with
an average link density,

2mss

ns�ns − 1�
	 �p 	

mrs

nrns

" r,s . �20�

We see that �p can be interpreted as a threshold between
inner and outer link density under the assumption of a con-
stant link probability. The above definition of what a com-
munity is adapts itself to any network, since the specific
network model is encoded in the definition of cohesion and
adhesion. This makes it possible to compare community
structures of networks with different topology.

V. SIMPLE DIVISIVE AND AGGLOMERATIVE

APPROACHES TO MODULARITY MAXIMIZATION

Hierarchical clustering techniques can be dichotomized
into divisive and agglomerative approaches �2�. We will
show how a simple recursive divisive approach and an ag-
glomerative approach may be implemented and where they
fail.

In the present framework, a hierarchical divisive algo-
rithm would mean to construct the ground state of the q state
Potts model by recursive partitioning the network into two
parts according to the ground state of a two-state Potts or
Ising system. This procedure would be computationally sim-
pler and result directly in a hierarchy of clusters due to rep-
etition of the procedure on the parts until the total energy
cannot be lowered anymore. Such a procedure would be jus-
tified, if the ground state of the q state Potts Hamiltonian and
the repeated application of the Ising system cut the network
along the same edges. We will derive a condition under
which this can be ensured.

In order for this recursive approach to work, we must
ensure that the ground state of the two-state Hamiltonian
never cuts though a community as defined by the q state
Hamiltonian. Assume a network made of three communities
n1, n2, and n3, as defined by the ground state of the q state
Hamiltonian. For the bipartitioning, we now have two pos-
sible scenarios. Without loss of generality, the cut is made
either between n2 and n1+n3 or between n1, n2, and n3=na

+nb, parting the network into n1+na and n2+nb. Since the
former situation should be energetically lower for the algo-
rithm to work, we arrive at the condition that

mab − �mab�pij
+ m1b − �m1b�pij

� m2b − �m2b�pij
, �21�

which must be valid for all subgroups na and nb of commu-
nity n3. Since n3 is a community, we further know that mab

− �mab�pij
�m1b− �m1b�pij

and mab− �mab�pij
�m2b− �m2b�pij

.
Though mab− �mab�pij

�0, since n3 is a community, m1b

− �m1b�pij
�0 and m2b− �m2b�pij

�0 for the same reason and
hence condition �21� is not generally satisfied. Figure 1 illus-
trates a counterexample, assuming pij = p, the link probability
in the network. Figure 1�a� shows the ground state of the
system when using only two spin states, and 1�b� shows the
ground state of the system without constraints on the number
of spin states, resulting in a configuration of three communi-
ties. We see that the bipartitioning approach would have cut
through one of the communities in the network. Recursive
bipartitionings cannot generally lead to an optimal assigment
of spins that maximizes the modularity.

In �21� Newman has introduced a fast, greedy strategy for
modularity maximization. It effectively corresponds to a
simple nearest neighbor agglomerative clustering of the net-
work where the adhesion coefficient ars is used as a similar-
ity measure. Newman’s algorithm initially assign different
spin states to every node and then proceeds by grouping
those nodes together that have the highest coefficient of ad-
hesion. As Fig. 2 shows, this approach fails if the links be-
tween two communities connect nodes of low degree. The
network consists of 14 nodes and 37 links. Is is clearly seen
that in the ground state, the network consists of two commu-

FIG. 1. Illustration of the problem of recursive bipartitioning.
The ground state of the Hamiltonian with only two possible spin
states, as shown in �a�, would cut through one of the communities
that are found when allowing three spin states, as shown in �b�.

FIG. 2. Example network for which an agglomerative approach
of grouping together nodes of maximal adhesion will fail. Starting
from an assignment of different spin states to every node, the largest
adhesion is found for the nodes connected by edge x and the nodes
connected by x are grouped together first by the agglomerative pro-
cedure. However, it is clearly seen that x should lie between differ-
ent groups.
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nities and edge x lies between them. However, when initially
assigning different spin states to all nodes, the adhesion be-
tween the nodes connected by x is largest: a=1−16/2M,
since the product of degrees at this edge is lowest. Therefore,
the agglomerative procedure described is misled into group-
ing together the nodes connected by x already in the very
first step. Furthermore, it is clear that in a network where all
nodes have the same degree initially, all edges connect nodes
of the same coefficient of adhesion. In this case, it cannot be
decided which nodes to group together in the first step of the
algorithm at all. It was shown by Newman that the approach
does deliver good results in benchmarks using computer-
generated test networks. The success of this approach de-
pends, of course, on whether or not the misleading situations
have a strong effect on the final outcome of the clustering. In
the example shown, after grouping together the nodes at the
end points of x, the algorithm will then proceed to further
adding nodes from only one of the two communities linked
by x. Hence, the initial mistake persists but does not com-
pletely destroy the result of the clustering.

VI. COMPARISON WITH OTHER DEFINITIONS

OF COMMUNITIES

We have defined the term community as a set of nodes
having properties �i�–�iii�. Compared with the many defini-
tions of community in the sociological literature �22�, this
definition is most similar to that of an “LS set.” An LS set is
a set of nodes S in a network such that each of its proper
subsets has more links to its complement in S than to the rest
of the network �23�. Previously, Radicchi et al. �24� had
given a definition of community “in a strong sense” as a set
of nodes V with the condition ki

in�ki
out, "i�V, i.e., every

node in the group has more links to other members of the
group than to the rest of the network. In the same manner,
they define a community in a “weak sense” as a set of nodes
V for which �i�Vki

in��i�Vki
out, i.e., the total number of in-

ternal links is larger than half the number of the external
links, since the sum of ki

in is twice the number of internal
edges. The similarity with properties �i� and �ii� of our defi-
nition is evident, but instead of comparing absolute numbers,
our definition compares absolute numbers to expectation val-
ues for these quantities in form of the coefficients of cohe-
sion and adhesion. One of the consequences of Radicchi et

al.’s definitions is that every union of two communities is
also a community. This leads to the strange situation that a
community in the strong or weak sense can also be an en-
semble of disjoint groups of nodes. This paradox may only
be resolved if one assumes a priori that there exists a hier-
archy of communities. The following considerations and ex-
amples show that hierarchies in community structures are
possible but cannot be taken for granted. The representation
of community structures by dendograms, therefore, cannot
always capture the true community structure. Another defi-
nition of communities is given by Palla et al. �26�. There, a
community is interpreted as a set of nodes that can be
reached through a clique percolation process. This definition
is very strict and focuses more on local structural properties
of the graph, whereas the other definitions, including ours,

have a link-density-based interpretation which also makes
them more robust in the case of “noisy” data sets.

VII. OVERLAP AND STABILITY

OF COMMUNITY ASSIGNMENTS

One cannot generally assume that a community structure
of a network is uniquely defined. There may exist several but
very different partitions that all have a comparably high
value of modularity. Palla et al. �25� have introduced an al-
gorithm to detect overlapping communities by clique perco-
lation, and Gfeller et al. have introduced the notion of nodes
lying “between clusters” �26�. In the framework of this ar-
ticle, the overlap of communities is linked to the degeneracy
of the minima of the Hamiltonian. This degeneracy can arise
in several ways and we have to differentiate between two
different types of overlap: overlap of community structure
and overlap of communities.

We have already seen that it is undecidable whether a
group of nodes nt should be member of community ns or nr,
if the coefficients of adhesion are equal for both of these
communities. Formally, we find at,s\t=atr. In this situation,
we speak of overlapping communities ns and nr with overlap
nt, since the number of communities in the network is not
affected by this type of degeneracy. Nodes that do not form
part of overlaps are always grouped together and can be seen
as the nonoverlapping cores of communities. An example of
this can be found in Fig. 3�a�, where communities A and B

FIG. 3. For different values of �, different spin configurations
minimize the energy to form ground states. For ��16/63, the
ground state is ferromagnetic. For 16/63���8/7, the twofold de-
generate configuration �a� is the ground state, with node x belonging
either to community A or B. For 8 /7���8/3, configuration �b�
shows the nondegenerate ground state. For �=8/3, configurations
�b�–�f� all form ground states, but only �f� is ground state for 8 /3
���4.
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overlap in node x. The ground state at �=1 is twofold de-
generate, with node x belonging either to A or B.

On the other hand, it may be undecidable if two groups of
nodes should be grouped together or apart, if the coefficient
of adhesion between them is zero, i.e., there exist as many
edges between them as expected from the model pij. Simi-
larly, it may be undecidable, if a group of nodes should form
its own community or be divided and the parts joined with
different communities, if this can be done without increasing
the energy. In these situations, the number of communities in
the ground state is not well defined and we cannot speak of
overlapping communities, since communities do not share
nodes in the degenerate realizations. We will hence refer to
such a situation as overlapping community structures. An
example of this can be found in Fig. 3�d�, where the three
nodes in groups A and B form either one community as in
3�a� or two distinct communities of two and one node each.
In general, however, both types of overlap may be present in
a network.

Since the coefficients of adhesion and cohesion depend on
the value of � chosen, one can assess the stability of com-
munity structures under the change of this parameter. The
network shown in Fig. 3 illustrates the change of the ground
state configuration with �.

We have already stressed that properties �i�–�iii� are also
valid for any local minimum of the energy landscape defined
by the Hamiltonian and the graph. They only imply that one
cannot jump over energy barriers and move into deeper
minima using the suggested move set. It may therefore be
interesting to study also the local minima and compare them
to the ground state. Local minima may be sampled by run-
ning greedy optimization algorithms using random initial
conditions. This allows for a probabilistic interpretation of
the community structure induced by the minima of the
Hamiltonian. For correlated energy landscapes, it is known
that deeper local minima have larger basins of attraction in
the configuration space. The Hamiltonian �2� induces such a
correlated energy landscape on the graph, since the total en-
ergy is not drastically affected by single spin changes. We
therefore expect that the deep local minima will be sampled
with higher frequency and that pairs of nodes that are
grouped together in deep minima will have larger entries in a
coappearance matrix Cij that keeps track of how frequently
node i and j have been grouped together in a local minima
for multiple runs of a minimization routine. A number of
examples of co-apperance matrices sampling local energy
minima at different values of � have been given in �16�.

Here, we instead investigate the possible hierarchies of
the community structures directly from the adjacency matrix.
The ordering of the rows and columns corresponding to
nodes of the network is such that between any two nodes that
are assigned the same spin state, there never lies a node of
different spin. The internal order among the nodes of the
same spin state is random. The choice of the ordering of the
communities is arbitrary, but some orderings may be more
intuitive than others. The link density in the adjacency matrix
is directly transformed into gray levels. Since the inner link
density of a community is higher than the external, we can

distinguish communities as square blocks of darker gray.
Different orderings may be combined into a consensus order-
ing. That is, starting from a superordering given, we reorder
the nodes within each community according to a second
given subordering, i.e., we only change the internal order of
the nodes within communities of the superordering.

First, we give an example of a completely hierarchical
network. By hierarchical we mean that all communities
found at a value of �2��1 are proper subcommunities of the
communities found at �1. In our example, we have con-
structed a network made of four large communities of 128
nodes each. Each of these nodes have an average of 7.5 links
to the 127 other members of their community and five links
to the remaining 384 nodes in the network. Each of these
four communities is composed of four subcommunities of 32
nodes each. Each node has an additional ten links to the 31
other nodes in its subcommunity. Figure 4 shows the adja-
cency matrix of this network in different orderings. At �=1,
the ground state is composed of the four large communities
as shown in the top part of Fig. 4. Increasing � above a
certain threshold makes assigning different spin states to the
16 subcommunities the ground state configuration. The
middle part of Fig. 4 shows an ordering obtained with a
value of �=2.2. We can see that some of the these subcom-
munities are more densely connected among each other. Im-
posing the latter ordering on top of the ordering obtained at
�=1 then allows the full community structure and hierarchy
of the network to be displayed as shown in the bottom part of
Fig. 4. Note that we have not used a recursive approach
applying the community detection algorithm to separate sub-
groups. Instead, we have obtained two independent orderings
which are only compatible with each other because the net-
work has a hierarchical structure of dense communities com-
posed of denser subcommunities.

In contrast to this situation, Fig. 5 shows an example of a
network that is only partially hierarchical. The network con-
sists of two large communities A and B containing 512
nodes, which have on average 12 internal links per node.
Within A and B, a subgroup of 128 nodes exists, which we
denote by a and b, respectively. Every node within this sub-
group has six of its 12 intracommunity links with the 127
other members of this subgroup. The two subgroups a and b

have on average three links per node with each other. Addi-
tionally, every node has two links with randomly chosen
nodes from the network. From Fig. 5 we see that the two
large communities at �=0.5. Maximum modularity, however,
is reached at �=1 when a and b are joined into a separate
community. Only when using the consensus of the ordering
obtained at �=0.5 and �=1 we can understand the full com-
munity structure with a and b being subgroups that are re-
sponsible for the majority of links between A and B. It is
understood that this situation cannot be interpreted as a hier-
archy, even though a and b are cohesive subgroups in A and
B, respectively. We now turn to a real world example to see
whether these structural properties can indeed be found out-
side of artificially constructed examples.

As a real world example, we study the co-authorship net-
work �27� of the Los Alamos condensed matter preprint
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FIG. 4. Example of an adjacency matrix for a perfectly hierar-
chical network. The network consists of four communities, each of
which is composed of four subcommunities. Using �=1, we find
the four main communities �top�. With �=2.2, we find the 16 sub-
communities �middle�. Link density variations in the off diagonal
parts of the adjacency matrix already hint at a hierarchy. The con-
sensus ordering �bottom� shows that each of the larger communities
is indeed composed of four subcommunities each.

FIG. 5. Example of an adjacency matrix for an only partially
hierarchical network with overlapping community structure. The
network consists of two large communities A and B, each of which
contains a subcommunity a and b, which are densely linked with
each other. Using �=0.5, we find the two large communities �top�.
With a larger �=1, we find the two small subcommunities a and b

grouped together �middle�. The consensus ordering �bottom� shows
that most of the links that join A and B in fact lie between a and b.
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archive, considering articles published between April 1998
and February 2004. This network has also been analyzed by
Palla et al. in �25�. Every article induces a complete sub-
graph between the authors in this network. Since articles
with many authors induce very large cliques, every link in-
duced by a single paper of n authors is only given a weight
of 1 / �n−1�. After summing the weights for all papers, only
links with a weight of 0.1 and greater were kept, transform-
ing the network into a nonweighted one. The network con-
sists of 30 561 nodes connected by 125 959 links. There are
668 connected components, the largest of which has 28 502
nodes and 123 604 links. We only work with the largest con-
nected component. The average degree is 
k�=8.7. We then
minimize the Hamiltonian �2� using pij =kik j /2M and q

=500. Three different values of � were used. For each of the
values of �, some of the 500 spin states remained unpopu-
lated, which makes us confident that we provided enough
spin states. Figure 6 shows the adjacency matrix of the co-
authorship network with rows and columns ordered accord-
ing to the ground state at �=0.5. We can distinguish three
major communities along the diagonal of the matrix and a
large number of smaller communities. Off-diagonal entries in
the matrix show where communities are connected with each
other. Figure 7 shows the same adjacency matrix but ordered
according to the ground state obtained at �=1, while Fig. 8

FIG. 6. Adjacency matrix of the coauthor network ordered ac-
cording to the ground state with �=0.5.

FIG. 7. Adjacency matrix of the coauthor network ordered ac-
cording to the ground state with �=1.

FIG. 8. Adjacency matrix of the co-author network ordered ac-
cording to the ground state with �=2.

FIG. 9. Adjacency matrix of the co-author network ordered first
according to the ground state with �=0.5. Within the clusters, the
nodes were then ordered again according to the ground state with
�=1 and within these clusters, the nodes were ordered according to
the ground state with �=2.
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was obtained ordering the adjacendy matrix according to the
ground state obtained at �=2. We see how the increase of �
leads to to a higher number of smaller communities and a
reduction in size of the major communities as expected. In
Fig. 9 we show the adjacency matrix in a consensus ordering
of the three single orderings. If the network was hierarchical
with respect to �, i.e., the communities found for larger val-
ues of � are all complete subcommunities of those found at
smaller �, we should be able to distinguish this from the
adjacency matrix in the same manner as in Fig. 4. From the
consensus ordering, we can see that community A from the
�=0.5 ordering is composed of a number of smaller commu-
nities in a somewhat hierarchical manner, while community
B seems to consist of a dense core and many adjacent nodes
that are gradually removed as � increases. Community C

again is decomposed into several smaller subgroups by the
consensus ordering that seems to show two levels of hierar-
chy. The interpretation of the community structure and its
hierarchy in terms of research fields is beyond the scope of
this article and shall not be attempted here. Rather, we intend
to show that both hierarchical and overlapping community
structure exists in the link patterns of real world networks
and how it can be uncovered.

VIII. MINIMIZING THE HAMILTONIAN

After having studied some properties of the ground state,
we now turn to the problem of actually finding it. Though
any optimization scheme that can deal with combinatorial
optimization problems may be implemented �28,29�, we
show the use of simulated annealing �30� for this Potts model
because it yields high quality results, is very general in its
application and is very simple to program. The single spin
heat bath update rule at temperature T=1/� is as follows:

p��l = � =
exp�− �H���i�l,�l = ���

�
s=1

q

exp�− �H���i�l,�l = s���

. �22�

That is, the probability of spin l being in state  is propor-
tional to the exponential of the energy of the entire system
with all other spins i� l fixed and spin l in state . Since this
is costly to evaluate, we pretend that we know the energy of
the system with spin l in some arbitrarily chosen spin state �,
which we denote by H�. Then we can calculate the energy of
the system with l in state  as H�+�H��l=�→�. The
energy H� then factors out in �22� and we are left with

p��l = � =
exp�− ��H��l = � → ��

�
s=1

q

exp�− ��H��l = � → s��

. �23�

The change in energy �H��l=�→ ,��� is easily calcu-
lated for both models of pij. For the simpler of the two with
pij = p, we find

�H��l = � → ,� � �

= �
j�l

�Alj − �p����,� j� − �
j�l

�Alj − �p���,� j�

�24�

=�
j�l

Alj���,� j� − �p�n� − 1� − �
j�l

Alj��,� j�

+ �pn �25�

=al� − al. �26�

Here, n� and n are the number of nodes in spin state � and
, respectively, i.e., the size of groups � and . For the
model with pij =kik j /2M we find the following update rule

�H��l = � → ,� � �

= �
j�l

�Alj − �
klk j

2M
	���,� j�

− �
j�l

�Alj − �
klk j

2M
	��,� j� �27�

=�
j�l

Alj���,� j� − �
kl

2M
�K� − kl�

− �
j�l

Alj��,� j� + �
kl

2M
K �28�

=al� − al. �29�

Here, again, K� and K denote the sum of degrees of nodes
in states � and , respectively. In both cases, comparing the
adhesion of spin �l with its present community n� and all
other communities n, the spin state for which the adhesion
is largest is assigned the largest probability. Only local infor-
mation about the states of the neighbors of a node and some
global bookkeeping is necessary. This makes the implemen-
tation of a simulated annealing or any other optimization
algorithm especially simple and efficient, even though we are
dealing with an infinite range spin glass which has nonzero
couplings between all pairs of nodes.

IX. FINDING THE COMMUNITY

AROUND A GIVEN NODE

Often it is desirable not to find all communities in a net-
work but to find only the community to which a particular
node belongs. This may be especially useful if the network is
very large and detecting all communities may be time con-
suming �31�. In the framework presented in this article, we
can do this using a fast, greedy algorithm. Starting from the
node j we are interested in, we successively add nodes with
positive adhesion to the group, as long as the adhesion of the
community we are forming and the rest of the network de-
creases. Adding a node i from the rest of the network r to the
community s around the start node, the adhesion between s

and r changes by
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�asr�i → s� = air − ais. �30�

For pij = p, this can be written as

�asr�i → s� = kir − kis − �p�nr − 1 − ns� , �31�

where nr=N−ns is the number of nodes in the rest of the
network, and ns is the number of nodes in the community.
For pij =kik j /2M, the change in adhesion reads

�asr�i → s� = kir − kis −
�

2M
ki�Kr − ki − Ks� . �32�

Here Kr and Ks are the sums of degrees of the rest of the
network and the community under study, respectively, and ki

is the degree of node i to be moved from r to s, which has kis

links connecting it with s and kir links connecting it with the
rest of the network. It is understood that only when the ad-
hesion of i with s is larger than with r, the total adhesion of
s with r decreases. Equivalent expressions can be found for
removing a node i from the community s and rejoining it
with r. For �=1 and pij =kik j /2M, we have ais+air+2cii=0,
and cii�0 by definition and close to zero for all practical
cases. Then ais and air are either both positive and very small
or have opposite sign. Choosing the node that gives the
smallest �ars will then result in adding a node with positive
coefficient of adhesion to s. It is easy to see that this ensures
a positive coefficient of cohesion in the set of nodes around
j.

In order to benchmark the performance of this approach,
we applied it again to computer generated test networks as
done for the algorithm on the entire network in �16�. We used
networks of 128 nodes, which are grouped into four equal
sized communities of size 32. Each node has an average
degree of 
k�=16. The average number of links to members
of the same community 
kin� and to members of different
communities 
kout� is then varied, but always ensuring 
kin�
+ 
kout�= 
k�. Hence, decreasing kin renders the problem of
community detection more difficult. Starting from a particu-
lar node, we are interested in the performance of the algo-
rithm in discovering the community around it. We measure
the percentage of nodes that are correctly identified as be-
longing to the community around the start node as sensitivity
and the percentage of nodes that are correctly identified as
not belonging to the community as specificity.

Figure 10 shows the results obtained for different values
of 
kin� at �=1 and using pij =kik j /2M as a model of the
connection probability. We note that this approach performs
rather well for a large range of 
kin� with good sensitivity and
specificity. In contrast to the benchmarks for running the
simulated annealing on the entire network as shown in �16�,
we obtain a sensitivity that is generally larger than specific-
ity. This shows that running the simulated annealing on the
entire network tends to mistakenly group things apart that do
not belong apart by design, while constructing the commu-
nity around a given node tends to group things together that
do not belong together by design. This behavior is under-
standable, since working on the entire network amounts to

effectively implementing a divisive method, while starting
from a single node means implementing an agglomerative
method.

X. EXPECTATION VALUES FOR THE MODULARITY

In order to assess the statistical significance of the modu-
larities found with any algorithm, it is necessary to compare
them with expectation values for random networks. This is of
course always possible by rewiring the network randomly
�32�, keeping the degree distribution invariant and then run-
ning a community detection algorithm again, comparing the
result to the original network. This method, however, can
only give an answer to what a particular community detec-
tion algorithm may find in a random network and hence de-
pends on the very method of community detection used. A
much better method is to compare the results of a community
detection algorithm with a theoretical result, obtained inde-
pendently of any algorithm. We have already seen that the
problem of community detection can be mapped onto finding
the ground state of an infinite range spin glass. In the limit of
large N, the local field distribution of infinite range spin
glasses is Gaussian and can hence be characterized by only
the first two moments of the coupling distribution, the mean
and the variance. The couplings used in the study of modu-
larity are Jij =Aij −�pij which have a mean independent of the
particular form of pij

J0 = �1 − ��p �33�

which is zero in the case of the “natural partition” at �=1.
The variance amounts to

J2 = p − �2� − �2�
p2� . �34�

Since the mean of the coupling distribution couples to the
magnetization of the ground state, all coupling distributions
with zero mean will have zero magnetization in the ground
state. Hence, for a random graph we expect maximum modu-
larity for an equipartition. A number of well known results
exist in the literature for equipartitions. Fu and Anderson
�33� have given results for bipartitionings and Kanter and

FIG. 10. Benchmark of the algorithm for discovering the com-
munity around a given node in networks with known community
structure. We used networks of 128 nodes and four communities.
The average degree of the nodes was fixed to 16, while the average
number of intracommunity links 
kin� was varied. Sensitivity mea-
sures the fraction of nodes correctly assigned to the community
around the start node, while specificity measures the fraction of
nodes correctly kept out of the community around the start node.
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Sompolinsky for q partitionings �34�. With these, we can
write immediately for the modularity at �=1

Q = −
1

M
HGS =

N3/2

M
J

U�q�

q
, �35�

where U�q� is the ground state energy of a q state Potts
model with Gausssian couplings of zero mean and variance
J2. For large q, we can approximate U�q�=�q ln q. In Table I
we give some small values of q obtained by using the exact
formula for calculating U�q� from �34�. We see that maxi-
mum modularity is obtained at q=5, though the value of
U�q� /q for q=4 is not much different from it. This qualita-
tive behavior, that dense random graphs tend to cluster into
only a few large communities, is confirmed by our numerical
experiments. By rewriting M = pN2 /2 and under the assump-
tion of pij = p as in the case of Erdős Rényi �ER� random
graphs �35�, we can further simplify Eq. �35� and write for
the maximum value of the modularity of a ER random graph
with connection probability p and N nodes

Q = 0.97�1 − p

pN
�36�

where we have already made use of the fact that q=5 makes
the modularity maximal. Figure 11 shows the comparison of
Eq. �36� and experiments where we have numerically maxi-
mized the modularity using a simulated annealing approach
as described in an earlier section. We see that the prediction
fits the data well for dense graphs and that modularity decays
as a function of �pN�−1/2 instead of �2/ pN�2/3 as proposed in
�20�.

While the value of Q for random graphs from the Potts
spin glass is rather close to the actual situation for sparse
random graphs, the number of communities at which maxi-
mum modularity is achieved is not. In �20�, it had already
been shown that the number of communities for which the
modularity reaches a maximum is �N for treelike networks
with 
k�=2. Unfortunately, no plot was given for the number
of communities found in denser networks. Our numerical
experiments on large Erdős Rényi random graphs also show
that the number of communities found in sparse networks
tends to increase as 
k� decreases.

Even though we have seen that in general, recursive bi-
partitioning will not lead to an optimal community assign-
ment, we shall still use this approach for random graphs.
Maximum modularity for random graphs is achieved for eq-
uipartitions. Partitioning the network recursively until no fur-
ther improvement of Q is possible allows us to find the num-
ber of communities in a random graph. The number of cut
edges C=C�N ,M� in any partition will be a function of the
number of nodes in the remaining part and the number of
connections within this remaining part and their distribution.
We note that the M connections will be distributed into in-
ternal and external links per node kin+kout=k. This allows us
to write C=N
kout� /2 for a bipartition. After each partition,
the number of internal connections a node has decreases due
to the cut. We use these results in order to approximate the
number of cut edges after b recursive bipartitions, which
leads to 2b parts

C = �
t=1

b

2t−1 N

2t

kout,t� = �

t=1

b
N

2

kout,t� �37�

where 
kout,t� is the average number of external edges a node
gains after cut t. Since for an Ising model the ground state
energy is −EGS=M −2C, we find


kin� =

k�

2
− EGS�
k�� = 
k� − 
kout� . �38�

This shows that for any bipartition, we can, on average, al-
ways satisfy more than half of the links of every node on
average. This also means that any bipartition will satisfy the
definition of community given by Radicchi �24�, at least on
average, which further means that every random graph has a
community structure �at least on average�, assuming Radic-
chi’s definition of community in a strong sense �kin�kout� for
every node of the random graph. The definition of commu-
nity in a weak sense �iki

in��iki
out can always be fulfilled in

a random graph.
From �38� we can then calculate the total number of edges

cut after t recursions according to �37� using results of Fu
and Anderson �33� again who find for a bipartition

C =
M

2
1 − c�1 − p

pN
� , �39�

with a constant of c=1.5266±0.0002. We can write

TABLE I. Values of U�q� /q for various values of q obtained
from �34�, which can be used to approximate the expected modu-
larity with Eq. �35�.

q 2 3 4 5 6 7 8 9

U�q� /q 0.384 0.464 0.484 0.485 0.479 0.471 0.461 0.452

FIG. 11. Modularity of Erdős Rényi random graphs with aver-
age connectivity pN= 
k� compared with the estimation from Eq.
�36�. For the experiment, random graphs with N=10 000 were used.
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kin� =
pN + c�pN�1 − p�

2
= pN − 
kout� �40�

from which we can calculate �37�, substituting pN with the
appropriate 
kin� in every step of the recursion. The modular-
ity can then be written

Q =
2b − 1

2b
−

1


k�
�
t=1

b


kout,t� . �41�

Now we only need to find the number of recursions b that
maximizes Q. Since the optimal number of recursions will
depend on pN, we also find an estimation of the number of
communities in the network. Figure 12 shows a comparison
between the theoretical prediction of the maximum modular-
ity that can be obtained from Eq. �41�. The improvement of
�41� over �36� must be due to the possibility of having larger
numbers of communities, since �39� also assumes a Gaussian
distribution of local fields, which is a rather poor approxima-
tion for the sparse graphs under study. Again, we find that the
modularity behaves asymptotically like 
k�−1/2, as already
predicted from the Potts spin glass and contrary to the esti-
mation in �20�.

Figure 13 shows the comparison of the number of com-
munities estimated from �41� and the numerical experiments
on random graphs. The good agreement between experiment
and prediction is interesting, given the fact that �41� allows
only powers of two as the number of communities. For dense
graphs, the Potts limit of only a few communities is recov-
ered. We see that sparse random graphs cluster into a large
number of communities, while dense random graphs cluster
into only a handful of large communities. Most importantly,
sparse random graphs exhibit very large values of modular-
ity. These large values are only due to their sparseness and
not to small size. We also stress that statistically significant
modularity must exceed the expectation values of modularity
obtained from a suitable null model of the graph. If this null
model is an Erdős Rényi random graph, then there is very
little improvement possible over the values of modularity

obtained for the null model for sparse graphs.

XI. CONCLUSION

In this paper we have tried to elucidate some of the gen-
eral properties of the problem of community detection in
complex networks. We have shown that it can be mapped
onto finding the ground state of an infinite range Potts spin
glass from a very simple and general one parameter ansatz,
which is also valid for weighted networks and directed net-
works. We could show that our ansatz leads to known modu-
larity measures in a natural way. We have introduced the
concept of cohesion and adhesion into the terminology of
networks as a measure of the degree to which groups of
nodes belong together or apart in a community structure.
From the properties of the ground state as the minimal en-
ergy or maximally modular configuration, we could deduce a
number of properties that define a community. By studying
the ground state structure and its changes under parameter
variation, we could also show how hierarchical and overlap-
ping community structures manifest themselves. Compari-
sons of our definition with other definitions of communities
were given. We have provided efficient update rules for
single spin heat bath simulated annealing algorithms that al-
low optimization of the spin configuration of an infinite
range system by using solely sparse local information and
some global bookkeeping. We have extended the algorithm
of finding the entire community structure of the whole net-
work to finding only the community around a given node and
we have given benchmarks for the performance of this ex-
tension. Finally, we have summarized known results from the
theory of infinite range spin glasses in order to shed some
light on the problem of community detection in Erdős Rényi
random graphs. We have seen that sparse ER random graphs
may show very large modularities and that the expected
modularity of an ER random graph decays as �1/ 
k�, inde-
pendent of the size of the graph. Further, we have seen that
sparse ER random graphs tend to cluster into many small

FIG. 12. Modularity of Erdős Rényi random graphs with aver-
age connectivity pN= 
k� compared with the estimation from Eq.
�41�. For the experiment, random graphs with N=10 000 were used.

FIG. 13. Number of communities found in Erdős Rényi random
graphs with average connectivity pN= 
k� compared with the esti-
mation from Eq. �41�. For the experiment, random graphs with N

=10 000 were used.
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communities, while for dense random graphs, maximum
modularity is achieved for a very small number of commu-
nities only, which is independent of the average degree of the
network. We stress the importance of comparing the values
of modularity found in real world networks with expectation
values of appropriate null models in order to assess their
statistical significance. Only graphs which lead to modulari-
ties larger than the expectation value should be called
modular. In this respect, it is understood that Erdős Rényi

random graphs contain communities, but this alone does not
make these graphs modular.
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